数列与数学归纳法专题
数列与数学归纳法练习题
数列与数学归纳法练习题数学归纳法是数学中常用的一种证明方法,尤其在数列问题中被广泛应用。
通过数学归纳法,我们能够证明某个命题对所有自然数都成立,而不需要逐个验证。
本文将为大家提供数列与数学归纳法的练习题,帮助大家更好地掌握这一方法。
1. 练习题一证明下列命题对所有正整数n成立:(1) 1 + 3 + 5 + ... + (2n-1) = n^2(2) 1^2 + 2^2 + 3^2 + ... + n^2 = n(n+1)(2n+1)/6解答:(1) 首先在n=1的情况下,命题显然成立,因为左右两边都等于1。
假设当n=k时,命题成立,即1 + 3 + 5 + ... + (2k-1) = k^2。
下面证明当n=k+1时,命题也成立。
当n=k+1时,左边的求和式为:1 + 3 + 5 + ... + (2k-1) + (2(k+1)-1) = k^2 + (2k+1)。
根据假设,我们知道前面的求和式等于k^2,因此我们只需要证明(2k+1) = (k+1)^2即可。
展开(k+1)^2,得到k^2 + 2k + 1,与2k+1相比较,左右两边相等。
因此,由数学归纳法可知,命题对所有正整数n成立。
(2) 同样,在n=1的情况下,命题显然成立。
假设当n=k时,命题成立,即1^2 + 2^2 + 3^2 + ... + k^2 = k(k+1)(2k+1)/6。
下面证明当n=k+1时,命题也成立。
当n=k+1时,左边的求和式为:1^2 + 2^2 + 3^2 + ... + k^2 + (k+1)^2 = k(k+1)(2k+1)/6 + (k+1)^2。
将右边的分数相加,得到(k^3 + 3k^2 + 2k)/6 + (k^2 + 2k + 1)。
化简并合并同类项,得到(k^3 + 3k^2 + 2k + k^2 + 2k + 1)/6 = (k^3 +4k^2 + 5k + 1)/6。
因此,我们只需要证明(k^3 + 4k^2 + 5k + 1) = (k+1)(k+2)(2k+3)即可。
高考数学复习第七章数列与数学归纳法专题探究课三高考中数列不等式证明的热点题型理市赛课公开课一等奖省名
≤|a2n-a2n-1|+|a2n-1-a2n-2|+…+|an+1-an| ≤13232n-2+232n-3+…+23n-1 =23n-1-232n-1 ≤23-233=1207. 综上,|a2n-an|≤1207.15 分(得分点 4)
7/34
❶得步骤分:抓住得分点步骤,“步步为营”,求得满分.如(1)中,归纳猜测得2分; 用数学归纳法证实得3分,第(2)放缩法证实结论得5分等.
殊到普通结论成立问题.所以,能够在数列不等式证实中大显身手.
【例 1】 (满分 15 分)(2018·绍兴检测)已知数列{an}满足,a1=1,an=an1+1-12. (1)求证:23≤an≤1; (2)求证:|an+1-an|≤13; (3)求证:|a2n-an|≤1207.
2/34
满分解答 证明 (1)由已知得 an+1=an+1 12, 又 a1=1,则 a2=23,a3=67,a4=1149, 猜想23≤an≤1.2 分(得分点 1) 下面用数学归纳法证明. ①当 n=1 时,命题显然成立; ②假设 n=k 时,有23≤ak≤1 成立,
12/34
(2)证明 因为 a1>2,可用数学归纳法证明:an>2 对任意 n∈N*恒成立. 于是 an+1-an=a2n-1<0,即{an}是递减数列. 在 Sn≥na1-13(n-1)中,令 n=2, 得 2a1+a21-1=S2≥2a1-13,解得 a1≤3,故 2<a1≤3. 下证:①当 2<a1≤73时, Sn≥na1-13(n-1)恒成立. 事实上,当 2<a1≤73时,由于 an=a1+(an-a1)≥a1+2-73=a1-13,
(3)证明 由(2)可得 an=32n1+1≥32n+132n-1=2523n-1. 所以 Sn≥25+25·231+…+25·23n-1 =651-23n, 故 Sn≥651-23n成立.
第6章 数列与数学归纳法(6.4-6.8)
6.4数学归纳法例题精讲【例1】用数学归纳法证明22>n n ,5n N n ∈≥,则第一步应验证n = . 【参考答案】n =5(注:跟学生说明0n 不一定都是1或2,要看题目)【例2】设)(x f 是定义在正整数集上的函数,且)(x f 满足:“当2()f k k ≥成立时,总可推出(1)f k +≥2)1(+k 成立”. 那么,下列命题总成立的是( )A .若1)1(<f 成立,则100)10(<f 成立;B .若4)2(<f 成立,则1)1(<f 成立;C .若(3)9f ≥成立,则当1k ≥时,均有2()f k k ≥成立;D .若(4)25f ≥成立,则当4k ≥时,均有2()f k k ≥成立. 【参考答案】B【例3】用数学归纳法证明命题:若n 是大于1的自然数,求证:n n <-++++12131211Λ,从k 到+1k ,不等式左边添加的项的项数为 .【参考答案】当k n =时,左边为1214131211-+++++k Λ. 当1+=k n 时,左边为1212211212112141312111-+++++++-++++++k k k k k ΛΛ.左边需要添的项为121221121211-+++++++k k k k Λ,项数为k k k 212121=+--+.【例4】用数学归纳法证明:422135n n +++能被14整除*n N ∈().【参考答案】当=1n 时,8545353361224=+=+++n n 能被14整除.假设当k n =时原命题成立,即422135n n +++能被14整除*n N ∈(). 当1+=k n 时,原式为4(1)22(1)1442221353355k k k k +++++++=⋅+⋅4422121423(35)5(35)k k k +++=+--44221213(35)565k k k +++=+-⋅.422135n n +++能被14整除,56也能被14整除,所以上式能被14整除,所以当1+=k n 时原命题成立. 综上所述,原命题成立.【例5】是否存在常数,a b 使得()()2112233413n n n an bn +⨯+⨯+⨯+++=+L 对一切正整数n 都成立?证明你的结论.【参考答案】先用1n =和2n =探求1,2a b ==,再用数学归纳法证明【例6】若*n N ∈,求证:23sin coscoscoscos 22222sin2n n nαααααα=L .【参考答案】① 1n =时,左=cos2α, 右=sin cos22sin2ααα=,左=右② 设n k =时, 23sin coscoscoscos 22222sin2k k kαααααα=L1n k =+时, 2311sin (coscoscoscos )cos cos2222222sin2k k k k kαααααααα++⋅=⋅L=111111sin sin cos22sincos2sin222k k k k k k αααααα++++++⋅=过关演练1. 等式22222574123 (2)n n n -+++++=( ).A . n 为任何正整数时都成立B . 仅n =1,2,3时成立C . n =4时成立,n =5时不成立D . n =4时不成立,其他成立. 2. 用数学归纳法证明22111...(1)1n n a a a a a a++-++++=≠-,在验证1n =时,左端计算所得项为 .3.利用数学归纳法证明“对任意偶数*()n n N ∈,nna b -能被a b +整除”时,其第二步论证应该是 .4. 若*1111...()23n S n N n =++++∈,用数学归纳法证明*21(2,)2n nS n n N >+≥∈,n 从k 到1k +时,不等式左边增加的项为 . 5. 若21*718,,n m m n N -+=∈,则21718n m ++=+ .6. 利用数学归纳法证明22nn >,第一步应该论证 . 7. 数学归纳法证明:111111111......234212122n n n n n-+-++-=+++-++(*n N ∈)时,当n 从k 到1k +时等式左边增加的项为 ;等式右边增加的项为 . 8. 用数学归纳法证明:221(1)n n a a ++++可以被21a a ++整除(*n N ∈).9. 用数学归纳法求证: (1)(1)123 (2)n nn +++++=; (2)222123+++ (2)1(1)(21)6n n n n +=++; (3)333123+++ (3)221(1)4n n n +=+. 10. 在数列{}n a 中,已知111,6(123...)1n a a n +==+++++,*n N ∈,若数列{}n a 前n项和为n S ,求证:3n S n =.6.5数学归纳法的运用例题精讲【例1】已知11=a ,)(*2N n a n S n n ∈=(1)求5432,,,a a a a ;(2)猜想它的通项公式n a ,并用数学归纳法加以证明【参考答案】 解:(1)151,101,61,315432====a a a a (2))1(2+=n n a n , 证明:(1)当n=1时,11=a 成立;(2)当n>1时,假设n=k 时,命题成立,即)1(2+=k k a k ,则当n=k+1时,⇒+=++121)1(k k a k S )2)(1(2222]1)1[(2221122++=+•+=+=⇒-+=++k k k k k k k k a k a a k a k k k k k 综上所述,对于所有自然数*N n ∈,)1(2+=n n a n 成立。
数学中的数列和数学归纳法
数学中的数列和数学归纳法引言:数学是一门严谨而又富有创造性的学科,而数列和数学归纳法则是数学中的重要概念。
本节课我们将学习数列和数学归纳法的基本概念和应用,通过实例演示加深对该知识的理解,提高学生的数学思维能力和解决问题的能力。
【主题一】数列的概念与性质1. 数列的定义及常见表达方式1.1 数列是按一定顺序排列的一组数的集合,通常记作{an}或an。
1.2 数列可以用公式、图表、文字等方式来表示,并且可以有不同的递增或递减规律。
2. 数列的分类2.1 等差数列:相邻两项之差为常数d的数列。
2.2 等比数列:相邻两项之比为常数q的数列。
2.3 斐波那契数列:第一项和第二项为1,从第三项起,每一项都是前两项之和。
3. 数列的性质3.1 数列的通项公式:描述数列中各项与项号之间的关系。
3.2 数列的前n项和:表示数列前n项的和,记作Sn或an。
【主题二】数学归纳法1. 数学归纳法的基本思想1.1 数学归纳法是一种证明方法,用以证明当一个命题对于整数中的一个特定集合上成立时,它对于这个集合中的所有后继元素也成立。
1.2 数学归纳法的基本思想是:当一个命题成立的时候,我们只需证明将它应用到任意一个整数k上,都能导出它在整数k+1上也成立。
2. 数学归纳法的基本步骤2.1 第一步(基础步骤):证明命题在n=1时成立。
2.2 第二步(归纳步骤):假设当n=k时命题成立,证明当n=k+1时命题也成立。
3. 数学归纳法的应用3.1 证明数列的性质:通过数学归纳法证明等差数列、等比数列等的公式。
3.2 证明数学命题的成立:通过数学归纳法证明某个数学规律或结论在整数范围内成立。
【主题三】数列和数学归纳法在问题求解中的应用1. 序列问题1.1 求解数列中第n项的值。
1.2 求解数列的前n项和。
2. 鸽巢原理2.1 鸽巢原理是数学归纳法的一个重要应用,用于解决分配问题和抽屉原理问题。
2.2 通过鸽巢原理可以解决包括数学、计算机科学等领域的许多实际问题。
数列与数学归纳法
数列与数学归纳法一、数列1. 数列的概念- 数列是按照一定顺序排列的一列数。
例如:1,3,5,7,·s就是一个数列,其中的每一个数叫做这个数列的项,第n个数叫做数列的第n项,通常用a_{n}表示。
- 数列的表示方法:- 列举法:如数列2,4,6,8,10,直接将数列的项一一列举出来。
- 通项公式法:如果数列{a_{n}}的第n项a_{n}与n之间的函数关系可以用一个公式来表示,这个公式就叫做这个数列的通项公式。
例如,数列a_{n}=2n,n = 1,2,3,·s,当n = 1时,a_{1}=2×1 = 2;当n = 2时,a_{2}=2×2 = 4等。
- 递推公式法:给出数列的第一项(或前几项),并给出数列的某一项与它的前一项(或前几项)的关系式来表示数列,这种表示数列的式子叫做这个数列的递推公式。
例如,数列{a_{n}}满足a_{1}=1,a_{n}=a_{n - 1}+2(n≥slant2),通过这个递推公式可以依次求出数列的各项。
2. 等差数列- 定义:如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用d表示。
即a_{n}-a_{n - 1}=d(n≥slant2)。
- 通项公式:a_{n}=a_{1}+(n - 1)d。
例如,已知等差数列a_{1}=3,d = 2,则a_{n}=3+(n - 1)×2=2n + 1。
- 前n项和公式:S_{n}=frac{n(a_{1}+a_{n})}{2}=na_{1}+(n(n - 1))/(2)d。
3. 等比数列- 定义:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数(不为0),那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用q表示。
即frac{a_{n}}{a_{n - 1}}=q(n≥slant2)。
【必刷题】2024高二数学上册数列与数学归纳法专项专题训练(含答案)
【必刷题】2024高二数学上册数列与数学归纳法专项专题训练(含答案)试题部分一、选择题:1. 已知数列{an}为等差数列,a1=3,a5=15,则公差d为()A. 3B. 4C. 5D. 62. 数列{an}的通项公式为an = 2n 1,则数列{an}的前5项和为()A. 25B. 30C. 35D. 403. 若数列{an}满足an+1 = 2an,且a1=1,则数列{an}是()A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 无法确定4. 用数学归纳法证明1+3+5+…+(2n1)=n²,下列步骤中错误的是()A. 验证n=1时等式成立B. 假设n=k时等式成立C. 证明n=k+1时等式成立D. 直接得出结论1+3+5+…+(2n1)=n²5. 已知数列{an}的通项公式为an = n² + n,则数列{an+1 an}的前5项和为()A. 20B. 25C. 30D. 356. 数列{an}为等比数列,a1=2,a3=8,则a5=()A. 16B. 24C. 32D. 647. 已知数列{an}满足an+2 = an+1 + an,a1=1,a2=1,则a5=()A. 3B. 4C. 5D. 68. 若数列{an}的通项公式为an = 3n 2,则数列{an}的前n项和为()A. n(3n1)/2B. n(3n+1)/2C. n(3n2)/2D. n(3n+2)/29. 用数学归纳法证明等式2^n > n²,下列步骤中错误的是()A. 验证n=1时等式成立B. 假设n=k时等式成立C. 证明n=k+1时等式成立D. 直接得出结论2^n > n²10. 已知数列{an}的通项公式为an = 2^n,则数列{an+1 / an}的值为()A. 1B. 2C. 3D. 4二、判断题:1. 数列{an}的通项公式为an = n²,则数列{an}是等差数列。
高中数学:“数列与数学归纳法”专题课共33页
16、云无心以出岫,鸟倦飞而知还。 17、童孺纵行歌,斑白欢游诣。 18、福不虚至,祸不易来。 19、久在樊笼里,复得返自然。 20、羁鸟恋旧林,池鱼思故渊。
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
拉
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
高中数学专题复习-数列与数学归纳法
