绝对值专题训练绝对经典
绝对值测试题含答案
绝对值测试题含答案绝对值测试题推荐含答案在日常学习和工作生活中,我们很多时候都会有考试,接触到试题,通过试题可以检测参试者所掌握的知识和技能。
你知道什么样的试题才是好试题吗?下面是本店铺为大家收集的绝对值测试题推荐含答案,仅供参考,欢迎大家阅读。
1、若 |X| = 3.则 X = ( )A.3B.-3C.±3D.0答案:C2、下列各式中,正确的是 ( )A.|a| = aB.|a| = -aC.若 |a| = |b|,则 a = bD.|a| ≥ 0答案:D3、若 |X - 2| + |y + 3| = 0,则 X + y = ( )A.5B.-5C.1D.-1答案:D4、下列说法中,正确的是 ( )A.绝对值等于它本身的数只有 0B.绝对值等于它的相反数的数只有 0C.绝对值不大于它的相反数的数只有负数D.绝对值不大于它本身的数是非负数答案:D5、若 |a - 1| + |b + 2| + |c + 3| = 0,则 a + b + c = ( )A.2B.-2C.6D.-6答案:D6、若 |X| = 7,且 X A.7B.-7C.±7D.0答案:B7、下列各式中,一定成立的是 ( )A.|a| = aB.|a| = -aC.|a| > 0D.|a| ≥ 0答案:D8、若 |m - 2| + (n +(3)^2= 0,则 m - n = ( )A.5B.-5C.1D.-1答案:A9、若 |a| = 3.|b| = 2.且 a A.5B.-5C.1D.-1答案:D10、下列说法中,错误的是 ( )A.绝对值最小的数是 0B.互为相反数的两个数的绝对值相等C.绝对值等于它本身的数是非负数D.任何数的绝对值都是正数答案:D11、若 |X + 1| = 3.则 X = ( )A.2C.2或 -4D.1或 -2答案:C12、若 |a - 3| + |b + 2| = 0,则 a^b = ( )A.9B.-9C.1/9D.-1/9答案:C13、若 |a| = 5.|b| = 2.且 |a + b| = a + b,则 a - b = ( )A.3B.7C.3或 7D.-3或 -7答案:C14、若 |X - 1| A.-2 B.-4 C.X > -2D.X 答案:A15、若 |X - 3| + |2X + y| = 0,则 X + y = ( )A.3B.-3C.5答案:B16、下列各式中,能确定 a > b 的是 ( )A.|a| > |b|B.a2> b2C.|a - 1| > |b - 1|D.a3> b3答案:D。
绝对值经典练习题
绝对值专项训练一、基础题1、绝对值的几何定义:在数轴上表示数a 的点与__________的距离叫做数a 的绝对值,记作__________.2、绝对值的代数定义:一个正数的绝对值是_________;一个负数的绝对值是________;0的绝对值是_________.3、12-的绝对值等于 23-等于 3设a 是实数,则|a|-a 的值A 、可以是负数B 、不可能是负数C 、必是正数D 、可以是正数也可以是负数4、1任何数都有绝对值,有________个.2由绝对值的几何意义可知:距离不可能为负数,因此,任何一个数的绝对值都是_____数,绝对值最小的数是______.3绝对值是正数的数有_____个,它们互为_________.4两个互为相反数的绝对值________;反之,绝对值相等的两个数______或________.5、有理数的大小比较正数_________0,负数________0,正数________负数;两个负数比较大小的时候,__________大的反而小.5比较41,31,21--的大小,结果正确的是A 、413121<-<-B 、314121-<<-C 、213141-<-<D 、412131<-<- 二、典型例题6、若4x -=,则x =__________;若30x -=,则x =__________;若31x -=,则x =__________.2--的倒数是7、化简(4)--+的结果为______3、如果22a a -=-,则a 的取值范围是8、已知a b 、为有理数,且0a <,0b >,a b >,则A 、a b b a <-<<-B 、b a b a -<<<-C 、a b b a -<<-<D 、b b a a -<<-<三、自主练习题一、选择题9、有理数的绝对值一定是A 、正数B 、整数C 、正数或零D 、自然数10、下列说法中正确的个数有①互为相反数的两个数的绝对值相等;②绝对有正数;③不相等的两个数的绝对值不相等;④绝对值相等的两个数一定相等A 、1个B 、2个C 、3个D 、4个11、如果甲数的绝对值大于乙数的绝对值,那么A 、甲数必定大于乙数B 、甲数必定小于乙数C 、甲、乙两数一定异号D 、甲、乙两数的大小,要根据具体值确定12、绝对值等于它本身的数有A 、0个B 、1个C 、2个D 、无数个13、下列说法正确的是A 、a -一定是负数B 、只有两个数相等时它们的绝对值才相等C 、若a b =,则a 与b 互为相反数D 、若一个数小于它的绝对值,则这个数为负数二、填空题14、数轴上,绝对值为4,且在原点左边的点表示的有理数为___________.15、绝对值小于π的整数有______________________16、如果3a >,则3a -=__________,3a -=___________.17、若1x x =,则x 是__ __数;若1x x=-,则x 是_ _“正”或“负”数;18、已知3x =,4y =,且x y <,则x y +=________三、解答题19、比较下列各组数的大小135-,34- 256-,45-,115- 20、实数a 、b 在数轴上的位置如图所示,那么化简|a -b|-a 的结果是 A 、2a -b B 、b C 、-b D 、-2a+b21、已知a b 、互为相反数,c d 、互为倒数,m 的绝对值等于2,求2a b m cd a b c++-++的值.22、已知3a =,2b =,1c =且a b c <<,求a b c ++的值23、检查5袋水泥的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查结果如表格所示:1最接近标准质量的是几号水泥2质量最多的水泥比质量最少的水泥多多少千克。
绝对值专项练习60题(有答案)8页
绝对值专项练习60题(有答案)8页1.正确的说法是:C。
整数分数统称有理数。
2.点所表示的数是1,因为距离-2有3个单位长度的点只有-5和1.3.| -4 | =4.4.x的值是-3,y的值可以是5或-5,所以x+y的值可以是2或-8.5.a的取值范围是a ≤ 0.6.点A到原点的距离是|a|。
7.这四个数中,负数的个数是2个,因为- a和-a + |a|是负数。
8.在-2,-| -7 |,-| +3 |中,负数有2个。
9.点B表示的数是-1,因为A和C表示的数的绝对值相等,所以它们的距离原点的距离相等,B表示的数是它们的中点,即-1.10.任何一个有理数的绝对值在数轴上的位置是整个数轴。
11.|a| ≥ |b|。
12.在数轴上表示x的点与原点的距离是3,所以它可以是3或-3.13.数a在数轴上的点应是在原点或原点的左侧,因为|a| = -a。
14.下列判断错误的是B。
一个负数的绝对值一定是正数,因为一个负数的绝对值是它的相反数,即正数。
15.下列判断正确的是B。
|a|一定是正数。
16.a>|a-b|>b。
17.a-b的值可以是3或-13,因为a和b的值不确定。
18.正确的说法是C和D,即若|a|=|b|,则a与b互为相反数;若一个数小于它的绝对值,则这个数为负数。
19.正确的选项是C,即非负数。
20.正确的选项是D,即3或-1.21.正确的选项是B,即1+a>a>1-b。
22.正确的选项是B,即负数。
23.正确的选项是A,即a>0.24.正确的选项是C,即6或-4.25.正确的选项是A,即若|a|=|b|,则a=b。
26.正确的选项是D,即2或4.27.化简结果为B,即-1.28.有无穷多个绝对值等于它本身的数。
29.正确的图形是B。
30.正确的选项是B,即b同号或其中至少一个为零。
31.正确的选项是D,即-7或1.32.正确的选项是A,即1.33.正确的选项是C,XXXm<n<0,则|m|>|n|。
绝对值经典20题
绝对值基础练习题
【经典20题】
1.有理数a、b、在数轴上的位置如图所示.
(1)用“>”或“<”填空:a+b0,c﹣b0;
(2)化简:|a+b|+|c|﹣|c﹣b|.
2.如图,数轴上的三点A,B,C分别表示有理数a,b,c,化简|a﹣b|﹣|a+c|+|b ﹣c|.
3.已知:a=3,|b|=2,求(a+b)3的值.
4.比较下列各组数的大小.
(1)﹣与﹣;
(2)﹣|﹣3.5|与﹣[﹣(﹣3.5)].
5.若|x﹣1|+|y+2|+|z﹣3|=0,求(x+1)(y﹣2)(z﹣3)的值.6.已知|2﹣m|+|n+3|=0,试求m+2n的值.
7.已知|x﹣2|与|y+5|互为相反数,求x﹣y的值.
8.已知|2﹣b|与|a﹣b+4|互为相反数,求ab﹣2012的值.9.|﹣a|=21,|+b|=21,且|a+b|=﹣(a+b),求a﹣b的值.10.若m、n互为相反数,则|﹣2+m+(﹣2)﹣5+n|的值.11.已知|a|=2,|b|=2,b>a,求a,b的值.
13.求最大的负整数与最小的正整数以及绝对值最小的数的和.
14.已知|a|=4,|b|=5,求2a+b的值.
15.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|+|2a|.
16.列式计算:
求绝对值大于1而不大于5的所有负整数的和.
17.已知|a|=8,|b|=2,|a﹣b|=b﹣a,求b+a的值.
19.如果x<0,且|x﹣1|=4,求x的值.
