正弦定理解三角形时解的个数

合集下载

1.1正弦定理和余弦定理知识点

1.1正弦定理和余弦定理知识点

1.1正弦定理和余弦定理基本要求:1. 能证明正弦定理、余弦定理.2. 能理解正弦定理、余弦定理在讨论三角形边角关系时的作用.3. 能用正弦定理、余弦定理解斜三角形.4. 理解用正弦定理、余弦定理讨论三角形解的情形. 重点:正弦定理和余弦定理及其推导.难点:用正弦定理解三角形时解的个数的讨论. 考点结构分析:1. 正弦定理1:在一个三角形中各边和它所对角的正弦的比相等,即:CcB b A a sin sin sin ==. 2. 余弦定理2:三角形中任何一边的平方等于其他两边的平方和减去这两边与它们夹角余弦积的两倍,即:A bc c b a cos 2222-+=.B ca a c b cos 2222-+=.C ab b a c cos 2222-+=.3. 余弦定理推论:bc a c b A 2cos 222-+=.ca c a c B 2cos 222-+=.abc b a C 2cos 222-+=.4. 重要结论:(1) 在ABC ∆中,a 、b 、c 分别为A 、B 、C 的对边,C B A c b a C B A sin sin sin >>⇔>>⇔>>. (2) 在ABC ∆中,给定A 、B 的正弦或余弦值,则C 有解(即存在)的充要条件是0cos cos >+B A . 5. 解斜三角形的类型:(1) 已知两角一边,用正弦定理,有解时,只有一解.(2) 已知两边及其一边的对角,用正弦定理,有解的情况可分为以下情况,在ABC ∆中,已知a 、b 和角A 时,解的情况如下:上表中为锐角时,时,无解;为钝角或直角时,,均无解. (3) 已知三边,用余弦定理有解时,只有一解. (4) 已知两边及夹角,用余弦定理,必有一解.6. 三角形面积:(1) ah S 21=(h 为BC 边上的高); (2) C ab S sin 21=;(3) C B A R S sin sin sin 22=(R 为ABC ∆外接圆半径);(4) RabcS 4=(R 为ABC ∆外接圆半径); (5) ))()((c p b p a p p S ---=,)(21c b a p ++=.疑难点清单:判断三角形形状基本思想是:利用正弦定理进行角边统一.即将条件化为只含角的关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系.结论一般为特殊的三角形,如等边三角形,等腰三角形,直角三角形,等腰直角三角形等.另外,在变形过程中要注意A 、B 、C 内角的固定范围对三角函数数值的影响. 附:1. 正弦定理的证明: ① 定义法(教科书中给出)如图1,在ABC Rt ∆中,C ∠是最大的角,所对的斜边c 是最大的边,要考虑边长之间的数量关系,就涉及到了锐角三角函数.根据正弦函数的定义,Ac asin =, B cbsin =.所以c BbA a ==sin sin . 又1sin =C ,所以CcB b A a sin sin sin ==. 那么,对于一般的三角形,以上关系式是否仍然成立呢?如图2,当ABC ∆是锐角三角形时,设边AB 上的高是CD ,根据三角函数的定义,B a CD sin =,A b CD sin =,所以A bB a sin sin =, 得到BbA a sin sin =. 同理,在ABC ∆中, CcB b sin sin =. 所以CcB b A a sin sin sin ==. ② 向量法如图3,ABC ∆为锐角三角形时,过A 作三位向量→j 垂直于→AB ,则→j 与→AB 的夹角为︒90,→j 与→BC 的夹角为B -2π,→j 与→CA 的夹角为A +2π,设c AB =,a BC =,b AC =.因为→→→→=++0CA BC AB ,所以00=⋅=⋅+⋅+⋅→→→→→→→→j CA j BC j AB j . 即0)2cos(||||)2cos(||||2cos||||=++-+→→→→→→A CA jB BC j AB j πππ.所以A b B a sin sin =,即BbA a sin sin =. 同理可得:C cB b sin sin =,即CcB b A a sin sin sin ==.当ABC ∆为钝角三角形或者直角三角形时,利用同样的方法可以证得结论.(可以请学生来给出证明) ③ 几何法如图4,设O 为ABC ∆的外接圆的圆心,连接BO 并延长交 ⊙O 与点A ',连接C A ',则A A ='或A A -='π,∴=A sinR a B A BC A 2sin ='=',即R A a 2sin =,同理可证R B b2sin =, R C c 2sin =,故有CcB b A a sin sin sin ==. 注:在运用时,有时需要对它进行变形,如C B A c b a sin :sin :sin ::=; A R a sin 2=,B R b sin 2=,C R c sin 2=.如图5,当ABC ∆为钝角三角形时,设B 为钝角.过C 作AB 的垂线与AB 的延长线交于D 点,由三角函数的定义得A b CD sin =,B a B a CD sin )180sin(=-︒=,B a A b sin sin =∴,即BbA a sin sin =. 同理可得C c A a sin sin =,CcB b A a sin sin sin ==∴.2. 余弦定理证明:如图6,设→→=a CB ,→→=b CA ,→→=c AB ,那么→→→-=b a c ,→→→→→→→→→→→→→⋅-⋅-⋅=+⋅-=⋅=b a b b a a b a b a c c c 2)()(||2C ab b a cos 222-+=所以C ab b a c cos 2222-+=.同理可以证明:A bc c b a cos 2222-+=.B ca a c b cos 2222-+=.。

高中数学人教版必修5课件:1.1.1正弦定理(系列三)

高中数学人教版必修5课件:1.1.1正弦定理(系列三)

典型例题 例1 已知一三角形中a=2 3 ,b=6,A=30°,判断三角形是
否有解,若有解,解该三角形.
解 a=2 3,b=6,a<b,A=30°<90°.
又因为bsinA=6sin30°=3,a>bsinA,
所以本题有两解,由正弦定理得,
sinB=bsian
A=6sin 2
30°= 3
23,故B=60°或120°.
跟踪训练1 在△ABC中,角A、B、C所对的边分别为a、b、
c,已知A=60°,a= 3,b=1,则c等于
(B )
A.1 B.2 C. 3-1 D. 3
解析 由正弦定理sina A=sinb B,可得sin 630°=sin1 B,
∴sinB=12,故∠B=30°或150°.由a>b,
得∠A>∠B,∴∠B=30°,故∠C=90°,
由勾股定理得c=2.
例2 在△ABC中,若∠A=120°,AB=5,BC=7,求△ABC 的面积.
解 如图,由正弦定理,
得sin
1720°=sin5
, C
∴sinC=5143,且∠C为锐角(∠A=120°).∴cosC=1114. ∴sinB=sin(180°-120°-∠C)=sin(60°-∠C) = 23cosC-12sinC= 23×1114-12×5143=3143.
证明 作AD⊥BC,垂足为D, 则AD=AB·sinB,又AD=AC·sinC,
∴csinB=bsinC.
∴S△ABC=12BC·AD =12acsinB=12absinC. 同理S△ABC=12absinC=12bcsinA.
∴S△ABC=12absinC=12bcsinA=12acsinB.

解三角形(正弦定理、余弦定理、三角形面积公式)

解三角形(正弦定理、余弦定理、三角形面积公式)
授课人:张凤喜
授课班级:13级1班 授课时间:15年12月1日
2019年7月4日9时48分
1
余弦定理、正弦定理和三角形面积公 式
夯基释疑
概要
考点突破
考点一 考点二
例 1 训练1 例 2 训练2
课堂小结
考点三
例 3 训练3
2019年7月4日9时48分
2
夯基释疑
熟记公式是本节的基本要求。
所以sin A=
3=
3
3
3 2 1
12
12
12
2
因为a b,所以0 ∠A 2 ,则∠A= ,
3
6
因为∠C= 2
63 6
所以S
1 ABC = 2 ab sin C

14 2
3 12 1 12 2
3
2019年7月4日9时48分
19
余弦定理、正弦定理和三角形面积公 式
夯基释疑
概要
考点突破
考点一 考点二
例 1 训练1 例 2 训练2
课堂小结
考点三
例 3 训练3
2019年7月4日9时48分
17
考点突破 考点三 三角形面积公式的应用
【例3】(2013年高考题)在△ABC中,a 3,b=4,c= 37, 则△ABC的面积是 _________ .
解析
a2 b2 c2 9 16 37 1
21
请完成《学海领航课堂训练》
2019年7月4日9时48分
22
SUCCESS
THANK YOU
2019/7/4
5
所以cosA 1 ( 4)2 3 ,
5

正弦定理

正弦定理

编号1 正弦定理 导学案编者:栾卉凡 审核:丁秀芬【学习目标】 1. 理解正弦定理的推理过程;2. 熟练掌握正弦定理的内容及其变式的结构特征和作用;3. 能运用正弦定理解决一些简单的三角形问题。

【学习重点】正弦定理的内容及应用【学习难点】已知两边和其中一边对角,解三角形时,解的个数【课前自主预习】一.复习回顾 1.内角和定理:2.三角形中的三角公式:=+)sin(C B ______;=+)cos(C B ______;=+)tan(C B _____;=+)2sin(C B _____;=+)2cos(C B _____;=+)2tan(CB _____ 3.两角和与差的公式:=+)sin(βα_____________;=-)sin(βα_____________=+)cos(βα_____________;=-)cos(βα_____________4.降幂公式:=α2sin _____________;=α2cos _____________ 5. 面积公式:==∆C ab S sin 21_____________ = _____________=_____________ 二.自主预习1.把三角形的三个角A,B,C 和它们的对边a,b,c 叫做三角形的元素。

已知三角形的几个元素求其他元素的过程叫做___________.2. 正弦定理:在三角形中,________________________________________________________ 即____________=_____________=______________3. 正弦定理的几个变形(1)a =________ ,b=_________ ,c=_________ (2)sinA=_______, sinB=________ , sinC=_______ (3)a:b:c =____________________.4.在ABC ∆中,a,b 为B A,∠∠所对的边,则B A b a B A sin ____sin ___⇔>⇔【课内探究】一、正弦定理的推导(1)当ABC ∆为直角三角形时在Rt ABC ∆中,若 90C =︒,则sinA=_______, sinB=________, sinC=_______即: 对于任意三角形,这个结论还成立吗?(2)当ABC ∆为锐角三角形时(3)当ABC ∆为钝角三角形时探究一:(1)在ABC ∆中,A ∠的角平分线AD 与边BC 相交于D ,是否一定有ACABDC BD =?(2)在正弦定理中,设k CcB b A a ===sin sin sin ,那么k 与ABC ∆外接圆的半径R 有何关系?二、正弦定理的应用1:已知两角和任意一边,求其他两边和一角例1.已知:在B b a C A c ABC 和求中,,,30,45,1000===∆【练习】在ABC ∆中,已知45B =,60C =,12a =cm ,解三角形.思考:已知两角和一边,解三角形时,解的个数唯一吗?2.已知两边和其中一边对角,求另一边的对角,进而可求其他的边和角 例2. 在C A a c B b ABC ,,1,60,30和求中,===∆【练习】解下列三角形:(1)(2)∆ABC 中,3=a ,2=b ,oB 45=思考:已知两边和其中一边对角,解三角形时,解的个数唯一吗?3.应用正弦定理进行边角互化例3.已知在△ABC 中,(1)若5:3:1::=c b a ,求CA BA sin sin sin sin 2+-的值.(2)若045=A ,060=B ,求ba ba +-的值. (3)若C B A cos sin 2sin =且A C B 222sin sin sin =+,试判断三角形形状。

§1.1.1正弦定理(2)

§1.1.1正弦定理(2)

第一章 1.1.1正弦定理(2)学习目标:加深对正弦定理的理解,熟练掌握正弦定理的应用。

1.正弦定理有哪几种变形?问题探究:探究问题(一)画图判断三角形的解的个数 (1)已知 △ABC 中,A= 30°,a=1,b=2,则 ( ) A 、有一解 B 、有两解 C 、无解 D 、不能确定 (2)已知△ABC 中,A=30°, a= 2,b=2,则 ( )A 、有一解B 、有两解C 、无解D 、不能确定(3)已知 △ABC 中,A=30°, a= 21,b=2,则 ( )A 、有一解B 、有两解C 、无解D 、不能确定总结:已知两边和其中一边的对角,求其他边和角时,三角形什么情况下有一解,二解,无解?探究问题(一)已知a, b 和A, 用正弦定理求B 时的各种情况: (1)若A 为锐角时:⎪⎪⎩⎪⎪⎨⎧≥<<=<)( b a ) ,(b a bsinA )( bsinAasin 锐角一解一钝一锐二解直角一解无解A b a已知边a,b 和∠A有两个解仅有一个解无解CH=bsinA<a<b a=CH=bsinA a<CH=bsinA(2)若A 为直角或钝角时:⎩⎨⎧>≤)( b a 锐角一解无解b a说明:已知两边及其中一边的对角判断三角形解的个数的方法:①应用三角形中大边对大角的性质以及正弦函数的值域判断解的个数;②在△ABC 中,已知a ,b 和A ,以点C 为圆心,以边长a 为半径画弧,此弧与除去顶点A 的射线AB 的公共点的个数即为三角形的个数。

练习.画图判断满足下列条件的三角形的个数:(1)b=11, a=20, B=30o (2)c=54, b=39, C=120o (3)b=26, c=15, C=30o (4)a=2,b=6,A=30o探究问题(二) 利用正弦定理证明两个结论: 1、三角形内角平分线定理的证明:已知:如图,在ΔABC 中,∠A 的平分线AD 与边BC 相交于点D ,求证:BD ABDC AC=证明:如图在ΔABD 和ΔCAD 中,由正弦定理,得sin sin BD AB βα=,0sin sin(180)sin DC AC ACβαα==-,两式相除得BD ABDC AC = 三角形内角平分线定理:三角形任意两边之比等于它们夹角的平分线分对边之比。