第六章⎪⎪⎪数列与数学归纳法第一节数列的概念与简单表示法1.数列的有关概念概念 含义数列 按照一定顺序排列的一列数数列的项 数列中的每一个数 数列的通项 数列{a n }的第n 项a n通项公式 数列{a n }的第n 项a n 与n 之间的关系能用公式a n =f (n )表示,这个公式叫做数列的通项公式前n 项和 数列{a n }中,S n =a 1+a 2+…+a n 叫做数列的前n 项和列表法 列表格表示n 与a n 的对应关系 图象法 把点(n ,a n )画在平面直角坐标系中 公式法通项公式把数列的通项使用公式表示的方法递推公式 使用初始值a 1和a n +1=f (a n )或a 1,a 2和a n +1=f (a n ,a n -1)等表示数列的方法n n 若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.4.数列的分类[小题体验]1.已知数列{a n }的前4项为12,34,78,1516,则数列{a n }的一个通项公式为________.答案:a n =2n -12n (n ∈N *)2.已知数列{a n }中,a 1=1,a n +1=a n2a n +3,则a 5等于________.答案:11613.(教材改编题)已知数列{a n }的前n 项和为S n ,若S n =3n -1,则a n =________. 答案:2×3n -11.数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关.2.易混项与项数的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号. 3.在利用数列的前n 项和求通项时,往往容易忽略先求出a 1,而是直接把数列的通项公式写成a n =S n -S n -1的形式,但它只适用于n ≥2的情形.[小题纠偏]1.已知S n 是数列{a n }的前n 项和,且S n =n 2+1,则数列{a n }的通项公式是________.答案:a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥22.数列{a n }的通项公式为a n =-n 2+9n ,则该数列第________项最大. 答案:4或5考点一 由数列的前几项求数列的通项公式(基础送分型考点——自主练透)[题组练透]1.(温岭模拟)将石子摆成如图所示的梯形形状,称数列5,9,14,20,…为梯形数,根据图形的构成,此数列的第2 018项与5的差即a 2 018-5=( )A .2 017×2 024B .2 017×1 012C .2 018×2 024D .2 018×1 012解析:选B 结合图形可知,该数列的第n 项为a n =2+3+4+…+(n +2),所以a 2 018-5=4+5+6+…+2 020=2 017×(2 020+4)2=2 017×1 012.2.根据数列的前几项,写出各数列的一个通项公式: (1)4,6,8,10,…; (2)(易错题)-11×2,12×3,-13×4,14×5,…; (3)-1,7,-13,19, …; (4)9,99,999,9 999,….解:(1)各数都是偶数,且最小为4,所以它的一个通项公式a n =2(n +1),n ∈N *.(2)这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式a n =(-1)n ×1n (n +1),n ∈N *.(3)这个数列,去掉负号,可发现是一个等差数列,其首项为1,公差为6,所以它的一个通项公式为a n =(-1)n (6n -5),n ∈N *.(4)这个数列的前4项可以写成10-1,100-1,1 000-1,10 000-1,所以它的一个通项公式a n =10n -1,n ∈N *.[谨记通法]由数列的前几项求数列通项公式的策略(1)根据所给数列的前几项求其通项公式时,需仔细观察分析,抓住以下几方面的特征,并对此进行归纳、联想,具体如下:①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的特征;④各项符号特征等.(2)根据数列的前几项写出数列的一个通项公式是利用不完全归纳法,它蕴含着“从特殊到一般”的思想,由不完全归纳得出的结果是不可靠的,要注意代值检验,对于正负符号变化,可用(-1)n 或(-1)n+1来调整.考点二 由a n 与S n 的关系求通项a n (重点保分型考点——师生共研)[典例引领]已知下面数列{a n }的前n 项和S n ,求{a n }的通项公式. (1)S n =n 2+1; (2)S n =2n -a n .解:(1)a 1=S 1=1+1=2,当n ≥2时,a n =S n -S n -1=n 2+1-(n -1)2-1=2n -1,而a 1=2,不满足此等式.所以a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2.(2)当n =1时,S 1=a 1=2-a 1,所以a 1=1;当n ≥2时,a n =S n -S n -1=(2n -a n )-[2(n -1)-a n -1]=2-a n +a n -1, 即a n =12a n -1+1,即a n -2=12(a n -1-2).所以{a n -2}是首项为a 1-2=-1,公比为12的等比数列,所以a n -2=(-1)·⎝⎛⎭⎫12n -1, 即a n =2-⎝⎛⎭⎫12n -1.[由题悟法]已知S n 求a n 的 3个步骤 (1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式; (3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.[即时应用]已知数列{a n }的前n 项和为S n . (1)若S n =(-1)n +1·n ,求a 5+a 6及a n ; (2)若a n >0,S n >1,且6S n =(a n +1)(a n +2),求a n . 解:(1)a 5+a 6=S 6-S 4=(-6)-(-4)=-2, 当n =1时,a 1=S 1=1; 当n ≥2时,a n =S n -S n -1=(-1)n +1·n -(-1)n ·(n -1) =(-1)n +1·[n +(n -1)] =(-1)n +1·(2n -1), 又a 1也适合此式,所以a n =(-1)n +1·(2n -1).(2)当n =1时,a 1=S 1=16(a 1+1)(a 1+2),即a 21-3a 1+2=0. 解得a 1=1或a 1=2.因为a 1=S 1>1,所以a 1=2.当n ≥2时,a n =S n -S n -1=16(a n +1)(a n +2)-16(a n -1+1)(a n -1+2),所以(a n -a n -1-3)(a n +a n -1)=0.因为a n >0,所以a n +a n -1>0, 所以a n -a n -1-3=0,所以数列{a n }是以2为首项,3为公差的等差数列. 所以a n =3n -1.考点三 由递推关系式求数列的通项公式(题点多变型考点——多角探明) [锁定考向]递推公式和通项公式是数列的两种表示方法,它们都可以确定数列中的任意一项,只是由递推公式确定数列中的项时,不如通项公式直接.常见的命题角度有: (1)形如a n +1=a n f (n ),求a n ; (2)形如a n +1=a n +f (n ),求a n ;(3)形如a n +1=Aa n +B (A ≠0且A ≠1),求a n .[题点全练]角度一:形如a n +1=a n f (n ),求a n1.在数列{a n }中,a 1=1,a n =n -1n a n -1(n ≥2),求数列{a n }的通项公式. 解:∵a n =n -1n a n -1(n ≥2),∴a n -1=n -2n -1a n -2,a n -2=n -3n -2a n -3,…,a 2=12a 1.以上(n -1)个式子相乘得 a n =a 1·12·23·…·n -1n =a 1n =1n .当n =1时,a 1=1,上式也成立. ∴a n =1n (n ∈N *).角度二:形如a n +1=a n +f (n ),求a n2.设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),求数列{a n }的通项公式. 解:由题意有a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2). 以上各式相加,得a n -a 1=2+3+…+n =(n -1)(2+n )2=n 2+n -22.又∵a 1=1,∴a n =n 2+n2(n ≥2).∵当n =1时也满足此式, ∴a n =n 2+n 2(n ∈N *).角度三:形如a n +1=Aa n +B (A ≠0且A ≠1),求a n3.已知数列{a n }满足a 1=1,当n ≥2,n ∈N *时,有a n =2a n -1-2,求数列{a n }的通项公式. 解:因为a n =2a n -1-2, 所以a n -2=2(a n -1-2).所以数列{a n -2}是以a 1-2=-1为首项,2为公比的等比数列. 所以a n -2=(-1)×2n -1, 即a n =2-2n -1.[通法在握]典型的递推数列及处理方法[演练冲关]根据下列条件,求数列{a n }的通项公式. (1)a 1=1,a n +1=a n +2n (n ∈N *); (2)a 1=1,2na n +1=(n +1)a n (n ∈N *);(3)a 1=1,a n =3a n -1+4(n ≥2). 解:(1)由题意知a n +1-a n =2n ,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =2n -1+2n -2+…+2+1=1-2n1-2=2n -1.(2)由2na n +1=(n +1)a n ,得a n +1a n =n +12n. 所以a n =a n a n -1.a n -1a n -2.a n -2a n -3.....a 2a 1.a 1=n 2(n -1).n -12(n -2).n -22(n -3).. (2)2×1×1=n 2n -1.(3)因为a n =3a n -1+4(n ≥2), 所以a n +2=3(a n -1+2).因为a 1+2=3,所以{a n +2}是首项与公比都为3的等比数列. 所以a n +2=3n ,即a n =3n -2.一抓基础,多练小题做到眼疾手快1.(嘉兴七校联考)已知数列{a n }的通项公式为a n =n 2+n ,则a 5=( ) A .25 B .30 C .10D .12解析:选B 因为a n =n 2+n ,所以a 5=25+5=30.2.(浙江三地联考)已知数列{a n }的前n 项和为S n ,且满足log 2(S n +1)=n (n ∈N *),则数列{a n }的通项公式a n =( )A .2nB .2n -1C .2n -1-1D.⎩⎪⎨⎪⎧1,n =1,2n ,n ≥2 解析:选B 由log 2(S n +1)=n 可得S n =2n -1.当n ≥2时,a n =S n -S n -1=2n -1-(2n -1-1)=2n -1;当n =1时,a 1=S 1=21-1=1满足上式.所以数列{a n }的通项公式a n =2n -1.3.(衢州模拟)已知数列{a n }满足:a 1=1,a n +1=2a na n +2,则数列{a n }的通项公式a n 为( ) A.1n +1 B.2n +1 C.1n D.2n解析:选B 由a n +1=2a n a n +2可得1a n +1=a n +22a n =1a n +12. 所以数列⎩⎨⎧⎭⎬⎫1a n 是以1a 1=1为首项,公差为12的等差数列,所以1a n=n +12,即a n =2n +1.4.(诸暨模拟)已知数列{a n }中,对任意的p ,q ∈N *都满足a p +q =a p a q ,若a 1=-1,则a 9=________.解析:由题可得,因为a 1=-1,令p =q =1,则a 2=a 21=1;令p =q =2,则a 4=a 22=1;令p =q =4,则a 8=a 24=1,所以a 9=a 8+1=a 1a 8=-1.答案:-15.(杭州模拟)设数列{a n }的前n 项和S n =n 2,则a 8=________,a 2+a 3+a 4=________. 解析:因为S n =n 2,所以a 8=S 8-S 7=82-72=15,a 2+a 3+a 4=S 4-S 1=42-1=15. 答案:15 15二保高考,全练题型做到高考达标1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是a n 等于( ) A.(-1)n +12B .cos n π2C .cos n +12πD .cos n +22π解析:选D 令n =1,2,3,…,逐一验证四个选项,易得D 正确.2.(天台模拟)已知数列{a n }的前n 项和S n ,且满足S n =2a n -3(n ∈N *),则S 6=( ) A .192 B .189 C .96D .93解析:选B 因为S n =2a n -3,当n =1时,S 1=2a 1-3=a 1,解得a 1=3.当n ≥2时,a n =S n -S n -1=2a n -3-2a n -1+3=2a n -2a n -1,解得a na n -1=2.所以数列{a n }是首项为3,公比为2的等比数列,所以S 6=3(1-26)1-2=189.3.设数列{a n }的前n 项和为S n ,且S n +S n +1=a n +1(n ∈N *),则此数列是( ) A .递增数列 B .递减数列 C .常数列D .摆动数列解析:选C 因为S n +S n +1=a n +1,所以当n ≥2时,S n -1+S n =a n ,两式相减,得a n +a n +1=a n +1-a n ,所以有a n =0.当n =1时,a 1+a 1+a 2=a 2,所以a 1=0.所以a n =0.即数列是常数列.4.(绍兴模拟)已知数列{a n }的通项公式a n =1n +n +1,若该数列的前n 项和为10,则项数n 的值为( )A .11B .99C .120D .121解析:选C 因为a n =1n +n +1=n +1-n ,所以该数列的前n 项和S n =n +1-1=10,解得n =120.5.(丽水模拟)数列{a n }满足a n +1=⎩⎨⎧2a n ,0≤a n <12,2a n-1,12≤a n<1,若a 1=35,则a 2 018=( )A.15B.25C.35D.45解析:选A 由a 1=35∈⎣⎡⎭⎫12,1,得a 2=2a 1-1=15∈⎣⎡⎭⎫0,12,所以a 3=2a 2=25∈⎣⎡⎭⎫0,12,所以a 4=2a 3=45∈⎣⎡⎭⎫12,1,所以a 5=2a 4-1=35=a 1.由此可知,该数列是一个周期为4的周期数列,所以a 2 018=a 504×4+2=a 2=15.6.(镇海模拟)已知数列{a n }满足a 1=2,a n +1=a 2n (a n >0,n ∈N *),则数列{a n }的通项公式a n =________. 解析:对a n +1=a 2n 两边取对数,得log 2a n +1=log 2a 2n =2log 2a n .所以数列{log 2a n }是以log 2a 1=1为首项,2为公比的等比数列,所以log 2a n =2n -1,所以a n =22n -1.答案:22n -17.(海宁模拟)已知数列{a n }满足a n +1+a n =2n -1,则该数列的前8项和为________. 解析:S 8=a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8=1+5+9+13=28. 答案:288.在一个数列中,如果对任意的n ∈N *,都有a n a n +1a n +2=k (k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{a n }是等积数列,且a 1=1,a 2=2,公积为8,则a 1+a 2+a 3+…+a 12=________.