关于高等数学中求极限的方法小结
高等数学求极限的14种方法
高等数学求极限的14种方法高等数学求极限的14种方法一、极限的定义极限的保号性很重要。
设$x\to x_0$,$limf(x)=A$,则有以下两种情况:1)若$A>0$,则有$\delta>0$,使得当$00$;2)若有$\delta>0$,使得当$0<|x-x_0|<\delta$时,$f(x)\geq 0$,则$A\geq 0$。
极限分为函数极限和数列极限,其中函数极限又分为$x\to\infty$时函数的极限和$x\to x_0$的极限。
要特别注意判定极限是否存在,收敛于$a$的充要条件是它的所有子数列均收敛于$a$。
常用的是其推论,即“一个数列收敛于$a$的充要条件是其奇子列和偶子列都收敛于$a$”。
二、解决极限的方法如下:1.等价无穷小代换。
只能在乘除时候使用。
2.XXX(L'Hospital)法则。
它的使用有严格的使用前提。
首先必须是$x$趋近,而不是$n$趋近,所以面对数列极限时候先要转化成求$x$趋近情况下的极限,数列极限的$n$当然是趋近于正无穷的,不可能是负无穷。
其次,必须是函数的导数要存在,假如只告诉$f(x)$、$g(x)$,而没有告诉是否可导,不可直接用洛必达法则。
另外,必须是“比”或“无穷大比无穷大”,并且注意导数分母不能为$0$。
洛必达法则分为三种情况:1)$\infty/\infty$时,直接用$\infty$;2)$0\cdot\infty$、$\infty-\infty$、$0^0$、$\infty^0$时,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。
通分之后,就能变成(1)中的形式了。
即$f(x)g(x)=\frac{f(x)}{g(x)}$或$f(x)g(x)=\frac{g(x)}{f(x)}$;3)$1^\infty$、$0^0$、$1^{\infty-\infty}$、$\infty^0$对于幂指函数,方法主要是取指数还取对数的方法,即$e^{f(x)g(x)}=e^{g(x)lnf(x)}$,这样就能把幂上的函数移下来了,变成$0/0$型未定式。
求极限的12种方法总结及例题
求极限的12种方法总结及例题求极限的12种方法总结及例题1. 引言在数学学习中,求极限是一个重要的概念,也是许多数学题解的基础。
在学习求极限的过程中,有许多不同的方法可以帮助我们理解和解决问题。
本文将总结12种方法,帮助我们更全面地理解求极限的概念,并提供相应的例题进行演示。
2. 利用极限的定义我们可以利用极限的定义来求解问题。
根据定义,当x趋向于a时,函数f(x)的极限为L,即对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。
利用这个定义,可以求得一些简单的极限,如lim(x→0) sinx/x=1。
3. 利用夹逼准则夹逼准则是求极限常用的方法之一。
当我们无法直接求出某个函数的极限时,可以利用夹逼准则来找到该函数的极限值。
要求lim(x→0) xsin(1/x)的极限,可以通过夹逼准则来解决。
4. 利用极限的四则运算极限的四则运算法则是求解复杂函数极限的基本方法之一。
利用这个法则,我们可以将复杂的函数分解成简单的部分,再进行求解。
要求lim(x→0) (3x^2+2x-1)/(x+1),可以利用极限的四则运算法则来求解。
5. 利用洛必达法则当我们遇到不定型的极限时,可以利用洛必达法则来求解。
洛必达法则可以帮助我们求出不定型极限的值,例如0/0、∞/∞、0*∞等形式。
通过洛必达法则,我们可以将求解不定型极限的过程转化为求解导数的问题,从而得到极限的值。
6. 利用泰勒展开泰勒展开是求解复杂函数极限的有效方法之一。
当我们遇到无法直接求解的函数极限时,可以利用泰勒展开将其转化为无穷级数的形式,然后再进行求解。
通过泰勒展开,我们可以将复杂函数近似为一个多项式,从而求得函数的极限值。
7. 利用换元法换元法是求解复杂函数极限的常用方法之一。
通过适当的变量替换,可以将复杂的函数转化为简单的形式,然后再进行求解。
对于lim(x→∞) (1+1/x)^x,可以通过换元法将其转化为e的极限形式来求解。
高等数学极限求法总结
04 极限求法之洛必达法则
洛必达法则基本思想
利用导数求解极限
在一定条件下,通过分子分母分别求导的方式,简化极限运 算。
转化无穷大比无穷大型
对于0/0型或∞/∞型的极限,通过洛必达法则可转化为其他 类型进行求解。
适用条件及典型例题
适用条件
适用于0/0型和∞/∞型的极限,且分子分母 在求导后极限存在或为无穷大。
05 极限求法之泰勒公式法
泰勒公式基本概念及展开式
泰勒公式定义
泰勒公式是用多项式逼近一个函数的方法,将一个在闭区间上可导的函数展开成多项式 的形式。
泰勒展开式
f(x) = f(a) + f'(a)(x-a) + f''(a)/2! * (x-a)^2 + ... + f^n(a)/n! * (x-a)^n + Rn(x),其 中Rn(x)为余项。
适用于连续函数情况
连续函数定义
若函数在某点的极限值等于该点的函 数值,则称函数在该点连续。对于连 续函数,我们可以直接将其自变量代 入函数表达式来求解极限。
适用范围
直接代入法适用于一元和多元函数的 极限求解,但要求函数在求极限的点 是连续的。
注意事项及典型例题
注意事项:在使用直接代入 法求极限时,需要注意以下
该方法不需要复杂的数学变换和技巧,易于掌握。
缺点
直接代入法仅适用于连续函数的极限问题,对于非连续函 数或复杂函数可能无法求解。
在某些情况下,即使函数在求极限的点连续,直接代入也 可能导致分母为零等无法计算的情况,需要结合其他方法 进行处理。
03 极限求法之因式分解法
适用于多项式函数情况
0/0型极限
高等数学中函数极限的求法技巧解析
高等数学中函数极限的求法技巧解析
函数极限是高等数学中的重要概念,也是其他数学领域的基础。
在计算函数极限时,有一些常用的技巧和方法,可以帮助我们更快地求解极限问题。
下面是一些常用的函数极限求法技巧。
1. 代入法:当函数极限中存在形如"0/0"或"无穷大/无穷大"的不定型时,可以尝试使用代入法求解。
即将函数中的变量逐渐靠近极限值进行代入,计算出函数在极限点附近的取值,进而得到极限结果。
2. 无穷小代换法:当函数极限中含有无穷大或无穷小的项时,可以使用无穷小代换法进行求解。
即将无穷大或无穷小项替换为相应的无穷小量,对含有无穷大或无穷小的函数进行化简,再进行极限计算。
