离散型随机变量的期望值和方差
高中数学中的概率统计计算期望与方差的技巧

高中数学中的概率统计计算期望与方差的技巧概率统计是高中数学中的重要内容,计算期望与方差是其中的关键技巧。
本文将介绍几种常见的计算期望与方差的技巧,以帮助读者更好地理解和应用这些知识。
一、离散型随机变量的期望与方差计算对于离散型随机变量X,其概率分布列为P(X=x),而期望和方差的计算公式如下:1. 期望计算期望E(X)表示随机变量X的平均值,计算公式为:E(X) = Σ[x * P(X=x)]其中,Σ表示对所有可能取值的求和。
通过遍历所有可能取值,将取值与其对应的概率相乘,再求和,即可得到期望值。
2. 方差计算方差Var(X)表示随机变量X的离散程度,计算公式为:Var(X) = Σ[(x - E(X))^2 * P(X=x)]同样,通过遍历所有可能取值,将每个取值减去期望值,再平方,再与其对应的概率相乘,最后再求和,即可得到方差值。
这种计算方法适用于离散型随机变量的期望和方差计算,例如投掷一枚骰子的结果、抽取一副扑克牌的点数等情况。
二、连续型随机变量的期望与方差计算对于连续型随机变量X,其概率密度函数为f(x),而期望和方差的计算公式如下:1. 期望计算期望E(X)的计算公式为:E(X) = ∫(x * f(x))dx其中,∫表示对整个定义域的积分。
通过对概率密度函数乘以x后再积分,即可得到期望值。
2. 方差计算方差Var(X)的计算公式为:Var(X) = ∫[(x - E(X))^2 * f(x)]dx同样,通过对概率密度函数乘以(x - E(X))的平方后再积分,即可得到方差值。
这种计算方法适用于连续型随机变量的期望和方差计算,例如正态分布、指数分布等情况。
三、应用技巧下面将介绍一些计算期望与方差时的常用技巧:1. 期望的线性性质如果X和Y是两个随机变量,a和b为常数,则有:E(aX + bY) = aE(X) + bE(Y)这是期望的线性性质,利用这个性质可以简化复杂随机变量的期望计算。
离散型随机变量的期望与方差

点评:当ξ的所有可能取值为x1,x2,…,xn这n个值时,若p1= p2=…=pn= ,则x1,x2,…,xn的方差就是我们初中学过 的方差.因此,现在学的方差是对初中学过的方差作了进一步 拓展.
4.方差的性质 (1)D(C)=0(C 为常数). (2)D(aξ+b)=a2Dξ. (3)Dξ=Eξ2-(Eξ)2. (4)如果 ξ~B(n,p),那么 Dξ=npq.这里 q=1-p. (5)如果随机变量 ξ 服从几何分布,且 P(ξ=k)=g(k,p),q=1 -p,那么 Dξ=pq2.
B.1
C.2
D.4
解析:由ξ=2η+3得Dξ=4Dη,而Dξ=4,Dη=1.故选B.
答案:B
5.(2011·安徽蚌埠二中练习)若随机变量 ξ 的分布列为:P(ξ
=m)=13,P(ξ=n)=a,若 Eξ=2,则 Dξ 的最小值等于(
)
A.0 B.2
C.4 D.无法计算
解析:由题意得13+a=1,m×13+n×a=2, a=23,m+2n=6,Dξ=13×(2-m)2+23×(2-n)2=13×(2n-4)2 +23×(2-n)2=2(n-2)2≥0,则 Dξ 的最小值等于 0.故选 A.
考点陪练 1.下面说法中正确的是( ) A.离散型随机变量ξ的期望Eξ反映了ξ取值的概率的平均值 B.离散型随机变量ξ的方差Dξ反映了ξ取值的平均水平 C.离散型随机变量ξ的期望Eξ反映了ξ取值的平均水平 D.离散型随机变量ξ的方差Dξ反映了ξ取值的概率的平均值 答案:C
【典例2】 编号1,2,3的三位学生随意入座编号为1,2,3的三个 座位,每位学生坐一个座位,设与座位编号相同的学生的个数 是ξ.
(1)求随机变量ξ的概率分布;
离散型随机变量的期望和方差

离散型随机变量的期望和方差
离散型随机变量期望和方差是统计学中一个重要的知识点,也是概率论的基础知识。
期望和方差是离散随机变量可以推断出的一些重要数学性质,它们反映了离散随机变量的变化趋势。
在数学表述上,离散型随机变量的期望是指,取值不同的概率乘以该值的积分的平均值,用记号μ (mu)表示。
期望是离散型随机变量的基本特征,它描述了离散型随机变量中最有可能出现的值的程度,它的大小也反映了随机变量的中心位置。
离散型随机变量的方差是指期望和均值之差的平均平方值,用记号σ2 (sigma squared)表示,其中σ (sigma)是标准差。
方差反映了离散型随机变量取值之间的方差,它比较了每一个取值与离散型随机变量在期望上的偏差,表示了离散型随机变量取值分布情况。
运用离散型随机变量的期望和方差可以推断出更多的信息,即对离散随机变量要有更深入的了解,以便于更准确的预测。
可以利用期望和方差的知识来分析一个离散随机变量的发展趋势,以及在分析工具使用中的投资组合。
总之,离散型随机变量的期望和方差是随机变量分析的基础,也是揭示离散随机变量分布情况的重要工具,在众多领域都有重要的应用价值,如统计分析、投资组合设计等等。
以上就是关于离散型随机变量期望和方差的主要内容。
离散随机变量的期望与方差

离散随机变量的期望与方差离散随机变量是概率论中的一个重要概念,它在描述随机现象中的离散取值时起到了关键作用。
离散随机变量的期望与方差是两个重要的统计量,对于揭示随机变量的特征及其分布有着重要意义。
本文将详细介绍离散随机变量的期望与方差的计算方法及其应用。
一、离散随机变量的期望离散随机变量的期望指的是随机变量取各个值时的加权平均值,也可以理解为该变量的平均值。
假设离散随机变量X的取值为{x1, x2, x3, ..., xn},相应的概率为{p1, p2, p3, ..., pn},则离散随机变量的期望可用以下公式表示:E(X) = x1*p1 + x2*p2 + x3*p3 + ... + xn*pn其中,E(X)表示离散随机变量X的期望值。
举个例子来说明,假设X表示一枚均匀骰子的点数,它可以取1、2、3、4、5、6这六个值,并且每个值的概率都是1/6。
那么X的期望为:E(X) = 1*(1/6) + 2*(1/6) + 3*(1/6) + 4*(1/6) + 5*(1/6) + 6*(1/6) = 3.5这意味着,如果我们不断地进行均匀骰子的试验,并记录每次试验的点数,那么这些点数的平均值会接近于3.5。
二、离散随机变量的方差离散随机变量的方差是用来衡量随机变量的取值对其期望的偏离程度。
方差的计算方法如下:Var(X) = E((X-E(X))^2) = (x1-E(X))^2*p1 + (x2-E(X))^2*p2 + ... + (xn-E(X))^2*pn其中,Var(X)表示离散随机变量X的方差。
继续以均匀骰子的点数为例,我们计算其方差:Var(X) = (1-3.5)^2*(1/6) + (2-3.5)^2*(1/6) + (3-3.5)^2*(1/6) + (4-3.5)^2*(1/6) + (5-3.5)^2*(1/6) + (6-3.5)^2*(1/6) ≈ 2.92方差的平方根被称为标准差,它度量了离散随机变量的取值波动程度。
离散型随机变量的期望与方差(同步)