解析:依题意得数列{a n }是周期为3的数列,且a 1=1,a 2=2,a 3=4,因此a 1+a 2+a 3+…+a 12=4(a 1+a 2+a 3)=4×(1+2+4)=28.答案:289.已知数列{a n }满足a 1=1,a n =3n -1+a n -1(n ≥2,n ∈N *). (1)求a 2,a 3的值; (2)证明:a n =3n -12.解:(1)因为a 1=1,a n =3n -1+a n -1(n ≥2,n ∈N *), 所以a 2=32-1+1=4, a 3=33-1+a 2=9+4=13.(2)证明:因为a n =3n -1+a n -1(n ≥2,n ∈N *), 所以a n -a n -1=3n -1,所以a n =(a n -a n -1)+(a n -1-a n -2)+(a n -2-a n -3)+…+(a 2-a 1)+a 1 =3n -1+3n -2+…+3+1 =3n -12(n ≥2,n ∈N *).当n =1时,a 1=3-12=1满足条件.所以当n ∈N *时,an =3n -12. 10.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值; (2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围. 解:(1)由n 2-5n +4<0, 解得1<n <4.因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3. 因为a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, 由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2.(2)由a n +1>a n ,知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,即得k >-3.所以实数k 的取值范围为(-3,+∞). 三上台阶,自主选做志在冲刺名校1.已知数列{a n }的通项公式为a n =(-1)n ·2n +1,该数列的项排成一个数阵(如图),则该数阵中的第10行第3个数为________.a 1 a 2 a 3 a 4 a 5 a 6 ……解析:由题意可得该数阵中的第10行、第3个数为数列{a n }的第1+2+3+…+9+3=9×102+3=48项,而a 48=(-1)48×96+1=97,故该数阵第10行、第3个数为97.答案:972.(温州模拟)设函数f (x )=log 2x -log x 4(0<x <1),数列{a n }的通项公式a n 满足f (2a n )=2n (n ∈N *). (1)求数列{a n }的通项公式; (2)判定数列{a n }的单调性.解:(1)因为f (x )=log 2x -log x 4(0<x <1),f (2a n )=2n (n ∈N *) , 所以f (2a n )=log 22a n -log2a n 4=a n -2a n =2n ,且0<2a n <1, 解得a n <0.所以a n =n -n 2+2.(2)因为a n +1a n =(n +1)-(n +1)2+2n -n 2+2=n +n 2+2n +1+(n +1)2+2<1.因为a n <0,所以a n +1>a n . 故数列{a n }是递增数列.第二节等差数列及其前n 项和1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示.(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项. 2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. [小题体验]1.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________. 答案:102.(温州模拟)已知等差数列{a n }的前n 项和为S n ,若a 3=5,a 5=3,则a n =________;S 7=________. 答案:-n +8 283.(温州十校联考)在等差数列{a n }中,若a 3+a 4+a 5=12,则S 7=______. 答案:281.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.2.求等差数列的前n 项和S n 的最值时,需要注意“自变量n 为正整数”这一隐含条件. [小题纠偏]1.首项为24的等差数列,从第10项开始为负数,则公差d 的取值范围是( ) A .(-3,+∞) B.⎝⎛⎭⎫-∞,-83 C.⎝⎛⎭⎫-3,-83 D.⎣⎡⎭⎫-3,-83 答案:D2.(湖州模拟)设等差数列{a n }的前n 项和为S n ,已知a 3=16,a 6=10,则公差d =________;S n 取到最大时的n 的值为________.解析:因为数列{a n }是等差数列,且a 3=16,a 6=10,所以公差d=a 6-a 36-3=-2,所以a n =-2n +22,要使S n能够取到最大值,则需a n =-2n +22≥0,所以解得n ≤11.所以可知使得S n 取到最大时的n 的值为10或11.答案:-2 10或11考点一 等差数列的基本运算(基础送分型考点——自主练透)[题组练透]1.(嘉兴二模)设S n 为等差数列{a n }的前n 项和,若S 1S 4=110,则S 3S 5=( )A.25 B.35 C.37D.47解析:选A 设数列{a n }的公差为d ,因为S n 为等差数列{a n }的前n 项和,且S 1S 4=110,所以10a 1=4a 1+6d ,所以a 1=d .所以S 3S 5=3a 1+3d 5a 1+10d =6d 15d =25.2.设等差数列{a n }的公差d ≠0,且a 2=-d ,若a k 是a 6与a k +6的等比中项,则k =( ) A .5 B .6 C .9D .11解析:选C 因为a k 是a 6与a k +6的等比中项, 所以a 2k =a 6a k +6.又等差数列{a n }的公差d ≠0,且a 2=-d , 所以[a 2+(k -2)d ]2=(a 2+4d )[a 2+(k +4)d ], 所以(k -3)2=3(k +3),解得k =9或k =0(舍去),故选C.3.公差不为零的等差数列{a n }中,a 7=2a 5,则数列{a n }中第________项的值与4a 5的值相等.解析:设等差数列{a n }的公差为d ,∵a 7=2a 5,∴a 1+6d =2(a 1+4d ),则a 1=-2d ,∴a n =a 1+(n -1)d =(n -3)d ,而4a 5=4(a 1+4d )=4(-2d +4d )=8d =a 11,故数列{a n }中第11项的值与4a 5的值相等.答案:114.(绍兴模拟)设S n 为等差数列{a n }的前n 项和,满足S 2=S 6,S 55-S 44=2,则a 1=______,公差d =________.解析:由S 2=S 6,得S 6-S 2=a 3+a 4+a 5+a 6=4a 1+14d =0,即2a 1+7d =0.由S 55-S 44=2,得52(a 1+a 5)5-42(a 1+a 4)4=12(a 5-a 4)=12d =2,解得d =4,所以a 1=-14. 答案:-14 4等差数列基本运算的方法策略(1)等差数列中包含a1,d,n,a n,S n五个量,可“知三求二”.解决这些问题一般设基本量a1,d,利用等差数列的通项公式与求和公式列方程(组)求解,体现方程思想.(2)如果已知等差数列中有几项的和是常数的计算问题,一般是等差数列的性质和等差数列求和公式S n=n(a1+a n)2结合使用,体现整体代入的思想.考点二等差数列的判断与证明(重点保分型考点——师生共研)[典例引领](温州模拟)已知数列{a n}中,a1=12,a n+1=1+a n a n+12(n∈N*).(1)求证:⎩⎨⎧⎭⎬⎫1a n-1是等差数列;(2)求数列{a n}的通项公式.解:(1)证明:因为对于n∈N*,a n+1=1+a n a n+12,所以a n+1=12-a n,所以1a n+1-1-1a n-1=112-a n-1-1a n-1=2-a n-1a n-1=-1.所以数列⎩⎨⎧⎭⎬⎫1a n-1是首项为1a1-1=-2,公差为-1的等差数列.(2)由(1)知1a n-1=-2+(n-1)(-1)=-(n+1),所以a n-1=-1n+1,即a n=nn+1.[由题悟法]等差数列的判定与证明方法已知数列{a n}满足a1=1,a n=a n-12a n-1+1(n∈N*,n≥2),数列{b n}满足关系式b n=1a n(n∈N*).(1)求证:数列{b n}为等差数列;(2)求数列{a n}的通项公式.解:(1)证明:∵b n=1a n,且a n=a n-12a n-1+1,∴b n+1=1a n+1=1a n2a n+1=2+1a n,∴b n+1-b n=2+1a n-1a n=2.又b1=1a1=1,∴数列{b n}是首项为1,公差为2的等差数列.(2)由(1)知数列{b n}的通项公式为b n=1+(n-1)×2=2n-1,又b n=1a n,∴a n=1b n=12n-1.∴数列{a n}的通项公式为a n=12n-1.考点三等差数列的性质及最值(重点保分型考点——师生共研)[典例引领]1.(宁波模拟)在等差数列{a n}中,若a9a8<-1,且其前n项和S n有最小值,则当S n>0时,n的最小值为()A.14B.15C.16 D.17解析:选C∵数列{a n}是等差数列,它的前n项和S n有最小值,∴公差d>0,首项a1<0,{a n} 为递增数列,∵a9a8<-1,∴a8·a9<0,a8+a9>0,由等差数列的性质知2a8=a1+a15<0,a8+a9=a1+a16>0.∵S n=(a1+a n)n2,∴当S n>0时,n的最小值为16.2.(嘉兴一中模拟)设等差数列{a n}的前n项和为S n,若S6>S7>S5,则满足a n>0的最大n的值为______,满足S k S k+1<0的正整数k=______.解析:由题可得a6=S6-S5>0,a7=S7-S6<0,所以使得a n>0的最大n的值为6.又a6+a7=S7-S5>0,则S11=11(a1+a11)2=11a6>0,S12=12(a1+a12)2=6(a6+a7)>0,S13=13(a1+a13)2=13a7<0,因为{a n}是递减的等差数列,所以满足S k S k+1<0的正整数k=12.答案:612[由题悟法]1.等差数列的性质(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n=d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n .2.求等差数列前n 项和S n 最值的2种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[即时应用]1.(浙江新高考联盟)已知等差数列{a n }的前n 项和为S n ,且S 4S 8=13,则S 8S 16=( )A.310B.37C.13D.12解析:选A 因为数列{a n }是等差数列,所以S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列,因为S 4S 8=13,所以不妨设S 4=1,则S 8=3,所以S 8-S 4=2,所以S 16=1+2+3+4=10,所以S 8S 16=310. 2.设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),则数列{a n }的项数为________.解析:由题意知a 1+a 2+…+a 6=36,① a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216,∴a 1+a n =36, 又S n =n (a 1+a n )2=324, ∴18n =324,∴n =18. 答案:18一抓基础,多练小题做到眼疾手快1.(杭州模拟)已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4.则数列{a n }的通项公式为( )A .a n =2n -1B .a n =-2n +3C .a n =2n -1或-2n +3D .a n =2n解析:选A 设数列{a n }的公差为d ,由a 3=a 22-4可得1+2d =(1+d )2-4,解得d =±2.因为数列{a n }是递增数列,所以d >0,故d =2.所以a n =1+2(n -1)=2n -1.2.(舟山期末)在等差数列{a n }中,若a 2=1,a 4=5,则{a n }的前5项和S 5=( ) A .7 B .15 C .20D .25解析:选B 因为a 2=1,a 4=5,所以S 5=5(a 1+a 5)2=5(a 2+a 4)2=15. 3.(缙云模拟)已知{a n }为等差数列,其公差d 为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,则S 10的值为( )A .-110B .-90C .90D .110解析:选D 设数列{a n }的首项为a 1,因为a 7是a 3与a 9的等比中项,所以(a 1-12)2=(a 1-4)(a 1-16),解得a 1=20.所以S 10=10a 1+45d =200-90=110.4.(腾远调研)我国古代数学名著《九章算术》里有问题:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢,问:________日相逢?解析:由题意知,良马每日行的距离成等差数列,记为{a n },其中a 1=103,d 1=13;驽马每日行的距离成等差数列,记为{b n },其中b 1=97,d 2=-0.5.设第m 天相逢,则a 1+a 2+…+a m +b 1+b 2+…+b m =103m +m (m -1)×132+97m +m (m -1)×(-0.5)2=2×1 125,解得m =9(负值舍去).即二马需9日相逢.答案:95.等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________.解析:∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5. 答案:S 5二保高考,全练题型做到高考达标1.(金丽衢十二校联考)已知正项数列{a n }中,a 1=1,a 2=2,当n ≥2,n ∈N *时,an =a 2n +1+a 2n -12,则a 6=( )A .2 2B .4C .16D .45解析:选B 因为a n =a 2n +1+a 2n -12,所以2a 2n =a 2n +1+a 2n -1,即a 2n +1-a 2n =a 2n -a 2n -1,所以数列{a 2n }是等差数列,公差d =a 22-a 21=4-1=3,所以a 2n =1+3(n -1)=3n -2,所以a n =3n -2,所以a 6=18-2=4.2.(浙江五校联考)等差数列{a n }中,a 1=0,等差d ≠0,若a k =a 1+a 2+…+a 7,则实数k =( ) A .22 B .23 C .24D .25解析:选A 因为a 1=0,且a k =a 1+a 2+…+a 7, 即(k -1)d =21d ,又因为d ≠0,所以k =22.3.(河南六市一联)已知正项数列{a n }的前n 项和为S n ,若{a n }和{S n }都是等差数列,且公差相等,则a 6=( )A.114B.32C.72D .1解析:选A 设{a n }的公差为d ,由题意得,S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,又{a n }和{S n }都是等差数列,且公差相同,∴⎩⎨⎧d = d 2,a 1-d2=0,解得⎩⎨⎧d =12,a 1=14,a 6=a 1+5d =14+52=114.4.