20.写出绝对值大于3且不大于8的所有整数,并指出其中的最大数和最小数.。
绝对值练习题及答案
绝对值练习题及答案一、选择题1. 绝对值的定义是:对于任意实数x,其绝对值表示为|x|,满足以下哪个条件?A. x ≥ 0B. x ≤ 0C. x > 0D. x < 0答案:A2. 计算绝对值 |-5| 的结果是多少?A. 5B. -5C. 0D. 1答案:A3. 如果 |x - 3| = 4,那么 x 的可能值是:A. -1B. 7C. 1D. 3答案:B, C二、填空题4. 绝对值 |-8| 等于 _______。
答案:85. 如果 |x + 2| = 3,那么 x 的值可以是 _______ 或 _______。
答案:1,-56. 绝对值不等式 |x - 4| < 2 的解集是 _______。
答案:2 < x < 6三、解答题7. 解绝对值方程 |x - 5| = 6。
解:由绝对值的定义,我们有 x - 5 = 6 或 x - 5 = -6。
解得 x = 11 或 x = -1。
8. 已知 |3x + 1| = 8,求 x 的值。
解:由绝对值的定义,我们有 3x + 1 = 8 或 3x + 1 = -8。
解得 x = 7/3 或 x = -3。
9. 证明:对于任意实数 a 和 b,有|a + b| ≤ |a| + |b|。
证明:考虑 a 和 b 的正负情况,我们可以将问题分为四种情况:- 当a ≥ 0 且 b ≥ 0 时,|a + b| = a + b = |a| + |b|。
- 当a ≥ 0 且 b < 0 时,|a + b| = a - |b| ≤ |a| + |b|。
- 当 a < 0 且b ≥ 0 时,|a + b| = |b| - a ≤ |a| + |b|。
- 当 a < 0 且 b < 0 时,|a + b| = -(a + b) = |a| + |b|。
综上,对于任意实数 a 和 b,都有|a + b| ≤ |a| + |b| 成立。
绝对值练习题(精)100道
绝对值综合练习题一1、有理数的绝对值一定是()2、绝对值等于它本身的数有()个3、下列说法正确的是()A、—|a|一定是负数B只有两个数相等时它们的绝对值才相等C、若|a|=|b|,则a与b互为相反数D、若一个数小于它的绝对值,则这个数为负数4.()A、a>|b|B、a<bC、|a|>|b|D、|a|<|b|5、相反数等于-5的数是______,绝对值等于5的数是________。
6、-4的倒数的相反数是______。
7、绝对值小于2的整数有________。
8、若|-x|=2,则x=____;若|x-3|=0,则x=_ __;若|x-3|=1,则x=_______。
9、实数a_______。
10、已知|a|+|b|=9,且|a|=2,求b的值。
11、已知|a|=3,|b|=2,|c|=1,且a<b<c,求a、b、c的值。
12、如果m>0, n<0, m<|n|,那么m,n,-m, -n的大小关系()13、如果,则的取值范围是()A.>O B.≥O C.≤O D.<O14、绝对值不大于11.1的整数有()A.11个B.12个C.22个D.23个15、│a│= -a,a一定是()A、正数B、负数C、非正数D、非负数16、有理数m,n在数轴上的位置如图,17、若|x-1| =0,则x=__________,若|1-x |=1,则x=_______.18、如果,则,.19、已知│x+y+3│=0, 求│x+y│的值。
20、│a-2│+│b-3│+│c-4│=0,则a+2b+3c=21、如果a,b互为相反数,c,d互为倒数,x的绝对值是1,求代数式x ba +x2+cd的值。
22、已知│a│=3,│b│=5,a与b异号,求│a-b│的值。
23.如果 a,b互为相反数,那么a + b = ,2a + 2b = .24. a+5的相反数是3,那么, a = .26、若X的相反数是—5,则X=___;若—X的相反数是—3.7,则X=_______bca127、若一个数的倒数是1.2,则这个数的相反数是________,绝对值是________ 28、若—a=1,则a=____; 若—a=—2,则a=_______;如果—a=a,那么a=_______ 29、已知|x —4|+|y+2|=0,求2x —|y|的值。
绝对值练习题(精)100道
绝对值综合练习题一1、有理数的绝对值一定是〔〕2、绝对值等于它本身的数有〔〕个3、以下说法正确的选项是〔〕A、—|a|一定是负数B只有两个数相等时它们的绝对值才相等C、假设|a|=|b|,则a与b互为相反数D、假设一个数小于它的绝对值,则这个数为负数4.是〔〕b aA、a>|b|B、a<bC、|a|>|b|D、|a|<|b|5、相反数等于-5的数是______,绝对值等于5的数是________。
6、-4的倒数的相反数是______。
7、绝对值小于2的整数有________。
8、假设|-x|=2,则x=____;假设|x-3|=0,则x=______;假设|x-3|=1,则x=_______。
9、实数a_______。
a b10、已知|a|+|b|=9,且|a|=2,求b的值。
11、已知|a|=3,|b|=2,|c|=1,且a<b<c,求a、b、c的值。