解三角形知识点总结及典型例题-自己总结的

解三角形知识点总结及典型例题-自己总结的

C π,所以2 ] 若a 、b 、c 是、有两个交点B 、有一个交点【解析】由余弦定理得2222cos b x bc A x c ++=恒成立,所以其图像与三角形解的个数
中,分别根据下列条件解三角形,其中有两解的是【︒=30A ;︒=30B ;ABC
S
=
题型4 判断三角形形状5] 在【解析】把已知等式都化为角的等式或都化为边的等式。

2,22A B π,得2ABC 为等腰三角形或直角三角形方法二:同上可得22cos a 由正、余弦定理,即得:222222()(b c a b a +-=cos 1B ,所以0,所以
2p
海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于1A 处105方向的1B 处,此时两船相距海里,当甲船航行20分钟到达2A 处时,方向的B 处,此时两船相距海里,问乙船每小时航行多少海里?解决测量问题的过程先要正确作出图形,本题应先利用S 2
A
120
12060-=,
是等边三角形,
6045-=,
22
11121122cos 45A B A B A B A B =+-
102. 小时).。

正弦定理解三角形时解的个数

正弦定理解三角形时解的个数

=18,sin a b b B ∴=,b a B >∴∠且可为锐角也可为钝角,三角形有两解2.数形结合思想解析:3.小结归纳:解析2:数形结合,右图所示:24sin 4424sin 4512CD ︒︒=<=24sin 4424a b ︒<<=若其他条件不变:(1)0sin ,sin ,1sin ,2A a b A a b A b A a b π当<<时,若<三角形无解2若=三角形解 若<<三角形解,2,45,A. (2,+) B. (,). (2,)ABC a x b B ABC ︒===∆∞中,若有两解 02 C22 D2222x x ⎧<⎪⎨⎪>⎩即:解得sin 452x ︒<<人的身体也是一个风水宝地。

你的心念,你的所想所思,内在的情志,从你的外在,展现的淋漓尽致。

你内心是不安,还是从容,都会从你的言语和行为中展现出来,所以人身体的本身就是一个风水场,它又是一个强大的磁场,吸引和抵御着好与坏的事物。

人身体内在的机体,在儒家思想里以仁、义、礼、智、信来表述。

佛家的思想中被阐述为,地、水、火、风。

老子;以道、天、地、王来表述。

你的四大平稳和合,你身体的风水就为上乘风水,散发的都是好的能量,你的四大不合,就为差风水,散发出来的就是坏的能量。

真正的好风水,好人生,其实就是我们内心的高贵。

在这个世界上,内心的高贵比物质的高贵更加宝贵。

富是物质的拥有,没有精神的高贵,永远成不了贵族。

富二代在中国俨然是一个贬义词,目中无人,横行无忌,因为中国富人大多是从改革开放之后开始富起来的,财富积累也才区区三十年,还是钻了各种空子,所以说中国没有真正的富人,充其量有些暴发户。

二战期间英国王子爱德华视察贫民窟,他对一贫如洗的老太太说,“请问我可以进来吗?”真正的贵族永远尊敬每一个人,即使对方是不名一文的穷人。

解三角形题型分类讲解

解三角形题型分类讲解

解三角形知识点总结及题型分类讲解一、 知识点复习 1、正弦定理及其变形2(sin sin sin a b cR R A B C===为三角形外接圆半径)12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式)2sin ,sin ,sin 222a b cA B C R R R===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b Bb Bc C c C===2、正弦定理适用情况: (1)已知两角及任一边(2)已知两边和一边的对角(需要判断三角形解的情况) 已知a ,b 和A ,求B 时的解的情况:如果B A sin sin ≥,则B 有唯一解;如果1sin sin <<B A ,则B 有两解; 如果1sin =B ,则B 有唯一解;如果1sin >B ,则B 无解. 3、余弦定理及其推论2222222222cos 2cos 2cos a b c bc Ab ac ac B c a b ab C=+-=+-=+-222222222cos 2cos 2cos 2b c a A bc a c b B aca b c C ab+-=+-=+-=4、余弦定理适用情况:(1)已知两边及夹角;(2)已知三边. 5、常用的三角形面积公式(1)高底⨯⨯=∆21ABC S ; (2)B ca A bc C ab S ABC sin 21sin 21sin 21===∆(两边夹一角).6、三角形中常用结论(1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边); (2)sin sin (ABC A B a b A B ∆>⇔>⇔>在中,即大边对大角,大角对大边). (3)在△ABC 中,π=++C B A ,所以C B A sin )sin(=+;C B A cos )cos(-=+;C B A tan )tan(-=+.(4)2sin 2cos ,2cos 2sinCB AC B A =+=+. 二、典型例题题型1、计算问题(边角互换)例1、在ABC ∆中,若7:5:3sin :sin :sin =C B A ,则角C 的度数为 答案:=C 23π 例2、已知∆ABC 中,∠A 60=︒,3a =,则sin sin sin a b cA B C++++=.答案:2例3、在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2asinB=b .求角A 的大小; 答案:π3题型2、三角形解的个数例1.在△ABC 中,已知b=40,c=20,C=60。

重点突破:判断三角形解的个数问题

重点突破:判断三角形解的个数问题
2 3 a sinA
0
=
b sinB
,即 1 =
2
3
3 3 sinB
∴B=60°或 B=120°. 故选:C . 点睛:本题主要考查正弦定理解三角形,属于简单题.在解与三角形有关的问题时,正弦定理、余弦定理是两个
主要依据. 解三角形时, 有时可用正弦定理, 有时也可用余弦定理, 应注意用哪一个定理更方便、 简捷一般来说 , 当条件中同时出现 ab 及b2 、a2 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运 用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答. 5.D 【解析】分析:利用正弦定理即可得出. 详解:由正弦定理可得:
5 1 , B 1500 符合两解。选 D. 9 2
bsinA 0 , A 中 sinB 1, B 90 , 1 解, 不符。 C 中 sinB 2 1 , a
【点睛】
在己知两边一对角的题型中,有钝角或直角最多一解,己知角所对边为大边,最多一解,其余情况根据三角形内 角和 180 ,大边对大角来判断。 4.C【解析】分析:利用正弦定理求出 sinB,得出 B,利用内角和定理进行检验. 详解:由正弦定理得 ∴sinB= .π 2π π源自)B.2π 3
C.
π 3
D.
π 4
2.已知 ABC 中, a A. 0 个 B. 1个
0
2, b 3, A 45 ,则三角形的解的个数(
D. 0 个或 1个