3. 分子分母除以最高幂次法:当函数极限中含有多项式的幂次较高时,可以尝试使用分子分母除以最高幂次的方法进行化简。
将函数中的每一项均除以该最高幂次,使得函数的分子和分母变为相对较小的多项式,从而更便于求解极限。
4. 辅助函数法:当函数极限较复杂时,可以尝试构造一个辅助函数来辅助求解。
通过适当选择辅助函数,将原函数转化为一个更简单的形式,再求解极限。
5. 夹逼定理:夹逼定理是函数极限求解的重要工具,适用于求解某些特殊的函数极限。
当函数的上下界均存在且极限相等时,可以通过夹逼定理求出函数的极限。
6. 泰勒级数展开法:当函数极限中含有三角函数、指数函数等特殊函数时,可以尝试使用泰勒级数展开法进行求解。
通过将特殊函数展开为无穷级数的形式,可以将原函数转化为一个容易求解的形式,再进行极限计算。
高等数学中几种求极限的方法
高等数学中几种求极限的方法一、直接代入法这种方法超级简单,就是当函数在某一点连续的时候,直接把那个点的值代入函数里就好啦。
比如说啊,对于函数f(x)=x+1,当我们求x趋近于1的极限的时候,直接把1代入函数,就得到极限是2啦。
就像你走在路上,看到一个敞开的门,直接就可以走进去一样轻松。
二、因式分解法有时候函数看起来很复杂,但是我们可以对它进行因式分解呢。
比如说求lim(x→1)(x² - 1)/(x - 1),这个时候我们可以把分子因式分解成(x + 1)(x - 1),然后和分母的(x - 1)约掉,就变成了求lim(x→1)(x + 1),再用直接代入法就得到极限是2啦。
这就好比整理杂乱的房间,把东西整理好了,就很容易找到我们想要的啦。
三、有理化法当函数里有根式的时候,这个方法就很有用啦。
例如求lim(x→0)(√(1 + x)- 1)/x,我们可以把分子有理化,分子分母同时乘以(√(1 + x)+ 1),这样分子就变成了1 + x - 1 = x,然后和分母的x约掉,就得到极限是1/2啦。
这就像是给一个不太好看的东西化个妆,让它变得好看又好处理。
四、两个重要极限法1. 第一个重要极限是lim(x→0)sinx/x = 1。
这个极限超级重要哦。
比如说求lim(x→0)sin3x/x,我们可以把它变成3lim(x→0)sin3x/3x,根据第一个重要极限,就得到极限是3啦。
2. 第二个重要极限是lim(x→∞)(1 + 1/x)^x = e。
要是遇到类似lim(x→∞)(1+ 2/x)^x这种的,我们可以把它变形为lim(x→∞)[(1 + 2/x)^(x/2)]²,就等于e²啦。
这两个重要极限就像是数学世界里的宝藏,掌握了就能解决好多问题呢。
五、等价无穷小替换法当x趋近于0的时候,有好多等价无穷小的关系。
比如sinx和x是等价无穷小,tanx和x也是等价无穷小,ln(1 + x)和x也是等价无穷小等等。
函数极限的求法及技巧总结
函数极限的求法及技巧总结函数极限是高等数学的一个重要概念,它在微积分、实分析等许多领域都有着广泛的应用。
在计算函数极限时,需要掌握一些求法和技巧。
本篇文章将对此进行总结。
1. 直接代入法直接代入法是最基本也是最简单的一种方法,它适用于可以直接将自变量代入函数中计算得到结果的情况。
例如,当求函数f(x) = x² + 3x + 2在x = 1处的极限时,我们可以直接将x = 1代入函数中,得到f(1) = 1² + 3×1 + 2 = 6。
因此,f(x)在x = 1处的极限为6。
2. 分式化简法分式化简法是一种常用的求极限的方法,它适用于形如“分式”的函数。
3. 夹逼定理夹逼定理是一种常用的求极限的方法,它适用于当我们无法通过代入或化简等方法直接求出函数极限时。
夹逼定理的思想是:若存在函数g(x)和h(x),满足 g(x) ≤ f(x) ≤ h(x)且limx→a g(x) = limx→a h(x) = L,那么limx→a f(x) = L。
4. 洛必达法则其中,f'(x)和g'(x)分别表示f(x)和g(x)的导数。
例如,当求函数f(x) = (e^x - 1) / x在x = 0处的极限时,我们可以将f(x)表达为g(x) / h(x)的形式,即g(x) = e^x - 1,h(x) = x,然后计算g'(x)和h'(x),得到 g'(x) = e^x,h'(x) = 1。
因此,根据洛必达法则,我们得到limx→0 f(x) = limx→0 [e^x / 1] = 1。
5. 泰勒展开法泰勒展开法是一种常用的求函数极限的方法,它适用于当函数在极限点左右存在二阶及以上的导数时。
泰勒展开法的思想是:当limx→a f(x)存在时,可以将函数f(x)在a附近进行泰勒展开,得到f(x) = f(a) + f'(a)×(x - a) + f''(a)×(x - a)² / 2 + …… + Rn(x),其中Rn(x)为余项。
高等数学极限求法总结
高等数学极限求法总结本站小编为你整理了多篇相关的《高等数学极限求法总结》,但愿对你工作学习有帮助,当然你在本站还可以找到更多《高等数学极限求法总结》。
第一篇:6利用函数连续性(就是直接将趋向值带出函数自变量中,此时要要求分母不能为0)描述函数的一种连绵不断变化的状态,即自变量的微小变动只会引起函数值的微小变动的情况。
确切说来,函数在某点连续是指:当自变量趋于该点时,函数值的极限与函数在该点所取的值一致。
例1设 f(x)=xsin 1/x + a,x<0,b+1,x=0,x^2-1,x<0,试求:当a,b为何值时,f(x)在x=0处的极限存在?当a,b为何值时,f(x)在x=0处连续?注:f(x)=xsin 1/x +a, x< 0b+1, x=0X^2-1, x>0解:f(0)=b+1左极限:lim(x→0-) f(x)=lim(x→0-) (xsin(1/x)+a)=0+a=a左极限:lim(x→0+) f(x)=lim(x→0+) (x^2-1)=0-1=-1f(x)在x=0处连续,则lim(x→0-) f(x)=lim(x→0+) f(x)=f(0),所以a=-1=b+1,所以a=-1,b=-2第二篇:函数极限的四则运算法则学案课题:§13-3函数极限的四则运算法则(一)学习目标:掌握函数极限的运算法则,并会求简单的函数的极限学习重点:运用函数极限的运算法则求极限学习难点:函数极限法则的运用学习过程一、知识复习1.复习数列极限的四则运算法则(包括乘方的极限的法则).2.复习几个简单函数的极限.即:二、课堂学习1.指导对上述定理的证明作简要说明.2.探究问题1 根据函数极限定义和函数的图象,说出下列极限,并验证所给结论.(其中f(x)为有理分函数).所以,若f(x)为有理整函数,则有解:因为当x→x0时,分子、分母皆有极限且分母的极限不为零,因此有判断下列各极限是否存在?如果存在,求其极限;如果不存在,说明理由.三、检测1.求下列极限:2.求下列极限:四、学习小结第三篇:2利用洛必达法则洛必达(L Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法.简单讲就是,在求一个含分式的函数的极限时,分别对分子和分母求导,在求极限,和原函数的极限是一样的。