12、如果m>0, n<0, m<|n|,那么m,n,-m, -n的大小关系〔〕13、如果,则的取值范围是〔〕A.>O B.≥O C.≤O D.<O14〔〕A.11个B.12个C.22个D.23个15、│a│= -a,a一定是〔〕A、正数B、负数C、非正数D、非负数16、有理数m,n在数轴上的位置如图,17、假设|x-1| =0,则x=__________,假设|1-x |=1,则x=_______.18、如果,则,.19、已知│x+y+3│=0, 求│x+y│的值。
20、│a-2│+│b-3│+│c-4│=0,则a+2b+3c=21、如果a,b互为相反数,c,d互为倒数,x的绝对值是1,求代数式x ba +x2+cd的值。
22、已知│a│=3,│b│=5,a与b异号,求│a-b│的值。
23.如果 a,b互为相反数,那么a + b = ,2a + 2b = .24. a+5的相反数是3,那么, a = .25.如果a 和 b表示有理数,在什么条件下, a +b 和a -b互为相反数? 26、假设X的相反数是—5,则X=______;假设—X的相反数是—3.7,则X=__ _____b c a1027、假设一个数的倒数是1.2,则这个数的相反数是________,绝对值是________28、假设—a=1,则a=____; 假设—a=—2,则a=_______;如果—a=a,那么a=_______29、已知|X —4|+|Y+2|=0,求2X —|Y|的值。
初一数学绝对值经典练习题
初一数学绝对值经典练习题绝对值经典练1、判断题:⑴、|-a|=|a|。
⑵、-|0|=0.⑶、|-3^2|=-3^2.⑷、-(-5)>-|-5|。
⑸、如果a=4,则|a|=4.⑹、如果|a|=4,则a可能是4或-4.⑺、任何一个有理数的绝对值都是非负数。
⑻、绝对值小于3的整数有-2,-1,0,1,2.⑼、-a不一定小于0,当a>0时,-a<0.⑽、如果|a|=|b|,那么a可能等于b或者等于-b。
⑾、绝对值等于本身的数是非负数。
⑿、只有1的倒数等于它本身。
⒀、若|-X|=5,则X可能是-5或5.⒁、数轴上原点两旁的点所表示的两个数是互为相反数。
⒂、一个数的绝对值等于它的相反数,那么这个数一定是0.2、填空题:⑴、当a0.⑵、当a>0时,a>0.⑶、当a0.⑷、当a≠0时,|a|>0.⑸、当aa。
⑹、当a=0时,-a=a。
⑺、当a<0时,|a|=-a。
⑻、绝对值小于4的整数有-3,-2,-1,0,1,2,3.⑼、如果mn。
⑽、当k+3=0时,|k|=3.⑾、若a、b都是负数,且|a|>|b|,则a<b。
⑿、|m-2|=1,则m=3或1.⒀、若|x|=x,则x=0或1.⒁、倒数和绝对值都等于它本身的数是-1或1.⒂、有理数a、b在数轴上的位置如图所示,则|a|=3;|b|=2.⒃、-2/3的相反数是2/3,倒数是-3/2,绝对值是2/3.⒄、绝对值小于10的整数有19个,其中最小的一个是-9.⒅、一个数的绝对值的相反数是-0.04,这个数是0.04.⒆、若a、b互为相反数,则|a|=|b|。
⒇、若|a|=|b|,则a和b的关系为a=b或a=-b。
3、选择题:⑴、下列说法中,错误的是B。
绝对值等于5的数是-5或5.⑵、如果|a|=|b|,那么a与b之间的关系是C。
a与b互为相反数。
⑶、绝对值最小的有理数是C。
-1.4、计算下列各题:⑴、|-8|-|-5|=8-5=3⑵、(-3)+|-3|=-3+3=0⑶、|-9|×(+5)=45D、15÷|-3|=-55、填表a -a |a|1 -1 13 -3 357 57 571 -1 12 2 24 -4 41/12 -1/12 1/1212 12 120.1) 0.1 0.16、比较下列各组数的大小:⑴、-3< -2⑵、-0.5< |-2.5|⑶、-π< -3.14⑷、-0.2731< -|2|7、把下列各数用“‹”连接起来:⑴、5‹|-3|‹-3‹|-38)‹-[−(−8)];⑵、1‹-5‹-6;⑶、|-5|‹-6‹-(-5)‹-(-10)‹-|-10|;⑷(|∆|+|∆|)×(-O)=-10,求O、∆,其中O和∆表示整数。
绝对值试题(经典)100道
61 ,求 + +… + .
62、已知 与 互为相反数,设法求代数式
63.已知 , 且 ,求 的值。
64.a与b互为相反数,且 ,求 的值.
65、(整体的思想)方程 的解的个数是______。
66、若 ,且 , ,则 .
67、大家知道 ,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离.又如式子 ,它在数轴上的意义是表示6的点与表示3的点之间的距离.类似地,式子 在数轴上的意义是.
A、正数 B、负数 C、非正数 D、非负数
16、有理数m,n在数轴上的位置如图,
17、若|x-1| =0, 则x=__________,若|1-x |=1,则x=_______.
18、如果 ,则 , .
19、已知│x+y+3│=0, 求│x+y│的值。
20、│a-2│+│b-3│+│c-4│=0,则a+2b+3c=
绝对值试题(经典)100道
———————————————————————————————— 作者:
———————————————————————————————— 日期:
绝对值综合练习题
1、有理数的绝对值一定是_________。
2、绝对值等于它本身的数有________个。
3、下列说法正确的是()
21、如果a,b互为相反数,c、d互为倒数,x的绝对值是1,
求代数式 +x2+cd的值。
22、已知│a│=3,│b│=5,a与b异号,求│a-b│的值。
23、如果 a,b互为相反数,那么a + b =,2a+ 2b =.