C. 2 个
3.在 ABC 中,利用正弦定理理解三角形时,其中有两解的选项是( A. a 3, b 6, A 30 B. a 6, b 5, A 150 D. a

解三角形最全知识点总结

解三角形最全知识点总结

解 三 角 形正弦定理要点1 正弦定理在一个三角形中,各边和所对角的正弦值的比相等,即a sinA =b sinB =csinC.要点2 解三角形三角形的三个角A ,B ,C 和三条边a ,b ,c 叫做三角形的元素,已知三角形的几个元素求其它元素的过程叫做解三角形. 正弦定理可以解决的问题1.已知两角及一边解三角形,只有一解.2.已知两边及一边的对角解三角形,可能有两解、一解或无解.方法1:计算法.方法2:已知两边及其中一边的对角,用正弦定理,可能有两解、一解或无解.在△ABC 中,已知a ,b 和A 时,解的情况如下:要点3 正弦定理的变式CB A c b a sin :sin :sin ::)1(=RA aC B A c b a C A c a C B c b B A b a 2sin sin sin sin sin sin sin sin sin sin )2(==++++=++=++=++A c C aB cC b A b B a sin sin ;sin sin ;sin sin )3(===B Cb A C ac A B a C B c b C A c B A b a sin sin sin sin ;sin sin sin sin ;sin sin sin sin )4(======(边化角)C R c B R b A R a sin 2;sin 2;sin 2)5(===要点5 常用结论1.A +B +C =π.2.在三角形中大边对大角,大角对大边.3.任意两边之和大于第三边,任意两边之差小于第三边.4.sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sin A +B 2=cos C 2,cos A +B 2=sin C 2.5.∠A >∠B ⇔a >b ⇔sin A >sin B ⇔cos A <cos B .6.若A 为最大的角,则A ∈[π3,π);若A 为最小的角,则A ∈(0,π3];若A 、B 、C 成等差数列,则B =π3.7.sin A =sin B ⇔A =B ; sin(A -B )=0⇔A =B ; sin2A =sin2B ⇔A =B 或A +B =π2A 为锐角 A 为钝角或直角图形关系式 a<bsinA a =bsinA bsinA <a <b a ≥b a >b a ≤b 解个数 无解 一解 两解 一解 一解 无解(角化边)R c C R b B R a A 2sin ;2sin ;2sin )6(===要点4 三角形的面积公式 Bac A bc C ab S ABC sin 21sin 21sin 21===∆题型一 解三角形例1 已知在△ABC 中,c =10,A =45°,C =30°,求a ,b 和B.例2(1)在△ABC 中,(1)a =6,b =2,B =45°,求C ;(2)A =60°,a =2,b =233,求B ;(3)a =3,b =4,A =60°,求B.题型二 判断三角形解的个数(1)在△ABC 中,a =1,b =3,A =45°.则满足此条件的三角形的个数是( ) A .0 B .1 C .2 D .无数个(2)在△ABC 中,已知b =30,c =15,C =26°,则此三角形解的情况是( ) A .一个解 B .两个解 C .无解 D .无法确定(3)已知△ABC 中,a =x ,b =2,B =45°,若这个三角形有两解,求x 的取值范围【解析】 例1 ∵a sinA =c sinC ,∴a =csinA sinC =10×sin45°sin30°=10 2.B =180°-(A +C)=180°-(45°+30°)=105°.又∵b sinB =c sinC ,∴b =csinB sinC =10×sin105°sin30°=20sin75°=20×6+24=5(6+2).例2(1)由正弦定理a sinA =b sinB ,得sinA =asinB b =6×222=32.又0°<A<180°,且a>b ,∴A>B.∴A =60°或120°.∴C =75°或C =15°. (2)由正弦定理,得sinB =bsinAa=233×322=22.∵a =2=323>b ,∴A>B ,∴B =45°. (3)由正弦定理,得sinB =bsinA a =4×323=23>1.∴这样的角B 不存在.练习(1)A . (2) B. (3)2<x<2 2题型三 判断三角形的形状 例3 (1)在△ABC 中,已知a 2tanB =b 2tanA ,试判断△ABC 的形状.(2)在△ABC 中,若sinA =2sinB ·cosC ,sin 2A =sin 2B +sin 2C ;(3)在△ABC 中,cosA a =cosB b =cosCc.【解析】 (1)由已知,得a 2sinB cosB =b 2sinAcosA.由正弦定理a =2RsinA ,b =2RsinB(R 为△ABC 的外接圆半径),得4R 2sin 2AsinB cosB =4R 2sin 2BsinAcosA.∴sinAcosA =sinBcosB ,∴sin2A =sin2B.∵2A ∈(0,2π),2B ∈(0,2π),∴2A =2B 或2A =π-2B ,即A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形.(2)由已知a 2=b 2+c 2.∴A =90°,C =90°-B.由sinA =2sinB ·cosC ,得1=2sinB ·cos(90°-B).∴sinB =22(负值舍去).∴B =C =45°.∴△ABC 为等腰直角三角形.(3)由已知,得cosA sinA =cosBsinB.∴cosA ·sinB =cosB ·sinA.∴tanA =tanB.∵A ,B ,C ∈(0,π),∴A =B.同理可证:B =C.∴△ABC 为等边三角形.题型四 正弦定理中的比例性质例4 (1)已知在△ABC 中,A ∶B ∶C =1∶2∶3,a =1,求a -2b +csinA -2sinB +sinC.(2)在△ABC 中,若(b +c)∶(c +a)∶(a +b)=4∶5∶6,求sinA ∶sinB ∶sinC . 【解析】 (1)∵A ∶B ∶C =1∶2∶3,∴A =30°,B =60°,C =90°.∵a sinA =b sinB =c sinC =1sin30°=2,∴a =2sinA ,b =2sinB ,c =2sinC.∴a -2b +c sinA -2sinB +sinC=2. (2)若(b +c)∶(c +a)∶(a +b)=4∶5∶6,则存在常数k(k>0),使得b +c =4k ,c +a =5k ,a +b =6k ,解得a =72k ,b =52k ,c =32k. ,则有a ∶b ∶c =7∶5∶3,所以sinA ∶sinB ∶sinC =a ∶b ∶c =7∶5∶3题型五 三角形的面积公式例5 (1)在△ABC 中,A =30°,c =4,a =3,求△ABC 的面积. (2)若△ABC 的面积为3,BC =2,C =60°,求边AB 的长.(3)在△ABC 中,已知AB =2,BC =5,△ABC 的面积为4,若∠ABC =θ,求θcos .(4)在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S.【解析】(1)由正弦定理,得sinC =csinA a =4sin30°3=23.,∵c>a ,A 为锐角,∴角C 有两解.①当角C 为锐角时,cosC =1-sin 2C =53,sinB =sin(180°-30°-C)=sin(150°-C)=sin150°cosC -cos150°sinC =12·53+32·23=16(5+23), ∴S △ABC =12acsinB =12×3×4×16(5+23)=5+23;②当角C 为钝角时,cosC =-53,sinB =sin(150°-C)=16(23-5), ∴S △A B C =12acsinB =23- 5.综上可知:△ABC 的面积为23+5或23- 5.(2)在△ABC 中,由面积公式,得S =12BC ·CA ·sinC =12×2·AC ·sin60°=32AC =3,∴AC=2.∴△ABC 为等边三角形,∴AB =2.(3)∵S △ABC =12AB ·BCsin ∠ABC =12×2×5×sin θ=4,∴sin θ=45.又θ∈(0,π),∴cos θ=±1-sin 2θ=±35.(4)因为cosB =2cos 2B2-1=35,故B 为锐角,sinB =45.所以sinA =sin(π-B -C)=sin ⎝ ⎛⎭⎪⎫3π4-B =7210.由正弦定理得c =asinC sinA =107,所以S =12acsinB =12×2×107×45=87.1.1.2 余 弦 定 理要点1 余弦定理三角形中任何一边的平方等于其他两边的平方和减去这两边与它们的夹角的余弦的积的两倍.即:C ab b a c cos 2222-+=;A bc c b a cos 2222-+=;B ac c a b cos 2222-+=要点2 余弦定理的推论bc a c b A 2cos 222-+=;ac b c a B 2cos 222-+=;ab c b a C 2cos 222-+= 要点3 由余弦定理如何判断三角形形状是锐角三角形是锐角是钝角三角形是钝角是直角三角形是直角ABC A c b a ABC A c b a ABC A cb a∆⇒⇔+∆⇔⇔+>∆⇔⇔+=<222222222要点4 利用余弦定理可以解决的问题(1)已知两边和夹角解三角形(2)已知两边及一边的对角解三角形 (3)已知三边解三角形题型一 已知两边和夹角解三角形例1 (1)在△ABC 中,已知a =2,b =22,C =15°,求A.【解析】 方法一:∵cos15°=cos(45°-30°)=6+24,sin15°=sin(45°-30°)=6-24, 由余弦定理,得c 2=a 2+b 2-2abcosC =4+8-22×(6+2)=8-4 3. ∴c =6- 2.又b>a ,∴B>A.∴A 为锐角.由正弦定理,得sinA =a c sinC =26-2×6-24=12.∴A =30°.方法二:∵cos15°=cos(45°-30°)=6+24,sin15°=sin(45°-30°)=6-24, 由余弦定理,得c 2=a 2+b 2-2abcosC =4+8-22×(6+2)=8-4 3.∴c =6- 2.∴cosA =b 2+c 2-a 22bc =32.又0°<A<180°,∴A =30°.题型二 已知两边及一边的对角解三角形例2(1)在△ABC 中,已知b =3,c =33,B =30°,求角A ,角C 和边a.(2)在△ABC 中,已知a =2,b =2,A =45°,解此三角形. 【解析】(1)方法一:由余弦定理,得b 2=a 2+c 2-2accosB ,得32=a 2+(33)2-2a ×33×cos30°.∴a 2-9a +18=0,得a =3或6. 当a =3时,A =30°,∴C =120°.当a =6时,由正弦定理,得sinA =asinBb=6×123=1.∴A =90°,∴C =60°.方法二:由b<c ,B =30°,b>csin30°=33×12=332知本题有两解.由正弦定理,得sinC =csinB b =33×123=32.∴C =60°或120°.当C =60°时,A =90°,由勾股定理,得a =b 2+c 2=32+(33)2=6. 当C =120°时,A =30°,△ABC 为等腰三角形,∴a =3.(2)由a 2=b 2+c 2-2bccosA ,得22=(2)2+c 2-22ccos45°, c 2-2c -2=0,解得c =1+3或c =1-3(舍去).∴c =1+ 3.cosB =c 2+a 2-b 22ca =22+(1+3)2-(2)22×2×(1+3)=32.∴B =30°,C =180°-(A +B)=180°-(45°+30°)=105°.题型三 已知三边解三角形例3 在△ABC 中,已知a =7,b =3,c =5,求最大角和sinC.【解析】 ∵a>c>b ,∴A 为最大角.∴cosA =b 2+c 2-a 22bc =32+52-722×3×5=-12.又∵0°<A<180°,∴A =120°.∴sinA =sin120°=32. 由正弦定理,得sinC =csinAa=5×327=5314.∴最大角A 为120°,sinC =5314. 题型四 判断三角形的形状 例4 (1)在△ABC 中,cos 2A2=b +c 2c(a ,b ,c 分别为角A ,B ,C 的对边),判断△ABC 的形状.(2)在△ABC 中,已知(a +b +c)(a +b -c)=3ab ,且2cosA ·sinB =sinC ,试确定△ABC的形状.【解析】(1)方法一:在△ABC 中,∵cos 2A2=b +c 2c ,∴1+cosA 2=b 2c +12,∴cosA =b c.又由余弦定理知cosA =b 2+c 2-a 22bc ,∴b 2+c 2-a 22bc =bc,∴b 2+c 2-a 2=2b 2.∴a 2+b 2=c 2.∴△ABC 是以C 为直角的直角三角形.方法二:由方法一知cosA =b c ,由正弦定理,得b c =sinB sinC,∴cosA =sinBsinC .∴sinCcosA =sinB =sin[180°-(A +C)]=sinAcosC +cosAsinC.∴sinAcosC =0,∵A ,C 是△ABC 的内角,∴sinA ≠0.∴只有cosC =0,∴C =90°. ∴△ABC 是直角三角形.(2)方法一(角化边):由正弦定理,得sinC sinB =cb.由2cosA ·sinB =sinC ,得cosA =sinC 2sinB =c 2b .cosA =c 2+b 2-a 22bc ,∴c 2b =c 2+b 2-a 22bc.即c 2=b2+c 2-a 2,∴a =b.又∵(a +b +c)(a +b -c)=3ab ,∴(a +b)2-c 2=3b 2,∴4b 2-c 2=3b 2,∴b =c. ∴a =b =c ,∴△ABC 为等边三角形.方法二(边化角):∵A +B +C =180°,∴sinC =sin(A +B).又∵2cosA ·sinB =sinC ,∴2cosA ·sinB =sinA ·cosB +cosA ·sinB. ∴sin(A -B)=0.又∵A 与B 均为△ABC 的内角,∴A =B.又由(a +b +c)(a +b -c)=3ab ,得(a +b)2-c 2=3ab ,a 2+b 2-c 2+2ab =3ab.即a 2+b 2-c 2=ab ,由余弦定理,得cosC =12.而0°<C<180°,∴C =60°.又∵A =B ,∴△ABC 为等边三角形.1.2 应用举例(第一课时)解三角形的实际应用举例要点1 基线(1)定义:在测量上,根据测量需要适当确定的线段叫做基线.(2)性质:在测量过程中,要根据实际需要选取合适的基线,使测量具有较高的精确度.一般来说,基线越长,测量的精确度越高.要点2 仰角和俯角在视线和水平线所成角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角,要点3 方位角指从正北方向顺时针转到目标方向线所成的角,如图中B点的方位角为α.要点4 方向角从指定方向线到目标方向线所成的小于90°的水平角,如南偏西60°,指以正南方向为始边,顺时针方向向西旋转60°.如图中∠ABC为北偏东60°或为东偏北30°;正南方向:指目标在正南的方向线上.依此类推正北方向、正东方向和正西方向.要点5 坡度坡面的铅直高度和水平宽度L 的比叫做坡度(或叫做坡比).即坡角的正切值.要点6 测量距离的基本类型及方案类别两点间不可通或不可视两点间可视但点不可达两点都不可达图形方法用余弦定理用正弦定理在△ACD中用正弦定理求AC 在△BCD中用正弦定理求BC 在△ABC中用余弦定理求AB结论AB=a2+b2-2abcosC AB=asinCsin(B+C)①AC=asin∠ADCsin(∠ACD+∠ADC)②BC=asin∠BDCsin(∠BCD+∠BDC)③AB=AC2+BC2-2AC·BC·cos∠ACB要点7测量高度的基本类型及方案类别点B与点C,D共线点B与点C,D不共线图形方法先用正弦定理求出AC或AD,再解直角三角形求出AB在△BCD中先用正弦定理求出BC,在△ABC中∠ACB可知,即而求出AB结论AB=a1tan∠ACB-1tan∠ADBAB=asin∠BDC×tan∠ACBsin(∠BCD+∠BDC)题型一 有关距离问题例1 要测量对岸A ,B 两点之间的距离,选取相距 3 km 的C ,D 两点,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°,求A ,B 之间的距离.【解析】 如图所示,在△ACD 中,∠ACD =∠ACB +∠BCD =120°,∠CAD =∠ADC =30°,∴AC =CD = 3.在△BCD 中,∠BCD =45°,∠BDC =∠ADB +∠ADC =75°,∠CBD =60°. ∴BC =3sin75°sin60°=6+22. 在△ABC 中,由余弦定理,得AB 2=(3)2+⎝ ⎛⎭⎪⎫6+222-2×3×6+22×cos75°=3+2+3-3=5,∴AB =5,∴A ,B 之间的距离为 5 km.题型二 测量高度例2 A ,B 是海平面上的两个点,相距800 m ,在A 点测得山顶C 的仰角为45°,∠BAD =120°,又在B 点测得∠ABD =45°,其中D 是点C 到水平面的垂足,求山高CD. 【解析】 如图,在△ABD 中,∠BDA =180°-45°-120°=15°. 由AB sin15°=AD sin45°,得AD =AB ·sin45°sin15°=800×226-24=800(3+1)(m). ∵CD ⊥平面ABD ,∠CAD =45°,∴CD =AD =800(3+1)≈2 186(m).所以,山高CD 为2 186 m.题型三 测量角度例3 某货船在索马里海域航行中遭海盗袭击,发出呼救信号,我海军护航舰在A 处获悉后,立即测出该货船在方位角为45°,距离为10海里的C 处,并测得货船正沿方位角为105°的方向,以10海里/小时的速度向前行驶,我海军护航舰立即以10 3 海里/小时的速度前去营救,求护航舰的航向和靠近货船所需的时间.【解析】 如图所示,设所需时间为t 小时,则AB =103t ,CB =10t. 在△ABC 中,根据余弦定理,则有AB 2=AC 2+BC 2-2AC ·BCcos120°, 可得(103t)2=102+(10t)2-2×10×10tcos120°,整理得2t 2-t -1=0, 解得t =1或t =-12(舍去).舰艇需1小时靠近货船.此时AB =103,BC =10,在△ABC 中,由正弦定理,得BC sin ∠CAB =AB sin120°.所以sin ∠CAB =BCsin120°AB =10×32103=12.所以∠CAB =30°.所以护航舰航行的方位角为75°.1.2 应用举例(第二课时)题型一 有关面积问题三角形面积公式(1)S =12a ·h a (h a 表示a 边上的高).(2)S =12ab sin C =12 bc sin A =12 ac sin B .(3)S =12·r ·(a +b +c )(r 为内切圆半径 ).(4),))()((c p b p a p p S ---=其中2cb a p ++=例1 (1)已知△ABC 的面积为1,tanB =12,tanC =-2,求△ABC 的边长以及△ABC 外接圆的面积.(2)在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.①若△ABC 的面积等于3,求a ,b ; ②若sinB =2sinA ,求△ABC 的面积.【解析】(1) ∵tanB =12,∴0<B<π2.∴sinB =55,cosB =255.又∵tanC =-2,∴π2<C<π.∴sinC =255,cosC =-55.则sinA =sin(B +C)=sinBcosC +cosBsinC =55×⎝ ⎛⎭⎪⎫-55+255×255=35. ∵a sinA =b sinB ,∴a =bsinA sinB =35b.则S △ABC =12absinC =12·35b 2·255=1. 解得b =153,于是a = 3.再由正弦定理,得c =asinC sinA =2153. ∵外接圆的直径2R =a sinA =533,∴R =536.∴外接圆的面积S =πR 2=25π12.(2)①∵S =12absinC =12ab ·32=3,∴ab =4. ①∵c 2=a 2+b 2-2abcosC =(a +b)2-2ab -2abcosC =(a +b)2-12=4,∴a +b =4. ② 由①②可得a =2,b =2.②∵sinB =2sinA ,∴b =2a.又∵c 2=a 2+b 2-2abcosC =(a +b)2-3ab =4,∴a =233,b =433.∴S =12absinC =233题型二 正余弦定理的综合问题例2 (1)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2asinA =(2b +c)sinB +(2c +b)sinC.①求A 的大小;②求sinB +sinC 的最大值.(2)在△ABC 中,内角A ,B ,C 的对边长分别为a ,b ,c ,已知a 2-c 2=2b ,且sinAcosC =3cosAsinC ,求b.【解析】 (1)①由已知,根据正弦定理,得2a 2=(2b +c)b +(2c +b)c ,即a 2=b 2+c 2+bc.由余弦定理,得a 2=b 2+c 2-2bccosA.故cosA =-12,∴A =120°.②由(1),得sinB +sinC =sinB +sin(60°-B)=32cosB +12sinB =sin(60°+B). 故当B =30°时,sinB +sinC 取得最大值1.(2)由余弦定理,得a 2-c 2=b 2-2bccosA.又a 2-c 2=2b ,b ≠0,所以b =2ccosA +2.① 又sinAcosC =3cosAsinC ,∴sinAcosC +cosAsinC =4cosAsinC. ∴sin(A +C)=4cosAsinC ,sinB =4sinCcosA.由正弦定理,得sinB =bc sinC.故b =4ccosA.② 由①②解得b =4.例3 如图,在平面四边形ABCD 中,AD =1,CD =2,AC =7. (1)①求cos ∠CAD 的值;②若cos ∠BAD =-714,sin ∠CBA =216,求BC 的长.(2)如图所示,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.①求sin ∠BAD ; ②求BD ,AC 的长.【解析】(1)①在△ADC 中,由余弦定理,得cos ∠CAD =AC 2+AD 2-CD22AC ·AD,故由题设知,cos ∠CAD =7+1-427=277.②设∠BAC =α,则α=∠BAD -∠CAD.因为cos ∠CAD =277,cos ∠BAD =-714,所以sin ∠CAD =1-cos 2∠CAD =1-⎝⎛⎭⎫2772=217,sin ∠BAD =1-cos 2∠BAD =1-⎝⎛⎭⎫-7142=32114.于是sin α=sin(∠BAD -∠CAD)=sin ∠BADcos ∠CAD -cos ∠BADsin ∠CAD =32114×277-⎝ ⎛⎭⎪⎫-714×217=32.在△ABC 中,由正弦定理,得BC sin α=AC sin ∠CBA .故BC =AC ·sin αsin ∠CBA=7×32216=3.(2)①在△ADC 中,因为cos ∠ADC =17,所以sin ∠ADC =437.所以sin ∠BAD =sin(∠ADC -∠B)=sin ∠ADCcosB -cos ∠ADCsinB =437×12-17×32=3314.②在△ABD 中,由正弦定理,得BD =AB ·sin ∠BADsin ∠ADB =8×3314437=3.在△ABC 中,由余弦定理,得AC 2=AB 2+BC 2-2AB ·BC ·cosB =82+52-2×8×5×12=49.所以AC =7.题型三 证明恒等式例4 (1)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,证明:a 2-b 2c 2=sin (A -B )sinC.(2)在△ABC 中,记外接圆半径为R.求证:2Rsin(A -B)=a 2-b2c .(3)已知在△ABC 中,a 2=b(b +c),求证:A =2B.【证明】 (1)由余弦定理,得a 2=b 2+c 2-2bccosA ,b 2=c 2+a 2-2cacosB , 两式相减,得a 2-b 2=b 2-a 2-2bccosA +2cacosB.∴a 2-b 2c 2=acosB -bcosAc.由正弦定理,知a c =sinA sinC ,b c =sinB sinC .∴a 2-b 2c 2=sinAcosB -sinBcosA sinC =sin (A -B )sinC .(2)由正弦定理的变形形式:sinA =a 2R ,sinB =b 2R 及由等号左边的a 2,b 2,c 2,运用余弦定理进行转化,即可得.左边=2R(sinAcosB -cosAsinB)=a ·a 2+c 2-b 22ac -b ·b 2+c 2-a 22bc =a 2-b2c =右边.(3)方法一:∵a 2=b(b +c),根据正弦定理,得sin 2A =sinB(sinB +sinC),即sin 2A -sin 2B =sinBsinC. ∴cos2B -cos2A2=sinBsinC.∴sin(A +B)sin(A -B)=sinBsinC.又在△ABC 中,sin(A +B)=sinC ≠0,∴sin(A -B)=sinB.∴A -B =B 或(A -B)+B =π(舍去).∴A =2B. 方法二:2bcosB =2b ×a 2+c 2-b 22ac =b (c 2+bc )ac =b (b +c )a =a ,即2bcosB =a ,根据正弦定理,得sinA =2sinBcosB ,即sinA =sin2B.∴A =2B 或A +2B =π. 若A +2B =π,则B =C.由a 2=b(b +c),知a 2=b 2+c 2. ∴B =C =π4,A =π2,∴A =2B.。