1. 离散型随机变量的期望公式是什么,它反映了什么?1122()n n E x x p x p x p =+++L ,离散型随机变量的数学期望刻画了这个离散型随机变量的平均取值水平.2. 离散型随机变量的方差公式是什么,它反映了什么?2221122()(())(())(())n n D X x E x p x E x p x E x p =-+-++-L离散型随机变量的方差反映了离散随机变量的取值相对于期望的平均波动的大小(离散程度).3. 二项分布的的期望与方差分别是什么?若离散型随机变量X 服从参数为n 和p 的二项分布,则()E X np =,()D x npq =(1)q p =-.离散型随机变量的期望与方差1. 离散型随机变量的数学期望定义:一般地,设一个离散型随机变量X 所有可能的取的值是1x ,2x ,…,n x ,这些值对应的概率是1p ,2p ,…,n p ,则1122()n n E x x p x p x p =+++L ,叫做这个离散型随机变量X 的均值或数学期望(简称期望).离散型随机变量的数学期望刻画了这个离散型随机变量的平均取值水平.2. 离散型随机变量的方差一般地,设一个离散型随机变量X 所有可能取的值是1x ,2x ,…,n x ,这些值对应的概率是1p ,2p ,…,n p ,则2221122()(())(())(())n n D X x E x p x E x p x E x p =-+-++-L 叫做这个离散型随机变量X 的方差.离散型随机变量的方差反映了离散随机变量的取值相对于期望的平均波动的大小(离散程度). ()D X ()D x 叫做离散型随机变量X 的标准差,它也是一个衡量离散型随机变量波动大小的量.3. X 为随机变量,a b ,为常数,则2()()()()E aX b aE X b D aX b a D X +=++=,;4. 典型分布的期望与方差:离散型随机变量的期望与方差知识讲解知识回顾(1)二点分布:在一次二点分布试验中,离散型随机变量X 的期望取值为p ,在n 次二点分布试验中,离散型随机变量X 的期望取值为np .(2)二项分布:若离散型随机变量X 服从参数为n 和p 的二项分布,则()E X np =,()D x npq =(1)q p =-.(3)超几何分布:若离散型随机变量X 服从参数为N M n ,,的超几何分布, 则()nME X N=,2()()()(1)n N n N M M D X N N --=-.题型一 选择填空【例1】 下面说法中正确的是( )A .离散型随机变量ξ的期望()E ξ反映了ξ取值的概率的平均值B .离散型随机变量ξ的方差()D ξ反映了ξ取值的平均水平C .离散型随机变量ξ的期望()E ξ)反映了ξ取值的平均水平D .离散型随机变量ξ的方差()D ξ反映了ξ取值的概率的平均值【例2】 投掷1枚骰子的点数为ξ,则ξ的数学期望为( )A .3B .3.5C .4D .4.5【例3】 已知随机变量X 的分布列为则()D X A .0B .0.8C .2D .1【例4】 随机变量ξ的分布列如下:其中a b c ,,成等差数列,若.3E ξ=则D ξ的值是 .【例5】样本共有五个个体,其值分别为0123a,,,,若该样本的均值为1,则样本方差为()AB.65D.2【例6】某射手射击所得环数ξ的分布列如下:已知ξ的期望()Eξ的值为________.题型二、综合题【例7】编号123,,的三位学生随意入座编号为1,2,3的三个座位,每位学生坐一个座位,设与座位编号相同的学生的个数是X.⑴求随机变量X的概率分布;⑵求随机变量X的数学期望和方差.【例8】学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)(Ⅰ)求在1次游戏中,(i)摸出3个白球的概率;(ii)获奖的概率;E X.(Ⅱ)求在2次游戏中获奖次数X的分布列及数学期望()【来源】(2011天津理)【例9】某校组织“上海世博会”知识竞赛.已知学生答对第一题的概率是0.6,答对第二题的概率是0.5,并且他们回答问题相互之间没有影响.(I)求一名学生至少答对第一、二两题中一题的概率;(Ⅱ)记ξ为三名学生中至少答对第一、二两题中一题的人数,求ξ的分布列及数学期望Eξ.【来源】(2011年丰台区期末理)【例10】甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设每人面试合格的概率都是12,且面试是否合格互不影响.求签约人数ξ的数学期望.【例11】某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科目B的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A每次考试成绩合格的概率均为23,科目B每次考试成绩合格的概率均为12.假设各次考试成绩合格与否均互不影响.在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为ξ,求ξ的数学期望Eξ.【来源】(2008福建)【例12】某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(1)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A;(2)求η的分布列及期望Eη.【例13】在某次测试中,甲、乙、丙三人能达标的概率分别为0.4,0.5,0.8,在测试过程中,甲、乙、丙能否达标彼此间不受影响.(1)求甲、乙、丙三人均达标的概率;(2)求甲、乙、丙三人中至少一人达标的概率;(3)设X表示测试结束后达标人数与没达标人数之差的绝对值,求X的概率分布及数学期望EX.【例14】某商场举行抽奖促销活动,抽奖规则是:从装有9个白球、1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球可获得奖金10元;摸出两个红球可获得奖金50元.现有甲、乙两位顾客,规定:甲摸一次,乙摸两次,令X表示甲、乙两人摸球后获得的奖金总额.求:(1)X的概率分布;(2)X的期望.【例15】 A B ,两个代表队进行乒乓球对抗赛,每队三名队员,A 队队员是123A A A ,,,B 队队员是123B B B ,,,按以往多次比赛的统计,对阵队员之间胜负概率如下:队最后总分分别为ξη,.求ξη,的期望.【例16】下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气重度污染的概率;(Ⅱ)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)【来源】(2013北京高考)【例17】甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束,除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23,假设各局比赛结果相互独立.(Ⅰ)分别求甲队以3:0,3:1,3:2胜利的概率;(Ⅱ)若比赛结果为3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分、对方得1分.求乙队得分X的分布列及数学期望.【来源】(2013山东卷理)随堂练习【练1】某班有甲、乙两个学习小组,两组的人数如下:现采用分层抽样的方法(层内采用简单随机抽样)从甲、乙两组中共抽取3名同学进行学业检测.(Ⅰ)求从甲组抽取的同学中恰有1名女同学的概率;(Ⅱ)记X为抽取的3名同学中男同学的人数,求随机变量X的分布列和数学期望.【来源】(2013西城一模理)【练2】 某班联欢会举行抽奖活动,现有六张分别标有1,2,3,4,5,6六个数字的形状相同的卡片,其中标有偶数数字的卡片是有奖卡片,且奖品个数与卡片上所标数字相同,游戏规则如下:每人每次不放回抽取一张,抽取两次.(Ⅰ)求所得奖品个数达到最大时的概率;(Ⅱ)记奖品个数为随机变量X ,求X 的分布列及数学期望.C .{}35,D .{}45,【来源】(2013东城一模理)【练3】 在某大学自主招生考试中,所有选报II 类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E 五个等级. 某考场考生两科的考试成绩的数据统计如下图所示,其中“数学与逻辑”科目的成绩为B 的考生有10人.(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为A 的人数;(Ⅱ)若等级A ,B ,C ,D ,E 分别对应5分,4分,3分,2分,1分.(i )求该考场考生“数学与逻辑”科目的平均分;(ii)若该考场共有10人得分大于7分,其中有2人10分,2人9分,6人8分. 从这10人中随机抽取两人,求两人成绩之和的分布列和数学期望.【来源】(2013海淀一模理)【练4】 一个盒子中装有5张卡片,每张卡片上写有一个数字,数字分别是1、2、3、4、5,现从盒子中随机抽取卡片.(Ⅰ)从盒子中依次抽取两次卡片,每次抽取一张,取出的卡片不放回,求两次取到的卡片的数字都为奇数或偶数的概率;(Ⅱ)若从盒子中有放回的抽取3次卡片,每次抽取一张,求恰有两次取到卡片的数字为奇数的概率; (Ⅲ)从盒子中依次抽取卡片,每次抽取一张,取出的卡片不放回,当取到记有奇数的卡片即停止抽取,否则继续抽取卡片,求抽取次数X 的分布列和期望.B .I A B =UC .()I I B A =U ðD .()I I A B =Uð 【来源】(2011昌平二模理16)【题1】同时抛掷两枚相同的均匀硬币,随机变量1ξ=表示结果中有正面向上,0ξ=表示结果中没有正面向上,则Eξ=,Dξ=__________.【题2】已知离散型随机变量X的分布如下表.若()0E X=,()1D X=,则a=________,b=________.X-10 1 2P a b c112【题3】在某校组织的一次篮球定点投篮比赛中,两人一对一比赛规则如下:若某人某次投篮命中,则由他继续投篮,否则由对方接替投篮.现由甲、乙两人进行一对一投篮比赛,甲和乙每次投篮命中的概率分别是13,12.两人共投篮3次,且第一次由甲开始投篮.假设每人每次投篮命中与否均互不影响.(1)求3次投篮的人依次是甲、甲、乙的概率;(2)若投篮命中一次得1分,否则得0分.用ξ表示甲的总得分,求ξ的分布列和数学期望.【来源】(2010朝阳一模理)课后作业【题4】口袋里装有大小相同的4个红球和8个白球,甲、乙两人依规则从袋中有放回摸球,每次摸出一个球,规则如下:若一方摸出一个红球,则此人继续下一次摸球;若一方摸出一个白球,则由对方接替下一次摸球,且每次摸球彼此相互独立,并由甲进行第一次摸球;求在前三次摸球中,甲摸得红球的次数 的分布列及数学期望.。
随机变量及其分布-离散型随机变量的数学期望和方差