绝对值经典练习题
绝对值专项训练一、基础题1、绝对值旳几何定义:在数轴上表达数a 旳点与__________旳距离叫做数a旳绝对值,记作__________.2、绝对值旳代数定义:一种正数旳绝对值是_________;一种负数旳绝对值是________;0旳绝对值是_________.3、(1)2-旳绝对值等于( )(2)3-等于 ( )(3)设a 是实数,则|a|-a 旳值( )A 、可以是负数 B、不也许是负数 C 、必是正数 D、可以是正数也可以是负数4、(1)任何数均有绝对值,有________个.(2)由绝对值旳几何意义可知:距离不也许为负数,因此,任何一种数旳绝对值都是_____数,绝对值最小旳数是______.(3)绝对值是正数旳数有_____个,它们互为_________.(4)两个互为相反数旳绝对值________;反之,绝对值相等旳两个数______或________.5、(有理数旳大小比较)正数_________0,负数________0,正数________负数;两个负数比较大小旳时候,__________大旳反而小.(5)比较41,31,21--旳大小,成果对旳旳是( )A 、413121<-<-B 、314121-<<-C 、213141-<-<D 、412131<-<- 二、[典型例题]6、若4x -=,则x =__________;若30x -=,则x =__________;若31x -=,则x =__________.2--旳倒数是7、化简(4)--+旳成果为______3、如果22a a -=-,则a 旳取值范畴是8、已知a b 、为有理数,且0a <,0b >,a b >,则 ( )A、a b b a <-<<- B 、b a b a -<<<-C 、a b b a -<<-<D 、b b a a -<<-<三、[自主练习题]一、选择题9、有理数旳绝对值一定是 ( )A 、正数 B、整数 C 、正数或零 D 、自然数10、下列说法中对旳旳个数有 ( )①互为相反数旳两个数旳绝对值相等;②绝对值等于自身旳数只有正数;③不相等旳两个数旳绝对值不相等;④绝对值相等旳两个数一定相等A 、1个B 、2个C 、3个D 、4个11、如果甲数旳绝对值不小于乙数旳绝对值,那么 ( )A 、甲数必然不小于乙数B 、甲数必然不不小于乙数C 、甲、乙两数一定异号D 、甲、乙两数旳大小,要根据具体值拟定12、绝对值等于它自身旳数有 ( )A 、0个 B、1个 C 、2个 D、无数个 13、下列说法对旳旳是( )A 、a -一定是负数B 、只有两个数相等时它们旳绝对值才相等C 、若a b =,则a 与b 互为相反数 D、若一种数不不小于它旳绝对值,则这个数为负数二、填空题14、数轴上,绝对值为4,且在原点左边旳点表达旳有理数为___________.15、绝对值不不小于π旳整数有______________________ 16、如果3a >,则3a -=__________,3a -=___________. 17、若1x x =,则x 是__ __数;若1x x=-,则x 是_ _(“正”或“负”)数;18、已知3x =,4y =,且x y <,则x y +=________三、解答题19、比较下列各组数旳大小(1)35-,34- (2)56-,45-,115- 20、实数a 、b在数轴上旳位置如图所示,那么化简|a-b|-a 旳成果是A 、2a-bB 、bC 、-bD 、-2a+b21、已知a b 、互为相反数,c d 、互为倒数,m 旳绝对值等于2,求2a b m cd a b c++-++旳值. 22、已知3a =,2b =,1c =且a b c <<,求a b c ++旳值23、检查5袋水泥旳质量,把超过原则质量旳克数记为正数,局限性原则质量旳克数记为负数,检查成果如表格所示:(1)最接近原则质量旳是几号水泥?(2)质量最多旳水泥比质量至少旳水泥多多少公斤?b O a。
绝对值试题(经典)100道
与 B 两点间的距离可以表示为__________.
(3)结合数轴求得 x 2 x 3 的最小值为
,取得最小值时
x 的取值范围为 ________. (4) 满足 x 1 x 4 3的 x 的取值范围为__________。
69.已知 y=|2x+6|+|x-1|-4|x+1|,求 y 的最大值.
a b2 + a b
.
62、已知 ab 2 与 b 1 互为相反数,设法求代数式
1
1
1
1
的值.
ab (a 1)(b 1) (a 2)(b 2)
(a 1999 )(b 1999 )
63.已知 a 5 , b 3且 a b a b ,求 a b 的值。
7
64.a 与 b 互为相反数,且 a b 4 ,求 a ab b 的值.
80、若 a a ,则 a 1 2 a
81、 x 1 x 1 的最小值是
。
82
、
若
a2 b3 c4 0
,求 2a b c 的值.
10
58 、 已 知 a 是 最 小 的 正 整 数 , b 、 c 是 有 理 数 , 并 且 有 |2+b|+(3a+2c)2=0. 求式子 4ab c 的值.
a2 c2 4
59、若|x|=3,|y|=2,且|x-y|=y-x,求 x+y 的值.
60、化简:|3x+1|+|2x-1|.
61 a 1 b 2 0 , 求 a b2001 + a b 2000 + …
式 x2+(a+b)x-•cd 的值.
44.化简│1-a│+│2a+1│+│a│(a<-2).