高中数学必修二 6 4 3 余弦定理、正弦定理2课时(含答案)

高中数学必修二  6 4 3 余弦定理、正弦定理2课时(含答案)

6.4.3正弦定理导学案编写:廖云波 初审:孙锐 终审:孙锐 廖云波【学习目标】1.了解正弦定理的推导过程,掌握正弦定理及其基本应用2.能用正弦定理解三角形,并能判断三角形的形状3.能利用正、余弦定理解决综合问题【自主学习】知识点1 正弦定理的呈现形式1.a sin A =b sin B =c sin C=2R (其中R 是△ABC 外接圆的半径); 2.a =b sin A sin B =c sin A sin C=2R sin A ; 3.sin A =a 2R ,sin B =b 2R ,sin C =c 2R. 知识点2 正弦定理的常见变形1.sin A ∶sin B ∶sin C =a ∶b ∶c ;2.a sin A =b sin B =c sin C =a +b +c sin A +sin B +sin C =2R ; 3.a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;4.sin A =a 2R ,sin B =b 2R ,sin C =c 2R. 知识点3 利用正弦定理判断三角形的解的个数已知三角形的两角和任意一边,求另两边和另一角,此时有唯一解,三角形被唯一确定.已知两边和其中一边的对角,求其他的边和角,此时可能出现一解、两解或无解的情况,三角形不能被唯一确定.具体做法如下:由正弦定理得sin B =b sin A a, ①若b sin A a>1,则满足条件的三角形个数为0,即无解. ②若b sin A a=1,则满足条件的三角形个数为1,即一解. ③若b sin A a <1,则满足条件的三角形个数为1或2.【合作探究】探究一 已知两角和任意一边解三角形【例1】在△ABC 中,已知B =30°,C =105°,b =4,解三角形.[分析] 由三角形的内角和定理可求A 的度数.根据正弦定理可求a ,c .[解] 因为B =30°,C =105°,所以A =180°-(B +C )=180°-(30°+105°)=45°.由正弦定理,得a sin45°=4sin30°=c sin105°, 解得a =4sin45°sin30°=42,c =4sin105°sin30°=2(6+2).归纳总结:【练习1】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b = .【答案】2113解析:在△ABC 中,由cos A =45,cos C =513, 可得sin A =35,sin C =1213, sin B =sin(A +C )=sin A cos C +cos A sin C =6365, 又a =1,由正弦定理得b =a sin B sin A =2113.探究二 已知两边及一边的对角解三角形【例2】下列三角形是否有解?有解的作出解答.(1)a =7,b =8,A =105°;(2)b =10,c =56,C =60°;(3)a =23,b =6,A =30°.[分析] 利用三角形中大边对大角定理以及结合有解无解的图形来考虑.[解] (1)a =7,b =8,a <b ,A =105°>90°,本题无解.(2)b =10,c =56,b <c ,C =60°<90°,本题有一解.△sin B =b sin C c =10·sin60°56=22, △B =45°,A =180°-(B +C )=75°.△a =b sin A sin B =10×sin75°sin45°=10×6+2422=5(3+1). (3)a =23,b =6,a <b ,A =30°<90°,又△b sin A =6sin30°=3,△a >b sin A ,△本题有两解. 由正弦定理得:sin B =b sin A a =6sin30°23=32,△B =60°或120°, 当B =60°时,C =90°,c =a sin C sin A =23sin90°sin30°=43; 当B =120°时,C =30°,c =a sin C sin A =23sin30°sin30°=2 3. △B =60°,C =90°,c =43或B =120°,C =30°,c =2 3.归纳总结:【练习2】在三角形ABC 中,根据下列条件解三角形,其中有两个解的是 。

第08讲 正余弦定理解三角形(学生版) 备战2025年高考数学一轮复习学案(新高考通用)

第08讲 正余弦定理解三角形(学生版) 备战2025年高考数学一轮复习学案(新高考通用)

第08讲正余弦定理解三角形(10类核心考点精讲精练)1. 5年真题考点分布2. 命题规律及备考策略【命题规律】本节内容是新高考卷的必考内容,设题稳定,难度较中等,分值为13-15分【备考策略】1掌握正弦定理、余弦定理及其相关变形应用2会用三角形的面积公式解决与面积有关的计算问题.3会用正弦定理、余弦定理等知识和方法解决三角形中的综合问题【命题预测】本节内容是新高考卷的必考内容,一般给以大题来命题、考查正余弦定理和三角形面积公式在解三角形中的应用,同时也结合三角函数及三角恒等变换等知识点进行综合考查,需重点复习。