离散型随机变量的数学期望和方差知识点一、离散型随机变量的数学期望 1.定义一般地,如果离散型随机变量的分布列为则称n n i i p x p x p x p x X E +++++= 2211)(为随机变量X 的数学期望或均值。
2.意义:反映离散型随机变量取值的平均水平。
3.性质:若X 是随机变量,b aX Y +=,其中b a ,是实数,则Y 也是随机变量,且b X aE b aX E +=+)()( 二、离散型随机变量的方差 1.定义一般地,如果离散型随机变量的分布列为则称∑=-=ni i ip X E x X D 12))(()(为随机变量的方差。
2.意义:反映离散型随机变量偏离均值的程度。
3.性质:)()(2X D a b aX D =+ 三、二项分布的均值与方差如果),(~p n B X ,则np X E =)(,)1()(p np X D -=。
题型一离散型随机变量的均值【例1】设随机变量X的分布列如下表,且E(X)=1.6,则a-b=()X0123P0.1a b0.1A.0.2 B.0.1C.-0.2 D.0.4【例2】随机抛掷一枚质地均匀的骰子,则所得点数ξ的数学期望为()A.0.6 B.1C.3.5 D.2【例3】某次考试中,第一大题由12个选择题组成,每题选对得5分,不选或错选得0分.小王选对每题的概率为0.8,则其第一大题得分的均值为________.【例4】(2016年高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【过关练习】1.今有两台独立工作的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,设发现目标的雷达的台数为ξ,则E (ξ)等于( ) A .0.765 B .1.75 C .1.765D .0.222.某射手射击所得环数ξ的分布列如下:3.已知随机变量ξ的分布列为则x =______,P (1≤ξ<3)=4.(2015年高考重庆卷)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白棕5个,这三种粽子的外观完全相同.从中任意选取3个. (1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.题型二 离散型随机变量方差的计算【例1】若X 的分布列为其中p ∈(0,1),则( ) A .D (X )=p 3 B .D (X )=p 2 C .D (X )=p -p 2D .D (X )=pq 2【例2】设随机变量ξ的分布列为P (ξ=k )=C k n⎝⎛⎭⎫23k .⎝⎛⎭⎫13n -k ,k =0,1,2,…,n ,且E (ξ)=24, 则D (ξ)的值为( ) A .8 B .12 C.29D .16【例3】若D (ξ)=1,则D (ξ-D (ξ))=________.【例4】若随机变量X 1~B (n,0.2),X 2~B (6,p ),X 3~B (n ,p ),且E (X 1)=2,D (X 2)=32,则σ(X 3)=( )A .0.5 B. 1.5 C. 2.5D .3.5【例5】根据以往的经验,某工程施工期间的降水量X (单位:mm)对工期的影响如下表:求工期延误天数Y 的均值与方差.【过关练习】1.某人从家乘车到单位,途中有3个路口.假设在各路口遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇到红灯的次数的方差为( ) A .0.48 B .1.2 C .0.72D .0.62.设投掷一个骰子的点数为随机变量X ,则X 的方差为________.3.盒中有2个白球,3个黑球,从中任取3个球,以X 表示取到白球的个数,η表示取到黑球的个数.给出下列结论:①E (X )=65,E (η)=95;②E (X 2)=E (η);③E (η2)=E (X );④D (X )=D (η)=925.其中正确的是________.(填上所有正确结论的序号)4.海关大楼顶端镶有A 、B 两面大钟,它们的日走时误差分别为X 1、X 2(单位:s),其分布列如下:课后练习【补救练习】1.若随机变量ξ~B(n,0.6),且E(ξ)=3,则P(ξ=1)的值为()A.2×0.44B.2×0.45C.3×0.44D.3×0.642.已知ξ~B(n,p),E(ξ)=8,D(ξ)=1.6,则n与p的值分别为()A.100和0.08 B.20和0.4C.10和0.2 D.10和0.83.有甲、乙两种水稻,测得每种水稻各10株的分蘖数据,计算出样本均值E(X甲)=E(X乙),方差分别为D(X甲)=11,D(X乙)=3.4.由此可以估计()A.甲种水稻比乙种水稻分蘖整齐B.乙种水稻比甲种水稻分蘖整齐C.甲、乙两种水稻分蘖整齐程度相同D.甲、乙两种水稻分蘖整齐程度不能比较4.一次数学测验有25道选择题构成,每道选择题有4个选项,其中有且只有一个选项正确,每选一个正确答案得4分,不做出选择或选错的不得分,满分100分,某学生选对任一题的概率为0.8,则此学生在这一次测试中的成绩的期望为________;方差为________.【巩固练习】1.现有10张奖券,8张2元的、2张5元的,某人从中随机抽取3张,则此人得奖金额的数学期望是() A.6 B.7.8C.9 D.122.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4发子弹,则命中后剩余子弹数目的均值为()A.2.44 B.3.376C.2.376 D.2.43.已知随机变量X+Y=8,若X~B(10,0.6),则E(Y),D(Y)分别是()A.6,2.4 B.2,2.4C.2,5.6 D.6,5.64.马老师从课本上抄录一个随机变量ξ的概率分布列如下表:请小牛同学计算ξ“?”处的数值相同.据此,小牛给出了正确答案E (ξ)=________.5.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数,若P (X =0)=112,则随机变量X 的数学期望E (X )=________.6.随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________.7.某城市出租汽车的起步价为6元,行驶路程不超出3 km 时按起步价收费,若行驶路程超出3 km ,则按每超出 1 km 加收3元计费(超出不足 1 km 的部分按 1 km 计).已知出租车一天内行车路程可能为200,220,240,260,280,300(单位:km),它们出现的概率分别为0.12,0.18,0.20,0.20,0.18,0.12,设出租车行车路程ξ是一个随机变量,司机收费为η(元),则η=3ξ-3,求出租车行驶一天收费的均值.8.为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n 株沙柳,各株沙柳成活与否是相互独立的,成活率为p ,设ξ为成活沙柳的株数,数学期望E (ξ)=3,标准差D (ξ)为62. (1)求n ,p 的值并写出ξ的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率.【拔高练习】1.设ξ为离散型随机变量,则E (E (ξ)-ξ)=( ) A .0 B .1 C .2D .不确定2.甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).3.A ,B 两个投资项目的利润率分别为随机变量X 1和X 2.根据市场分析,X 1和X 2的分布列分别为:(1)在A ,B 两个项目上各投资10012A 和B 所获得的利润,求方差D (Y 1),D (Y 2);(2)将x (0≤x ≤100)万元投资A 项目,(100-x )万元投资B 项目,f (x )表示投资A 项目所得利润的方差与投资B 项目所得利润的方差的和.求f (x )的最小值,并指出x 为何值时,f (x )取到最小值.。
1.2 离散型随机变量的期望与方差1.2 离散型随机变量的期望与方差1.2 离散型随机变量的期望与方差1.2 离散型

n 1 np ( p q ) np 所以,
若 ~ B ( n , p ), 则 E np
1.2 离散型随机变量的期望与方差
练习: 课堂后练习:1~6 课堂小结 1.随机变量的数学期望的意义及其求法; 2.服从二项分布的随机变量的数学期望. 作业:
P15 习题1.2
1、4、5、6
4
1 6
5
1 6
6
1 6
1 1 1 1 1 1 E 1 2 3 4 5 6 6 6 6 6 6 6 1 ( 123456 ) 6 3 .5
1.2 离散型随机变量的期望与方差
例题讲解 例3、有一批数量很大的产品,其次品率是15%.对这批产 品进行抽查,每次抽出1件,如果抽出次品,则抽查终止,否则 继续抽查,直到抽出次品,但每次抽查次数最多不超过10 次.求抽查次数 的期望(结果保留三个有效数字). 解:抽查次数 取1~10的整数,从这批数量很大的产品中 每次抽取一件检查的试验可以认为是彼此独立的,取次品的概 率是0.15,取正品的概率是0.85,前k-1次取出正品而第k 次 (k=1,2…9)取出次品的概率
能否根据分布列估计射手n 次射击的平均环数? 在n 次射击中,预计有大约: P ( 4 ) n 0 . 02 n P ( 5 ) n 0 . 04 n 次得4环, 次得5环, …… P ( 10 ) n 0 . 22 ห้องสมุดไป่ตู้ 次得10环.
4 0 . 02 5 0 . 04 10 0 . 22 ) n n 次射击的总环数约等于 (
0 . 02 5 0 . 04 10 0 . 22 8 . 3 n 次射击的平均环数约等于4
期望和方差的计算公式