(东阳模拟)已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n为整数的正整数的个数为( )A .2B .3C .4D .5解析:选D 由A n B n =7n +45n +3,可得a n b n =A 2n -1B 2n -1=7n +19n +1=7+12n +1,所以要使a n b n 为整数,则需12n +1为整数,所以n =1,2,3,5,11,共5个.5.设数列{a n }的前n 项和为S n ,若S nS 2n为常数,则称数列{a n }为“吉祥数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“吉祥数列”,则数列{b n }的通项公式为( )A .b n =n -1B .b n =2n -1C .b n =n +1D .b n =2n +1解析:选B 设等差数列{b n }的公差为d (d ≠0),S n S 2n =k ,因为b 1=1,则n +12n (n -1)d =k ⎣⎡⎦⎤2n +12×2n (2n -1)d ,即2+(n -1)d =4k +2k (2n -1)d , 整理得(4k -1)dn +(2k -1)(2-d )=0. 因为对任意的正整数n 上式均成立, 所以(4k -1)d =0,(2k -1)(2-d )=0,解得d =2,k =14.所以数列{b n }的通项公式为b n =2n -1.6.(台州中学期中)已知等差数列{a n }的前n 项和为S n ,若a 2=18,S 18=54,则a 17=________,S n =__________.解析:设等差数列{a n }的首项为a 1,公差为d ,因为a 2=18,S 18=54,所以⎩⎪⎨⎪⎧a 1+d =18,18a 1+18×172d =54,解得a 1=20,d =-2.所以a 17=a 1+16d =20-32=-12,S n =na 1+n (n -1)2d =-n 2+21n . 答案:-12 -n 2+21n7.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由题意,当且仅当n =8时S n 有最大值,可得 ⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.答案:⎝⎛⎭⎫-1,-78 8.(金华浦江适考)设数列{a n },{b n }的前n 项和分别为S n ,T n ,其中a n =-3n +20,b n =|a n |,则使T n =S n 成立的最大正整数n 为________,T 2 018+S 2 018=________.解析:根据题意,数列{a n }中,a n =-3n +20,则数列{a n }是首项为17,公差为-3的等差数列,且当n ≤6时,a n>0,当n ≥7时,a n <0,又由b n =|a n |,当n ≤6时,b n =a n ,当n ≥7时,b n =-a n ,则使T n =S n 成立的最大正整数为6,T 2 018+S 2 018=(a 1+a 2+…+a 6+a 7+a 8+…+a 2 018)+(b 1+b 2+…+b 6+b 7+b 8+…+b 2 018)=2(a 1+a 2+…+a 6)=(17+2)×6=114.答案:6 1149.已知等差数列的前三项依次为a,4,3a ,前n 项和为S n ,且S k =110. (1)求a 及k 的值;(2)设数列{b n }的通项b n =S nn ,证明:数列{b n }是等差数列,并求其前n 项和T n .解:(1)设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a , 由已知有a +3a =8,得a 1=a =2,公差d =4-2=2, 所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k .由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10. (2)证明:由(1)得S n =n (2+2n )2=n (n +1),则b n =S nn =n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列, 所以T n =n (2+n +1)2=n (n +3)2.10.(南昌调研)设数列{a n }的前n 项和为S n,4S n =a 2n +2a n -3,且a 1,a 2,a 3,a 4,a 5成等比数列,当n ≥5时,a n>0.(1)求证:当n ≥5时,{a n }成等差数列; (2)求{a n }的前n 项和S n .解:(1)证明:由4S n =a 2n +2a n -3,4S n +1=a 2n +1+2a n +1-3, 得4a n +1=a 2n +1-a 2n +2a n +1-2a n ,即(a n +1+a n )(a n +1-a n -2)=0. 当n ≥5时,a n >0,所以a n +1-a n =2, 所以当n ≥5时,{a n }成等差数列. (2)由4a 1=a 21+2a 1-3,得a 1=3或a 1=-1, 又a 1,a 2,a 3,a 4,a 5成等比数列,所以由(1)得a n +1+a n =0(n ≤5),q =-1, 而a 5>0,所以a 1>0,从而a 1=3,所以a n =⎩⎪⎨⎪⎧3(-1)n -1,1≤n ≤4,2n -7,n ≥5,所以S n =⎩⎪⎨⎪⎧32[1-(-1)n ],1≤n ≤4,n 2-6n +8,n ≥5.三上台阶,自主选做志在冲刺名校1.(浙江五校联考)已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 为数列{a n }的前n 项和,则2S n +16a n +3的最小值为________.解析:设公差为d .因为a 1,a 3,a 13成等比数列,所以(1+2d )2=1+12d ,解得d =2.所以a n =2n -1,S n =n 2.所以2S n +16a n +3=2n 2+162n +2=n 2+8n +1.令t =n +1,则原式=t 2+9-2t t =t +9t -2.因为t ≥2,t ∈N *,所以当t =3,即n =2时,⎝ ⎛⎭⎪⎫2S n +16a n +3min=4. 答案:42.已知数列{a n }满足a n +1+a n =4n -3(n ∈N *). (1)若数列{a n }是等差数列,求a 1的值; (2)当a 1=2时,求数列{a n }的前n 项和S n .解:(1)法一:∵数列{a n }是等差数列, ∴a n =a 1+(n -1)d ,a n +1=a 1+nd . 由a n +1+a n =4n -3,得(a 1+nd )+[a 1+(n -1)d ]=4n -3, ∴2dn +(2a 1-d )=4n -3, 即2d =4,2a 1-d =-3, 解得d =2,a 1=-12.法二:在等差数列{a n }中,由a n +1+a n =4n -3, 得a n +2+a n +1=4(n +1)-3=4n +1, ∴2d =a n +2-a n =(a n +2+a n +1)-(a n +1+a n ) =4n +1-(4n -3)=4, ∴d =2.又∵a 1+a 2=2a 1+d =2a 1+2=4×1-3=1, ∴a 1=-12.(2)由题意,①当n 为奇数时, S n =a 1+a 2+a 3+…+a n=a 1+(a 2+a 3)+(a 4+a 5)+…+(a n -1+a n ) =2+4[2+4+…+(n -1)]-3×n -12=2n 2-3n +52.②当n 为偶数时,S n =a 1+a 2+a 3+…+a n =(a 1+a 2)+(a 3+a 4)+…+(a n -1+a n ) =1+9+…+(4n -7) =2n 2-3n 2.第三节等比数列及其前n 项和1.等比数列的有关概念 (1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q .(2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.等比数列的常用性质 (1)通项公式的推广:a n =a m ·q n-m(n ,m ∈N *).(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *), 则a m ·a n =a p ·a q =a 2k ;(3)若数列{a n },{b n }(项数相同)是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a nb n (λ≠0)仍然是等比数列;(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k .[小题体验]1.(教材习题改编)将公比为q 的等比数列a 1,a 2,a 3,a 4,…依次取相邻两项的乘积组成新的数列a 1a 2,a 2a 3,a 3a 4,….此数列是( )A .公比为q 的等比数列B .公比为q 2的等比数列C .公比为q 3的等比数列D .不一定是等比数列答案:B2.(台州模拟)已知等比数列{a n }各项都是正数,且a 4-2a 2=4,a 3=4,则a n =________;S 10=________. 解析:设公比为q ,因为a 4-2a 2=4,a 3=4, 所以有4q -8q =4,解得q =2或q =-1. 因为q >0,所以q =2.所以a 1=a 3q 2=1,a n =a 1q n -1=2n -1.所以S 10=1-2101-2=210-1=1 023.答案:2n -1 1 0233.在数列{a n }中,a 1=1,a n +1=3a n (n ∈N *),则a 3=______;S 5=_________. 答案:9 1211.特别注意q =1时,S n =na 1这一特殊情况.2.由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0.3.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.4.S n ,S 2n -S n ,S 3n -S 2n 未必成等比数列(例如:当公比q =-1且n 为偶数时,S n ,S 2n -S n ,S 3n -S 2n 不成等比数列;当q ≠-1或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 成等比数列),但等式(S 2n -S n )2=S n ·(S 3n -S 2n )总成立.[小题纠偏]1.在等比数列{a n }中,a 3=2,a 7=8,则a 5等于( ) A .5 B .±5 C .4D .±4解析:选C a 25=a 3a 7=2×8=16,∴a 5=±4,又∵a 5=a 3q 2>0,∴a 5=4. 2.设数列{a n }是等比数列,前n 项和为S n ,若S 3=3a 3,则公比q =________. 答案:-12或1考点一 等比数列的基本运算(重点保分型考点——师生共研)[典例引领]1.(绍兴模拟)等比数列{a n }的公比为2,前n 项和为S n .若1+2a 2=S 3,则a 1=( ) A .17 B.15 C.13D .1解析:选C 由题可得,1+4a 1=a 1+2a 1+4a 1,解得a 1=13.2.(杭二中仿真)各项都是正数的等比数列{a n }中,若a 2,12a 3,a 1成等差数列,则a 3+a 4a 4+a 5的值为( )A.5+12B.5-12C.1-52D.5+12或1-52解析:选B 设数列{a n }的公比为q (q >0,q ≠1),由a 2,12a 3,a 1成等差数列可得a 3=a 2+a 1,所以有q 2-q -1=0,解得q =5+12(负值舍去).所以a 3+a 4a 4+a 5=1q =5-12. [由题悟法]解决等比数列有关问题的2种常用思想方程的思想等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)1.(浙北联考)设等比数列{a n }的公比q =2,前n 项和为S n ,则S 4a 2=( )A .2B .4 C.152D.172解析:选C 因为q =2,所以S 4a 2=a 1+a 2+a 3+a 4a 2=1+q +q 2+q 3q =1+2+4+82=152.2.(宁波模拟)已知等比数列{a n }满足a 2=14,a 2a 8=4(a 5-1),则a 4+a 5+a 6+a 7+a 8的值为( )A .20B .31C .62D .63解析:选B 因为a 2a 8=a 25=4(a 5-1),解得a 5=2.所以q =2.所以a 4+a 5+a 6+a 7+a 8=1+2+4+8+16=31.3.(杭州二检)设各项均为正数的等比数列{a n }的前n 项和为S n ,若S 4=80,S 2=8,则公比q =________,a 5=________.解析:由题可得,设数列{a n }的公比为q (q >0,q ≠1),根据题意可得a 1(1-q 4)1-q =80,a 1(1-q 2)1-q =8,解得a 1=2,q=3,所以a 5=a 1q 4=2×34=162.答案:3 162考点二 等比数列的判定与证明(重点保分型考点——师生共研)[典例引领](2016·全国卷Ⅲ)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.解:(1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,故a 1≠0. 由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n .由a 1≠0,λ≠0得a n ≠0,所以a n +1a n=λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝⎛⎭⎫λλ-1n -1.(2)由(1)得S n =1-⎝⎛⎭⎫λλ-1n . 由S 5=3132得1-⎝⎛⎭⎫λλ-15=3132,即⎝⎛⎭⎫λλ-15=132.解得λ=-1.[由题悟法]等比数列的4种常用判定方法[的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.[即时应用](衢州模拟)已知数列{a n }的前n 项和为S n ,a 1=1,S n +1=4a n +2(n ∈N *),若数列{b n }满足b n =a n +1-2a n ,求证:{b n }是等比数列.证明:因为S n +1=4a n +2, 所以S 2=a 1+a 2=4a 1+2,又a 1=1,所以a 2=5,b 1=a 2-2a 1=3, 当n ≥2时,S n =4a n -1+2. 所以S n +1-S n =a n +1=4a n -4a n -1. 因为b n =a n +1-2a n , 所以当n ≥2时,b n b n -1=a n +1-2a n a n -2a n -1=4a n -4a n -1-2a n a n -2a n -1=2(a n -2a n -1)a n -2a n -1=2. 所以{b n }是以3为首项,2为公比的等比数列.考点三 等比数列的性质(重点保分型考点——师生共研)[典例引领]1.(宁波模拟)已知各项不为0的等差数列{a n }满足a 6-a 27+a 8=0,数列{b n }是等比数列,且b 7=a 7,则b 2b 8b 11=( )A .1B .2C .4D .8解析:选D 由等差数列的性质,得a 6+a 8=2a 7. 由a 6-a 27+a 8=0,可得a 7=2, 所以b 7=a 7=2.由等比数列的性质得b 2b 8b 11=b 2b 7b 12=b 37=23=8. 2.若等比数列{a n }的前n 项和为S n ,且S 4S 2=5,则S 8S 4=________.解析:由题可得,S 2,S 4-S 2,S 6-S 4,S 8-S 6成等比数列,因为S 4S 2=5,不妨设S 2=1,则S 4=5,所以S 4-S 2=4, 所以S 8=1+4+16+64=85, 所以S 8S 4=855=17.