1.正弦定理(1)基本公式:R CcB b A a 2sin sin sin ===(其中R 为ABC ∆外接圆的半径)(2)变形C B c b C A c a B A b a C B A c b a R C cB b A a sin sin sin sin sin sin sin sin sin 2sin sin sin ++=++=++=++++====CB A c b a sin :sin :sin ::=2.三角形中三个内角的关系π=++C B A ,A +B 2=π2-C2A CB sin )sin(=+∴,AC B cos )cos(-=+,AC B tan )tan(-=+2cot22πtan 2tan(,2sin 22πcos 2cos(,2cos 22πsin )2sin(C C B A C C B A C C B A =⎪⎭⎫ ⎝⎛-=+=⎪⎭⎫ ⎝⎛-=+=⎪⎭⎫ ⎝⎛-=+∴3.余弦定理(1)边的余弦定理A bc c b a cos 2222-+=,B ac c a b cos 2222-+=,Cab b a c cos 2222-+=(2)角的余弦定理bc a c b A 2cos 222-+=,ac b c a B 2cos 222-+=,ab c b a C 2cos 222-+=4.三角形的面积公式ah S ABC 21=∆A bc B ac C ab S ABCsin 21sin 21sin 21===∆1.(2023·全国·高考真题)在ABC V 中,内角,,A B C 的对边分别是,,a b c ,若cos cos a B b A c -=,且5C p=,则B Ð=( )A .10pB .5pC .310pD .25p 2.(2024·湖南永州·三模)已知在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c ,且cos cos 2cos a B b A c C +=-,π7sin 268A ⎛⎫+= ⎪⎝⎭,则()cos A B -=.3.(2024·四川凉山·二模)设ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos cos 1cos cos a B b A ba Bb A c-+=+,则A = .4.(2024·全国·高考真题)记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A =.(1)求A .(2)若2a =sin sin 2C c B =,求ABC V 的周长.1.(2024·江西九江·三模)在ABC V 中,角,,A B C 所对的边分别为,,a b c ,已知22cos c a b A -=,则B =( )A .π6B .π3C .2π3D .5π62.(2024·河北沧州·模拟预测)记ABC V 的内角,,A B C 的对边分别为,,a b c ,若3cos cos cos b B a C c A =+,且34b c =,则C =.3.(2024·内蒙古呼和浩特·二模)在ABC V 中,记角A 、B 、C 的对边分别为a 、b 、c ,已知cos sin =+B c B .(1)求角C ;(2)已知点D 在AC 边上,且2AD DC =,6BC =,BD =,求ABC V 的面积.1.(2023·浙江·模拟预测)在ABC V 中,角,,A B C 所对的边分别为,,a b c .若π,43B a ==,且该三角形有两解,则b 的范围是( )A .()+¥B .()C .()0,4D .()42.(2024·陕西渭南·模拟预测)已知ABC V 的内角A ,B ,C 的对边分别为,,a b c ,则能使同时满足条件π,66A b ==的三角形不唯一的a 的取值范围是( )A .()36,B .()3,+¥C .()0,6D .()0,33.(2023·广东茂名·三模)(多选)ABC V 中,角,,A B C 所对的边分别为,,a b c .以下结论中正确的有( )A .若40,20,25a b B ===o ,则ABC V 必有两解B .若sin2sin2A B =,则ABC V 一定为等腰三角形C .若cos cos a B b A c -=,则ABC V 一定为直角三角形D .若π,23B a ==,且该三角形有两解,则b 的范围是)+¥1.(23-24高二下·浙江·期中)在ABC V 中,π,4,3A AB BC a Ð===,且满足该条件的ABC V 有两个,则a 的取值范围是( )A .()02,B .(2,C .()2,4D .()42.(2023·安徽·模拟预测)(多选)在ABC V 中,60AB B ==o ,若满足条件的三角形有两个,则AC 边的取值可能是( )A .1.5B .1.6C .1.7D .1.83.(2024·辽宁沈阳·模拟预测)(多选)在ABC V 中,角A 、B 、C 的对边分别为a 、b 、c ,且已知2a =,则( )A .若45A =o ,且ABC V 有两解,则b 的取值范围是(2,B .若45A =o ,且4b =,则ABC V 恰有一解.C .若3c =,且ABC V 为钝角三角形,则b 的取值范围是D .若3c =,且ABC V 为锐角三角形,则b 的取值范围是1.(2023·北京·高考真题)在ABC V 中,()(sin sin )(sin sin )a c A C b A B +-=-,则C Ð=( )A .π6B .π3C .2π3D .5π62.(2021·全国·高考真题)在ABC V 中,已知120B =︒,AC 2AB =,则BC =( )A .1B C D .33.(2023·全国·高考真题)在ABC V 中,60,2,BAC AB BC Ð=︒==BAC Ð的角平分线交BC 于D ,则AD =.4.(2023·全国·高考真题)记ABC V 的内角,,A B C 的对边分别为,,a b c ,已知2222cos b c aA+-=.(1)求bc ;(2)若cos cos 1cos cos a B b A ba Bb A c--=+,求ABC V 面积.1.(2021·安徽安庆·二模)在ABC V 中,a b c ,,分别是A Ð,B Ð,C 的对边.若2b ac =,且22a c ac +=+,则A Ð的大小是( )A .π6B .π3C .2π3D .5π62.(2024·安徽合肥·一模)在ABC V 中,内角,,A B C 的对边分别为,,a b c ,若()2cos 2b C a c =-,且π3B =,则=a ( )A .1B C D .23.(2023·广东广州·三模)在ABC V 中,点D 在边BC 上,AB =,3CD =,45B =︒,60ADB Ð=︒,则AC 的长为.4.(2023·全国·高考真题)在ABC V 中,已知120BAC Ð=︒,2AB =,1AC =.(1)求sin ABC Ð;(2)若D 为BC 上一点,且90BAD Ð=︒,求ADC △的面积.1.(22-23高三·吉林白城·阶段练习)已知ABC V 中,角A ,B ,C 所对的边分别是a ,b ,c ,若()()3a b c b c a bc +++-=,且sin 2sin cos A B C =,那么ABC V 是( )A .直角三角形B .等边三角形C .等腰三角形D .等腰直角三角形2.(22-23高三上·河北·阶段练习)在ABC V 中,角,,A B C 对边为,,a b c ,且22cos2Ac b c ×=+,则ABC V 的形状为( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形3.(2024高三·全国·专题练习)设△ABC 的三边长为BC a =,=CA b ,AB c =,若tan2A a b c=+,tan2B ba c =+,则△ABC 是( ).A .等腰三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形1.(2024高三·全国·专题练习)在ABC V 中,若cos cos a A b B =,则ABC V 的形状一定是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等腰或直角三角形2.(22-23高三·河南商丘·阶段练习)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin22A c bc-=,则△ABC 是( )A .直角三角形B .锐角三角形C .等边三角形D .30A =︒的三角形3.(22-23高三·阶段练习)设ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,若222b c a ca =+-,且sin 2sin A C =,则ABC V 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形4.(2023·四川凉山·二模)在ABC V 中,角A ,B ,C 对边分别为a ,b ,c .命题221tan cos()2:01tan2Ab A C p A a -++=+,命题:q ABC V 为等腰三角形.则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件1.(2023·全国·高考真题)在ABC V 中,已知120BAC Ð=︒,2AB =,1AC =.(1)求sin ABC Ð;(2)若D 为BC 上一点,且90BAD Ð=︒,求ADC △的面积.2.(2022·浙江·高考真题)在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c.已知34,cos 5a C ==.(1)求sin A 的值;(2)若11b =,求ABC V 的面积.3.(2024·全国·高考真题)记ABC V 的内角A 、B 、C 的对边分别为a ,b ,c,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC V的面积为3c .4.(2022·北京·高考真题)在ABC V中,sin 2C C =.(1)求C Ð;(2)若6b =,且ABC V的面积为ABC V 的周长.1.(2024·北京大兴·三模)ABC V 中,角A ,B ,C 对边分别为a ,b ,c,cos a B =,sin 1b A =.(1)求B Ð的大小;(2)若b =ABC V 的面积.2.(2024·福建莆田·三模)在ABC V 中,内角,,A B C 的对边分别为,,a b c ,且()()cos 12cos b C c B +=-.(1)证明:2a b c +=.(2)若6a =,9cos 16C =,求ABC V 的面积.3.(2024·浙江·模拟预测)已知ABC V 中,角,,A B C 所对的边分别为,,.a b c 已知23,sin ABC c S b C ==V .(1)求a 的取值范围;(2)求B Ð最大时,ABC V 的面积.4.(2024·安徽滁州·三模)在ABC V 中,角,,A B C 的对边分别为,,,2cos 2a b c b C c a -=.(1)求B 的大小;(2)若3a =,且AC ABC V 的面积.1.(2024·贵州六盘水·三模)在ABC V 中,2AB =,3AC =, π3A Ð=,则ABC V 外接圆的半径为( )A B C D 2.(2024·浙江·模拟预测)如图,在平面内的四个动点A ,B ,C ,D 构成的四边形ABCD 中,1AB =,2BC =,3CD =,4=AD .(1)求ACD V 面积的取值范围;(2)若四边形ABCD 存在外接圆,求外接圆面积.3.(2023·湖北·二模)已知在ABC V 中,其角A 、B 、C 所对边分别为a 、b 、c ,且满足cos sin b C C a c =+.(1)若b =ABC V 的外接圆半径;(2)若a c +=,且6BA BC ×=uuu r uuu r,求ABC V 的内切圆半径1.(2024·河南信阳·模拟预测)设ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知9,8,5a b c ===,则ABC V 的外接圆的面积为( )A .225π11B .125π11C .123π6D .113π62.(2024·辽宁大连·一模)在ABC V 中,π,3,23A AB AC Ð=== (1)求点A 到边BC 的距离:(2)设P 为边AB 上一点,当22PB PC +取得最小值时,求PBC V 外接圆的面积.3.(2024·山西晋城·一模)在ABC V 中,AB =AC =,BC =.(1)求A 的大小;(2)求ABC V 外接圆的半径与内切圆的半径.4.(2024·全国·模拟预测)在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c ,且22sin 2sin 2sin sin 4A BA B ××=.(1)求C ;(2)若2c =,求ABC V 内切圆半径取值范围.1.(2024·福建泉州·一模)在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,且cos cos c B b C a b -=-,点D 是BC 上靠近C 的三等分点(1)若ABC V 的面积为AD 的最小值;(2)若π6BAD Ð=,求sin 2B .2.(2024·山东日照·二模)ABC V 的内角,,A B C 的对边分别为,,a b c .分别以,,a b c 为边长的正三角形的面积依次为123,,S S S ,且123S S S --=.(1)求角A ;(2)若4BD CD =uuu r uuu r ,π6CAD Ð=,求sin ACB Ð.3.(2024·山东菏泽·模拟预测)在ABC V 中,D 为BC 边的中点.(1)若AC =π6ACD DAC Ð=Ð=,求AB 的长;(2)若π2BAD ACD ÐÐ+=,0AC AB ¹×u u r uu r uu,试判断ABC V 的形状.4.(2024·河北衡水·模拟预测)如图,在平面四边形ABCD 中,120AB AC ADC CAB ==Ð=Ð=︒,设DAC Ðq =.(1)若2AD =,求BD 的长;(2)若15ADB Ð=︒,求tan q .1.(2024·河北沧州·模拟预测)在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,已知()2a c c b =+.(1)求证:3πB C +=;(2)若ABC Ð的角平分线交AC 于点D ,且12a =,7b =,求BD 的长.2.(2024·河南·三模)已知P 是ABC V 内一点,π3π,,,44PB PC BAC BPC ABP ÐÐÐq ====.(1)若π,24BC q =,求AC ;(2)若π3q =,求tan BAP Ð.3.(23-24高三下·安徽·阶段练习)已知a ,b ,c 分别是△ABC 的三个内角的对边,且sin cos A a C b c +=+.(1)求A ;(2)若2BC =,将射线BA 和CA 分别绕点B ,C 顺时针方向旋转15o ,30o ,旋转后相交于点D (如图所示),且30DBC Ð=o ,求AD .1.(2024·全国·模拟预测)记ABC V 的内角,,A B C 的对边分别为,,a b c ,tan A =πsin 2sin()3b C C =+.(1)求c ;(2)若点D 在边BC 上,且13BD a =,AD =ABC V 的面积.1.(2024·山东济南·二模)如图,已知平面四边形ABCD 中,2,4AB BC CD AD ====.(1)若,,,A B C D 四点共圆,求AC ;(2)求四边形ABCD 面积的最大值.2.(2024·河北·二模)已知ABC V 中,角,,A B C 的对边分别为,,,a b c ABC V 的面积为,2S a b =.(1)若S ABC =V 为等腰三角形,求它的周长;(2)若3sin 5C =,求sin sin A,B .1.(23-24高二下·浙江杭州·期中)在ABC V 中,内角,,A B C 所对的边分别为,,a b c ,满足2cos b a b C =-.(1)求证:2C B =;(2)求2sin cos sin C B B +-的最大值.2.(2024·全国·模拟预测)在ABC V 中,点D ,E 都是边BC 上且与B ,C 不重合的点,且点D 在B ,E 之间,AE AC BD AD AB CE ××=××.(1)求证:sin sin BAD CAE =∠∠.(2)若AB AC ^,求证:222221sin AD AE BD CE DAE+=-Ð.3.(23-24高三上·河南信阳·阶段练习)设ABC V 的内角A 、B 、C 的对边分别为a 、b 、c ,已知1sin 1cos 2cos sin 2A BA B --=.(1)证明:22πA B +=.(2)求22a c的取值范围.1.(23-24高三上·广东·阶段练习)已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,D 是边BC 上一点,BAD Ð=a ,CAD b Ð=,AD d =,且2sin 2sin 3ac ab bc a b +=.(1)若5π6A =,证明:3a d =;(2)在(1)的条件下,且2CD BD =,求cos ADC Ð的值.2.(22-23高一下·山东枣庄·期中)ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知4sin sin cos sin cos a A b C A c A B =+.(1)求sin sin AC的值;(2)若BD 是ABC Ð的角平分线.(i )证明:2··BD BA BC DA DC =-;(ii )若1a =,求BD AC ×的最大值.3.(23-24高三上·江苏·开学考试)如图,在△ABC 内任取一点P ,直线AP 、BP 、CP 分别与边BC 、CA 、AB 相交于点D 、E 、F .(1)试证明:sin sin BD AB BADDC AC DACÐ=Ð(2)若P 为重心,5,4,3AD BE CF ===,求ABC V 的面积.1.(2021·全国·高考真题)魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点E ,H ,G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG 称为“表距”,GC 和EH 都称为“表目距”,GC 与EH 的差称为“表目距的差”则海岛的高AB =( )A .´+表高表距表目距的差表高B .´-表高表距表目距的差表高C .´+表高表距表目距的差表距D .´-表高表距表目距的差表距2.(2024·陕西西安·模拟预测)在100m 高的楼顶A 处,测得正西方向地面上B C 、两点(B C 、与楼底在同一水平面上)的俯角分别是75o 和15o ,则B C 、两点之间的距离为( ).A .B .C .D .3.(2024·江苏扬州·模拟预测)《海岛算经》是魏晋时期数学家刘徽所著的测量学著作,书中有一道测量山上松树高度的题目,受此题启发,小李同学打算用学到的解三角形知识测量某建筑物上面一座信号塔的高度.把塔底与塔顶分别看作点C ,D ,CD 与地面垂直,小李先在地面上选取点A ,B ,测得AB =,在点A 处测得点C ,D 的仰角分别为30︒,60︒,在点B 处测得点D 的仰角为30︒,则塔高CD 为 m .1.(2024·广东·二模)在一堂数学实践探究课中,同学们用镜而反射法测量学校钟楼的高度.如图所示,将小镜子放在操场的水平地面上,人退后至从镜中能看到钟楼顶部的位置,此时测量人和小镜子的距离为1 1.00m a =,之后将小镜子前移 6.00m a =,重复之前的操作,再次测量人与小镜子的距离为20.60m a =,已知人的眼睛距离地面的高度为5m 1.7h =,则钟楼的高度大约是( )A .27.75mB .27.25mC .26.75mD .26.25m2.(2024·湖南·模拟预测)湖南省衡阳市的来雁塔,始建于明万历十九年(1591年),因鸿雁南北迁徙时常在境内停留而得名.1983年被湖南省人民政府公布为重点文物保护单位.为测量来雁塔的高度,因地理条件的限制,分别选择C 点和一建筑物DE 的楼顶E 为测量观测点,已知点A 为塔底,,,A C D 在水平地面上,来雁塔AB 和建筑物DE 均垂直于地面(如图所示).测得18m,15m CD AD ==,在C 点处测得E 点的仰角为30°,在E 点处测得B 点的仰角为60°,则来雁塔AB 的高度约为( ) 1.732»,精确到0.1m )A .35.0mB .36.4mC .38.4mD .39.6m3.(2024·山东临沂·一模)在同一平面上有相距14公里的,A B 两座炮台,A 在B 的正东方.某次演习时,A 向西偏北q 方向发射炮弹,B 则向东偏北q 方向发射炮弹,其中q 为锐角,观测回报两炮弹皆命中18公里外的同一目标,接着A 改向向西偏北2q方向发射炮弹,弹着点为18公里外的点M ,则B 炮台与弹着点M 的距离为( )A .7公里B .8公里C .9公里D .10公里一、单选题1.(2024·浙江·模拟预测)在ABC V 中,,,a b c 分别为角,,A B C 的对边,若tan 3A =,π4B =,bc ==a ( )A .2B .3C .D .2.(2024·重庆·模拟预测)记ABC V 的内角,,A B C 的对边分别为,,a b c ,若222π,6,33B b a c ac ==+=,则ABC V 的面积为( )A B .94C D .92二、多选题3.(2024·重庆·三模)在ABC V 中,角,,A B C 的对边为,,,a b c 若2,6b c C p ===,则ABC V 的面积可以是( )A B .3C .D .三、填空题4.(2024·山东威海·二模)在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a 4b c +=,cos C =.则sin A = .5.(2024·北京西城·三模)在ABC V 中,若2c =,a =π6A Ð=,则sin C = ,b = .四、解答题6.(2024·陕西西安·模拟预测)记ABC V 的内角,,A B C 的对边分别为,,a b c ,已知2b c =.(1)若cos sin B C =,求tan B ;(2)若3cos ,4A a =,求ABC V 的面积.7.(2024·河北·一模)在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足222a b c +=.(1)求角C 的大小;(2)若1b =,2cos c b B =,求ABC V 的面积.8.(2024·贵州黔东南·二模)在ABC V 中,角,,A B C 的对边分别为,,a b c ,且()sin sin 02A Cb A Bc ++-=.(1)求B ;(2)若5,8b a c =+=,求ABC V 的面积.9.(2024·江西新余·二模)在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,且ABC V 的面积()2221sin 2S a c b B =+-.(1)求角B ;(2)若ABC Ð的平分线交AC 于点D ,3a =,4c =,求BD 的长.10.(2024·陕西西安·一模)在ABC V 中,角A B C ,,所对的边分别为,,a b c ,πsin sin 02c A C ⎛⎫+= ⎪⎝⎭,6c =.(1)求角C ;(2)若=c ,求ABC V 的周长.一、单选题1.(2024·安徽芜湖·模拟预测)记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,3sin()sin ,2B C A b -+=,则角C =( )A .π6B .π3C .π4D .π22.(2024·陕西·模拟预测)在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c ,()()()sin sin sin sin c A C a b A B -=-+,若ABC V 3b ,则AC 边上的高为( )A B C D .二、多选题3.(2024·江苏宿迁·三模)在ABC V 中,角A B C ,,所对的边分别为a b c ,,.若2cossin 2A Cb C +=,且边AC 上的中线BD )A .π3B =B .b 的取值范围为[2,C .ABC V 面积的最大值为D .ABC V 周长的最大值为三、填空题4.(2024·湖北武汉·二模)在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c ,4cos a bC b a+=.且tan tan tan tan tan tan B A B C A C +=,则cos A = .5.(2024·陕西安康·模拟预测)在ABC V 中,内角,,A B C 所对的边分别为,,a b c ,若2b =,22cos cos cos a cC B C=+,则2a c +的最大值为.四、解答题6.(2024·福建泉州·模拟预测)在ABC V 中,角,,A B C 所对的边分别为,,a b c ,已知a b c <<且tan ,tan ,tan A B C 均为整数.(1)证明:2tan 1tan tan B A C -=;(2)设AC 的中点为D ,求CDB Ð的余弦值.7.(2024高三下·全国·专题练习)在①()()()sin sin sin sin b A B c a C A +=+-,②tan tan B C +=sinsin 2A Bc B +=这三个条件中任选一个,补充在下面的横线上,并解答.在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,且______.(1)求角C 的大小;(2)已知7c =,D 是边AB 的中点,且CD CB ^,求CD 的长.8.(2024·全国·模拟预测)记ABC V 的内角,,A B C 的对边分别为,,a b c .已知2222222b b c a c b a c b +-=-+-.(1)求A ;(2)若D 为AB 的中点,且6CD =,求cos ACB Ð.9.(2023·黑龙江佳木斯·三模)ABC V 中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知sin cos sin cos cos c C B b C C A +=.(1)求∠A ;(2)若A ABC CB =Ð∠,满足3BD =,2CD =,四边形ABDC 是凸四边形,求四边形ABDC 面积的最大值.10.(2024·河北·二模)若ABC V 内一点P 满足PAB PBC PCA q Ð=Ð=Ð=,则称点P 为ABC V 的布洛卡点,q 为ABC V 的布洛卡角.如图,已知ABC V 中,BC a =,AC b =,AB c =,点P 为的布洛卡点,q 为ABCV 的布洛卡角.(1)若b c =,且满足PBPA=ABC Ð的大小.(2)若ABC V 为锐角三角形.(ⅰ)证明:1111tan tan tan tan BAC ABC ACBq =++ÐÐÐ.(ⅱ)若PB 平分ABC Ð,证明:2b ac =.1.(2024·上海·高考真题)已知点B 在点C 正北方向,点D 在点C 的正东方向,BC CD =,存在点A 满足16.5,37BAC DAC =︒=︒ÐÐ,则BCA Ð= (精确到0.1度)2.(2024·北京·高考真题)在ABC V 中,内角,,A B C 的对边分别为,,a b c ,A Ð为钝角,7a =,sin 2cos B B =.(1)求A Ð;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC V 存在,求ABC V 的面积.条件①:7b =;条件②:13cos 14B =;条件③:sin c A 注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.3.(2024·天津·高考真题)在ABC V 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a B b c ===,,.(1)求a ;(2)求sin A ;(3)求()cos 2B A -的值.4.(2022·浙江·高考真题)我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法S =a ,b ,c 是三角形的三边,S 是三角形的面积.设某三角形的三边2a b c ===,则该三角形的面积S =.5.(2022·天津·高考真题)在ABC V 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ===-.(1)求c 的值;(2)求sin B 的值;(3)求sin(2)A B -的值.6.(2022·全国·高考真题)记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-.(1)若2A B =,求C ;(2)证明:2222a b c =+7.(2022·全国·高考真题)记ABC V 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+;(2)若255,cos 31a A ==,求ABC V 的周长.8.(2022·全国·高考真题)记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C p=,求B ;(2)求222a b c +的最小值.9.(2021·天津·高考真题)在ABC V ,角 ,,A B C 所对的边分别为,,a b c ,已知sin :sin :sin 2A B C =b =.(I )求a 的值;(II )求cos C 的值;(III )求sin 26C p ⎛⎫- ⎪⎝⎭的值.10.(2021·北京·高考真题)在ABC V 中,2cos c b B =,23C p=.(1)求B Ð;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使ABC V 存在且唯一确定,求BC 边上中线的长.条件①:c =;条件②:ABC V 的周长为4+条件③:ABC V 11.(2021·全国·高考真题)记ABC V 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C Ð=.(1)证明:BD b =;(2)若2AD DC =,求cos ABC Ð.1.1.12.(2020·全国·高考真题)如图,在三棱锥P –ABC 的平面展开图中,AC =1,AB AD =AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB =.13.(2020·天津·高考真题)在ABC V 中,角,,A B C 所对的边分别为,,a b c .已知 5,a b c ===(Ⅰ)求角C 的大小;(Ⅱ)求sin A 的值;(Ⅲ)求sin 24A p ⎛⎫+ ⎪⎝⎭的值.14.(2020·北京·高考真题)在ABC V 中,11a b +=,再从条件①、条件②这两个条件中选择一个作为已知,求:(Ⅰ)a 的值:(Ⅱ)sin C 和ABC V 的面积.条件①:17,cos 7c A ==-;条件②:19cos ,cos 816A B ==.注:如果选择条件①和条件②分别解答,按第一个解答计分.15.(2020·浙江·高考真题)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin 0b A =.(I )求角B 的大小;(II )求cos A +cos B +cos C 的取值范围.16.(2020·山东·高考真题)在①ac =②sin 3c A =,③=c 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC V ,它的内角,,A B C 的对边分别为,,a b c ,且sin A B =,6C p=,________?注:如果选择多个条件分别解答,按第一个解答计分.17.(2020·江苏·高考真题)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,45a c B ==︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC Ð=-,求tan DAC Ð的值.18.(2020·全国·高考真题)ABC V 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a ,b ,求ABC V 的面积;(2)若sin A C ,求C .19.(2020·全国·高考真题)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A p ++=.(1)求A ;(2)若b c -=,证明:△ABC 是直角三角形.20.(2020·全国·高考真题)ABC V 中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ;(2)若BC =3,求ABC V 周长的最大值.。