期望和方差的计算公式1.期望期望是对随机变量的平均值或预期值进行量化,常用符号表示为E(X)或μ。
对于离散型随机变量,其期望的计算公式为:E(X) = ∑(xi * P(xi))其中,xi表示随机变量的取值,P(xi)表示随机变量取值为xi的概率。
例如,考虑一个骰子投掷的随机变量X,其取值为1、2、3、4、5、6,每个取值的概率相等,即P(1)=P(2)=P(3)=P(4)=P(5)=P(6)=1/6、则期望的计算公式为:E(X)=1*(1/6)+2*(1/6)+3*(1/6)+4*(1/6)+5*(1/6)+6*(1/6)=3.5对于连续型随机变量,其期望的计算公式为:E(X) = ∫(x * f(x) dx)其中,x表示随机变量的取值,f(x)表示随机变量的概率密度函数。
例如,考虑一个服从均匀分布的连续型随机变量X,其取值范围为[a,b],概率密度函数为f(x)=1/(b-a),则期望的计算公式为:E(X) = ∫(x * (1 / (b-a)) dx) = (1 / (b-a)) * ∫(x dx) = (1/ (b-a)) * [x^2 / 2] = (b+a) / 22.方差方差是随机变量离散程度的度量,常用符号表示为Var(X)或σ^2对于离散型随机变量,其方差的计算公式为:Var(X) = ∑((xi - E(X))^2 * P(xi))其中,xi表示随机变量的取值,E(X)表示随机变量的期望,P(xi)表示随机变量取值为xi的概率。
例如,考虑一个骰子投掷的随机变量X,其取值为1、2、3、4、5、6,每个取值的概率相等,即P(1)=P(2)=P(3)=P(4)=P(5)=P(6)=1/6、根据上面的计算,期望E(X)=3.5,则方差的计算公式为:Var(X) = (1-3.5)^2*(1/6) + (2-3.5)^2*(1/6) + (3-3.5)^2*(1/6) + (4-3.5)^2*(1/6) + (5-3.5)^2*(1/6) + (6-3.5)^2*(1/6) = 35/12 ≈ 2.92对于连续型随机变量,其方差的计算公式为:Var(X) = ∫((x - E(X))^2 * f(x) dx)其中,x表示随机变量的取值,E(X)表示随机变量的期望,f(x)表示随机变量的概率密度函数。
离散型随机变量期望与方差

离散型随机变量期望与方差引言离散型随机变量是概率论与统计学中的重要概念之一。
在处理离散型随机变量时,我们经常需要计算其期望与方差,以帮助我们了解变量的分布特征。
本文将详细介绍离散型随机变量的期望与方差的定义及其计算方法。
期望的定义与计算离散型随机变量的期望表示了该随机变量可能取值的加权平均。
如果离散型随机变量X的取值为x1, x2, …, xn,对应的概率为p1, p2, …, pn,那么随机变量X的期望可以通过以下公式计算:E(X) = x1 * p1 + x2 * p2 + … + xn * pn其中E(X)表示变量X的期望。
下面以一个简单的例子来说明期望的计算过程。
假设某班级有10个学生,他们的考试成绩(以百分制计)分别为60、70、80、90、90、80、70、80、90、60,对应的概率分别为0.1、0.2、0.1、0.2、0.1、0.05、0.1、0.1、0.05、0.1。
现在我们来计算这些考试成绩的期望。
60 * 0.1 + 70 * 0.2 + 80 * 0.1 + 90 * 0.2 + 90 * 0.1 + 80 * 0.05 + 70 * 0.1 + 80 * 0.1 + 90 * 0.05 + 60 * 0.1 = 79所以,这些考试成绩的期望为79。
方差的定义与计算离散型随机变量的方差反映了该变量的取值相对于其期望的离散程度。
方差的计算公式如下所示:Var(X) = E((X - E(X))²) = (x1 - E(X))² * p1 + (x2 - E(X))² * p2 + … + (xn - E(X))² * pn其中Var(X)表示变量X的方差。
方差的计算比较繁琐,但仍然是可行的。
我们可以利用先前计算得到的X的期望,将其带入方差计算公式中,即可求得方差的值。
继续以前面的例子进行说明,我们已经计算得到班级考试成绩的期望为79。
离散型随机变量的方差与期望值【实用资料】

k i
• 期望值E(X)也称为 随机变量X的变量。写出 掷一枚骰子出现点数的概率分布
概率分布
X = xi 1 2 3 4 5 6
P(X=xi) pi
1/6
1/6
1/6
1/6
1/6
1/6
期望:μ=E(X)=
1.描述离散型随机变量取值的集中程
• 若X取值: x1 , x2,…,xn, 其对应的概率为 : p1 ,p2 ,… ,pn ,则期望值为:
• E(X)= x1p1 +x2p2 +。。。+xnpn n xi pi
i 1
若X取无穷个数值:x1 , x2,…,xn ...其对应的概率为p1 ,
p2 ,… ,pn。。。
xi pi • 则期望值为: E(X)
由上式可知,方差实际上就是随机变量 X的函数[X-E(X)]2 的数学期望。于 是,若X是离散型随机变量,则
D(X)[(xiE(X)2]pi
ki
标准差
• 随机变量方差的算术平方根就为标准差。
•(X) D(X)
• 对掷骰子的例子,随机变量X的方差为:
n
2(X)D(X) [(xi E(X)]2pi
i1
(13.5)2*1+ 6
(23.5)2 *1 + 6
(33.5)2 *1+ 6
(43.5)2 *1 + 6
•(53.5)2
*1 6
+
(6
3.5)2
*
1 6
•
标准差=1.7078,说明每次掷得的点数与平均点数3.5平均 相距1.7078点。
•
随机变量的方差与标准差都反映了:随机
变量取值的稳定与波动、集中与离散的
离散型随机变量的期望和方差的计算与分析

离散型随机变量的期望和方差的计算与分析随机变量是概率论中的重要概念,它描述了一个随机试验的结果。
离散型随机变量是指取有限个或可数个数值的随机变量。
在概率论和统计学中,我们经常需要计算和分析离散型随机变量的期望和方差,以便更好地理解和描述概率分布的特征。
一、离散型随机变量的期望离散型随机变量的期望是对随机变量取值的加权平均值。
设X是一个离散型随机变量,其可能取值为x1, x2, ..., xn,对应的概率为p1, p2, ..., pn。
那么X的期望E(X)可以通过以下公式计算:E(X) = x1 * p1 + x2 * p2 + ... + xn * pn期望可以理解为随机变量的平均取值,它能够反映出随机变量的集中趋势。
例如,假设有一个骰子,其可能的结果为1、2、3、4、5、6,每个结果出现的概率均为1/6。
那么骰子的期望为:E(X) = 1 * 1/6 + 2 * 1/6 + 3 * 1/6 + 4 * 1/6 + 5 * 1/6 + 6 * 1/6 = 3.5这意味着在大量的骰子投掷中,我们可以预期的结果接近于3.5。
二、离散型随机变量的方差方差是对随机变量取值的离散程度的度量。
离散型随机变量X的方差Var(X)可以通过以下公式计算:Var(X) = E[(X - E(X))^2] = (x1 - E(X))^2 * p1 + (x2 - E(X))^2 * p2 + ... + (xn -E(X))^2 * pn方差的计算过程可以简单理解为,对随机变量的每个取值与期望的差异进行平方,并乘以对应的概率,最后将所有结果相加。
方差可以帮助我们判断随机变量的分布形态。
如果方差较小,说明随机变量的取值相对集中,分布形态较为陡峭;如果方差较大,说明随机变量的取值相对分散,分布形态较为平坦。
以骰子为例,骰子的方差为:Var(X) = (1 - 3.5)^2 * 1/6 + (2 - 3.5)^2 * 1/6 + (3 - 3.5)^2 * 1/6 + (4 - 3.5)^2 * 1/6 + (5 - 3.5)^2 * 1/6 + (6 - 3.5)^2 * 1/6 = 2.9167这意味着骰子的取值相对分散,分布形态较为平坦。
离散型随机变量的期望与方差_图文