答案:17[由题悟法]等比数列的性质可以分为3类通项公式的变形 根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口等比中项的变形 前n 项和公式的变形[即时应用]1.(诸暨模拟)已知等比数列{a n }中,a 1+a 2+a 3=40,a 4+a 5+a 6=20.则该数列的前9项和为( ) A .50 B .70 C .80D .90解析:选B 由等比数列的性质得S 3,S 6-S 3,S 9-S 6也成等比数列,由S 3=40,S 6-S 3=20,知公比为12,故S 9-S 6=10,S 9=70.2.(浙江联盟模拟)已知{a n }是等比数列,且a n >0,a 2a 4+2a 3a 5+a 4a 6=25,则a 3+a 5=________;a 4的最大值为________.解析:因为a n >0,a 2a 4+2a 3a 5+a 4a 6=a 23+2a 3a 5+a 25=(a 3+a 5)2=25,所以a 3+a 5=5,所以a 3+a 5=5≥2a 3a 5=2a 4,所以a 4≤52.即a 4的最大值为52.答案:552一抓基础,多练小题做到眼疾手快1.(舟山模拟)已知x ,y ,z ∈R ,若-1,x ,y ,z ,-3成等比数列,则xyz 的值为( )A .-3B .±3C .-3 3D .±3 3解析:选C 因为-1,x ,y ,z ,-3成等比数列,由等比数列的性质及等比中项可知,xz =3,y 2=3,且y 与-1,-3符号相同,所以y =-3,所以xyz =-3 3.2.(湖州六校联考)已知等比数列的前n 项和为54,前2n 项和为60,则前3n 项和为( ) A .66 B .64C .6623D .6023解析:选D 因为等比数列中,S n ,S 2n -S n ,S 3n -S 2n 成等比数列,所以54(S 3n -60)=36,解得S 3n =6023.3.(金华十校联考)在等比数列{a n }中,已知a 7a 12=5,则a 8a 9a 10a 11的值为( ) A .10 B .25C .50D .75解析:选B 因为a 7a 12=a 8a 11=a 9a 10=5,所以a 8a 9a 10a 11=52=25.4.(浙江名校协作体测试)设等比数列{a n }的前n 项和为S n ,且对任意的正整数n ,均有S n +3=8S n +3,则a 1=_________,公比q =________.解析:因为S n +3=8S n +3,所以当n ≥2时,S n +2=8S n -1+3,两式相减,可得a n +3=8a n ,所以q 3=8,解得q =2;当n =1时,S 4=8S 1+3,即15a 1=8a 1+3,解得a 1=37.答案:3725.(永康适应性测试)数列{a n }的前n 项和为S n ,S n =2a n +n ,则a 1=______,数列{a n }的通项公式a n =_______.解析:因为S n =2a n +n ,所以当n =1时,S 1=a 1=2a 1+1,所以a 1=-1.当n ≥2时,a n =S n -S n -1=2a n +n -2a n -1-n +1,即a n =2a n -1-1,即a n -1=2(a n -1-1),所以数列{a n -1}是以-2为首项,2为公比的等比数列,所以a n -1=-2n ,所以a n =1-2n .答案:-1 1-2n二保高考,全练题型做到高考达标1.(浙大附中模拟)已知数列{a n }的前n 项和为S n ,且a n +1=pS n +q (n ∈N *,p ≠-1),则“a 1=q ”是“{a n }为等比数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C 因为a n +1=pS n +q ,所以当n ≥2时,a n =pS n -1+q ,两式相减得a n +1-a n =pa n ,即当n ≥2时,a n +1a n =1+p .当n =1时,a 2=pa 1+q .所以当a 1=q 时,a 2a 1=1+p ,满足上式,故数列{a n }为等比数列,所以是充分条件;当{a n }为等比数列时,有a 2=pa 1+q =(1+p )a 1,解得a 1=q ,所以是必要条件,从而选C.2.(乐清模拟)设数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ∈N *),则S 6=( ) A .44B .45C.46-13D.45-13解析:选B 因为a 1=1,a n +1=3S n =S n +1-S n ,所以S n +1=4S n ,所以数列{S n }是首项为S 1=a 1=1,公比为4的等比数列,所以S 6=45.3.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-5B .-15C .5D.15解析:选A ∵log 3a n +1=log 3a n +1,∴a n +1=3a n . ∴数列{a n }是以公比q =3的等比数列. ∵a 5+a 7+a 9=q 3(a 2+a 4+a 6),∴log 13(a 5+a 7+a 9)=log 13(9×33)=log 1335=-5.4.古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上题的已知条件,若要使织布的总尺数不少于30,该女子所需的天数至少为( )A .7B .8C .9D .10解析:选B 设该女子第一天织布x 尺,则x (1-25)1-2=5,得x =531,∴前n 天所织布的尺数为531(2n -1).由531(2n-1)≥30,得2n ≥187,则n 的最小值为8. 5.(金华模拟)设A n ,B n 分别为等比数列{a n },{b n }的前n 项和.若A n B n =12n +1,则a 7b 3=( ) A.19 B.12763 C.43D.1312解析:选C 由题意知,A n B n=12n +1,令A n =k (2n -1),k ≠0,则B n =A n ·(2n +1)=k (2n -1)(2n +1)=k (4n -1).所以a 7=A 7-A 6=k (27-1)-k (26-1)=64k ,b 3=B 3-B 2=k (43-1)-k (42-1)=48k ,所以a 7b 3=64k 48k =43.6.(超级全能生模拟)等比数列{a n }的前n 项和为S n ,已知a 1=1,a 1,S 2,5成等差数列,则数列{a n }的公比q =________,S n =_________.解析:由题可得,2S 2=2(1+q )=1+5=6,所以q =2,所以S n =1-2n 1-2=2n-1.答案:2 2n -17.(慈溪中学)在正项等比数列{a n }中,若a 1=1,a 1+a 3+a 5=21,则q =________;a 3+a 5+a 7的值为________.。
数列与数学归纳法
1归纳验证:验证 是满足条件的最小整数时,命题成立
3若 ,且 ,求 .
答案1 ;2 ,证明见解析;3 .
2由此猜想 .
下面用数学归纳法加以证明:
①当 时,由1知 成立;
②假设 ,结论成立,即 成立.
则当 时,有 ,即
即 时,结论也成立;
由①②可知, 的通项公式为 .
3由2知,
.
4.已知数列 的前 项和为 ,且满足 , .
1计算 , , ,根据计算结果,猜想 的表达式;
9.设 , ,令 , , .
1写出 , , 的值,并猜想数列 的通项公式;
2用数学归纳法证明你的结论.
答案1a1=1,a2= ,a3= ;a4= ,猜想an= n∈N+;2证明见解析.
答案1见解析;2见解析;3见解析
由数列的递推式,以及2的结论可得 ,根据等比数列的通项公式即可证明 ,再结合已知可得 ,即可证明不等式成立.
详解:1数学归纳法证明:
当 时, 成立
假设 时 ,成立,那么 时,假设 ,
则 ,矛盾
所以 ,故 得证
所以 ,故
2由
得
设
则
3由2得 ,则
所以
又 ,所以 ,所以 ,故
答案Ⅰ , , .
Ⅱ ,证明见解析.
由此猜想 .
下面用数学归纳法证明之:
当 时, ,结论成立;
假设 时,结论成立,即有 ,
则对于 时,
数学归纳法、数列的通项公式与数列求和
上一页
返回导航
下一页
专题三 数列与数学归纳法
3
[典型例题]
(2019·宁波市九校联考)已知 n∈N*,Sn=(n+1)·(n+2)…(n+n),Tn=2n×1×3×… ×(2n-1).
(1)求 S1,S2,S3,T1,T2,T3; (2)猜想 Sn 与 Tn 的关系,并用数学归纳法证明. 【解】 (1)S1=T1=2,S2=T2=12,S3=T3=120. (2)猜想:Sn=Tn(n∈N*). 证明:①当 n=1 时,S1=T1; ②假设当 n=k(k≥1 且 k∈N*)时,Sk=Tk, 即(k+1)(k+2)…(k+k)=2k×1×3×…×(2k-1),
上一页
返回导航
下一页
专题三 数列与数学归纳法
16
【答案】 (1)an=2-12n-1 (2)2n+1-3 (3)n2
上一页
返回导航
下一页
专题三 数列与数学归纳法
17
由递推式求数列通项公式的常见类型 (1)形如 an+1=an+f(n)的数列,求解此类数列的通项公式一般先通过变形为 an+1-an= f(n),再利用累加法 an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1,代入相应的关系式, 再加以合理的分析与求解.同理,形如 an+1=f(n)an 型数列可转化为用累乘法求解. (2)形如 an+1=can+d(c≠0,1)的数列,求解此类线性关系的数列的通项公式一般可用待
上一页
返回导航
下一页
专题三 数列与数学归纳法
12
【解析】 (1)由于 Sn=2n-an,所以 Sn+1=2(n+1)-an+1,后式减去前式,得 Sn+1-Sn =2-an+1+an,即 an+1=12an+1,变形为 an+1-2=12(an-2),则数列{an-2}是以 a1-2 为首项,12为公比的等比数列.又 a1=2-a1,a1=1,则 an-2=(-1)·12n-1,所以 an=2 -12n-1.
数列与数学归纳法深入研究数列与数学归纳法的关系解决相关问题
数列与数学归纳法深入研究数列与数学归纳法的关系解决相关问题数列和数学归纳法是数学中常见的概念和方法。
数列是一种按照一定规律排列的数的集合,而数学归纳法是一种证明方法,常用于推广和证明数学命题。
本文将深入研究数列与数学归纳法的关系,并探讨如何运用数学归纳法来解决相关问题。
Ⅰ. 数列的概念数列是数学中一种重要的概念,它由一系列按照一定规律排列的数所组成。
数列常用于描述和分析各种实际问题,例如生物种群的增长、金融利率的变化等。
数列通常可以分为等差数列、等比数列以及其他类型的数列。
在研究数列时,我们需要了解和掌握数列的基本概念、性质和特征。
Ⅱ. 数学归纳法的原理数学归纳法是一种用于证明数学命题的推理方法。
它的基本思想是:首先证明命题在某个起始值上成立,然后假设命题在某个整数 n 上成立,再通过这个假设证明命题在 n+1 上也成立。
这样,就可以推广命题在自然数范围内的所有情况都成立。
Ⅲ. 数列与数学归纳法的关系数列与数学归纳法有着密切的关系。
首先,我们可以利用数学归纳法来证明数列中的某些性质或规律。
通过归纳的思想,我们可以通过已知的数列项的性质来推导出数列项的通项公式,从而揭示数列的本质规律。
另外,数学归纳法也常用于解决与数列相关的问题。
例如,我们可以利用数学归纳法证明等差数列的求和公式,从而可以快速计算等差数列的和。
通过数学归纳法,我们还可以推广等比数列的求和公式以及其他类型数列的性质和规律。
Ⅳ. 运用数学归纳法解决相关问题的例子以下是几个运用数学归纳法解决相关问题的例子:1. 证明斐波那契数列的性质斐波那契数列是一个经典的数列,它的定义是:第一个和第二个数都是1,从第三个数开始,每个数都是其前两个数之和。
我们可以利用数学归纳法证明斐波那契数列中的一些性质,如任意两个相邻的数的比值趋近于黄金分割比等。
2. 探究等差数列的求和公式等差数列是数学中常见的数列类型,它的每个数与前一个数之差都相等。
我们可以利用数学归纳法证明等差数列的求和公式Sn=n(a1+an)/2,其中 Sn 表示等差数列前 n 项和,a1 表示首项,an 表示末项。
初中数学知识归纳数列的求和与数学归纳法
初中数学知识归纳数列的求和与数学归纳法数列是指按照特定规律排列的数字序列,而求和是求一个数列中所有数值的总和。
在初中数学中,我们学习了数列的基本概念以及如何使用数学归纳法来证明数列的公式。
本文将对数列的求和和数学归纳法进行归纳总结。
一、数列的求和方法数列的求和是指将数列中所有数值相加得到的结果。
在初中数学中,我们一般关注的是等差数列和等比数列的求和。
1. 等差数列的求和公式等差数列是指一个数列中相邻两个数之间的差是一个固定的常数。
比如,1,3,5,7,9就是一个等差数列,其中公差为2。
对于等差数列来说,我们可以使用以下求和公式:Sn = (a1 + an) * n / 2其中,Sn代表前n项的和,a1代表第一项,an代表第n项。
2. 等比数列的求和公式等比数列是指一个数列中相邻两个数之间的比是一个固定的常数。
比如,2,4,8,16,32就是一个等比数列,其中公比为2。
对于等比数列来说,我们可以使用以下求和公式:Sn = a1 * (q^n - 1) / (q - 1)其中,Sn代表前n项的和,a1代表第一项,q代表公比。
二、数学归纳法证明数列公式数学归纳法是一种数学证明方法,可用于证明数列的递推公式或其他数学问题。
简而言之,数学归纳法包括三个步骤:基础步骤、归纳步骤和归纳假设。
1. 基础步骤基础步骤是证明当n = 1时,公式是否成立。
如果基础步骤成立,即证明了当n = 1时公式成立。
2. 归纳假设归纳假设是假设对于n = k时公式成立,即假设Sn = k时公式成立。
3. 归纳步骤归纳步骤是针对n = k + 1进行证明,即证明Sn = k + 1时公式成立。
在证明过程中,我们可以利用归纳假设,将Sn拆分为Sk和an+1,然后进一步简化推导,从而证明Sn = k + 1时公式成立。
通过以上三个步骤,我们可以使用数学归纳法证明数列的递推公式。
归纳法在初中数学中经常会用到,尤其是在证明数列的公式时。
总结:数列的求和和数学归纳法是初中数学中的重要内容。
中考数学数列与数学归纳法知识点有哪些
中考数学数列与数学归纳法知识点有哪些在中考数学中,数列与数学归纳法是较为重要且具有一定难度的知识点。
掌握这些知识,不仅有助于应对中考中的相关题目,还能为今后高中阶段的数学学习打下坚实的基础。
一、数列的基本概念数列,简单来说,就是按照一定顺序排列的一列数。
例如,1,3,5,7,9 就是一个数列。
1、项:数列中的每一个数都称为这个数列的项。
排在第一位的数称为首项,用 a₁表示;排在第 n 位的数称为第 n 项,用 aₙ 表示。
2、通项公式:如果数列{aₙ}的第 n 项 aₙ 与 n 之间的关系可以用一个公式来表示,这个公式叫做数列的通项公式。
例如,数列 2,4,6,8,10……的通项公式为 aₙ = 2n 。
3、递推公式:如果已知数列的第 1 项(或前几项),且从第二项(或某一项)开始的任一项 aₙ 与它的前一项 aₙ₋₁(或前几项)间的关系可以用一个公式来表示,这个公式叫做数列的递推公式。
二、等差数列等差数列是一种常见的数列类型。
1、定义:从第二项起,每一项与它的前一项的差等于同一个常数的数列叫做等差数列,这个常数叫做等差数列的公差,常用字母 d 表示。
例如,数列 3,5,7,9,11……就是一个公差为 2 的等差数列。
2、通项公式:aₙ = a₁+(n 1)d 。
其中,a₁为首项,d 为公差。
3、前 n 项和公式:Sₙ = n(a₁+ aₙ) / 2 或 Sₙ = na₁+ n(n1)d / 2 。
4、性质:(1)若 m + n = p + q,则 aₙ + aₙ = aₙ + a_q 。
(2)若数列{bₙ}也是等差数列,且公差为 d',则{aₙ ± bₙ}也是等差数列,公差分别为 d ± d' 。
三、等比数列等比数列也是中考的一个重要考点。
1、定义:从第二项起,每一项与它的前一项的比等于同一个常数的数列叫做等比数列,这个常数叫做等比数列的公比,常用字母 q 表示(q ≠ 0)。