1.1.1正弦定理2解的个数

1.1.1正弦定理2解的个数
sinc2r解三角形时注意大边对大角仅有一个解有两个解仅有一个解无解chbsinaabachbsinaachbsina若a为锐角时
1.1.1正弦定理 ----解的个数
复习回顾:
1. 正弦定理
a
b
c


sin A sin B sinC
是解斜三角形的工具之一.
注:每个等式可视为一 个方程:知三求一
2. 正弦定理可解以下两种类型的三角形: (1)已知两角及一边; (2)已知两边及其中一边的对角.
则B=_3_0_°_,
(3)已知c=2,A=45°,a= 2√6 ,则
B=_7_5_°__或__1_5_°____.
3
小结
1. 正弦定理 解三角形时,注意大边对大角
a= b =c sinA sinB sinC
=2R
是解斜三角形的工具之一.
2. 正弦定理可解以下两种类型的三角形: (1)已知两角及一边;(只有一解) (2)已知两边及其中一边的对角→↓.
C
b

a
A
H
B
ab
仅有一个解
⑵若A为直角或钝角时:
a ≤ b 无解 a b 一解(锐角)
C a
b
A
C
b
a
A
已知两边和其中一边的对角”的三角形的解
的个数的表格
A 90o
A 90o
a b 一解
一解
a b 无解
一解
a bsin A 二解
a b 无解 a bsin A 一解
C
b
A 60°
B
(1) b=20,A=60°,a=20√3
sinB=
b
sinA a

正弦定理1.1.1(二)

正弦定理1.1.1(二)

1.1.1正弦定理(二)学习目标 1.熟记并能应用正弦定理的有关变形公式解决三角形中的问题(重点);2.能根据条件,判断三角形解的个数(难点);3.能利用正弦定理、三角恒等变换解决较为复杂的三角形问题(难点).知识点1对三角形解的个数的判断已知三角形的两角和任意一边,求另两边和另一角,此时有唯一解,三角形被唯一确定.已知两边和其中一边的对角,求其他的边和角,此时可能出现一解、两解或无解的情况,三角形不能被唯一确定,现以已知a,b和A解三角形为例,从两个角度予以说明:(1)代数角度由正弦定理得sin B =b sin A a,①若b sin Aa>1,则满足条件的三角形个数为0,即无解.②若b sin Aa=1,则满足条件的三角形个数为1,即一解.③若b sin Aa<1,则满足条件的三角形个数为1或2.(2)几何角度图形关系式解的个数A为锐角①a=b sin A;②a≥b一解b sin A<a<b 两解a<b sin A 无解A 为 钝角 或直 角a >b 一解a ≤b 无解【预习评价】1.已知三角形的两边及其中一边的对角往往得出不同情形的解,有时需舍去一解,有时又不能舍.那么我们怎么把握舍不舍的问题?提示 例如在△ABC 中,已知a ,b 及A 的值.由正弦定理a sin A =bsin B ,可求得sin B =b sin Aa .在由sin B 求B 时,如果a >b ,则有A >B ,所以B 为锐角,此时B的值唯一;如果a <b ,则有A <B ,所以B 为锐角或钝角,此时B 的值有两个. 2.已知三角形的两边及其夹角,为什么不必考虑解的个数?提示 如果两个三角形有两边及其夹角分别相等,则这两个三角形全等.即三角形的两边及其夹角确定时,三角形的六个元素即可完全确定,故不必考虑解的个数的问题.知识点2 三角形面积公式 任意三角形的面积公式为:(1)S △ABC =12bc sin__A =12ac sin__B =12ab sin__C ,即任意三角形的面积等于任意两边与它们夹角的正弦的乘积的一半.(2)S △ABC =12ah ,其中a 为△ABC 的一边长,而h 为该边上的高的长.(3)S △ABC =12r (a +b +c )=12rl ,其中r ,l 分别为△ABC 的内切圆半径及△ABC 的周长.(4)S △ABC =p (p -a )(p -b )(p -c )⎝ ⎛⎭⎪⎫其中p =a +b +c 2. 【预习评价】1.在△ABC 中,若B =30°,a =2,c =4,则△ABC 的面积为________.2.在△ABC 中,若B =30°,AB =23,AC =2,则△ABC 的面积是________.题型一 三角形解的个数的判断【例1】 已知下列各三角形中的两边及其一边的对角,判断三角形是否有解,有解的作出解答.(1)a =10,b =20,A =80°; (2)a =23,b =6,A =30°.规律方法 判断三角形解的情况:先判断角,若有一个为钝角,则有一解或无解;若无钝角,则有一解、两解或无解,然后再由大边对大角来具体判断解的情况.【训练1】 根据下列条件,判断三角形是否有解,若有解,有几个解: (1)a =3,b =2,A =120°; (2)a =60,b =48,B =60°; (3)a =7,b =5,A =80°; (4)a =14,b =16,A =45°.题型二 判断三角形形状问题【例2】 在△ABC 中,若sin A =2sin B cos C ,且sin 2A =sin 2B +sin 2C ,试判断△ABC 的形状.规律方法 判断三角形形状的常用方法有:(1)化边为角.将题目中的条件,利用正弦定理化边为角⎝ ⎛⎭⎪⎫若sin 2A =sin 2B ,则A =B 或A +B =π2,再根据三角函数的有关知识得到三个内角的关系,进而确定三角形的形状;(2)化角为边.将题目中的所有条件,利用正弦定理化角为边,再根据代数恒等变换得到边的关系(如a =b ,a 2+b 2=c 2),进而确定三角形的形状.【训练2】在△ABC中,已知3b=23a sin B,且cos B=cos C,角A是锐角,则△ABC的形状是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形方向1 三角函数式的化简、证明及求值【例3-1】如图所示,D是Rt△ABC的斜边BC上一点,AB=AD,记∠CAD=α,∠ABC =β.(1)求证:sin α+cos 2β=0;(2)若AC=3DC,求β的值.规律方法在三角形中,进行三角函数式的化简、证明或求值时,一要注意边角互化,二要注意三角函数公式的灵活应用,特别是三角恒等式变形的技巧.方向2 与三角形面积有关的问题【例3-2】在△ABC中,∠A=60°,c=3 7a.(1)求sin C的值;(2)若a=7,求△ABC的面积.方向3 求范围或最值【例3-3】在锐角△ABC中,角A,B,C分别对应边a,b,c,且a=2b sin A,求cos A+sin C的取值范围.规律方法 三角函数、三角恒等变换与解三角形的综合问题是近几年高考的热点,在高考试题中频繁出现.解决此类问题,要根据已知条件,灵活运用正弦定理,能够对边角关系进行互相转化.课堂达标1.△ABC 满足下列条件:①b =3,c =4,B =30°;②a =5,b =8,A =30°;③c =6,b =33,B =60°;④c =9,b =12,C =60°.其中有两个解的是( ) A.①② B.①④ C.①②③ D.③④2.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若a =1,b =3,B =60°,则△ABC 的面积为( ) A.12 B.32 C.1 D. 33.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若△ABC 为锐角三角形,且满足sin B (1+2cos C )=2sin A cos C +cos A sin C ,则下列等式成立的是( ) A .a =2b B .b =2a C .A =2BD .B =2A4.在△ABC 中,lg(sin A +sin C )=2lg sin B -lg(sin C -sin A ),则此三角形的形状是________.5.在△ABC 中,求证:a -c cos B b -c cos A =sin Bsin A.课堂小结1.已知两边和其中一边的对角,求第三边和其他两个角,这时三角形解的情况:可能无解,也可能一解或两解.首先求出另一边的对角的正弦值,当正弦值大于1或小于0时,这时三角形解的情况为无解;当正弦值大于0小于1时,再根据已知的两边的大小情况来确定该角有一个值或者两个值.2.判断三角形的形状,最终目的是判断三角形是不是特殊三角形,当所给条件含有边和角时,应利用正弦定理将条件统一为“边”之间的关系式或“角”之间的关系式.3.结合正弦定理,同时注意三角形内角和定理及三角形面积公式、三角恒等变换等知识进行综合应用.基础过关1.在锐角△ABC 中,角A ,B 所对的边长分别为a ,b .若2a sin B =3b ,则角A 等于( ) A.π12 B.π6 C.π4 D.π32.在△ABC 中,A =60°,a =6,b =4,则满足条件的△ABC ( ) A.有一个解 B.有两个解 C.无解 D.不能确定3.在△ABC 中,a cos B =bcos A,则△ABC 一定是( ) A.等腰三角形 B.直角三角形 C.等腰直角三角形D.等腰三角形或直角三角形4.已知c=50,b=72,C=135°,则三角形解的个数为________.5.在△ABC中,角A,B,C所对的边分别为a,b,c.若a cos A=b sin B,则sin A cos A+cos2B=________.6.在△ABC中,a,b,c分别是角A,B,C的对边,若tan A=3,cos C=5 5,(1)求角B的大小;(2)若c=4,求△ABC的面积.7.在△ABC中,求证:a2-b2c2=sin(A-B)sin C.能力提升8.已知方程x2-(b cos A)x+a cos B=0的两根之积等于两根之和,且A,B为△ABC 的两内角,a,b为角A,B的对边,则此三角形为()A.等腰直角三角形B.等边三角形C.等腰三角形D.直角三角形9.在△ABC中,∠BAC=120°,AD为角A的平分线,AC=3,AB=6,则AD等于()A.2B.2或4C.1或2D.510.在△ABC中,A=π3,BC=3,则△ABC的周长为________(用B表示).11.在△ABC中,C=90°,M是BC的中点,若sin∠BAM=13,则sin∠BAC=________.12.在△ABC中,已知c=10,cos Acos B=ba=43,求a、b及△ABC的内切圆半径.创新突破13.在△ABC中,角A,B,C所对的边分别为a,b,c,已知m=(2b-3c,cosC),n=(3a,cos A),且m∥n.(1)求角A的大小;(2)求2cos2B+sin(A-2B)的最小值.。