因为P(η=axi+b)=P(ξ=xi),i=1,2,3,… 所以,η的分布列为
ξ
x1
x2
…
xn
…
η
…
…
P
p1
p2
…
pn
…
于是
Eη=(ax1+b)p1+(ax2+b)p2+…+(axn+b)pn+… =a(x1p1+x2p2+…+xnpn+…)+b(p1+p2+…+pn+…) =aEξ+b.
即 E(aξ+b)=aEξ+b.
超几何分布的期望: 证明如下:
引入 一组数据的方差:
在一组数:x1, x2 ,… x n 中,各数据 的平均数为 x,则这组数据的方差为:
S2=
( x1 – x )2 + ( x2 – x )2 +…+ ( x n – x )2 n
方差反映了这组 数据的波动情况
二、新课 1、离散型随机变量的方差
3…
k
…
P
p
pq
pq2 …
pqk-1 …
Dη=(1 –1/p)2·p+ (2 - 1/p)]2·pq+ …+ (k - 1/p)]2·pqk-1 + … ……(要利用函数f(q)=kqk的导数)
三、应用
例1:已知离散型随机变量ξ1的概率分布
ξ1 1
234567
P 1/7 1/7 1/7 1/7 1/7 1/7 1/7
一般地,若离散型随机变量ξ的概率分布为
ξ
x1
x2
…
xi
…
P
p1
p2
…
pi
…
则称 Eξ=x1p1+x2p2+…+xnpn+… 为ξ的数学期望 或平均数、均值,数学期望又简称为期望.
期望值和方差的公式

期望值和方差的公式一、期望值概念:期望值是随机变量取值与其概率的加权平均,用来表示随机变量的平均取值。
1.离散型随机变量的期望值:设X是一个离散型随机变量,其取值为x1,x2,...,xn,对应的概率分别为p1,p2,...,pn,则随机变量X的期望值E(X)定义为:E(X) = x1*p1 + x2*p2 + ... + xn*pn2.连续型随机变量的期望值:设X是一个连续型随机变量,其概率密度函数为f(x),则随机变量X 的期望值E(X)定义为:E(X) = ∫xf(x)dx性质:1.期望值的线性性质:对于任意的常数a和b,以及随机变量X和Y,有:E(aX+bY)=aE(X)+bE(Y)2.期望值的保序性:如果随机变量X的取值总是大于等于随机变量Y的取值,则有:E(X)≥E(Y)二、方差概念:方差是用来度量随机变量与其期望值之间的偏离程度或波动程度。
1.离散型随机变量的方差:设X是一个离散型随机变量,其取值为x1,x2,...,xn,对应的概率分别为p1,p2,...,pn,则随机变量X的方差Var(X)定义为:Var(X) = E((X - E(X))^2) = (x1 - E(X))^2*p1 + (x2 -E(X))^2*p2 + ... + (xn - E(X))^2*pn2.连续型随机变量的方差:设X是一个连续型随机变量,其概率密度函数为f(x),则随机变量X 的方差Var(X)定义为:Var(X) = E((X - E(X))^2) = ∫(x - E(X))^2f(x)dx性质:1.方差的线性性质:对于任意的常数a和b,以及随机变量X和Y,有:Var(aX + bY) = a^2Var(X) + b^2Var(Y)2.方差的非负性:对于任意的随机变量X,有:Var(X) ≥ 03.方差的可加性:对于独立随机变量X和Y,有:Var(X + Y) = Var(X) + Var(Y)三、期望值和方差的计算公式1.对离散型随机变量的期望值和方差的计算公式:(1)期望值:E(X) = x1*p1 + x2*p2 + ... + xn*pn(2)方差:Var(X) = (x1 - E(X))^2*p1 + (x2 - E(X))^2*p2 + ... + (xn -E(X))^2*pn2.对连续型随机变量的期望值和方差的计算公式:(1)期望值:E(X) = ∫xf(x)dx(2)方差:Var(X) = ∫(x - E(X))^2f(x)dx总结:期望值和方差是概率论中重要的概念,用于描述随机变量的分布特征。
离散型随机变量的期望和方差公式

离散型随机变量的期望和方差公式
离散型随机变量是指其概率分布中的取值非连续,比较容易准确衡量的一种变量。
它的期望(Expectation)和方差(Variance)很容易求取,分别表示离散型
随机变量的平均值与离差的大小。
其具体的期望和方差的计算公式分别为:
期望:E(X)=∑(X×P(X))
方差:Var(X)=E(X^2)-[E(X)]^2
其中,E(X)是离散型随机变量X的期望,P(X)是该随机变量X出现各种取值的
概率,Var(X)是X的方差。
从数学角度看,衡量离散型随机变量不同取值组合对系统产生的影响大小,首
先要做的就是求取这些函数的期望和方差。
以上公式可以很好地满足这一要求,只要知道每种取值的概率分布,按照公式便可轻松求得它的期望和方差。
计算期望和方差更重要的意义在于,它可以作为评价随机变量取值组合优劣的
标准。
期望和方差能够对随机对象的平均水平和变异程度有一个明确而准确的量化,是经济学研究中不可或缺的一项重要工具。
因此,熟练掌握离散型随机变量的期望和方差计算公式,可以有效的指导系统
优化、风险分析等管理与计算中的实际应用。
离散型随机变量期望和方差

1.期望:若离散型随机变量ξ,当ξ=x i的概率为P(ξ=x i)=P i(i=1,2,…,n,…),则称Eξ=∑x i p i为ξ的数学期望,反映了ξ的平均值.期望是算术平均值概念的推广,是概率意义下的平均.Eξ由ξ的分布列唯一确定.2.方差:称Dξ=∑(x i-Eξ)2p i为随机变量ξ的均方差,简称方差.D叫标准差,反映了ξ的离散程度.3.性质:(1)E(aξ+b)=aEξ+b,D(aξ+b)=a2Dξ(a、b为常数).(2)二项分布的期望与方差:若ξ~B(n,p),则Eξ=np,Dξ=npq(q=1-p).Dξ表示ξ对Eξ的平均偏离程度,Dξ越大表示平均偏离程度越大,说明ξ的取值越分散.1.(2013•广东)已知离散型随机变量X的分布列为X 1 2 3P则X的数学期望E(X)=()A.B. 2 C.D. 32.(2010•宁夏)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A. 100 B. 200 C. 300 D. 4003.(2007•四川)某商场买来一车苹果,从中随机抽取了10个苹果,其重量(单位:克)分别为:150,152,153,149,148,146,151,150,152,147,由此估计这车苹果单个重量的期望值是()A.150.2克B.149.8克C.149.4克D.147.8克4.(2014•浙江二模)李先生居住在城镇的A处,准备开车到单位B处上班,途中(不绕行)共要经过6个交叉路口,假设每个交叉路口发生堵车事件的概率均为,则李先生在一次上班途中会遇到堵车次数ξ的期望值Eξ是()A.B. 1 C.6×()6D. 6×()6 5.从装有颜色外完全相同的3个白球和m个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X,已知E(X)=3,则D(X)=()A.B.C.D.6.有10件产品,其中3件是次品,从中任取两件,若ξ表示取到次品的个数,则Eξ等于()A.B.C.D. 17.某射手射击击中目标的概率为0.8,从开始射击到击中目标所需的射击次数为ξ,则Eξ等于()A.B.C.D.58.某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望Eξ_________(结果用最简分数表示).9.设离散型随机变量ξ可能取的值为1,2,3,4.P(ξ=k)=ak+b(k=1,2,3,4),又ξ的数学期望Eξ=3,则a+b= _________.10.同时抛掷两枚相同的均匀硬币,随机变量ξ=1表示结果中有正面向上,ξ=0表示结果中没有正面向上,则Eξ=_________.11.一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个球,则其中含红球个数的数学期望是_________.12.(2014•温州一模)现有三个小球全部随机放入三个盒子中,设随机变量ξ为三个盒子中含球最多的盒子里的球数,则ξ的数学期望Eξ为_________.13.从1,2,3,…,n﹣1,n这n个数中任取两个数,设这两个数之积的数学期望为Eξ,则Eξ=_________.14.(2013•闸北区二模)一个袋中装有大小相同的黑球、白球和红球共10个.已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是.从袋中任意摸出2个球,记得到白球的个数为ξ,则随机变量ξ的数学期望Eξ=_________.15.某班从4名男生、2名女生中选出3人参加志愿者服务,若选出的男生人数为ξ,则ξ的方差Dξ=_________.16.(2013•嘉兴一模)一盒中有6个小球,其中4个白球,2个黑球•从盒中一次任取3个球,若为黑球则放回盒中,若为白球则涂黑后再放回盒中.此时盒中黑球个数X的均值E(X)=_________.17.(2013•虹口区二模)从集合的所有非空子集中,等可能地取出一个,记取出的非空子集中元素个数为ξ,则ξ的数学期望Eξ=_________.18.(2012•台州一模)把2对孪生兄弟共4人随机排成一排,记随机变量ξ为这一排中孪生兄弟相邻的对数,则随机变量ξ的期望Eξ=_________.19.(2012•杭州二模)(理)设整数m是从不等式x2﹣2x﹣8≤0的整数解的集合S中随机抽取的一个元素,记随机变量ξ=m2,则ξ的数学期望Eξ=_________.20.(2011•温州二模)甲、乙两个同学每人有两本书,把四本书混放在一起,每人随机从中拿回两本,记甲同学拿到自己书的本数为ξ,则Eξ=_________.21.一个人随机的将编号为1,2,3,4的四个小球放入编号为1,2,3,4的四个盒子,每个盒子放一个小球,球的编号与盒子的编号相同时叫做放对了,否则叫做放错了.设放对的个数记为ξ,则ξ的期望Eξ=_________.22.设口袋中有黑球、白球共9个球,从中任取2个球,若取到白球个数的数学期望为,则口袋中白球的个数为_________.23.(2011•嘉定区三模)某班从5名班干部(其中男生3人,女生2人)中选3人参加学校学生会的干部竞选.设所选3人中女生人数为ξ,则随机变量ξ的方差Dξ=_________.24.(2012•重庆)甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响.(Ⅰ)求甲获胜的概率;(Ⅱ)求投篮结束时甲的投篮次数ξ的分布列与期望.25.(2012•四川)某居民小区有两个相互独立的安全防范系统(简称系统)A和B,系统A和B在任意时刻发生故障的概率分别为和p.(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为,求p的值;(Ⅱ)设系统A在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望Eξ.26.(2012•山东)现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(Ⅰ)求该射手恰好命中一次得的概率;(Ⅱ)求该射手的总得分X的分布列及数学期望EX.27.甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与p,且乙投球2次均未命中的概率为.(Ⅰ)求乙投球的命中率p;(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为ξ,求ξ的分布列和数学期望.28.甲、乙俩人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为.(Ⅰ)记甲击中目标的次数为ξ,求ξ的概率分布及数学期望Eξ;(Ⅱ)求乙至多击中目标2次的概率;(Ⅲ)求甲恰好比乙多击中目标2次的概率.29.一接待中心有A、B、C、D四部热线电话,已知某一时刻电话A、B占线的概率均为0.5,电话C、D占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望.30.(2014•淄博三模)一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为1,2,3,4,5,4个白球编号分剐为1,2,3,4,从袋中任意取出3个球.(Ⅰ)求取出的3个球编号都不相同的概率;(Ⅱ)记X为取出的3个球中编号的最小值,求X的分布列与数学期望.。
离散型随时机变量的期望与方差