高等数学 求极限方法小结及举例
11
x = f ′( t ) d2y 例 12 . f ′′( t ) ≠ 0 求 . 2 dx y = t f ′( t ) − f ( t ) d y y′( t ) f ′( t ) + t f ′′( t ) − f ′( t ) 解. = = =t d x x′( t ) f ′′( t )
2
t =π − x −1 2 t ========= lim t →0 cot t
tan t = − lim = −1 . t →0 t
"∞" ∞
例 7 . lim ( x ⋅ cot x )
x →0
x = lim =1. x →0 tan x
( 有界量乘无穷小 )
"0⋅ ∞"
lim x cos 1 = 0 . x x →0
4 . "∞ ± ∞" 型 ,
1 ± 1 = f ( x ) ± g( x ) . f ( x ) g( x ) f ( x ) ⋅ g( x )
5 . " ( 1 ± 0 ) ∞ " 型 , 0 " "0 型, u( x ) v ( x ) = e v ( x )⋅ln u( x ) 6. (指数型) " ∞0 " 型 , 7. lim [v ( x )⋅ln u( x ) ] v( x )
n x n −1 sin 1 − x n − 2 cos 1 x>0 x x f ′( x ) = 0 x=0 n x n −1 x<0 ′( x ) = lim n x n −1 sin 1 − x n − 2 cos 1 lim f x x x → +0 x →+0
高数求极限的方法小结
解令 ,则原式 ,
所以在 时, 与 等价,因此,原式 .
[文档可能无法思考全面,请浏览后下载,另外祝您生活愉快,工作顺利,万事如意!]
高等数学中求极限的方法小结
2.求极限的常用方法
2.1利用等价无穷小求极限
#这种方法的理论基础主要包括:(1)有限个无穷小的和、差、积仍是无穷小.(2)有界函数与无穷小的乘积是无穷小.(3)非零无穷小与无穷大互为倒数.(4)等价无穷小代换(当求两个无穷小之比的极限时,分子与分母都可用等价无穷小代替).[3]
例36 ,求 .
解 .
例37若函数 有连续二阶导数且 , , ,
则 .
A:不存在B:0 C:-1D:-2
解 .
所以,答案为D.
例38若 ,求 .
解
.
2.16利用连续性求极限[1]
例39设 在 处有连续的一阶导数,且 ,求 .
解原式
.
2.17数列极限转为函数极限求解
数列极限中是 趋近,而不是 趋近.面对数列极限时,先要转化成求 趋近情况下的极限,当然 趋近是 趋近的一种情况而已,是必要条件.(还有数列极限的 当然是趋于正无穷的).[1]
(1)定积分中值定理:如果函数 在积分区间 上连续,则在 上至少有一个点,使下列公式成立: ;
(2)设函数 在区间 上连续,取 ,如果极限 存在,则称此极限为函数 在无穷区间 上的反常积分,记作 ,即 ;
设 在区间 上连续且 ,求以曲线 为曲线,底为 的曲边梯形的面积 ,把这个面积 表示为定积分: 的步骤是:
首先,用任意一组的点把区间 分成长度为 的 个小区间,相应地把曲线梯形分成 个窄曲边梯形,第 个窄曲边梯形的面积设为 ,于是有 ;
其次,计算 的近似值 ;
高等数学求极限方法理论小结
高等数学求极限方法理论小结摘要:求极限是高等数学的三大运算之一。
求极限的方法很多,本文根据学习的前后秩序,把教材涉及到求极限的所有方法进行了小结。
关键词:高等数学;极限运算一、概述高等数学是大学阶段最为重要也最难的一门数学公共基础课程,它是很多后继课程(如概率论与数理统计,大学物理,计量经济学等)的坚实基础。
本课程共分为12章,知识点繁多。
总的来说,可以归纳为三个“中心”,即求极限、求导数、求积分。
从这三个“中心”本身所用到的解题方法理论来看,以求极限的方法理论为最多,灵活且技巧性强。
另一方面,极限本身又是构建整个高等数学的基石。
所以,学习极限知识,掌握求极限的一些常用的重要的方法与技巧是必要的。
二、高等数学求极限方法理论小结极限知识的学习是从数列的极限开始的,以无穷级数中的一个必要条件定理为结束。
具体来讲,高等数学上册,关于极限内容及求法,主要集中在第一章,有数列的极限,函数的极限,无穷小与无穷大,极限运算法则,极限存在准则,两个重要极限,无穷小的比较,函数的连续性,连续函数的运算与初等函数的连续性;第三章中有洛必达法则,泰勒公式;第五章中有利用定积分的定义求极限。
而高等数学下册,在第12章第一节里,级数收敛的必要条件定理。
在求极限过程中,一般要对函数进行“恒等”变形,大致有:通分,约分,分子(分母)有理化,先求和,分子(分母)同时除以(乘以)等。
极限,是针对自变量的7种变化过程中的函数值的2种变化趋势而言的。
数列,自变量趋向于正无穷大;函数,自变量趋向于某个常数,包括左右两侧;自变量趋向于无穷大,包括正无穷大,负无穷大。
函数值的2种变化趋势:存在(为某个常数),不存在(特例,无穷大)。
下面,按照教程安排的先后秩序,把教程涉及到的求极限的所有方法理论小结如下(同时,对一些重要的方法理论加以说明):1.收敛数列与子数列的关系定理:若一个数列收敛于某个常数,则它的任意子数列必收敛于这个常数。
同时,它也提供了判断数列发散(即极限不存在)的一种方法:若一个数列的某两个子数列收敛于两个不同的常数,则原数列发散。
高等数学中求极限方法总结
高等数学中求极限方法总结高等数学第一章在整个高等数学的学习中都占有相当重要的地位,特别是极限,原因就是后续章节本质上都是极限。
一个经典的形容就是假如高等数学是棵树木的话,那么极限就是它的根,函数就是它的皮。
树没有跟,活不下去,没有皮,只能枯萎,可见极限的重要性。
故在这里总结了10种常用的求极限的方法并举例说明。
1、利用等价无穷小的转化求极限例:求极限x x x x 1cossin lim 20→。
解:x x x x 1cossin lim 20→x x x x 1cos lim 20→=xx x 1cos lim 0→==2注:通常在乘除时候使用,但是不是说一定在加减时候不能用,但是前提是必须证明拆分后极限依然存在,要记住常用的等价无穷小,例如当0→x 时,).(0~sin ,21~sin ,~3x x x x x tgx x tgx −−。