数列专题复习及答案
数列、数列极限、数学归纳法综合复习一、填空题l、已知a n=n E N*)'则数列忆}的最大项是旷+1562、在等差数列{a J中,若a4+a6十Gio+ a12 = 90'则知0-—a l4=3、酰廿等比数列包},若Gi= l a5 = 4, 则a3的值为4、数列{a J中,a3= 2, a5 = l, 则数列{}是等差数列,则a ll=a n +l5、在数列{a J和{九}中,b n是a n与a n+I的等差中项,a1=2且对任意nEN*都有3a n+I -a n = Q , 则数列{九}的通项公式为6、设等差数列{a n}的公差d不为O,a1 = 9d, a k是a,与a2k的等比中项,则k=7、等差数列{a J的前n项和为S n,若S4�10,S5sl5,则a4的最大值为8、正数数列{a J中,已知a1= 2, 且对任意的s,t EN*, 都有a s+a t= a s+t成立,则1 1+ + +a l a2 a2a3 a n a n+I s9、等差数列{a J的前n项和为S n,且a4-a2 = 8,a3 + a5 = 26 , 记兀=号-,如果存在正整数M,使得对一切正整数n,T n sM都成立.则M的最小值是10、已知无穷等比数列{a n}中,各项的和为s,且lim[3(a1+a尸+a n)—S]=4,则实n今OO数a l的范围11、设正数数列{a J的前n项和为S n,且存在正数t'使得对千所有自然数n,有寂=n a +t 成立,若lim 瓦< t'则实数t的取值范围为2 n➔ 00a n12、数列{a,)的通项公式为a,={�::3(1:::; n:::; 2),则lirn s = n之3,n EN*) nn➔oo13、已知数列[a,}的通项三式为a,�2•-1+I, 则a立+a立+a立+a,, 立=12a n 0:::;;a n<—)14、数列{a }满足a= 2 6n+l � l '若a l=—,则a2001的值为2a n -I —:::;;a n< I)7215、在数列{a J中,如果对任意nEN*都有a n+2—a n+l= k (k为常数),则称{a J为等a n+l -a n差比数列,k称为公差比.现给出下列命题:(1)等差比数列的公差比一定不为0;(2)等差数列一定是等差比数列;(3)若a n=-3勹2,则数列{aJ是等差比数列;(4)若等比数列是等差比数列,则其公比等千公差比.其中正确的命题的序号为二、选择题16、等差数列{a n}的公差为d,前n项的和为S n,当首项a l和d变化时a2+as+a11是一个定值,则下列各数中也为定值的是( )A. s7B. SsC. s l3D. s l517、在等差数列{aJ中,Cli> 0, 5a5 = 17 a10 , 则数列{aJ前n项和凡取最大值时,n的值为()A.12B.llC.10D.918、设{a n}为等差数列,若生)_<—1,且它的前n项和S n有最小值,那么当凡取得最小正值时,n=a l O()A 11 B.17 C.19 D. 2019、等差数列{a n}的前n项和为S n,且Ss< S6, S6 = S1 > Ss,则下列结论中错误的是()A d<O C. S9 > SB. a7 = 0D. S6和S7均为S n的最大值20、已知数列{a J、{九}都是公差为1的等差数列,其首项分别为a l、b l'且a1+ b1 = 5, a1 ,b1 EN*. 设e n= a b,, (n E N勹,则数列{e n}的前10项和等千()A. 55B. 70C.85D.10021、已知等差数列{a J的前n项和为S n,若OB=CliOA十生OO OC,且A,B,C三点共线(该直线不过原点0),则s200= c )A. 100B. 101C. 200D. 201A 7n+4522、已知两个等差数列{aJ和{仇}的前n项和分别为A n和B n,且_____!!.='则使B n+3a得二为整数的正整数n的个数是(b nA. 2三、解答题B. 3C. 4D. 523、设数列忆}的前n项和为S n,已知a l=a'a n+I =凡+3n,n E N*.(1)设九=凡_3n,求忱}的通项公式;(2)若a*n+I� 化,nEN,求a的取值范围.24、数列曰}满足a 1=a , a 2 = -a (a > 0) , 且{a n }从第二项起是公差为6的等差数列,凡是{a n }的前n项和.(1)当n �2时,用a与n表示a n 与S n (2)若在s 6与趴两项中至少有一项是凡的最小值,试求a的取值范围;125、数列{aJ中,a l=—,点(n,2a n+l -aJ在直线y =x 上,其中nEN *2(1)设九=a n +l -a n -1, 求证数列{九}是等比数列;(2)求数列{a n }的通项;(3)设S n 、Tn 分别为数列{a小{九}的前n项和,是否存在实数入,使得数列{凡:入T"}为等差数列?若存在,试求出入;若不存在,则说明理由。
专题13 客观题之数列与数学归纳法 《2021年高考冲刺数学每日一练》【解析版】
专题13 客观题之数列与数学归纳法【真题感悟】一、单选题1.(2019·全国高考真题(理))已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =A .16B .8C .4D .2【答案】C 【解析】利用方程思想列出关于1,a q 的方程组,求出1,a q ,再利用通项公式即可求得3a 的值. 【详解】设正数的等比数列{a n }的公比为q ,则2311114211115,34a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .2.(2019·全国高考真题(理))记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =- B . 310n a n =- C .228n S n n =- D .2122n S n n =- 【答案】A 【解析】等差数列通项公式与前n 项和公式.本题还可用排除,对B ,55a =,44(72)1002S -+==-≠,排除B ,对C ,245540,25850105S a S S ==-=⨯-⨯-=≠,排除C .对D ,24554150,5250522S a S S ==-=⨯-⨯-=≠,排除D ,故选A .【详解】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,故选A .3.(2020·全国高考真题(理))数列{}n a 中,12a =,m n m n a a a +=,若155121022k k k a a a ++++++=-,则k =( ) A .2 B .3C .4D .5【答案】C 【解析】取1m =,可得出数列{}n a 是等比数列,求得数列{}n a 的通项公式,利用等比数列求和公式可得出关于k 的等式,由k *∈N 可求得k 的值. 【详解】在等式m n m n a a a +=中,令1m =,可得112n n n a a a a +==,12n na a +∴=, 所以,数列{}n a 是以2为首项,以2为公比的等比数列,则1222n n n a -=⨯=,()()()()1011011105101210122122212211212k k k k k k a a a a ++++++⋅-⋅-∴+++===-=---,1522k +∴=,则15k +=,解得4k =.故选:C.4.(2020·全国高考真题(文))记S n 为等比数列{a n }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则nnS a =( ) A .2n –1 B .2–21–n C .2–2n –1 D .21–n –1【答案】B 【解析】根据等比数列的通项公式,可以得到方程组,解方程组求出首项和公比,最后利用等比数列的通项公式和前n 项和公式进行求解即可. 【详解】设等比数列的公比为q ,由536412,24a a a a -=-=可得:421153111122124a q a q q a a q a q ⎧-==⎧⎪⇒⎨⎨=-=⎪⎩⎩, 所以1111(1)122,21112n nn n n n n a q a a qS q ----=====---,因此1121222n n n n n S a ---==-. 故选:B.5.(2020·全国高考真题(理))北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3699块B .3474块C .3402块D .3339块【答案】C 【解析】第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,设n S 为{}n a 的前n 项和,由题意可得322729n n n n S S S S -=-+,解方程即可得到n ,进一步得到3n S . 【详解】设第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,9(1)99n a n n =+-⨯=, 设n S 为{}n a 的前n 项和,则第一层、第二层、第三层的块数分 别为232,,n n n n n S S S S S --,因为下层比中层多729块, 所以322729n n n n S S S S -=-+, 即3(927)2(918)2(918)(99)7292222n n n n n n n n ++++-=-+即29729n =,解得9n =, 所以32727(9927)34022n S S +⨯===.故选:C6.(2020·全国高考真题(文))设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=( )A .12B .24C .30D .32【答案】D 【解析】根据已知条件求得q 的值,再由()5678123a a a q a a a ++=++可求得结果.【详解】设等比数列{}n a 的公比为q ,则()2123111a a a a q q++=++=,()232234111112a a a a q a q a q a q q q q ++=++=++==,因此,()5675256781111132a a a a q a q a q a q q q q++=++=++==.故选:D.7.(2020·浙江高考真题)已知等差数列{a n }的前n 项和S n ,公差d ≠0,11ad≤.记b 1=S 2,b n+1=S 2n+2–S 2n ,n *∈N ,下列等式不可能...成立的是( ) A .2a 4=a 2+a 6 B .2b 4=b 2+b 6C .2428a a a =D .2428b b b =【答案】D 【解析】根据题意可得,21212222n n n n n b S a a S ++++=+=-,而1212b S a a ==+,即可表示出题中2468,,,b b b b ,再结合等差数列的性质即可判断各等式是否成立. 【详解】对于A ,因为数列{}n a 为等差数列,所以根据等差数列的下标和性质,由4426+=+可得,4262a a a =+,A 正确;对于B ,由题意可知,21212222n n n n n b S a a S ++++=+=-,1212b S a a ==+, ∴234b a a =+,478b a a =+,61112b a a =+,81516b a a =+.∴()47822b a a =+,26341112b b a a a a +=+++.根据等差数列的下标和性质,由31177,41288+=++=+可得()26341112784=2=2b b a a a a a a b +=++++,B 正确;对于C ,()()()()2224281111137222a a a a d a d a d d a d d d a -=+-++=-=-,当1a d =时,2428a a a =,C 正确; 对于D ,()()22222478111213452169b a a a d a a d d =+=+=++,()()()()2228341516111125229468145b b a a a a a d a d a a d d =++=++=++,()22428112416832b b b d a d d d a -=-=-.当0d >时,1a d ≤,∴()113220d a d d a -=+->即24280b b b ->;当0d <时,1a d ≥,∴()113220d a d d a -=+-<即24280b b b ->,所以24280b b b ->,D 不正确.故选:D.8.(2020·北京高考真题)在等差数列{}n a 中,19a =-,51a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ). A .有最大项,有最小项 B .有最大项,无最小项 C .无最大项,有最小项 D .无最大项,无最小项【答案】B 【解析】首先求得数列的通项公式,然后结合数列中各个项数的符号和大小即可确定数列中是否存在最大项和最小项. 【详解】由题意可知,等差数列的公差511925151a a d --+===--, 则其通项公式为:()()11912211n a a n d n n =+-=-+-⨯=-, 注意到123456701a a a a a a a <<<<<<=<<,且由50T <可知()06,i T i i N <≥∈,由()117,ii i T a i i N T -=>≥∈可知数列{}n T 不存在最小项, 由于1234569,7,5,3,1,1a a a a a a =-=-=-=-=-=, 故数列{}n T 中的正项只有有限项:263T =,46315945T =⨯=. 故数列{}n T 中存在最大项,且最大项为4T . 故选:B. 二、填空题9.(2019·全国高考真题(理))记S n 为等比数列{a n }的前n 项和.若214613a a a ==,,则S 5=____________.【答案】1213. 【解析】本题根据已知条件,列出关于等比数列公比q 的方程,应用等比数列的求和公式,计算得到5S .题目的难度不大,注重了基础知识、基本计算能力的考查. 【详解】设等比数列的公比为q ,由已知21461,3a a a ==,所以32511(),33q q =又0q ≠, 所以3,q =所以55151(13)(1)12131133a q S q --===--. 10.(2020·浙江高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是________. 【答案】10 【解析】根据通项公式可求出数列{}n a 的前三项,即可求出. 【详解】 因为()12n n n a +=,所以1231,3,6a a a ===. 即312313610S a a a =++=++=.故答案为:10.11.(2020·全国高考真题(文))记n S 为等差数列{}n a 的前n 项和.若1262,2a a a =-+=,则10S =__________.【答案】25 【解析】因为{}n a 是等差数列,根据已知条件262a a +=,求出公差,根据等差数列前n 项和,即可求得答案. 【详解】{}n a 是等差数列,且12a =-,262a a +=设{}n a 等差数列的公差d根据等差数列通项公式:()11n a a n d +-= 可得1152a d a d +++= 即:()2252d d -++-+= 整理可得:66d = 解得:1d =根据等差数列前n 项和公式:*1(1),2n n n S na d n N -=+∈ 可得:()1010(101)1022045252S ⨯-=-+=-+=∴1025S =.故答案为:25.12.(2019·江苏高考真题)已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是_____. 【答案】16. 【解析】由题意首先求得首项和公差,然后求解前8项和即可. 【详解】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=. 13.(2020·江苏高考真题)设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是_______. 