2.某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一 旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实 施结果:
投资成功 192次
投资失败 8次
则该公司一年后估计可获收益的期望是________元. 答案:4 760
3.已知 ξ服从二项分布,即ξ~B(100, ),则E(2ξ+3)=________. 解析:由已知Eξ=100× =50,∴E(2ξ+3)=2Eξ+3=103. 答案:103
【答题模板】
解答:根据已知条件随机变量x的取值分别是1,2,3.
P(x=1)=
,P(x=2)=
P(x=3)=
则随机变量ξ的分布列为
x
1
2
3
ξ
Eξ= +1+ =
【分析点评】
1. 离散型随机变量的期望和方差是高考考查离散型随机变量分布列的重 点.高考中也考查二项分布和几何分布相关的分布列及期望和方差.
复试验,故ξ~B(5, ),即有P(ξ=k)=
,k=0,1,2,3,4,5.
由此计算ξ的分布列如解法一.
(2)Eξ=
.
解法三:(1)同解法一或解法二. (2)由对称性与等可能性,在三层的任一层下电梯的人数同分布, 故期望值相等.即3Eξ=5,从而Eξ= .
变式2. 2010年广州亚运组委会向民间招募防暴犬,首先进行入围测试,计划考 查三类问题:①体能;②嗅觉;③反应,这三类问题中只要有两类通过测试, 就可以入围.某驯犬基地有4只优质犬参加测试,已知这4只优质犬通过①类问 题的概率都是 ,通过②类问题的概率都是 , 通过③类问题的概率都是 . (1)求每只优质犬能够入围的概率; (2)若每入围1只优质犬给基地计10分,设基地得分为随机变量ξ,求Eξ.
离散型随机变量的期望和方差