2、罗比达法则例:求极限∫→x x tdtx 020arctan 1lim 解:∫→x x tdt x 020arctan 1lim 21211lim 2arctan lim 200=+==→→x x t x x 例:求极限⎟⎠⎞⎜⎝⎛−−→11ln 1lim 1x x x 解:x x x x x x x x ln )1(ln 1lim 11ln 1lim 11−−−=⎟⎠⎞⎜⎝⎛−−→→21111lim 1ln 11lim 2211=+=−+−=→→xx x x x x x x x …注:使用罗比达法则必须满足使用条件,要注意分母不能为零,导数存在。
罗比达法则分为三种情况(1)0比0和无穷比无穷时候直接分子分母求导;(2)0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1的形式;(3)0的0次方,1的无穷次方,无穷的0次方,对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,)3、利用2个重要极限求极限例:求极限2)11(lim 22x x x x +−∞→解:211(lim 22x x x x +−∞→2)121(lim 2x x x +−+=∞→12212222])121[(lim +−−+∞→+−+=x x x x x 12lim 22+−∞→=x x x e 2−=e 。
求函数极限的方法总结(精选3篇)
求函数极限的方法总结(精选3篇)求函数极限的方法总结篇1(一) 四则运算法则四则运算法则在极限中最直接的应用就是分解,即将复杂的函数分解为若干个相对简单的函数和、积和商,各自求出极限即可得到要求的极限。
但是在分解的时候要注意:(1)分解的各部分各自的极限都要存在;(2)满足相应四则运算法则,(分母不能为0)。
四则运算的另外一个应用就是“抓大头”。
如果极限式中有几项均是无穷大,就从无穷大中选取起主要作用的那一项,选取的标准是选趋近于无穷最快的那一项,对数函数趋于无穷的速度远远小于幂函数,幂函数趋于无穷的速度远远小于指数函数。
(二) 洛必达法则(结合等价无穷小替换、变限积分求导)洛必达法则解决的是“零比零“或“无穷比无穷”型的未定式的形式,所以只要是这两种形式的未定式都可以考虑用洛必达法则。
当然,在用洛必达的时候需要注意:(1)它的三个条件都要满足,尤其要注意第二三个条件,当三个条件都满足的时候才能用洛必达法则;(2)用洛必达法则之前一定要先化简,把要求极限的式子化成“干净”的式子,否则会遇到越求导越麻烦的情况,有的甚至求不出来,所以一定要先化简。
化简常用的方法就是等价无穷小替换,有时也会用到四则运算。
考生一定要熟记常用的等价无穷小,以及替换原则(乘除因子可以替换,加减不要替换)。
考研中,除了也常常会把变限积分和洛必达相结合进行考查,这种类型的题目,首先要考虑洛必达,但是我们也要掌握变限积分求导。
另外,考试中有时候不直接考查“零比零“或“无穷比无穷”型,会出“零乘以无穷”,“无穷减无穷”这种形式,我们用的方法就是把他们变成“零比零“或“无穷比无穷”型。
(三) 利用泰勒公式求极限利用泰勒公式求极限,也是考研中常见的方法。
泰勒公式可以将常用的等价无穷小进行推广,如(四) 定积分定义考研中求n项和的极限这类题型用夹逼定理做不出来,这时候需要用定积分定义去求极限。
常用的是这种形式只要把要求的极限凑成等是左边的形式,就可以用定积分去求极限了。
求函数极限的方法总结
求函数极限的方法总结求函数极限是微积分中的一个重要内容,也是解决实际问题的关键步骤之一。
在求函数极限的过程中,我们有许多方法和技巧可供选择。
本文将总结几种常用的方法,帮助读者更好地理解和应用这些方法。
一、直接代入法直接代入法是求函数极限最简单、最常见的方法之一。
它适用于函数在某个点处定义和连续的情况。
具体的步骤是,将极限的自变量值代入函数中,计算出函数在该点的函数值就得到了极限的结果。
举个例子,考虑函数f(x) = 2x + 1,我们来求极限lim(x→2)[f(x)]。
根据直接代入法,我们将2代入f(x),得到的结果为f(2) = 2(2) + 1 = 5。
所以,lim(x→2)[f(x)] = 5。
二、无穷小量法无穷小量法是通过将函数转化为无穷小量的形式来求解极限。
这种方法适用于函数在某个点处不连续的情况。
具体的步骤是,根据函数的性质,将其转化为与自变量趋于0时等价的无穷小量表达式,再求极限。
以求解lim(x→0)[sin(x)/x]为例,我们可以通过以下步骤来进行。
首先,我们知道当x趋于0时,sin(x)也趋于0,所以可以将sin(x)/x转化为无穷小量表达式。
我们知道sin(x)/x的极限等于1,因此lim(x→0)[sin(x)/x] = 1。
三、夹逼定理夹逼定理是一种常用的求函数极限的方法,特别适用于我们无法直接计算函数极限的情况。
夹逼定理的核心思想是,通过找到两个函数,一个从上方夹逼住待求极限函数,一个从下方夹逼住待求极限函数,进而确定出待求极限的结果。
举个例子,考虑求解lim(x→0)[xsin(1/x)]。
我们可以发现,-|x| ≤xsin(1/x) ≤ |x|。
根据夹逼定理,由于当x趋近于0时,-|x|和|x|都趋近于0,所以lim(x→0)[-|x|]和lim(x→0)[|x|]的极限都等于0。
根据夹逼定理,我们可以得出lim(x→0)[xsin(1/x)]的极限也为0。
四、洛必达法则洛必达法则是用于求解函数极限的常用方法之一,它适用于求解0/0型或∞/∞型的极限。
高等数学极限求法总结
高等数学极限求法总结在高等数学中,极限是一个至关重要的概念,它在微积分、数学分析等领域中扮演着重要角色。
极限求法是数学学习中的一个关键技能,通过正确的方法和技巧能够更快地求解各种极限问题。
本文将系统总结常见的极限求法,包括极限的基本性质、洛必达法则、泰勒展开等内容,帮助读者更好地掌握和运用极限求法。
一、极限的基本性质1. 有界性如果一个函数在某点的一个邻域内有界,那么该函数在该点的极限存在且有限。
2. 夹逼准则如果函数f(x)在点a的某个邻域内除a点以外都满足0≤g(x)≤f(x)≤h(x),并且lim[g(x)]=lim[h(x)]=L,则由夹逼准则可得lim[f(x)]=L。
二、洛必达法则洛必达法则常用来解决0/0型或∞/∞型的极限。
若lim[f(x)]=0, lim[g(x)]=0,并且lim[f’(x)/g’(x)]存在,则lim[f(x)/g(x)]=lim[f’(x)/g’(x)]。