【答案】4 【解析】结合等差数列和等比数列前n 项和公式的特点,分别求得{}{},n n a b 的公差和公比,由此求得d q +. 【详解】设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,根据题意1q ≠. 等差数列{}n a 的前n 项和公式为()2111222n n n d d P na d n a n -⎛⎫=+=+- ⎪⎝⎭, 等比数列{}n b 的前n 项和公式为()1111111n n n b q b bQ q qq q-==-+---, 依题意n n n S P Q =+,即22111212211nn b b d d n n n a n q q q ⎛⎫-+-=+--+ ⎪--⎝⎭, 通过对比系数可知111212211dd a q b q⎧=⎪⎪⎪-=-⎪⎨⎪=⎪⎪=-⎪-⎩⇒112021d a q b =⎧⎪=⎪⎨=⎪⎪=⎩,故4d q +=.故答案为:414.(2020·海南高考真题)将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为________. 【答案】232n n - 【解析】首先判断出数列{}21n -与{}32n -项的特征,从而判断出两个数列公共项所构成新数列的首项以及公差,利用等差数列的求和公式求得结果. 【详解】因为数列{}21n -是以1为首项,以2为公差的等差数列, 数列{}32n -是以1首项,以3为公差的等差数列,所以这两个数列的公共项所构成的新数列{}n a 是以1为首项,以6为公差的等差数列, 所以{}n a 的前n 项和为2(1)16322n n n n n -⋅+⋅=-, 故答案为:232n n -.15.(2020·全国高考真题(文))数列{}n a 满足2(1)31n n n a a n ++-=-,前16项和为540,则1a =______________. 【答案】7 【解析】对n 为奇偶数分类讨论,分别得出奇数项、偶数项的递推关系,由奇数项递推公式将奇数项用1a 表示,由偶数项递推公式得出偶数项的和,建立1a 方程,求解即可得出结论. 【详解】2(1)31n n n a a n ++-=-,当n 为奇数时,231n n a a n +=+-;当n 为偶数时,231n n a a n ++=-. 设数列{}n a 的前n 项和为n S ,16123416S a a a a a =+++++13515241416()()a a a a a a a a =+++++++111111(2)(10)(24)(44)(70)a a a a a a =++++++++++ 11(102)(140)(5172941)a a ++++++++ 118392928484540a a =++=+=, 17a ∴=.故答案为:7.【高考预测】一、单选题1.(2021·河南省实验中学高二期中(理))记n S 为等差数列{}n a 的前n 项和,若218a =,580S =.则数列{}n a 的通项公式n a =( ) A .222n + B .222n -C .202n -D .(21)n n -【答案】B 【解析】根据等差数列的通项和求和公式,由218a =,580S =,列式可求得首项和公差,即可得解. 【详解】设公差为d ,则21511851080a a d S a d =+=⎧⎨=+=⎩, 解得1202a d =⎧⎨=-⎩,所以()()2012222n a n n =+-⨯-=-. 故选:B.2.(2020·全国高二课时练习)已知等比数列{a n }的前n 项和为S n ,且a 1=12,a 2a 6=8(a 4-2),则S 2 020=( )A .22 019-12B .1-1()2 2 019C .22 020-12D .1-1()22 020【答案】A 【解析】根据已知可求出数列的公比,即可求出. 【详解】设{a n }的公比为q ,()2264482a a a a ==-,2448160a a ∴-+=,解得44a =,3418aq a ∴==,可得2q,()202020192020112122122S ⨯-∴==--. 故选:A.3.(2020·全国高二课时练习)数列{a n }的通项2n n a n =⨯,数列{a n }的前n 项和S n 为( ) A .12n n +⨯ B .122n n +⨯-C .()1122n n +-⨯+D .122n n +⨯+【答案】C 【解析】利用错位相减法可求解. 【详解】23222322n n S n =+⨯+⨯+⋯+⨯,① 23412222322n n S n +=+⨯+⨯+⋯+⨯,②①-②得23122222nn n S n +-=+++⋯+-⨯()1212212n n n +⨯-=-⨯-11222n n n ++=--⨯,12(1)2n n S n +∴=+-⨯.故选:C.4.(2021·四川绵阳市·高三三模(理))已知数列{} n a 的前n 项和为n S ,11a =,22a =,()12343n n n a a a n --=+≥,则10S =( )A .10415-B .11415-C .1041-D .1141-【答案】A 【解析】由已知得出数列1{}n n a a ++是等比数列,然后可利用数列1{}n n a a ++的奇数项仍然为等比数列,求得和10S . 【详解】因为()12343n n n a a a n --=+≥,所以1124()n n n n a a a a ---+=+,又1230a a +=≠,所以1124(3)n n n n a a n a a ---+=≥+,所以1{}n n a a ++是等比数列,公比为4,首项为3,则数列212{}n n a a -+也是等比数列,公比为2416=,首项为3.所以510103(116)411165S ⨯--==-. 故选:A .5.(2021·山东高三二模)已知数列{}n a ,1()n a f n =,其中()f n的整数,若{}n a 的前m 项和为20,则m =( ) A .15 B .30C .60D .110【答案】D 【解析】由题意知,函数()f n的整数,得到()f n 中有2个1,4个2,6个3,8个4,,进而得到12345678122,2,2,a a a a a a a a a +=+++=+++= ,结合等差数列的求和公式,即可求解.【详解】由题意知,函数()f n的整数, 又由()()11,21f f ==,()()()()32,42,52,62f f f f ====,()()()()()()73,83,93,103,113,123f f f f f f ======,,由此可得()f n的整数中,有2个1,4个2,6个3,8个4,,又由数列{}n a 满足1()n a f n =, 可得1234567812111,,,23a a a a a a a a a ==========,则12345678122,2,2,a a a a a a a a a +=+++=+++= ,因为{}n a 的前m 项和为20,即10220m S =⨯=,可得数列{}m 构成首项为2,公差为2的对称数列的前10项和, 所以10910221102m ⨯=⨯+⨯=. 故选:D.6.(2021·武威第六中学高三其他模拟(理))已知等差数列{}n a 的前n 项和为n S ,且918S =,71a =,则1a =( )A .4B .2C .12-D .1-【答案】A 【解析】先由918S =,求出5a ,结合75,a a 的关系可得. 【详解】 因为199599182a a S a +=⨯==,所以52a =; 又因为752a a d =+,所以12122d -==-. 所以51142a a d a =+=-,解得14a =. 故选:A7.(2021·江西高三其他模拟(文))已知等比数列{}n a 中,1510a a +=,1516a a =且15a a <,则7a =( )A .16±B .16C .4±D .4【答案】B 【解析】 结合1510a a +=,1516a a =且15a a <,求出1a ,5a ,从而得出数列的通项公式,即可求出7a .【详解】解:已知15151016a a a a +=⎧⎨=⎩,且15a a <解得1528a a =⎧⎨=⎩,又因为{}n a 是等比数列,所以4518a a q ==, 所以4842q==,可得22q =, 所以5728216a q a =⨯==. 故选:B8.(2021·全国高二单元测试)将全体正整数排成一个三角形数阵:按照以上排列的规律,则第20行从左向右的第3个数为( )A .193B .192C .174D .173【答案】A 【解析】根据题意,分析可得第n 行的第一个数字为()112n n -+,进而可得第20行的第一个数字,据此分析可得答案. 【详解】由排列的规律可得,第1n -行结束的时候共排了()()()()1111123122n n n n n -+--++++-==个数,则第n 行的第一个数字为()112n n -+, 则第20行的第一个数字为191,故第20行从左向右的第3个数为193; 故选:A.9.(2020·湖北高三期中)已知数列{}n a 满足()*1111,(1)(2)n n n n a a a a a n N n n ++=-=∈++,则n na 的最小值是( ) A .25B .34C .1D .2【答案】C本题首先可以根据()11(1)2n n n n a a a a n n ++-=++得出1111112n n a a n n +-=-++,然后通过累加法求出2231n n a n +=+,再然判断数列{}n na 的单调性即可求出. 【详解】 因为()*11(1)n n n n a a a a n N n n ++-=∈+, 所以()11(1)212111n n n n a a a a n n n n ++-==-++++,即1111112n n a a n n +-=-++,则11221111111111n n n n n a a a a a a a a ---⎛⎫⎛⎫⎛⎫=-+-+⋯+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 112311111111n n n n ⎛⎫⎛⎫⎛⎫=-+-+⋯+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭+- 11311(2)2122n n n n +=-+=≥++, 当1n =时,上式成立,故2231n n a n +=+,22231n n n n n a ++=,设22231n n nn b ++=,则()()()()()222121212261040311313431n n n n n n n n n n n n b b +++++++=>++-++=+-, 故数列{}n b 是单调递增数列, 则当1n =时,n b 即n na 的最小值为1. 故选:C. 二、多选题10.(2021·全国高二课时练习)等差数列{a n }的前n 项和记为S n ,若a 1>0,S 10=S 20,则( ) A .d <0 B .a 16<0C .S n ≤S 15D .当且仅当S n <0时n ≥32【答案】ABC根据题意,可得2a 1+29d =0,根据a 1>0,可判断A 的正误;根据d <0,可得a 15>a 16,可判断B 、C 的正误;分别求得3031,S S ,即可判断D 的正误,即可得答案. 【详解】解:设等差数列{a n }的公差为d ,∵S 10=S 20, ∴10a 1+45d =20a 1+190d , ∴2a 1+29d =0,∵a 1>0,∴d <0,故A 正确; ∴a 1+14d +a 1+15d =0,即a 15+a 16=0, ∵d <0,∴a 15>a 16,∴a 15>0,a 16<0,故B 正确; ∴S n ≤S 15,故C 正确; 又131311631()3102a a S a +==<,130********()15()02a a S a a +==+=, ∴当且仅当S n <0时,n ≥31,故D 错误. 故选:ABC .11.(2021·全国高二单元测试)在公比q 为整数的等比数列{}n a 中,n S 是数列{}n a 的前n 项和,若1432a a ⋅=,2312a a +=,则下列说法正确的是( )A .2qB .数列{}2n S +是等比数列C .8510S =D .数列{}lg n a 是公差为2的等差数列【答案】ABC 【解析】本题首先可根据1432a a ⋅=得出2332a a ⋅=,与2312a a +=联立即可求出2a 、3a 以及q ,A 正确,然后通过122n n S ++=即可判断出B 正确,再然后通过等比数列求和公式即可判断出C 正确,最后根据lg lg 2na n 即可判断出D 错误.【详解】因为数列{}n a 是等比数列,所以142332a a a a ,联立23233212a a a a ⋅=⎧⎨+=⎩,解得2384a a =⎧⎨=⎩或2348a a =⎧⎨=⎩,因为公比q 为整数,所以24a =、38a =、322a q a ==,12a =,2n n a =,A 正确, ()121222212n n n S +-+=+=-,故数列{}2n S +是等比数列,B 正确;()8982122251012S -==-=-,C 正确;lg lg2lg2n n a n ==,易知数列{}lg n a 不是公差为2的等差数列,D 错误,故选:ABC. 三、填空题12.(2020·全国高二课时练习)设等比数列{}n a 的前n 项和为n S .若3S ,9S ,6S 成等差数列,且83a =,则5a 的值为________. 【答案】6- 【解析】根据等差数列列式,代入等比数列前n 项和公式,计算得312q =-,从而求解5a . 【详解】∵3S ,9S ,6S 成等差数列,∴9362S S S =+,由题意1q ≠,∴9361112(1)(1)(1)111a q a q a q q q q---=+---,可得96320q q q --=,所以312q =-∴8533(2)6a a q ==⨯-=-. 故答案为:6-.13.(2021·全国高二课时练习)定义函数()f x ={x {x }},其中{x }表示不小于x 的最小整数,如{1.4}=2,{﹣2.3}=﹣2,当*(0,],()x n n N ∈∈时,函数()f x 的值域为A n ,记集合A n 中元素的个数为a n ,则a n =__. 【答案】(1)2n n + 【解析】由题意得,当(1,]x n n ∈-时,{x }=n ,{x {x }}取到的整数为n 2﹣n +1,n 2﹣n +2,……,n 2﹣n +n =n 2,共n 个,分别求出(1,2]x ∈、(2,3]、……(1,]n n -时{x {x }}中元素的个数,即可得到(0,]x n ∈时,{x {x }}中元素个数,结合等差数列求和公式,即可得答案. 【详解】解:由题意得:当(1,]x n n ∈-时,{x }=n ,所以x {x }所在的区间为2((1),]n n n -,区间长度为n , {x {x }}取到的整数为n 2﹣n +1,n 2﹣n +2,……,n 2﹣n +n =n 2,共n 个, 所以,当(0,1]x ∈时,{x {x }}有1个; 当(1,2]x ∈时,{x {x }}有2个; 当(2,3]x ∈时,{x {x }}有3个; ……当(1,]x n n ∈-时,{x {x }}有n 个.所以(0,]x n ∈时,{x {x }}共有1+2+3+……+n (1)2n n +=个数. 故(1)2n n n a +=. 故答案为:(1)2n n +.14.(2021·江西高三其他模拟(文))已知公差不为0的等差数列{}n a 的部分项1k a ,2k a ,3k a ,……构成等比数列{}n a ,且11k =,22k =,35k =,则n k =___________.【答案】1312n -+ 【解析】设等差数列{}n a 的公差为d ,则0d ≠,由等比数列的性质列式求得12a d = .然后再由等差数列与等比数列的通项公式列式求得n k . 【详解】解:设等差数列{}n a 的公差为d ,则0d ≠, 由已知21321522,k k k a a a a a a =⋅∴=⋅, 即()()21114a d a a d +=⋅+,得12a d =,于是,在等比数列123,,,,n k k k k a a a a 中,公比21111211123k k a d a a a a q a a a a ++=====. 由n k a 为数列{}k a 的第n 项,知111133n n k n k a a a --=⨯⋅=;由n k a 为数列{}n a 的第n k 项,知()()11121n k n n a a k d a k =-=-+,()111321n n a a k -∴⨯=-,故13122n n k -=+.故答案为1312n -+.。