正弦定理三角形解的个数

正弦定理三角形解的个数

正弦定理三角形解的个数
正弦定理是三角形求解中常用的一种方法,可以用来计算三角形的任意一条边或角的大小。

在使用正弦定理时,需要知道两条边和它们夹角的大小,然后可以根据公式计算出第三条边的长度或者另外两个角的大小。

根据正弦定理,三角形的解的个数可以分为以下情况:
1. 两边和它们夹角的大小都已知,此时三角形解的个数唯一。

2. 已知一边和它对应的角的大小,以及另外一条边和它夹角的大小,此时三角形解的个数可能有两个。

3. 已知两边和它们夹角的大小,但不知道它们对应的角,此时三角形解的个数可能有两个。

4. 已知三边或者两边和一个角的大小,此时三角形解的个数可能有一个、两个或者没有解。

在实际使用中,需要根据已知的条件判断出所处的情况,然后再利用正弦定理进行计算。

同时,也需要注意正弦定理的局限性,例如当角度接近180度时,解可能会不唯一,或者根本没有解。

- 1 -。

例谈正余弦定理在解三角形中的运用

例谈正余弦定理在解三角形中的运用

例谈正余弦定理在解三角形中的运用刘晓妮(无锡市第一中学,江苏无锡214031)摘要:正弦定理、余弦定理都是揭示三角形边角数量关系的重要定理.在高中数学学习阶段,要求学生能够运用正余弦定理解决一些简单的三角形度量问题.学习了正、余弦定理之后,不少学生会对于判断三角形解的个数问题烦恼,当三角形已知两边(邻边与对边)与一角时解三角形,可能出现一解、两解、无解等情况,虽然在教材中有相应的解决方法,但是有些同学对此依旧迷茫。

关键词:正余弦定理;数学;解题在解决此类问题中往往有两种思路,即采用正弦定理或者是余弦定理。

对比之下可以发现,运用正弦定理解决此类问题,有时往往计算比较繁杂,学生通常会选用余弦定理,对对角A应用余弦定理,并将其整理为关于c的一元二次方程c2-2bc cos A+b2-a2=0,学生往往会如此理解:若该方程无解或只有负数解,则该三角形无解;若方程有一个正数解,则该三角形有一解;若方程有两个不等的正数解,则该三角形有两解。

但事实并非如此。

例如笔者在教学生解三角形中,遇到三角形中已知两边和其中一边的对角求解第三边问题时,发现采用余弦定理转化为一元二次方程求解问题时,简单地根据正负来取舍仍会产生增根。

即使方程有两个正根,也不代表两解都可取,需要将结果带入进行检验,而检验的依据就是题干给出的条件。

多数同学在解题时,没有从本质上理解增根的产生原因,因此往往会忘记对结果的检验。

下面笔者结合教材就自己的理解谈一谈在运用余弦定理解三角形时增根产生的原因,以及遇到两解问题应如何处理。

一、回归教材苏教版教材(1)必修五P12探究拓展第11题(阅读)采用数形结合的形式给出了“已知三角形两边(邻边与对边)与一角时判断三角形解的个数”的方法。

原题:在已知两边a,b和一边的对角A,求角B时,如果A为锐角,那么可能出现以下情况:若采用余弦定理进行求边c时,整理得到关于c的一元二次方程c2-2bc cos A+b2-a2=0,其中图1,对应的是△<0即方程无解的情况;图2对应的是△=0即方程有两个等根的情况;图3,对应的则是△>0即方程有两个不等根,且两根均大于0的情况;图4对应的则是△>0即方程有两个不等根且一个根大于0而另一个根小于0的情况。

正弦定理

正弦定理

正弦定理一、知识梳理1.正弦定理在一个三角形中,各边的长和它所对角的正弦的比相等,即asin A=bsin B=csin C,这个比值是三角形外接圆的直径2R.2.解三角形(1)把三角形的三个角及其对边分别叫做三角形的元素.(2)已知三角形的几个元素求其他元素的过程叫做解三角形.想一想:用正弦定理解三角形时,需要知道三角形中的哪些元素?提示用正弦定理解三角形时,至少需已知三角形中的一条边,以下两类问题:①已知两角和任一边;②已知两边和其中一边的对角,可以用正弦定理求其它元素.名师点睛1.正弦定理的变形正弦定理适合任意三角形,在△ABC中,asin A=bsin B=csin C=2R.(R为△ABC外接圆半径)常用变式有:①a=2R·sin A,b=2R·sin B,c=2R·sin C.②sin A=a2R,sin B=b2R,sin C=c2R.③asin A=bsin B=csin C=a+b+csin A+sin B+sin C=2R④a∶b∶c=sin A∶sin B∶sin C⑤a sin B=b sin A,a sin C=c·sin A,b sin C=c·sin B2.用正弦定理解三角形的常见类型及正弦定理的应用正弦定理中每个等式都可视为一个方程知三求一,因此利用正弦定理可以解决以下两类解三角形问题:(1)已知两角和任一边,求其他两边和一角.(2)已知两边和其中一边的对角,求另一边的对角,进而求其它边和角.说明:①应用正弦定理时,要注意三角形平面几何性质的应用及三角函数的性质.如:“三角形内角和为180°”、“在一个三角形中,大边对大角”、“互补角的正弦值相等”.②在已知三角形的两边及其中一边的对角解三角形时,会出现一解、两解和无解三种情况,此时,可以根据“三角形中大边对大角”的性质加以判定.还可以利用数形结合思想判断.在△ABC中,已知a,b和A时,解的情况如下:二、典例精析题型一 利用正弦定理解三角形【例1】 在△ABC 中,分别根据下列条件,解三角形(1)c =10,A =45°,C =30°, (2)b =4,c =8,B =30°, (3)a =7,b =9,∠A =100°, (4)B =30°,b =2,c =2 解 (1)由三角形内角和定理得:B =180°-(A +C )=180°-(45°+30°)=105°由正弦定理得:a sin A =c sin C ,即a =c ·sin A sin C =10·sin 45°sin 30°=10 2. 又sin B =sin 105°=sin(60°+45°)=6+24∵c sin C =b sin B ,∴b =c ·sin B sin C =10×sin 105°sin 30°=5(6+2) 故a =102,b =5(6+2),B =105°. (2)由正弦定理得:sin C =c ·sin B b =8·sin 30°4=1,又∵30°<C <150°,∴C =90°,∴A =180°-(B +C )=60°,a =c 2-b 2=4 3.(3)∵a =7,b =9,∴a <b ,∴A <B ,又A =100°,∴本题无解. (4)由正弦定理得:sin C =c ·sin B b =2sin 30°2=22,∵c >b,0<C <180°,∴C =45°或135°.当C =45°时,A =105°,a =b sin A sin B =2sin 105°sin 30°=3+1, 当C =135°时,A =15°,a =b sin A sin B =2sin 15°sin 30°=3-1.规律方法 (1)已知两角和任一边,解三边形时,可直接利用正弦定理求得边的长,要注意结合三角形的内角和为180°.(2)已知两边和一边的对角,利用正弦定理解三角形时可能出现一解,两解或无解的情况,要注意运用三角形中大边对大角的性质,判断解的个数.在定理应用过程中,要注意灵活使用,如a =b sin A sin B ,sin C =c sin Bb 等变形.【变式1】 在△ABC 中,∠A =60°,a =43,b =42,则∠B =( ).A .45°或135°B .135°C .45°D .以上答案都不对解析 由正弦定理:a sin A =b sin B ,∴sin B =b sin A a =42·sin 60°43=22∵a >b ,∴∠A >∠B ,即∠B <60°,∴∠B =45°.题型二 判断三角形的形状【例2】 在△ABC 中,已知a2tan B =b2tan A ,试判断△ABC 的形状.[思路探索] 根据条件等式的特点为边角关系,可以应用正弦定理把边化为角,再利用三角公式求解,亦可考虑将角化为边的关系进行整理.解 由已知得a 2sin B cos B =b 2sin Acos A .由正弦定理的变式得a =2R sin A ,b =2R sin B (R 为△ABC 的外接圆半径),则4R 2sin 2A sin B cos B =4R 2sin 2B sin A cos A,即sin A cos A =sin B cos B ,∴sin 2A =sin 2B . ∴2A =2B 或2A =π-2B ,即A =B 或A +B =π2. ∴△ABC 为等腰三角形或直角三角形.规律方法 已知三角形中的边角关系,判断三角形的形状有两种思路:其一是化边为角,再进行三角恒等变换求出三个角之间的关系式;其二是化角为边,再进行代数恒等变换求出三条边之间的关系式.利用正弦定理的变式a =2R ·sin A ,b =2R ·sin B ,c =2R ·sin C 可实现边向角的转化,利用变式sin A =a 2R ,sin B =b 2R ,sin C =c2R 可进行角向边的转化,另外本题容易由sin 2A =sin 2B ,只得出2A=2B而忽略2A=π-2B.【变式2】在△ABC中,已知2a=b+c,sin2A=sin B·sin C,试判断△ABC 的形状.解法一由正弦定理,a=2R·sin A,b=2R·sin B,c=2R·sin C,由2a=b+c得:2sin A=sin B+sin C,①又∵sin2A=sin B·sin C,②将①式两边平方得:4sin2A=sin2B+sin2C+2sin B·sin C,将②式代入得:sin2B+sin2C-2sin B·sin C=0,即sin B=sin C,∴∠B=∠C,又sin2A=sin B·sin C=sin2B,∴∠A=∠B,即三角形为等边三角形.法二由正弦定理,sin A=a2R,sin B=b2R,sin C=c2R,代入sin2A=sin B·sin C得:a2=b·c,又由2a=b+c,得:(b+c)2=4bc,即(b-c)2=0,∴b=c,又2a=b+c=2b=2c. ∴a=b=c,∴三角形为等边三角形.题型三三角形的面积与有关取值范围【例3】在△ABC中,sin (C-A)=1,sin B=1 3.(1)求sin A的值;(2)设AC=6,求△ABC的面积.[规范解答] (1)由C-A=π2,且C+A=π-B,得A=π4-B2,2分∴sin A=sin(π4-B2)=22(cosB2-sinB2),∴sin2A=12(1-sin B)=13.4分又sin A>0,∴sin A=33.6分(2)由正弦定理得ACsin B=BCsin A,∴BC=AC sin Asin B=6×3313=32,8分又sin C=sin(A+B)=sin A cos B+cos A sin B=33×223+63×13=63,10分∴S △ABC =12AC ·BC ·sin C =12×6×32×63=3 2.12分【题后反思】 在三角形中有关边与角的求解,常需用到A +B +C =π及sin(A +B )=sin C 等结论,有关角的运算常需联系三角恒等变换.三角形的面积公式S△=12ab ·sin C =12bc ·sin A =12ac ·cos B 即求三角形面积时,只需知道任意两边及其夹角即可.【变式3】 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,∠B =π3,cos A =45,b = 3.(1)求sin C 的值; (2)求△ABC 的面积.解 (1)∵∠A 、∠B 、∠C 为△ABC 的内角,且∠B =π3,cos A =45, ∴∠C =2π3-∠A ,sin A =35,∴sin C =sin(2π3-A )=sin 23πcos A -cos 23πsin A =32×45+12×35=3+4310.(2)由(1)知sin A =35,sin C =3+4310,又∵∠B =π3,b =3, ∴在△ABC 中,由正弦定理,得a =b sin A sin B =65.∴△ABC 的面积S =12ab sin C =12×65×3×3+4310=36+9350.误区警示 忽视角的取值范围而致误【示例】 在△ABC 中,已知a =2,b =2,∠A =30°,解三角形.[错解] 由a sin A =b sin B ,得sin B =b sin A a =2sin 30°2=22,∴∠B =45°,∠C =180°-(∠A +∠B )=180°-(30°+45°)=105°, 又∵c sin C =asin A ,∴c=a sin Csin A=2sin 105°sin 30°=2×6+2412=3+1,所以∠B=45°,∠C=105°,c=3+1.[正解] 由asin A=bsin B,得sin B=b sin Aa=2sin 30°2=22.∵a<b,∴∠B>∠A=30°,∴B为锐角或钝角,∴∠B=45°或∠B=135°.当∠B=45°时,∠C=180°-(∠A+∠B)=180°-(30°+45°)=105°,又∵csin C=asin A,∴c=a sin Csin A=2sin 105°sin 30°=2×6+2412=3+1.当∠B=135°时,∠C=180°-(∠A+∠B)=180°-(30°+135°)=15°,∴c=a sin Csin A=2sin 15°sin 30°=2×6-2412=3-1.综上可得∠B=45°,∠C=105°,c=3+1或∠B=135°,∠C=15°,c=3-1.当0<α<π时,sin α>0,反之当sin α=t(0<t<1)时,在三角形中易忽略角的范围,只取一个锐角,漏掉可能的另一解,应结合三角形的性质,讨论确定解的取舍.三、课后检测1.在△ABC中,若∠B=135°,AC=2,则BCsin A=().A.2 B.1C. 2D.2 2解析△ABC中,由正弦定理BCsin A=ACsin B=2sin 135°=2.答案 A2.在△ABC中,角A,B,C的对边分别是a,b,c,若A∶B∶C=1∶2∶3,则a∶b∶c等于( ).A .1∶2∶3B .2∶3∶4C .3∶4∶5D .1∶3∶2解析 A +B +C =π,且A ∶B ∶C =1∶2∶3,∴A =π6,B =π3,C =π2.由正弦定理:a ∶b ∶c =sin A ∶sin B ∶sin C =1∶3∶2. 答案 D3.在△ABC 中,∠B =45°,c =22,b =433,则∠A 的大小为( ).A .15°B .75°C .105°D .75°或15°解析 由b sin B =c sin C 得:sin C =22·sin 45°433=32,又c >b ,∴∠C >45°,∴∠C =60°或120°.∴∠A =75°或15°.答案 D4.在△ABC 中,∠A =120°,∠B =30°,a =8,则c = . 解析 c =180°-120°-30°=30°.则由正弦定理, 得c =a ·sin C sin A =8·sin 30°sin 120°=833.答案8335.在△ABC 中,b =1,c =3,C =2π3,则a = .解析 由正弦定理:c sin C =bsin B ,∴sin B =sin2π33=12.∴C 为钝角,∴B =π6,∴A =π6∴a =b =1. 答案 16.在△ABC 中,∠A 、∠B 、∠C 分别对应边a 、b 、c ,若b =a cos C ,判定△ABC 的形状.解 ∵b =a cos C ,由正弦定理得:sin B =sin A ·cos C , ∵∠B =π-(∠A +∠C ), ∴sin(A +C )=sin A ·cos C ,即sin A cos C +cos A sin C =sin A ·cos C . ∴cos A ·sin C =0,∵∠A 、∠C ∈(0,π),∴sin C ≠0, ∴cos A =0,∴∠A =π2.故△ABC 为直角三角形.7.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,如果c =3a ,B =30°,那么角C 等于( ).A .120°B .105°C .90°D .75°解析 ∵c =3a ,∴sin C =3sin A =3sin(180°-30°-C )=3sin(30°+C ). 即:sin C =3·(32sin C +12cos C ),∴sin C =-3cos C , tan C =-3,又∵C ∈(0°,180°),∴C =120°. 答案 A8.在△ABC 中,已知∠A =30°,a =8,b =83,则△ABC 的面积S 等于( ).A .32 3B .16C .326或16D .323或16 3解析 由正弦定理,知sin B =b sin A a =83sin 30°8=32,又b >a ,∴∠B >∠A .∴∠B =60°或120°.∴∠C =90°或30°.∴S =12ab sin C 的值有两个,即323或16 3.答案 D9.在△ABC 中,a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围是 . 解析 因三角形有两解,所以a sin B <b <a ,即22x <2<x ,∴2<x <2 2. 答案 2<x <2 210.在△ABC 中,若tan A =13,∠C =150°,BC =1,则AB = .解析 ∵tan A =13,A ∈(0,π),∴sin A =1010.由正弦定理知BC sin A =AB sin C .∴AB =BC ·sin Csin A =1×sin 150°1010=102.答案10211.如右图,在四边形ABCD 中,AC 平分∠DAB ,∠ABC =60°,AC =7,AD =6,S △ADC =1532,求AB 的长.解 在△ADC 中,由三角形面积公式,知12AC ·AD sin ∠1=1532,即12×7×6sin ∠1=1532,∴sin ∠1=5314. 又∠1=∠2,∴sin ∠2=5314,∴cos ∠2=1114.在△ABC 中,∠ACB =180°-60°-∠2=120°-∠2, ∴sin ∠ACB =sin(120°-∠2)=sin 120°cos ∠2-cos 120°sin ∠2=437.在△ABC 中,由正弦定理得 ∴AB =AC sin ∠ACBsin 60°=7×43732=8.12.(创新拓展)在△ABC 中,已知a +b a =sin Bsin B -sin A ,且cos(A -B )+cos C =1-cos 2C . (1)试确定△ABC 的形状; (2)求a +cb的取值范围. 解 (1)在△ABC 中,由正弦定理知: a +b a =sin B sin B -sin A =bb -a , ∴b 2-a 2=ab .又∵cos(A -B )+cos C =1-cos 2C ,∴cos A ·cos B +sin A ·sin B -cos(A +B )=2sin 2C . 即:sin A ·sin B =sin 2C , ∴ab =c 2,∴b 2-a 2=c 2,即a 2+c 2=b 2. ∴△ABC 为直角三角形,且B =90°. (2)∵a +cb =sin A +sin C sin B =sin A +sin C =sin A +cos A =2sin(A +π4), 而由a +b a =sin B sin B -sin A ,且sin B =1,得1-sin 2A =sin A ,∴sin A =5-12∴π6<A <π4,∴a +c b ∈⎝ ⎛⎭⎪⎫3+12,2.。