绝对值经典题型
题型一:定义考察正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是0例1.|-3|的相反数是.【解析】:|-3|的绝对值为3,3的相反数是-3.例2.绝对值大于2小于5的所有整数有.【解析】:绝对值大于2小于5的整数有-4、-3、3、4.例3.已知|X|= 4,则X= ; 已知|-X|= 5,则X= ;【解析】:(1)绝对值等于4的数有±4;(2)虽然|-X|有个“-”,但带有绝对值,这个“-”可以直接去掉,可以同(1)一样,绝对值等于5的数有±5.例4.已知|X-5|=2,则X= .【解析】:解法1:可以把绝对值里面的数当作一个整体,(X-5)的绝对值为2,则X-5=±2解得X=7或X=3解法2:利用绝对值的几何意义来解题:|X-5|=2,一个数到5的距离为2,则这个数为3或者7例5.下列语句:○1一个数的绝对值一定是正数;○2-a 一定是一个负数;○3没有绝对值为-3 的数;○4若|a| =a,则a 是一个正数;○5在原点左边离原点越远的数就越小.正确的有( )个A.0B.3C.2D.4【解析】:○1一个数的绝对值的绝对值可能是正数也肯是负数;○2一个字母前面带“-”,不能确认这个字母是正是负还是0,所以带上“-”后也不能确定是正是负还是0;○3一个数的绝对值只可能≥0○4一个数的绝对值等于它本身,这是数可能是正数也有可能是0○5在原点左边离原点越远的数就越小,在原点右边离原点越远数就越大例6.若|a| = -a,则a一定是( )A.正数B.负数C.正数或零D.负数或零【解析】:一个数的绝对值等于它的相反数,它可能是负数也可能是0题型二:非负性一个数的绝对值≥0例1.已知|a+3|+|c-2|=0,则a+c= .【解析】:∵一个数的绝对值≥0,∴两个≥0的数相加等于0,只可能它们分别为0.∴a+3=0,c-2=0 → a=-3,c=2,∴a+c=-1例2.若|x+3|+(y-1)2 = 0,求xy的值.【解析】:一个数的绝对值≥0,一个数的平方也是≥0,两个≥0的数相加等于0,只可能是它们分别为0,即: x+3=0,y-1=0,∴x=-3,y=1;∴xy=-3例3.若|2x-4|与|y-3|互为相反数,求3x-y的值.【解析】:一个数的绝对值≥0,两个绝对值互为相反数,只有可能两者都为0,因为0的相反数仍为0∴2x-4=0,y-3=0;∴x=2,y=3;∴3x-y=9例4.已知|a-3|+|b -5|=0,x,y互为相反数,求3(x+y) -a+2b的值.【解析】:∵一个数的绝对值≥0,∴两个≥0的数相加等于0,只可能它们分别为0.∴a-3=0,b-5=0,a=3,b=5;∵x,y互为相反数,∴x+y=0所以3(x+y) -a+2b=7题型三:去绝对值正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是0例1.|3-π|+|π-4|= .【解析】:要想去绝对值,得先搞清楚绝对值里面的正负,这样我们才能正确把绝对值去掉.因为3-π<0,π-4<0,所以|3-π|=π-3,|π- 4|=4 -π所以|3-π|+|π-4|=1例2.如图所示,则|a-b|-|2c+b|+|a+c|= .【解析】:从图中可知c < b < c,|c|>|a|>|b|a-b>0,2c+b<0,a+c<0|a-b|=a-b,|2c+b|=-(2c+b),|a+c|=-(a+c)所以|a-b|-|2c+b|+|a+c|=a - b --(2c+b)-(a+c)=a-b+2c+b-a-c=c> 0,化简|a|-|b|+|a+b|+|ab|.例3.若a<-b,ab【解析】:因为a> 0,所以○1a>0,b>0;○2a<0,b<0b○1当a>0,b>0时,与a<-b矛盾,所以这种情况不存在○2当a<0,b<0时,|a|-|b|+|a+b|+|ab|=-a+b-(a+b)+ab=-2a+ab 例4.若1<a<5,则|1-a|+|5-a|= .【解析】:因为1<a<5,所以1-a<0,5-a>0所以|1-a|+|5-a|= -(1-a)+(5-a)=4例5.若|m-n|=n-m,且|m|=4,|n|=4,则m-n= .熟记:|a|=a,则a≥0,|a|=-a,则a≤0切记别把“0”漏掉【解析】:因为|m-n|=n-m,所以m-n≤0○1第一种情况:m-n=0;○2第二种情况:m-n<0;又因为|m|=4,|n|=4所以m=-4,n=4即:m-n=-8例6.若x<-2,则y=|1-|1+x||等于.提示:多个绝对的情况,由内到外依次去绝对值【解析】:∵x<-2,∴1+x<0原式=|1-[-(1+x)]=|1+1+x|=|2+x|=-(2+x)题型四:分类讨论例1.若|a|=5,|b|=7,且|a+b|=a+b,则a-b= . 【解析】:∵|a+b|=a+b∴a+b≥0又∵|a|=5,|b|=7∴a=±5,b=7(负舍)∴a-b=-2或a-b=-12例2.若a>0,则|a|a = ,若a<0,则|a|a= .【解析】:○1∵a>0,∴|a|=a,∴|a|a = aa= 1;○2∵a<0,∴|a|=-a,∴|a|a = −aa= -1;例3.已知abc≠0,求|a|a + |b|b+ |c|c=【解析】:○1当a、b、c没有负数时,则原式=3○2当a、b、c有一个负数时,则原式=-1+1+1=1○3当a、b、c有两个负数时,则原式=-1-1+1=-1○4当a、b、c有全是负数时,则原式=-1-1-1=-3例4.若|ab|ab =1,则|a|a+ |b|b=【解析】:∵|ab|ab=1,∴a,b同号∴○1当a,b大于0时,原式=2○2当a,b小于0时,原式=-2题型5:零点分段零点:令绝对值等于0的x值,称为该绝对值的零点.步骤:○1找出每一个绝对值的零点;○2根据零点值给x分段;○3在每一段所属范围内,化简绝对值.例1.化简|x-1|+|x-4|【解析】:零点分别为1和4.○1当x <1时,原式=1-x+4-x=5-2x○2当1≤x≤4时,原式=x-1+4-x=3○3当x >4时,原式=x-1+x-4=2x-55-2x(x <1)|x-1|+|x-4|= 3 (1≤x≤4)2x-5(x >4)题型六:绝对值方程常用公式:若|a|=|b|,则a=b或a=-b步骤:○1根据绝时位内的正员分类,并去绝对值○2解出每一类对应的程○3检验方程的解是符合分类的范围要求例1.