高一数学重要知识总结数列与数学归纳法的应用
高一数学重要知识总结数列与数学归纳法的应用高一数学重要知识总结:数列与数学归纳法的应用数学作为一门重要的学科,是培养学生逻辑思维、分析问题和解决问题能力的重要工具。
在高一数学学习中,数列与数学归纳法是重要的知识点。
本文将对数列与数学归纳法的应用进行总结。
一、数列与数学归纳法的基础概念在开始讨论数列与数学归纳法的应用前,我们先了解一些基础概念。
1. 数列:数列是按照一定规律排列的数的集合。
数列可以用通项公式或递推公式表示,通项公式能够直接求得第n项,而递推公式则通过前一项或前几项来确定下一项。
2. 等差数列:等差数列是指数列中相邻两项之间差值保持不变的数列。
等差数列的通项公式为An = A1 + (n-1)d,其中An表示第n项,A1表示首项,d表示公差。
3. 等比数列:等比数列是指数列中相邻两项之间的比值保持不变的数列。
等比数列的通项公式为An = A1 ×r^(n-1),其中An表示第n项,A1表示首项,r表示公比。
4. 数学归纳法:数学归纳法是一种证明方法,用于证明对一切正整数n都成立的命题。
数学归纳法包括两个步骤:基础步骤和归纳步骤。
二、数列与数学归纳法的应用1. 求等差数列的前n项和对于等差数列,我们可以通过数学归纳法来证明等差数列的前n项和公式Sn = (n/2)(A1 + An)。
首先,当n=1时,等式成立。
然后,我们假设当n=k时等式成立,即Sk = (k/2)(A1 + Ak)。
接下来,我们证明当n=k+1时等式也成立。
根据等差数列的定义,An+1 = An + d,其中d表示公差。
所以,Sk+1 = Sk + Ak+1 = (k/2)(A1 + Ak) + Ak+1 =(k/2)(A1 + Ak + 2Ak+1) = ((k+1)/2)(A1 + Ak+1)。
由此可见,当n=k+1时等式仍然成立。
因此,等差数列的前n项和公式Sn = (n/2)(A1 + An)成立。
高中数学选修2-3数列和数学归纳法的应用总结。
高中数学选修2-3数列和数学归纳法的应用总结。
高中数学选修2-3数列和数学归纳法的应用总结引言数学归纳法是数学中一种重要的证明方法,它在解决数列问题中具有广泛的应用。
本文主要总结了高中数学选修2-3中数列和数学归纳法的应用。
数列的概念数列是按照一定规律排列的一组数,其中每个数叫作数列的项。
数列可以分为等差数列、等比数列等。
- 等差数列:数列中相邻的两项之差恒定。
- 等比数列:数列中相邻的两项之比恒定。
数列的性质数列中的项具有一定的性质,包括:- 通项公式:通过找出数列中的规律,可以得到一个用自变量表示的一般公式。
- 前n项和公式:可以通过求前n项的和,进一步研究数列的性质和规律。
数学归纳法的基本思想数学归纳法通过证明两个命题成立来推断第n+1个命题成立的方法。
数学归纳法的基本思想可以概括为以下三步:1. 证明当n=1时命题成立。
2. 假设当n=k时命题成立。
3. 证明当n=k+1时命题也成立。
数学归纳法的应用数学归纳法在数列问题中的应用广泛,主要包括:- 证明数列的通项公式:通过利用归纳法可以推导出数列的通项公式,从而方便计算和研究数列的性质。
- 证明数列的前n项和公式:通过数学归纳法可以得到数列的前n项和公式,进一步研究数列的性质和规律。
结论数学归纳法是解决数列问题中常用的证明方法,通过归纳法可以得到数列的通项公式和前n项和公式,进一步研究数列的性质和规律。
在高中数学选修2-3中,数列和数学归纳法的应用是重要的内容,通过学习数列和数学归纳法,可以提高我们解决数学问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列与数学归纳法专题XX 市久隆模X 中学 石英丽经典例题【例1】已知数列{}n a 的前n 项和为n S ,且*,855N n a n S n n ∈--=.(1)证明:{}1-n a 是等比数列;(2)求数列{}n S 的通项公式,并求出使得n n S S >+1成立的最小正整数n . 解:(1) 当1=n 时,141-=a ;当2≥n 时,15511++-=-=--n n n n n a a S S a , 所以()16511-=--n n a a . 又01511≠-=-a ,所以数列{}1-n a 是以-15为首项,65为公比的等比数列. (2) 由(1)知:165151-⎪⎭⎫⎝⎛-=-n n a ,得1651-⎪⎭⎫⎝⎛-=n n a 从而*1,906575N n n S n n ∈-+⎪⎭⎫⎝⎛=-;由n n S S >+1得252651<⎪⎭⎫ ⎝⎛-n ,9.141252log 65≈+>n ,最小正整数15=n . 【例2】 等差数列{}n a 的前n 项和为239,21,31+=+=S a S n . (1)求数列{}n a 的通项n a 与前n 项和n S ; (2)设()nn S b n n*=∈N ,求证:数列{}n b 中任意不同的三项都不可能成为等比数列. 解:(1)由已知得111339a a d ⎧=⎪⎨+=+⎪⎩,2d ∴=,故21(n n a n S n n =-=. (2)由(Ⅰ)得nn S b n n== 假设数列{}n b 中存在三项p q r b b b ,,(p q r ,,互不相等)成等比数列,则2q p r b b b =.即2((q p r +=.2()(20q pr q p r ∴-+--=p q r *∈N ,,,2020q pr q p r ⎧-=∴⎨--=⎩,, 22()02p r pr p r p r +⎛⎫∴=-=∴= ⎪⎝⎭,,.与p r ≠矛盾.所以数列{}n b 中任意不同的三项都不可能成等比数列.【例3】已知公差不为0的等差数列{}n a 的首项1a 为a ()R a ∈,设数列的前n 项和为4211,1,1,a a a S n 且成等比数列. (1)求数列{}n a 的通项公式及n S ; (2)记na a a a B S S S A n n n 2221211111,1112++++=+++= ,当2≥n 时,试比较n A 与n B 的大小.解:(1)设等差数列{}n a 的公差为d ,由4122111a a a⋅=⎪⎪⎭⎫ ⎝⎛, 得())3(1121d a a d a +=+.因为0≠d ,所以a d = 所以()21,1+==n an S na a n n . (2)因为⎪⎭⎫ ⎝⎛+-=11121n n a S n ,所以)111(211121+-=+++=n a S S S A n n . 因为a a n n 1221-=-,所以⎪⎭⎫ ⎝⎛-=-⎪⎭⎫⎝⎛-⋅=++++=-n nna a a a a a B n 211221121111111122221 . 当12,210+>+++=≥n C C C n nn n n n 时,即n n 211111-<+-. 所以,当n n n n B A a B A a ><<>时当时0;0.【例4】 已知21=a ,点()1,+n n a a 在函数()x x x f 22+=的图象上,其中=1,2,3,…(1)证明数列(){}n a +1lg 是等比数列;(2)设()()()n n a a a T +++=11121 ,求n T 及数列{}n a 的通项; (3)记211++=n n n a a b ,求数列}{n b 的前项和S n ,并证明132-+n n T S =1.解:(1)由已知212n n n a a a +=+, 211(1)n n a a +∴+=+12a = 11n a ∴+>,两边取对数得1lg(1)2lg(1)n n a a ++=+,即1lg(1)2lg(1)n n a a ++=+{lg(1)}n a ∴+是公比为2的等比数列.(2)由(Ⅰ)知11lg(1)2lg(1)n n a a -+=⋅+ 1122lg3lg3n n --=⋅= 1213n n a -∴+=(*)12(1)(1)n T a a ∴=++n …(1+a ) 012222333=⋅⋅⋅⋅n-12…3 21223+++=n-1…+2=n 2-13由(*)式得1231n n a -=-(3)n n n a a a 221+=+ 1(2)n n n a a a +∴=+11111()22n n n a a a +∴=-+ 11122n n n a a a +∴=-+. 又112n n n b a a =++1112()n n n b a a +∴=- 12n S b b ∴=++n …+b 122311111112()n n a a a a a a +=-+-+-…+11112()n a a +=-. 1221131,2,31n nn n a a a -+=-==-22131nn S ∴=--.又213nn T -=2131n n S T ∴+=-.【例5】 已知数列{}n a 满足2,021==a a ,且对任意*,N n m ∈都有211212)(22n m a a a n m n m -+=+-+--.(1)求53,a a ;(2)设)(*1212N n a a b n n n ∈-=-+,证明:{}n b 是等差数列;(3)设()()*11,0,N n q q a a c n n n n ∈≠-=-+,求数列}{n c 的前n 项和n S .解:(1)由题意,6221,2123=+-===a a a n m 可得令,再令20821,3135=+-===a a a n m 可得.(2)当*N n ∈时,由已知(以m n 代替2+)可得82121232+=++-+n n n a a a .于是()()8)(][1212112112=----+-+++n n n n a a a a , 即6,81211=-==-+a a b b b n n .所以{}n b 是以6为首项,8为公差的等差数列.(3)由(1)(2)解答可知28,281212-=--=-+n a a n b n n n 即. 另由已知(令1=m )可得()211212--+=+n a a a n n . 那么n n n n a a a a n n n n 21222812212121=+--=+-+=--++,于是12-=n n nq c .当1=q 时,()12642+=++++=n n n S n ;当1≠q 时,12102642-++++=n n nq q q q S .两边同乘以q ,可得nn nq q q q qS 2642321++++= .上述两式相减得()()()qnq q n nq q q nq qq q S q n n nn nn n -++-⋅=---⋅=-++++=-+-111221122121112.所以()21)1(112q nq q n S n n n -++-⋅=+. 综上所述,()()()()()⎪⎩⎪⎨⎧=+≠-++-⋅=+1,11,111221q n n q q nq q n S n n n数列与数学归纳法专题检测题一、填空题(每小题4分,满分40分) 1.列{}n a 是首项为1,公比为23-a 的无穷等比数列,且{}n a 各项的和为a ,则a 的值是 . 2.等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为__ . 3.函数()2xf x =,等差数列{}x a 的公差为2.若246810()4f a a a a a ++++=,则212310log [()()()()]f a f a f a f a ⋅⋅⋅= .4.知数列}{n a 、}{n b 都是公差为1的等差数列,其首项分别为1a 、1b ,且511=+b a ,*11,N b a ∈.设n b n a c =(*N n ∈),则数列}{n c 的前10项和等于 .5.知数列{}n a 的首项10a ≠,其前n 项的和为n S ,且112n n S S a +=+,则lim nn na S →∞= .6.知等比数列{}n a 满足0,1,2,n a n >=,且25252(3)nn a a n -⋅=≥,则当1n ≥时,2123221log log log n a a a -+++= .7.差数列{}n a 的前n 项和为n S ,已知2110m m m a a a -++-=,2138m S -=,则m = .8.全体正整数排成一个三角形数阵:1 2 3 4 5 6 7 8 9 10. . . . . . .按照以上排列的规律,第n 行(n ≥3)从左向右的第3 个数为 . 9.{}n a 是公比为q 的等比数列,||1q >,令1(1,2,)n n b a n =+=,若数列{}n b 有连续四项在集合{}53,23,19,37,82--中,则6q = .10.知数列{}n a 满足:m a =1(m 为正整数),1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时,当为奇数时。
若6a =1,则m 所有可能的取值为__________.二、解答题(本大题共有5题,解答下列各题必须在规定区域内写出必要的步骤) 11.设数列{}n a 满足11111011=---=+nn a a a 且.(1)求{}n a 的通项公式; (2)设na b n n 11+-=,记∑==nk kn bS 1,证明1<n S .12.等比数列{}n a 中,321,,a a a 分别是下表第一、二、三行中的某一个数,且321,,a a a 中的任何两个数不在下表的同一列.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足:()n nn n a a b ln 1-+=,求数列{}n b 的前n 项和n S .13.设d 为非零实数,()()()*11221,121N n d nC d C n d C d C na nn n n n n n n n ∈+-++=-- . (1)写出321,,a a a 并判断{}n a 是否为等比数列。
若是,给出证明;若不是,说明理由;(2)设)(,*N n nda b n n ∈=,求数列{}n b 的前n 项和n S .14.设数列{}n a 的前n 项和为n S ,且方程02=--n n a x a x 有一根为 ,3,2,1,1=-n S n(1)求21,a a ; (2){}n a 的通项公式. 15.已知有穷数列A :12,,,n a a a ,(2n ≥).若数列A 中各项都是集合{|11}x x -<<的元素,则称该数列为Γ数列.对于Γ数列A ,定义如下操作过程T :从A 中任取两项,i j a a ,将1i j i ja a a a ++的值添在A 的最后,然后删除,i j a a ,这样得到一个1n -项的新数列1A (约定:一个数也视作数列). 若1A 还是Γ数列,可继续实施操作过程T ,得到的新数列记作2A ,,如此经过k 次操作后得到的新数列记作k A .(1)设11:0,,.23A 请写出1A 的所有可能的结果;(2)求证:对于一个n 项的Γ数列A 操作T 总可以进行1n -次;(3)设5111511111:,.7654623456A ----,,,,,,,,求9A 的可能结果,并说明理由.数列与数学归纳法专题检测题答案一、填空题1. 2 ;2.13q =;3.-6;4. 85;5.12;6.2n ;7.10 ;8.262n n -+;9.-9 (提示 81,-54,36,-24);10.4 5 32; 二、解答题11.设数列{}n a 满足11111011=---=+nn a a a 且(1)求{}n a 的通项公式; (2)设na b n n 11+-=,记∑==nk kn bS 1,证明1<n S解:(1)由题设111111=---+nn a a即⎭⎬⎫⎩⎨⎧-n a 11是公差为1的等差数列。