三、泰勒展开泰勒展开是在某一点附近用多项式逼近一个函数的方法。
简单来说,就是用一个多项式不断逼近原函数,使得在该点附近它们的表现尽量接近。
泰勒展开的公式如下:f(x)≈f(a)+f’(a)(x-a)+f’’(a)(x-a)2/2!+⋯+f n(a)(x-a)^n/n!+Rn(x)其中,f(x)是原函数,a是展开的点,f^(n)(a)表示f(x)在点a处的n阶导数,Rn(x)是泰勒余项,即多项式逼近的误差。
通过以上总结,我们可以看到,极限求法涉及到多方面的知识和技巧,需要结合具体问题选择合适的方法进行求解。
掌握极限求法不仅可以帮助我们更好地理解函数的性质,还可以在数学建模、物理学等领域中发挥重要作用。
希望通过本文的总结,读者能够更加熟练地运用各种极限求法,提升自己的数学水平。
高等数学中函数极限的求法技巧解析
高等数学中函数极限的求法技巧解析
函数极限是高等数学中的重要内容,它可以用来研究函数的性质和趋势。
对于函数极限的求法,有很多技巧和方法,下面将对其中的一些常用技巧进行解析。
1. 代入法:对于一些简单的函数,可以直接代入趋于极限的点来求极限。
比如对于多项式函数f(x)=ax^n+bx^{n-1}+...+c,在x=a处的极限为f(a)=a^n+ba^{n-1}+...+c。
2. 分解因式法:对于一些复杂的函数,可以通过分解因式来简化求极限的过程。
比如对于f(x)=\frac{sinx}{x},可以分解为f(x)=\frac{sinx}{x}*\frac{1}{1},然后再进行代入。
5. 夹逼法:对于一些复杂函数,可以通过构造夹逼的方式来求极限。
夹逼法的基本思想是找到两个函数,一个上确界为极限,一个下确界为极限,然后通过这两个函数的极限来求解。
比如对于f(x)=sinx,可以通过夹逼法得到-1\le sinx \le 1,从而求得极限为f(x)=0。
这些是高等数学中函数极限的一些常用求法技巧,通过灵活运用这些技巧,可以更快更准确地求解函数的极限。
在实际应用中,还需要根据具体情况选择合适的方法和技巧,以求得更好的结果。
求极限的方法小结
求极限的方法小结第一篇:求极限的方法小结求极限的方法小结要了解极限首先看看的定义哦 A.某点处的极限与该点处有无定义和连续无关,但在该点周围(数列除外)的必某点处的极限与该点处有无定义和连续无关,某点处的极限与该点处有无定义和连续无关但在该点周围(数列除外)须连续 B.了解左右极限的定义了解左右极限的定义C.极限的四则和乘方运算D.区别数列极限与函数极限的不同之处D.区别数列极限与函数极限的不同之处E.注意自变量在趋近值的微小范围内注意自变量在趋近值的微小范围内,E.注意自变量在趋近值的微小范围内,可以利用它同 B 一起去绝对值1、代入法——在极限点处利用函数的连续性求极限——在极限点处利用函数的连续性求极限、代入法—— Lim(x+1)=2(x->1)2.约分法——分解因式Lim(x2-1)/(x-1)=2(x->1)约分法————分解因式这只是最简单的约分法,同时还有分母,分子有理化。
通分后在用约分法)(这只是最简单的约分法,同时还有分母,分子有理化。
通分后在用约分法)3.利用图象——反比例函数、指数、对数、三角函数。
利用图象——反比例函数、指数、对数、三角函数。
——反比例函数Lim1/x=0(x->∞),limax=0(1-∞)、limarctanx=π/2(x->∞)、4 2 4 3 Lim(4x +x +1)/(x +x +1)=(4+1/x 2 +1/x 4)/(1+1/x+1/x4)=4(x->∞)4、比值法、Lima n/n!(n->∞,a>0)因为(因为(a n+1 /(n+1)!)/(a n/n!)=a/(n+1)(n->∞,a>0)()))n+1 n 所以0<(a /(n+1)!)/(a /n!)=a/(n+1)<1 所以Lima n/n!=0(()))n 2(求 limn /n!=_(n->∞)求5、极限与导数——利用导数的定义Lim(e x-1)/x=(ex)、(x=0)=1(x->0)——利用导数的定义、极限与导数——()6.有界函数与无穷小的积仍为无穷小Limsinx/x=0(x->-∞)7.利用等价无穷小X~sinx~tanx~arctanx ~ e x-1~ln(x+1),1-cosx~1/2*x 2 ,(1+ax)b-1~abx, a x-1~xlna< x->0> Limtan 2 x/(1-cosx)=2(x->0)(在利用无穷小时注意它不是充分必要的即应用无穷小转化后若极限不存不能得到原极限不存在)在,不能得到原极限不存在)8.利用重要极限利用重要极限____lim(1+x)1/x=e(1 ∞)利用重要极限Lim(1+sin2x)x2=elim sin2x/x2(解释sin2x/x2)=e(中间的配凑略中间的配凑略)解释中间的配凑略1/f(x)limg(x)/f(x)Lim(1+g(x))=e(g(x),f(x)都是无穷小都是无穷小)都是无穷小∞(1 是很重要的一个极限,它可以用取对数法,还有就是上面的取对数法是幂指是很重要的一个极限,它可以用取对数法,还有就是上面的.取对数法是幂指函数的通法,时上述方法就显得更简单了恩)函数的通法,当看见1∞时上述方法就显得更简单了恩)9.利用洛比达法则可转化为0/0, ∞/∞型)利用洛比达法则(可转化为 Lim=x/sinx(x->0)利用洛比达法则型洛比达法则哈只需稍微的转化哈。
求极限的方法总结
极限是数学分析中的重要概念,也是微积分的基础。
求极限的方法有很多种,下面将对常用的几种方法进行总结和解析。
1. 直接代入法直接代入法是最基本的求极限方法,适用于函数单调、连续,且直接代入可知极限值的情况。
具体步骤如下:(1)将极限表达式中的变量替换为具体的数值。
(2)根据函数的定义和性质,计算替换后的表达式。
(3)得出极限值。
2. 因式分解法因式分解法适用于有理函数的极限求解,通过分解函数,消除分子、分母中的共同因子,简化极限表达式。
具体步骤如下:(1)对有理函数进行因式分解。
(2)对分解后的表达式进行约分,消除共同因子。
(3)根据约分后的表达式求极限。
3. 泰勒公式法泰勒公式法是利用泰勒公式将函数展开,近似表示函数在某一点附近的值,从而求解极限。
具体步骤如下:(1)确定函数在某一点附近的泰勒展开式。
(2)根据泰勒展开式求极限。
4. 洛必达法则洛必达法则(L’Hôpital’s Rule)适用于求解“0/0”或“∞/∞”形式的极限。
该法则通过对分子、分母同时求导,将极限问题转化为导数的极限问题。