解方程:|2x-1|=|x+2|解:2x-1=±(x+2)○1当2x-1=x+2x=3○2当2x-1= -(x+2)2x-1=-x-23x=-1x= -13例2.解方程:|x-1|=2x-5解:x-1=±(2x-5)○1当x-1=2x-5x=4○2当x-1=-(2x-5)x-1= -2x+5X=2题型七:最值问题几何意义:|a-b|表示数轴上,a到b的距离Eg.|x-2|表示数轴上x到2的距离|x+3|表示数轴上x到-3的距离例1.当x在什么范围内|x-1|+|x-3|有最小值,最小值又是多少?【解析】:几何意义x到1的距离与与到3的距离之和○1当x<1时,|x-1|+|x-3|=d1+d2>2○2当1≤x≤3时,|x-1|+|x-3|=d1+d2 = 2○3当x>3时,|x-1|+|x-3|=d1+d2>2总结:|x-a|+|x-b|在a,b之间最小为|a-b|例2.求|x+1|+|x-5|+|x-2|的最小值【解析】:几何意义x到-1,5,2的距离之和当x=2时,最小值为6例3.求|x+2|+|x-1|+|x+4|+|x-7|的最小值.当-2≤x≤1时,最小值为14总结:奇为中间点,偶取中间段题型八:定值问题解题思路:让未知数之间相互抵消,则结果就是一个定值.例1. 若|x -1|+|x -2|+ … +|x -2022|的值为定值,求x 的范围.【解析】:偶数个绝对值相加,要想原式为定值,则一半的式子为x ,后一半式子-x ,这样未知数就都抵消了,所得结果为定值.(x -1)+(x -2)+ … +(x -1011)+(-x+1012)+ … +(-x+2022)这样正好将x 都消掉 解:当20222≤x ≤20222 + 1,即1011≤x ≤1012时,原式为定值例2. 若2a+|4-5a|+|1-3a|的值是一个定值,求a 的取值范围.【解析】:要想原式为定值,就要把a 都给抵消掉原式=2a+4-5a+3a -1解: 4-5a ≥0,1-3a ≤0,即:13≤x ≤45 原式=2a+4-5a+3a -1=3。
七年级上册数学绝对值必考八大经典题型pdf
七年级上册数学绝对值必考八大经典题型题型一:定义考查例1:|-2|的相反数是分析:负数的绝对值等于它的相反数。
答案:-2例2:绝对值大于等于1,小于4的所有正整数和为分析:符合题意的正整数有1、2、3。
答案:6例3:已知|x|=5,则x=,已知|-x|=3,则x=分析:绝对值等于5的数有±5,同理-x=±3,则x=±3。
答案:±5;±3例4:已知|x-2|=3,则x=;已知|2-x|=1,则x=分析:|x-2|=3表示x与2的距离是3,故x=-1或5。
|2-x|=1表示x与2的距离是1,故x=1或3。
答案:-1或5;1或3题型二:非负性例1:已知|a+3|+|b-1|=0,则a+b的值是分析:多个非负数的和为0,则每一个都是0,故a=-3,b=1。
答案:-2例2:已知|a-1|+|b-2|+2|c-3|=0,则a+b+c的值是分析:多个非负数的和为0,则每一个都是0,故a=1,b=2,C=3。
答案:6例3:已知|x|=x,则x0;已知|x|=-x,则x0分析:绝对值具有非负性,所以等式右边一定≥0。
答案:≥;≤例4:已知|x-2|=x-2,则x2;已知|x-2|=2-x,则x2分析:绝对值具有非负性,所以等式右边一定≥0。
答案:≥;≤题型三:去绝对值例1:|3-π|+|π-4|=分析:去绝对值,必须先判断绝对值内的正负,3-π和π-4均为负数,绝对值应取相反数,故原式=π-3+4-π=1答案:1例2:已知|≤x≤5,则||-x|+|x-5|=分析:因为|≤x≤5,所以1-x≤0,x-5≤0,故原式=x-1+5-x=4。
答案:4例3:如图所示,则|a-b|-|2c+b|+|a+c|=分析:由图可知:C,1a-b>0,2c+b<0,a+c<0,故原式=a-b-(-2c-b)+(-a-c)=C答案:C题型四:分类讨论例1:若|a|=5,|b|=7,且|a+b|=a+b,则a-b=分析:a=±5,b=±7,且a+b≥0(非负性);故a=5、b=7,或a=-5,b=7答案:-2或-12例2:若|a|=1,|b|=2,|c|=3,且a>b>c。
绝对值练习题及答案
绝对值练习题及答案1. 计算下列各数的绝对值:- |-5|- |3|- |-12|- |0|2. 如果一个数的绝对值是5,那么这个数可能是什么?3. 解释绝对值的性质,并给出一个例子。
4. 计算以下表达式的值:- |-7 - 3|- |-8 + 2|5. 如果 |a| = 4,a 可能等于什么?6. 一个数的绝对值是它本身,这个数可能是什么?7. 计算以下表达式的值:- |-x| 如果 x = 3- |-y| 如果 y = -48. 如果 |x - 5| = 3,求 x 的所有可能值。
9. 一个数的绝对值是它相反数的3倍,这个数是什么?10. 计算以下表达式的值:- |-2x| 如果 x = -1答案1. 计算结果如下:- |-5| = 5- |3| = 3- |-12| = 12- |0| = 02. 如果一个数的绝对值是5,那么这个数可能是5或-5。
3. 绝对值的性质包括:- 非负性:绝对值总是非负的。
- 正数的绝对值是其本身。
- 负数的绝对值是其相反数。
- 零的绝对值是零。
例子:|-7| = 7,|7| = 7,|0| = 0。
4. 计算结果如下:- |-7 - 3| = |-10| = 10- |-8 + 2| = |-6| = 65. 如果 |a| = 4,a 可能等于4或-4。
6. 如果一个数的绝对值是它本身,这个数可能是正数或零。
7. 计算结果如下:- |-x| = 3 当 x = 3- |-y| = 4 当 y = -48. 如果 |x - 5| = 3,那么 x - 5 = 3 或 x - 5 = -3,解得 x = 8 或 x = 2。
9. 如果一个数的绝对值是它相反数的3倍,设这个数为 a,那么 |a| = 3|-a|,解得 a = 0。
10. 计算结果如下:- |-2x| = 2 当 x = -1通过这些练习题,学生可以更好地理解绝对值的概念,并提高解决相关问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【绝对值】练习题
姓名__________ 分数__________
一,填空题(32分)
1、(绝对值的意义)
(1).绝对值的几何定义:在数轴上表示数a 的点与__________的距离叫做数a 的绝对值,记作__________.