正弦定理

正弦定理

正弦定理定理概述在△ABC中,角A,B,C所对的边分别为a,b,c,则有a b c===2R.(R为三角形外接圆的半径)sinA sinB sinC正弦定理(1)已知三角形的两角与一边,解三角形.(2)已知三角形的两边和其中一边所对的角,解三角形.(3)运用a︰b︰c=sinA︰sinB︰sinC解决边角之间的转换关系,直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦.意义正弦定理指出了任意三角形中三条边与对应角的正弦值之间的一个关系式,也就是任意三角形的边角关系.扩展三角形面积公式1.海伦-秦九韶公式:++,设p=a b c2则S△ABC=解释:假设有一个三角形,边长分别为a,b,c,三角形的面积S可由以下公式求得:S= 而公式里的p 为半周长:p=a b c 2++, 2.S △ABC =(ab 2)·sinC=(bc 2)·sinA=(ac 2)·sinB=abc 4R (R 为外接圆半径). 3.S △ABC =1ah 2(h 为边a 上的高) 正弦定理的变形公式(1)a=2RsinA, b=2RsinB, c=2RsinC.(2)sinA:sinB:sinC=a:b:c.(条件同上)在一个三角形中,各边与其所对角的正弦的比相等,且该比值都等于该三角形外接圆的直径.已知三角形是确定的,利用正弦定理解三角形时,其解是唯一的;已知三角形的两边和其中一边的对角,由于该三角形具有不稳定性,所以其解不确定,可结合平面几何作图的方法及“大边对大角,大角对大边”定理和三角形内角和定理去考虑解决问题.(3)相关结论:a b c sinA sinB sinC ===a b sinA sinB ++=a b c sinA sinB sinC++++. a b c 2R(R )sinA sinB sinC===为外接圆半径 (4)设R 为三角形外接圆半径,公式可扩展为:a b c sinA sinB sinC===2R,即当一内角为90°时,所对的边为外接圆的直径。

高考数学-【易错点27】正弦定理解的个数

高考数学-【易错点27】正弦定理解的个数

高考数学易错点 【易错点27】利用正弦定理解三角形时,若已知三角形的两边及其一边的对角解三角形时,易忽视三角形解的个数。

例27、在ABC ∆中,30,23,2B AB AC ︒===。

求ABC ∆的面积【易错点分析】根据三角形面积公式,只需利用正弦定理确定三角形的内角C ,则相应的三角形内角A 即可确定再利用1sin 2s bc A ∆=即可求得。

但由于正弦函数在区间()0,π内不严格格单调所以满足条件的角可能不唯一,这时要借助已知条件加以检验,务必做到不漏解、不多解。

解析:根据正弦定理知:sin sin AB AC C B =即232sin sin 30C ︒=得3sin 2C =,由于sin30AB AC AB ︒<<即满足条件的三角形有两个故60C ︒=或120︒.则30A ︒=或90︒故相应的三角形面积为1232sin 3032s ︒=⨯⨯⨯=或1232232⨯⨯=. 【知识点归类点拔】正弦定理和余弦定理是解三角形的两个重要工具,它沟通了三角形中的边角之间的内在联系,正弦定理能够解决两类问题(1)已知两角及其一边,求其它的边和角。

这时有且只有一解。

(2)已知两边和其中一边的对角,求其它的边和角,这是由于正弦函数在在区间()0,π内不严格格单调,此时三角形解的情况可能是无解、一解、两解,可通过几何法来作出判断三角形解的个数。

如:在ABC ∆中,已知a,b 和A 解的情况如下:(1) 当A 为锐角(2)若A 为直角或钝角【练27】如果满足60ABC ︒∠=,2AC =,BC k =的三角表恰有一个那么k 的取值范围是()A 、83B 、012k <≤C 、12k ≥D 、012k <≤或83k =答案:D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重点难点 教学类型 设计思路
主要内容 选题来源 专家点评
人教 A 版教材章节:必修 5 第一章解三角形第节正弦定理和余弦定理 知三角形两边及一边对角时三角形解的个数的判定 自主探究 三角形解的个数的判定相对来说是一个比较独立的题型,是知道三角形的两边及一边 对角时,用正弦定理解时,可能会发生多解或无解或一解的情况,若一个选择题每个 选项都用正弦定理来解答,虽可但烦,于此,本微课就专门介绍了一种比较便捷的用 数形结合的方法来分析解的个数的方法。两道微诊断练习也都来自教材,第一道是巩 固微课中的方法,和检测学习效果,第二道则是对方法的一种活用,检测你是不是深 刻理解了该方法。根据此设计思路,我制作了本节微课. 通过一道教材练习题的对三角形解得个数的讲解分析,从中探究总结出一种新的方法 ——数形结合的方法。若三角形知 a,b,A 三个条件,我们不需要一一用正弦定理来解 答。若角 A 是锐角则只要比较对边 a 与 bsinA 和 b 的大小即可。若角 A 是直角或钝角 则只需要比较边 a 与 b 的大小就可以。
10 秒以内
三、结尾 ( 10 秒 以 内)
谢谢(2观)当看2! A 时,若a b,三角形无解
若a b, 三角形1解
第 6 张 PPT 10 秒以内
本节微课先用正弦定理解三角形来求三角形解的个数,然后再用数形结合的方法
来分析三角形解的个数,让学生对两种方法有对比,切身体会到数形结合法的便捷
性,并用动画演示了角 A 为锐角、直角和钝角,以及对边 a 由短到长的变化过程中各
教学过程
内容
画面
时间 (7 分 55 秒)
一、片 头 内容:你好,本节微课内容是“知三角形两边及一边对
( 10 秒 以 角时判定三角形解的个数”。
内) 二、正 文 讲
1.教材习题讲解

在ABC中,若a=18,b 24, A 44,则此三角形解的情况为( )
A 无解 B 两解 C 一解 D 解的个数不能确定
种情形下三角形解的个数情景,并做了文字上角完善的总结,相信同学看了本微课后
能够掌握好这种题型的求解方法。
(1不)在足:自AB认C为中由,分于时别间根的据仓下促列f条las件h 解动三画角 做的形很,其简但中,有若两能解做的出是动的( 动D 画)效果会
更好。A.a 7,b 14, A 30
B. a 30,b 25, A 150
第 1 张 PPT 10 秒以内 第 2 张 PPT 110 秒以内
(7 分 30 秒 左ቤተ መጻሕፍቲ ባይዱ)
解析1:在ABC中,由正弦定理得: a = b 即sin B= bsin A
sin A sin B
a
a=18,b 24, A 44,
sin B b sin A 24 sin 44 4 sin 44 4 sin 45 2 2 8 1
a
18
3
3
39
b a,且sin B 4 sin 44 sin 44 3
B可为锐角也可为钝角,三角形有两解
2.数形结合思想解析:
解析 2:数形结合,右图所
C示D: 24sin 44 24sin 45 12 2 18
24sin 44 a b 24
2解
若其他条件不变:
第 3 张 PPT 170 秒以内
C.a 50,b 72, A 135
D.a 30,b 40, A 26
教学反思
(2)ABC中,a x,b 2, B 45,若ABC有两解,则x的取值范围是( C ) A. (2,+) B. (0,2) C. (2,2 2) D. ( 2,2)
x sin 45 2 x
即:
微课序号 讲稿设计 微课标题
知识来源
必修 5-系列微课选题设计表
第三章第 1 节(2)
总序号
钟木云
课件制作 钟木云 主讲人 钟木云 审核
知三角形两边及一边对角时判定三角形解的个数
5-020 敖和平
学科:数学
适合年级:高二
课程标准章节: 必修 5 解三角形(1)通过对任意三角形边长和角度关系的探索
北师大版教材章节:必修 5 第二章解三角形第 1 节正弦定理与余弦定理
北师大版 教材 数学必修 5 第 49 页练习题 2 和第 52 页习题 A1,B1 本节微课一题多解,不仅可以让学生巩固知识方法,还很好的进行了数学思想的教 学。用动画将三角形解的个数分析的很全面和清楚。学生会学有所获。若在小结处再 强调一下微课中三角形解的个数判定问题其实就是转化为比较 a 与 bsinA 和 b 的大小 问题,是不是可让学生更好的抓住方法的关键。
2 2
x
2
x 2
解得
x
2
2
2 x 2
2
x 2
形象 动画演示还好 学生学有所获
xsin45
b=2
o
B
45o
a=x
C
A.a 7,b 14, A 30
B. a 30, b 25, A 150
C.a 72,b 50, A 135
D.a 30,b 40, A 26
(2)ABC中,a x,b 2, B 45,若ABC有两解,则x的取值范围是( ) 第 5 张 PPT
A. (2,+) B. (0,2) C. (2,2 2) D. ( 2,2)
3.小结归纳:
已知ΔABC 的两边 a,b 及角 A,其三角形解的个数
的判定方法如下:
1.画示意图(先画角 A 及角 A 的邻边 b,然后再画角
A 对边 a,若 A 为锐角时,再画出垂线段 CD,其中︱CD︱
=bsinA)
2.比较 a 边和邻边 b 与 a 边和 bsinA 的大小,从而 第 4 张 PPT
判定三角形解的个数
165 秒以内
(1)当0<A<2 时,若a<bsin A,三角形无解 若a=bsin A,三角形1解 若bsin A<a<b,三角形2解 若a b, 三角形1解
注意:当角 A 不是特殊角时可用其临近的特殊角估算
4.微诊断:
(1)在ABC中,分别根据下列条件解三角形,其中有两解的是( )
相关文档
最新文档