具体步骤如下:(1)判断极限形式是否为“0/0”或“∞/∞”。
(2)对分子、分母分别求导。
(3)将求导后的表达式代入原极限表达式。
(4)求解新的极限表达式。
5. 夹逼定理夹逼定理(Squeeze Theorem)适用于求解形如“f(x) = (g(x))/(h(x))”,且当x趋向于某一点时,g(x)和h(x)分别趋向于a和b(a ≠ b)的极限。
具体步骤如下:(1)找到两个函数p(x)和q(x),使得p(x) ≤ f(x) ≤ q(x)。
(2)证明当x趋向于某一点时,p(x)和q(x)分别趋向于a和b。
(3)根据夹逼定理,得出f(x)趋向于a。
6. 有界函数法有界函数法适用于求解形如“f(x) = g(x)/h(x)”,且当x趋向于某一点时,g(x)趋向于0,h(x)趋向于无穷大的极限。
具体步骤如下:(1)证明g(x)在x趋向于某一点时趋向于0。
高数:总结求极限的常用方法
总结求极限的常用方法,详细列举,至少4种极限定义法泰勒展开法。
洛必达法则。
等价无穷小和等价无穷大。
极限的求法1. 直接代入法适用于分子、分母的极限不同时为零或不同时为例 1. 求1 极限分为一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种)2解决极限的方法如下1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。
(x趋近无穷的时候还原成无穷小)2落笔他法则首先他的使用有严格的使用前提!!!!!!必须是X趋近而不是N趋近!!!!!必须是函数的导数要存在!!!!!!!!必须是0比0 无穷大比无穷大!!!!!!!!!当然还要注意分母不能为0落笔他法则分为3中情况1 0比0 无穷比无穷时候直接用2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了3 0的0次方1的无穷次方无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)E的x展开sina 展开cos 展开ln1+x展开对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则最大项除分子分母!!!!!!!!!!!看上去复杂处理很简单!!!!!!!!!!5无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6夹逼定理(主要对付的是数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
大一高数求极限的方法总结
大一高数求极限的方法总结大一高等数学中,求极限是一个非常重要的概念和技巧。
在学习求极限的过程中,我们需要掌握一些基本的方法和技巧。
下面是对一些常用的求极限方法进行总结。
一、无穷小量代换法当我们在求一个函数的极限时,可以将函数中的无穷小量用一个新的无穷小量来代替,从而简化计算。
例如,当求极限lim(x->0)(sinx)/x时,可以将sinx用x来代替,即lim(x->0)x/x=1二、夹逼定理夹逼定理是一种非常常用的求极限方法。
当我们无法直接计算一个函数的极限时,可以通过找到两个已知的函数,使它们的极限分别为L和L’,并且夹在待求函数的极限值周围时,我们可以得出待求函数的极限也为L。
三、洛必达法则洛必达法则是一种非常常用的求导法则,它可以用来求解一些不定型的极限。
当我们在计算一个函数的极限时,如果得到的结果为0/0或者∞/∞的形式,那么我们可以使用洛必达法则来求解极限。
具体做法是对分子和分母同时求导,并再次计算极限,直到得到一个有限的值。
四、泰勒展开法当我们计算一些函数在一点的极限时,可以使用泰勒展开来逼近函数的值。
泰勒展开是将一个函数表示为无限项的级数,通过截取有限项来逼近函数的值。
这样可以大大简化我们的计算过程。
五、换元法有时候我们可以通过进行一些变量的替换来改变函数的形式,从而更容易求解极限。
例如,当我们计算lim(x->0)(3^(2x)-2^x)时,可以令y=2^x,然后再进行计算,就可以得到较为简单的表达式。
六、分数的极限当我们计算一个函数的极限时,如果得到的结果为一个分数形式,可以进行有理化来方便我们的计算。
有理化的方法有分子分母同时乘以一些适当的因式、差化积等。
七、级数化积当我们计算一个函数的极限时,通常可以将函数展开为一个级数,然后进行计算。
例如,当我们计算lim(x->0)(e^x-1)/x时,可以将e^x展开为一个级数,再进行计算。
八、寻找特殊点有时候我们可以通过找到一些特定的点来计算极限。
高数求极限的方法总结
高数求极限的方法总结
求极限的方法总结如下:
1. 代入法:将极限中的变量代入函数中进行计算,看是否能得到确定的值。
2. 夹逼定理:当函数夹在两个其他已知函数之间时,如果这两个函数的极限相等,则函数的极限也相等。
3. 幂指函数的极限:根据函数的幂指形式,分别考虑底数和指数的极限。
4. 分子分母除以最高幂次项:将分子和分母都除以最高幂次项,可以简化计算,并得到函数的极限。
5. 极限的四则运算法则:对于四则运算中的极限,可以将它们分别计算求得极限,然后应用四则运算法则得到最终结果。
6. 奇偶函数的极限:奇函数的极限可表示为对称轴两侧的函数极限之和,偶函数的极限可表示为对称轴两侧的函数极限相等。
7. 自然对数的极限:自然对数的极限是1。
8. e的极限:e是一个常数,其极限是e。
9. 无穷小量的极限:无穷小量的极限为0。
10. 级数的极限:当级数的通项趋于0,且满足柯西准则时,级数收敛。
请注意,在应用这些方法时,需要注意条件的合理性和适用范围,并进行必要的证明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于高等数学中求极限的方法小结This manuscript was revised on November 28, 2020高等数学中求极限的方法小结2.求极限的常用方法 利用等价无穷小求极限这种方法的理论基础主要包括:(1)有限个无穷小的和、差、积仍是无穷小.(2)有界函数与无穷小的乘积是无穷小.(3)非零无穷小与无穷大互为倒数.(4)等价无穷小代换(当求两个无穷小之比的极限时,分子与分母都可用等价无穷小代替).[3]设αα'~、~ββ'且limlim ββαα'=;则:β与α是等价无穷小的充分必要条件为:0()βαα=+.常用等价无穷小:当变量0x →时,21sin ~,tan ~,arcsin ~,arctan ~,1~,ln(1)~,1cos ~,2x x x x x x x x x e x x x x x -+-~,(1)1~x x x αα+-.