岚山一中导学学案学习改写人生,反思启迪智慧离散型随机变量的期望和方差【复习指导】均值与方差是离散型随机变量的两个重要数字特征,是高考在考查概率时考查的重点,复习时,要掌握期望与方差的计算公式,并能运用其性质解题. 【知识梳理】1、离散型随机变量的均值与方差 若离散型随机变量X 的分布列为(1)均值称E (X )= 为随机变量X 的均值或 ,它反映了离散型随机变量取值的 . (2)方差称D (X )= i =1n[x i -E (X )]2p i 为随机变量X 的方差,它刻画了随机变量X 的 ,其 为随机变量X 的标准差. 2、三种分布(1)若X 服从两点分布,则E (X )=p ,D (X )=p (1-p );(2)X ~B (n ,p ),则E (X )=np ,D (X )=np (1-p );(3)若X 服从超几何分布,则E (X )=n MN.(不用记忆) 3、六条性质(1)E (C )=C (C 为常数) (2)E (aX +b )=aE (X )+b (a 、b 为常数)(3)E (X 1+X 2)=EX 1+EX 2 (4)D (aX +b )=a 2·D (X)【基础自测】 1.(2010·山东)样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为( ). A.65 B.65C. 2 D .22、已知X 的分布列(如图)设Y =2X +3,则E (Y )的值为( ). A.73 B .4 C .-1 D .1 3、(2010·湖北)某射手射击所得环数ξ的分布列如下: 已知ξ的期望E (ξ)=8.9,则y 的值为________. A .0.4 B .0.6 C .0.7 D .0.94.设随机变量X ~B (n ,p ),且E (X )=1.6,D (X )=1.28,则( ). A .n =8,p =0.2 B .n =4,p =0.4 C .n =5,p =0.32 D .n =7,p =0.45【考向透析】 【例1】(2012济南一模)将编号为1,2,3,4的四张同样材质的卡片,随机放入编码分别为1,2,3,4的四个小盒中,每盒仅放一张卡片,若第k 号卡片恰好落入第k 号小盒中,则称其为一个匹对,用ξ表示匹对的个数. (1)求第2号卡片恰好落入第2号小盒内的概率; (2)求匹对数ξ的分布列和数学期望ξE .【例2】(2013山东)甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束,除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23,假设各局比赛结果相互独立.(Ⅰ)分别求甲队以3:0,3:1,3:2胜利的概率;(Ⅱ)若比赛结果为3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分、对方得1分.求乙队得分X的分布列及数学期望.【例3】某工厂生产甲,乙两种芯片,其质量按测试指标划分为:指标大于或等于82为合格品,小于82为次品.现随机抽取这两种芯片各100件进行检测,检测结果统计如下:(I)试分别估计芯片甲,芯片乙为合格品的概率;(II)生产一件芯片甲,若是合格品可盈利40元,若是次品则亏损5元;生产一件芯片乙,若是合格品可盈利50元,若是次品则亏损10元.在(I)的前提下,(i)记X为生产1件芯片甲和1件芯片乙所得的总利润,求随机变量X的分布列和数学期望;(ii)求生产5件芯片乙所获得的利润不少于140元的概率.巩固练习1、某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:(II )已知用B 配方生产的一种产品利润y (单位:元)与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩从用B 配方生产的产品中任取一件,其利润记为X (单位:元).求X 的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率). 2、某学生参加某高校的自主招生考试,须依次参加A 、B 、C 、D 、E 五项考试,如果前四项中有两项不合格或第五项不合格,则该考生就被淘汰,考试即结束;考生未被淘汰时,一定继续参加后面的考试。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
是随机变量,且Eη=aEξ+b。
E(c)= c 特别地,若ξ~B(n,P),则 Eξ=nP
2、方差、标准差定义:
Dξ=(X1-Eξ)2· P1+(X2-Eξ)2· P2+…+(XnEξ)2· Pn+…称为随机变量ξ的方差。 Dξ的算术平方根
D
=δξ叫做随机变
量的标准差。
随机变量的方差与标准差都反映了:随机变 量取值的稳定与波动、集中与离散的程度。 且有D(aξ+b)=a2Dξ,可以证明Dξ=Eξ2(Eξ)2。
说明:(1)离散型随机变量的期望表征了
随机变量取值的平均值 (2)本题中D 有什么实际意义?
例4:把4个球随机地投入4个盒子中去,设
表示空盒子的个数,求E 、D
剖析:每个球投入到每个盒子的可能性是相 等的,总的投球方法数为
4 ,空盒子的个数 4 可能为0个,此时投球方法数为 4! 6 4 A4 4!, P( 0) 4 ;空盒子的个数 64 4 3 为1时,此时投球方法数为 C1C 2 A , 4 4 3 36 。 P( 1) ,同样可分析 P( 2), P( 3) 64
四、布置作业: 教材P195页闯关训练
; dota2ti8奖金 ;
侠,而且因为他们の道法の原因,壹般脾气都不太好,而且十分高傲狂妄.这也是他们最郁闷の壹件事情,因为后代数量比较少,所以这个金乌族有个怪癖,喜欢去抢别の种族の壹些有天赋の苗子,将他们拉进金乌族の族群之中.所以因此,金乌族の名声壹直不太好,只是因为实力强大,还 有壹些想去膀上人家大.腿の家伙,会主动の将壹些家中の天赋孩子送进金乌族.他们三人还在百万里开外の双阳沙漠中寻宝,而根汉同学,此时却还在傲仙谷这里死扛.只不过他又出现了转机了,因为情花の开放,令他の意识疯狂发泄,大量の情花都夹带着腐朽之气,这种死亡之气,连灵 元之海也十分忌惮.所以情花在疯狂の吞噬着下面の灵元之海,数亿朵情花在吞噬灵元之海,形成了更加恐怖の死亡之息.这对根汉来说,是壹场天大の造化,他有可能因此直接步入绝强者之列,甚至有可能还会达到更高の境界,可是眼下他最需要解决の问题是.随着数亿朵情花都爆发出 了恐怖の腐朽之气,他の圣躯中也充斥起了大量の死亡之气,比之前の任何壹次至尊剑中の至尊意の爆发,都要来得更加の猛烈.所以如果他不能将这些腐朽之气,死亡之气给解决掉の话,就算此时能够凭借情花上升到壹个恐怖の境界,那也只会变成壹具行尸走肉,会被这些腐朽之气变 成壹个没有自己意识の傀儡.恐怖の腐朽之气,不仅仅在与元灵之海对抗,吞噬灵元之水,还在吞噬着上面の法阵.傲仙谷上面の仙阵,竟然也被这些腐朽之气给腐蚀着,足见这些腐朽之气到底有多么恐怖,而外面の那些陆地,还有虚空,壹沾染上这些腐朽之气后,立即就化作了飞灰.所以 外面の陆地,正在以每息上百里の速度,在被无情の摧毁.好在这壹带の生灵并不是特别多,要不然の话,根汉这壹回,恐怖要杀伤数以亿计の人类和生灵了.不过这些也不是根汉最关心の,他也没空去关心这些,现在最主要の是,如何控制住腐朽之气,侵蚀自己の圣躯,以及保护自己の元 灵,不让腐朽之气进入自己の元灵.如果壹旦进入自己の元灵の话,那乾坤世界中の所有の天材地宝,恐怕都会被变得腐朽了,还有人蚣王和青蛇王就会悲催の挂掉了."咱不会就此陨落!""咱还不能陨落!""死神,去死吧!"腐朽之气,已经扩散出去了近三十万里了,以傲仙谷为中心の方圆 三十万里の陆地,全部被轰成飞灰了,整个天地间,出现了壹个巨大の真空地带.这便是腐朽之气の威力,眼就要支撑不住了,万丈の金躯就要被爆掉了.突然从根汉の眉心,四肢和心脏处,突然涌出了壹阵恐怖の青光,壹株巨大の青莲从他体内钻了出来,而在这株青莲之中,还有壹株火焰. 火焰の中心,是壹条青龙,青龙正吐嘶着青色の火焰,吸食着周围の腐朽之气.与此同时,在他の脑袋上空,突然长出了壹株仙光闪闪の神树,第二祖树和第六祖树同时出现了,以他身上の无数毛孔开始向外生长.第二祖树の树干和树叶,开始疯壹般の生长,仅仅是十息の功夫,就长到了方 圆数千里の范围.它们同时开始大量の吸收着这附近の腐朽之气,助根汉快速の恢复,将他从死亡边缘给拉了回来."终于是好了.""感谢你们."根汉也长出了壹口气,虽然腐朽之气侵蚀着他の圣躯,但是却给了他壹丝清明,因为有这些神树の原因,根汉又壹次从死神那里夺了回来.第二祖 树和第六祖树,壹同在吸食腐朽之气,虽然他们是天地神树,六大神树之壹.可是吸食这么多腐朽之气,在他们の树干和树叶上,还是出现了大量の黑色の斑点,根汉很心疼,毕竟他们是因为自己才变成这样の.只不过现在也没别の办法了,他相信这两大神树,是会慢慢の恢复の,只是恐怕 会沉睡壹段时间了.而自己の十阶神火,青龙火莲,也在吸食着腐朽之气,只不过这神火,是在吞食炼化,不同于两大神树,不过效果远比不上两大神树の吸食速度.好在这样子,可以护住根汉の周身安全,起码不会再继续加剧了.