(2)绝对绝对值的性质值的代数定义:一个正数的绝对值是_________;一个负数的绝对值是________;0的绝对值是_________.
2、(绝对值的性质)
(1)任何数都有绝对值,且只有________个.
(2)由绝对值的几何意义可知:距离不可能为负数,因此,任何一个数的绝对值都是_____数,绝对值最小的数是______.
(3)绝对值是正数的数有_____个,它们互为_________.
(4)两个互为相反数的绝对值________;反之,绝对值相等的两个数______或________.
3.一个数的绝对值是3
2,那么这个数为______. 4.如果3>a ,则______3=-a ,______3=-a .
5.绝对值等于4的数是______.
6.当a a -=时,0______a ;当0>a 时,______=a .
7.(有理数的大小比较)正数_________0,负数________0,正数________负数;两个负数比较大小的时候,__________大的反而小.
8、若4x -=,则x =__________;若30x -=,则x =__________;若31x -=,则x =__________.
9.若1x x =,则x 是_______(选填“正”或“负”)数;若1x x
=-,则x 是_______(选填“正”或“负”)数;
10.已知3x =,4y =,且x y <,则x y +=_______
11.已知420x y -++=,则x =_____,y =_____
二.选择题(33分)
1.设a 是实数,则|a|-a 的值( )
A 、可以是负数
B 、不可能是负数
C 、必是正数
D 、可以是正数也可以是负数
2.绝对值不大于11.1的整数有( )
A .11个
B .12个
C .22个
D .23个
3.如果a a 22-=-,则a 的取值范围是( )
A .a >O
B .a ≥O
C .a ≤O
D .a <O
4.比较4
1
,31,21--的大小,结果正确的是( )
A 、413121<-<-
B 、314121-<<-
C 、213141-<-<
D 、412131<-<- 5.已知a b 、为有理数,且0a <,0b >,a b >,则 ( )
A 、a b b a <-<<-
B 、b a b a -<<<-
C 、a b b a -<<-<
D 、b b a a -<<-<
6.代数式23x -+的最小值是 ( )
A 、0
B 、2
C 、3
D 、5
7.下列说法中正确的个数有 ( )
①互为相反数的两个数的绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数的绝对值不相等;④绝对值相等的两个数一定相等
A 、1个
B 、2个
C 、3个
D 、4个
8.下列说法正确的是( )
A 、a -一定是负数
B 、只有两个数相等时它们的绝对值才相等
C 、若a b =,则a 与b 互为相反数
D 、若一个数小于它的绝对值,则这个数为负数 9.2--的倒数是( )
A 、2
B 、12
C 、12
- D 、-2
10.实数a 、b 在数轴上的位置如图所示,那么化简|a -b|-a 的结果是
A 、2a -b
B 、b
C 、-b
D 、-2a+b
11.不相等的有理数a 、b 、c 在数轴上的对应点分别是A 、B 、C ,如果
||||||a b b c a c -+-=-,那么点B ( )
. A .在A 、C 点的右边 B .在A 、C 点的左边C .在A 、C 点之间 D .上述三种均可能
三.1.计算:(21分) (1) 7.27.27.2---+ (2) 13616--++-
(3) 5327-⨯-÷- (4) ⎪⎪⎭
⎫ ⎝⎛-+÷+-329221
21
(5)化简|1-a|+|2a+1|+|a|,其中a<-2.
2.比较下列各组数的大小
(1)35-,34- (2)56-,45-,11
5-
四.探究题
1、(信息处理题)已知a b 、互为相反数,c d 、互为倒数,m 的绝对值等于2,求
2a b m cd a b c ++-++的值.(5分)
2、(章节内知识点综合题)有理数a b c 、、在数轴上的位置如图所示,化简0a b c -+--(5分)
b a c
3、(科学探究题)已知3a =,2b =,1c =且a b c <<,求a b c ++的值(6分)
4.已知a b c 、、都是有理数,且满足
a b c a b c ++=1,求代数式:6abc abc -的值.(8分)。