例1 求01cos limarctan x xx x→-.解 210,1cos ~,arctan ~2x x x x x →-时, 故,原式220112lim 2x xx →==例2 求1230(1)1limcos 1x x x →+--.解 12223110,(1)1~,1cos ~32x x x x x →+--时,因此: 原式202123lim 132x xx→==-.例3 求1limtan x x→. 解 0,x →时11~,tan ~3x x x ,故:原式=0113lim3x xx →=.例4 求()21lim2ln(1)x x e x x →-+.解 0,1~,ln(1)~x x e x x x →-+时,故:原式2201lim 22x x x →==.例5 试确定常数a 与n ,使得当0x →时,n ax 与33ln(1)x x -+为等价无穷小.解 330ln(1)lim 1n x x x ax →-+= 而左边225311003331lim lim n n x x x x x x nax nax--→→-+--=, 故 15n -=即6n = 0331lim 11662x a a a →--∴=∴=∴=-.利用洛必达法则求极限利用这一法则的前提是:函数的导数要存在;为0比0型或者∞∞型等未定式类型. 洛必达法则分为3种情况:(1)0比0,无穷比无穷的时候直接用.(2)0乘以无穷,无穷减去无穷(无穷大与无穷小成倒数关系时)通常无穷大都写成无穷小的倒数形式,通项之后,就能变成(1)中形式了.(3)0的0次方,1的无穷次方,无穷的0次方,对于(指数,幂函数)形式的方法主要是取指数的方法,这样就能把幂函数指数位置的函数移下来了,就是写成0与无穷的形式了.洛必达法则中还有一个定理:当x a →时,函数()f x 及()F x 都趋于0;在点a 的某去心邻域内,()f x ﹑()F x 的导数都存在且()F x 的导数不等于0;()lim()x af x F x →''存在,那么()()limlim ()()x ax a f x f x F x F x →→'=' . [1]求极限有很多种方法如洛必达法则,夹逼定理求极限的秘诀是:强行代入,先定型后定法. [3]例6 求22201cos lim()sin x xx x →-. 分析 秘诀强行代入,先定型后定法.22224431100(00)(00)0000000000-+--+-===(此为强行代入以定型).()00-可能是比()00+高阶的无穷小,倘若不这样,或422(00)(00)0000000+--+= 或43(00)(00)0000000+-+-=. 解 2222222240001cos sin cos (sin cos )(sin cos )lim()lim lim sin sin x x x x x x x x x x x x x x x x x x →→→--+-==33000sin cos sin cos sin cos limlim 2lim x x x x x x x x x x x xx x x→→→-+-==, 由洛必达法则的22222001cos sin 4sin 42,2limlim 333x x x x x x x →→-+==有:上式=. 例7 求201lim x x e x x→--.解 22000(1)1lim lim 1lim 1()21x x x x x x e e e x x x x x→→→'--==-∴=-'--- . 例8 求332132lim 1x x x x x x →-+--+.解 原式22113363lim lim 321622x x x x x x x →→-===---.(二次使用洛必达法则). 例9 求02lim sin x x x e e xx x-→---.解 原式0002limlim lim 21cos sin cos x x x x x xx x x e e e e e e x x x ---→→→----====-. 例10 求22143lim 21x x x x x →-+-+.解 原式1112422limlimlim02211x x x x x x x x x →→→---===∴---原式=∞. 例11 求0tan lim sin arcsin x x xx x x →-.解 原式222222220000111(1cos)tan 1cos 1cos 2lim lim lim lim 33cos 3cos 3x x x x x x x x x xxx x x x x x →→→→-+--=====. 例12 求0cot lim ln x xx+→.解 原式22200sin cos 1lim lim sin 2sin cos x x x x x x x x++→→---===-∞.例13 求22201cos lim()sin x xx x→-. 解 原式22222400sin cos (sin cos )(sin cos )lim lim sin x x x x x x x x x x x xx x →→--+==“0⨯∞”型:例14 求lim (arctan )2x x x π→+∞-. 解 原式2221arctan 112lim lim lim 11111x x x x x xx xπ→+∞→+∞→+∞-+====+. “∞-∞”型:例15 求 ()2lim sec tan x x x π→-. 解 1sin 1sin sec tan cos cos cos x xx x x x x--=-=, 故原式221sin cos limlim 0cos sin x x x x x x ππ→→--===-.“00”型: 例16 求0lim x x x +→.解 原式ln 0lim ln ln 0lim lim 1x xxx e x x xx x e e e+→++→→====.“1∞”型:例17 求lim 1xx e x →∞⎛⎫+ ⎪⎝⎭.解 原式lim 1x e ee x e e x →∞⎛⎫=+= ⎪⎝⎭.“0∞”型:例18 求tan 01lim ()x x x+→. 解 原式tan ln tan 01lim ln()tan ln 0lim lim x xxx e x xxx x e e e-+→++-→→===,而tan ~0lim(tan ln )lim(ln )0x x x x x x x x ++→→-−−−→-=,因此:原式=1.