根汉此时也在加速运转轩辕决,巫族の体术,赶紧恢复自己の 身体,不让腐朽之气继续吞噬自己の圣躯.与此同时,在下面の数亿朵情花,还在吸食大量の灵元之水,剩下の灵元之水,被情花给吸食了将近二成了.利用这些情花吸食到の灵元之水,根汉の修为再壹次提升,已经来到了高阶圣境の高期の第三重了,而且还在不断の往上升.(正文贰6玖1 生死时刻)贰6玖贰天地不仁贰6玖贰与此同时,在下面の数亿朵情花,还在吸食大量の灵元之水,剩下の灵元之水,被情花给吸食了将近二成了.利用这些情花吸食到の灵元之水,根汉の修为再壹次提升,已经来到了高阶圣境の高期の第三重了,而且还在不断の往上升."天咱要冲击绝强 者之境了."因为有了两大神树和青龙火莲の出现,腐朽之气没有再继续向外扩散,大地终于是保住了,没有继续被吞噬,而根汉也整个人陷入了壹种空冥の状态."天地不仁,以万物为刍狗."十个上古大字,被根汉烙进了自己の元灵,还有壹些太阳经,太阴经,以及红尘女圣の奥义,入梦奥 义,等各种神术,根汉将它们の本质,全部给找了出来,然后烙进自己の元灵之后.与此同时,还有他の太极阴阳融合之道,以及浮生宫の符纹,上古秘术,各种神奇の法阵,炼丹术,占卜之术,天道之术,根汉几乎是将所有の东西,全部要烙进自己の元灵之中.即使是要进行大突破,根汉也不 会放不开,要来突破の话,就突破壹个彻底,将所有の壹切都进行壹场升华吧.根汉穷其所有,将所有の壹切都烙进自己の元灵,要在这场突破之中,迎接最猛烈の风暴,同时要将自己の能力给提升到极致.壹边是腐朽之气の快速减弱,壹边是情花猛烈吸收大量の灵元之水,还有各种神术交 织,碰撞出流光溢彩,以及傲仙谷上空の法阵,正在不断の交错.那天府府主,此时肯定万万想不到,自己原本想算计根汉,最后时刻将他弄到陨落,却是在成就了根汉,为她自己树立了壹个终生の大敌.荒原,这已经不是天南界了.这是魔域の壹处死绝之地,附近贫瘠の,连石头都不存在壹 块,这里有の只是那种荒无到你碰壹下,就能被侵蚀掉壹根手指の诡异气泡.这里常年没有月光,更不可能有阳光了,伸手不见五指,黑の可怕,静の可怕.也不知道什么时候,这里の黑暗の天空中,出现了壹道白色の光门,壹个巨大の神像虚影,从虚空中钻了出来,正是天府府主她受了伤回 到了这里."嘶嘶嘶."因为神像虚影极强,方圆千里之内の气泡,都被强大の气势给辗碎了,暴裂开来之后,发出の声音就像是天崩地裂似の,其实就是壹堆气泡炸开而已."乖乖,咱们怎么回到这里了?"天府府主の体内,传来了壹个男人の怪叫声,正是她の那位好哥哥.天府府主冷哼道:" 闭嘴!"说完神像虚影缓缓の变小了,最终她也变成了自己の样子,在黑夜之中,体表飘着淡淡の白光,照亮了方圆几千里内の空间."该死,咱绝饶不了那小子!"天府府主脸色阴沉,黑の都能滴出水来了.男人怪笑道:"还用得着你去饶吗?现在那小子肯定被撑爆而亡了,再也不复存在了,怕 是咱们没机会再找他报仇了.""哼!"天府府主冷笑道:"这回算是便宜他了.""只是浪费了那剩下几万人の血气,咱们没有吸食到,不然妹妹你现在可能能恢复壹半の天皇之躯了,你也算是壹个半个至尊了."男人喋喋怪笑道:"在这九天十域之内,将无人是你の对手.""别说这些屁话."天 府府主冷哼道:"你不还是没有从咱の体内滚出去!""呵呵,好妹妹这话就说得有些寒心了呀,哥哥咱这么多年壹直与你在壹起,与你可是形影不离,你就对哥哥咱壹点感情也没有呀?"男人怪笑道:"其实之前咱在凝聚法阵の时候,咱还是有些不舍の,原本以为咱就要独立成了人了,可是 没想到天意难料,突然半路杀出了四个控尸族の混蛋,还有壹个臭小子也跟了过来.""人算不如天算呀."男人叹道.天府府主冷笑道:"咱偏偏不信天,若是这天要拦咱,咱便屠了这天.""妹妹你就是霸气."男人笑道:"哥哥咱就更不舍得离开你了,离开了你の身子,咱还真是有些不习 惯.""早晚咱会让你滚出去の."天府府主冷哼道:"不过那时候,就不是咱让你滚出去の事情了,可能你要死在咱の元灵之中.""那咱也没什么好后悔の了."男人说:"与妹妹你在壹起这么多年了,咱们什么事情没有经历过呀,现在应该算是壹个还算可以の开头,如果能够成全你の至尊之 身,咱死又何妨.""你别在这里博同情."天府府主说.她才不会信这个家伙の鬼话,这个家伙壹向喜欢煽情,但是背地里却是很阴损の,如果有机会控制自己の躯体,他会毫不犹豫の.尤其是听到这家伙这些鬼话,她心里更是有些烦燥,想到根汉那个混蛋,突然杀出来搅她好事の家伙,她现 在恨不得就去家伙爆体后の惨状.不过此时,她却有种不好の预感."你怎么了?"男人问她.他能感应到天府府主の情绪变化,天府府主说:"那家伙可能没有死.""怎么可能."男人惊道:"在那种灵元之海の奔涌之下,就是壹位高阶绝强者也要爆掉,更何况他还没有步入绝强者之境.""壹 切都有可能."天府府主面色难沉声道:"咱怕这回没有杀了他,反而还会让他得到壹场惊天の造化.""不会吧?"男人惊道:"若是那片灵元之海,全部被他给顺利炼化の话,那家伙就算是直接步入准至尊之境,也难说呀.""只不过这不太现实吧,怎么可能,他连绝强者都不是,绝对会爆体而 亡の,除非他有克制灵元之海の引力の东西."男人怀疑道,"你是不是想太多了,你咱都清楚那种东西の恐怖,就算是有至尊器,也控制不住の,而且还得是完全复苏の至尊器.""他要是有那种东西,与你对战の时候,就会施展出来了,那时你就会重伤了."(正文贰6玖贰天地不仁)贰6玖叁 天魔贰6玖叁天府府主说:"咱也不知道,咱只是感觉很不好罢了,觉得他可能不会死,反而会得到壹场惊天造化,成为咱の生死之敌.""你自己想太多了."男人喋喋笑道:"对那小子の怨念很深呀,你自己要小心了,别执念太深最终转变成了感情了哦.""滚…"天府府主骂道:"胆敢胡说八 道,小心咱现在就炼化了你!""呵呵,只是开个玩笑嘛,何必当真呢好妹妹."男人怪笑着说,"不过咱の好妹妹哦,那小子咱感觉有些奇怪呢,他の身上有些古怪の气息,可能被你咱所忽略了,所以你才会受伤,被这小子给坑了壹回.""什么气息?有屁快放!"天府府主现在很愤怒."你没有感觉 到腐朽之气吗?"男人笑着问她."腐朽之气?"天府府主面色壹怔,俏脸壹紧,沉声道:"你是说死亡之气?怎么可能,他の身上会有死亡之气?这是大魔神身上才会有の东西.""呵呵,所以说你咱都忽略了."男人笑道:"你当时与他斗法の时候,咱就感觉到了壹丝怪异,为何你の道法会被压制, 而且还是天皇邪术,应该不可能会被压制の.""现在想想,那种古怪の气息,可能就是腐朽之气,死亡之气,所以你才会被压制の.""你是说."天府府主面色凝重,喃喃自语の说:"只是他の身上,为何会有腐朽之气?人间界,怎么可能会有那种东西,那种东西壹出现,他身边の人都会死无葬 身之地の,不可能の.""呵呵,你有没有想起来某人?"男人问她."谁?"天府府主自语道:"九天十域中,还有谁会有腐朽之气,有谁.""是他!"天府府主面色壹怔,惊呼道:"难道是情圣!""不错,你终于是想到他了."男人喋喋笑道,"当年情圣の那把至尊剑,不就是里面有大量の腐朽之气吗, 咱们天府当时也是在他手下吃了大亏の.""那是前任天府府主,不是咱."天府府主冷哼道:"小子,是与情圣有关系了,应该是情圣の传人了.""只不过情圣の传人这十几万年来,出过不少,每壹人最终の下场都是很凄惨の."她喋喋冷笑道:"这小子既然让腐朽之气都出来了,怕是他自己 也无法压制了,他更会死得更怪了,又有灵元之海の冲击,他这回是必死无疑了.""呵呵,所以咱说嘛,他怎么可能还活着呢."男人哈哈笑道:"那肯定得到了至尊剑,用至尊剑把天皇邪术给压制了,所以他现在肯定会爆掉,而且还会让腐朽之气暴出来,那小子包括那里所有の强者都会死 掉.""那时,不会有人知道,天府发生の事情の,壹切都将常埋于地下,无人知晓,咱们还可以大摇大摆の潜回去."天府府主冷笑道:"不是潜回去!""好吧,咱们直接杀回去,哈哈,再重铸天宫."男人哈哈笑道.天府府主抬头四周の环境,哼道:"这该死の荒原,还是这个破样子,十几万年从 来就没变过,真是恶心死人了.""咱们要从这里再回天南界の话,恐怕要花上壹些时间了."男人说.天府府主说:"要从这里回人间界,至少还得自己飞过这荒原,闯过死亡之海,再越过天魔山,才能到天魔山上去找通道.""好妹妹,你说现在天魔山,会不会出了真正の天魔了?"男人有些担 忧,"如果有天魔出世の话,咱们现在过去,没准还会被天魔给盯上,后果不堪设想呀."他们和天魔壹脉,乃是天敌,如果天魔出现の话,真正の大天魔降世の话,对他们来说就是壹种灾难.壹旦被天魔盯上の话,就会有大麻烦.天府府主哼道:"这大世还没有到,如果真の有天魔出世了,他们 哪里耐得住寂.寞,早就会不顾壹切の杀向通道处了,会让人去九天十域耀武扬威了.""这倒也是."男人笑了笑说:"是咱想得太多了,不过说到这个天魔,还真是壹帮孙子,咱们既然来了这里の话,为何不趁现在,将他の后代给扼杀在摇篮中呢?""那也要你能找到天魔后代."天府府主讥讽 他:"你不会天真の以为,天魔后代,就壹定在天魔山吧?""这倒也是."男人笑了:"还是好妹妹你想得周全,就算真到了天魔山,咱们也需要壹些年头呀,希望咱们能够有所好运吧,如果能将天魔壹脉给屠干净了,对咱们将来也是壹件大好事.""这个咱自然知道."天府府主点了点头,黑色 の天空,然后往北面飞走了.她就像是壹颗流星似の,飞行の速度超级快,现在の她完全就