泰勒公式(含有e 的x 次方的时候,尤其是含有正、余弦的加减的时候要特别注意) 泰勒中值定理定理:如果函数()f x 在含有n 的某个开区间(,)a b 内具有直到(1)n + 阶的导数,则对任一(,)x a b -∈,有()f x =0()f x +0()f x '(x -0x )+0()2!f x ''(x -0x )2+……+()0()!n f x n (x -0x )n +n R (x )其中()()()(1)10()1!n n n f R x x x n ξ++=-+,这里ξ是x 与0x 之间的某个值. [1]例19 利用带有佩亚诺型余项的麦克劳林公式,求极限30sin cos limsin x x x xx→-. 解 由于公式的分母33sin ~(0)x x x →,我们只需将分子中的3333sin 0(),cos 0()3!2!x x x x x x x x x =-+=-+代入计算,于是 3333331sin cos 0()0()0()3!2!3x x x x x x x x x x x -=-+-++=+,对上式做运算时,把两个3x 高阶的无穷小的代数和还是记作30()x .例20 323322314334lim lim 3211211x x x x x x x x x x x x →∞→∞++++==++++++, 2222111lim lim 121(1)1x x n n n n n→∞→∞++==--+, ()121(2)313limlim (2)332233nn nn n n x x ++→∞→∞⎛⎫-+ ⎪-+⎝⎭==-+⎛⎫--+ ⎪⎝⎭. 无穷小与有界函数的处理方法面对复杂函数,尤其是正、余弦的复杂函数与其它函数相乘的时候,一定要注意这个方法.[3]例21 求 sin limx x xx→∞+.解 原式sin 1lim(1)lim(1sin )1x x x x x x→∞→∞=+=+=. 夹逼定理主要介绍的是如何用之求数列极限,这个主要是看见极限中的通项是方式和的形式,对之放缩或扩大.[1]例22 求2sin sin sin lim ...1112n n n n n n n πππ→∞⎛⎫⎪+++ ⎪+ ⎪++⎝⎭. 解 111sin sin sin 11n n ni i i i i i n n n n n o n iπππ===≤≤+++∑∑∑, 1011sin 12lim lim sin nn n n i i i i n n x dx n o n nππππ→∞→∞====⋅=+∑∑⎰,1011sin 112lim lim 1sin 11nn n n i i i i n x dx n n n n ππππ→∞→∞==⎫⎛=⋅=⋅⋅= ⎪++⎝⎭∑∑⎰, 根据夹逼定理 1sin2lim 1nx i i n n iππ→∞==+∑. 等比等差数列公式(δ的绝对值要小于1) [1]例23 设1||<δ,证等比数列1,δ,2δ1n δ-,…的极限为0.证 任取01δ<<,为使n x a ε-<,而nn x a δ-=,使nδε<,即ln ln ln ,ln n n εδεδ<>,当ln ln N εδ⎡⎤=⎢⎥⎣⎦,当n N >时,即ln ln 11ln ln n N εεδδ⎡⎤≥+=+>⎢⎥⎣⎦, ln ln nn δεδε<⇒<即n x a ε-<, 由定义知()lim 10n δδ<=()()22......lim ...11n n n δδδδδδδδδ→∞++=++=<-.因此,很显然有:()0.99...lim 0.99...1n n→∞==.各项以拆分相加[3]将待求的和式子的各项拆分相加来消除中间的大多数,主要应用于数列极限,可以使用待定系数来拆分简化函数.例24 求()111lim 1...2*33*41n n n →∞⎛⎫++++ ⎪ ⎪+⎝⎭. 解 原式111111lim 1 (2334)1n n n →∞⎛⎫=+-+-++- ⎪+⎝⎭ =32. 求左右极限的方式例25 求函数⎪⎩⎪⎨⎧>+=<-=0,10,00,1)(x x x x x x f ,求0x →时,()f x 的极限.解 ()()0lim lim 11x x f x x --→→=-=-,()()0lim lim 11x x f x x ++→→=+=, 因为()()0lim lim x x f x f x ++→→≠,所以,当0→x 时,)(x f 的极限不存在. 例26 ()0lim0x x x xαα→>.解 0)(lim )(lim 00=-=---→→ααx x x x x x ,0lim lim 00==++→→ααx x x x x x , 因为0lim )(lim 00==-+-→→xxx x x x x x αα,所以,原式=0. 应用两个重要极限1sin lim 0=→x x x ,1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭ 例27 求xe x x 1lim 0-→.解 记()ln 1x t =+ 1x e t -=,则原式=1001limlim 111ln 1t t t tt t →→==+⎛⎫+ ⎪⎝⎭()1lim 1x x x e →∞⎛⎫+= ⎪⎝⎭因为. 例28 求1lim 11nn n →∞⎛⎫+ ⎪+⎝⎭. 解 原式=()111lim 11n n n +-→∞⎛⎫+ ⎪+⎝⎭=e .例29 求1lim 1-1nn n →∞⎛⎫+ ⎪⎝⎭. 解 原式=()111lim 1-1n n n -+→∞⎛⎫+ ⎪⎝⎭=e .根据增长速度 )(ln ∞→<<x e x x xn λ例30 求()lim 0nx x x n eλλ→∞>为正整数,.解 原式=1lim n x x nx e λ-→∞=()221!lim lim 0n x n x x x n n x n e eλλλλ-→∞→∞-==. 例31 求()ln lim0nx xn x →∞>.解 01lim lim ln lim 11===∞→-∞→∞→n x n x x n x nxnx x x .同函数趋近于无穷的速度是不一样的,x 的x 次方快于!x (x 的阶乘)快于指数函数,快于幂函数,快于对数函数.所以增长速度: )(ln ∞→<<x e x x xn λ.故以后上述结论可直接在极限计算中运用. 换元法例32 1lim (1)x x x→-∞+.解 令x t =-,则原式=1lim 1t t t -→+∞⎛⎫- ⎪⎝⎭1lim t t t t -→+∞-⎛⎫= ⎪⎝⎭111lim 1111t t t t -→+∞⎛⎫⎛⎫=+⋅+ ⎪ ⎪--⎝⎭⎝⎭=e利用极限的运算法则[1]利用如下的极限运算法则来求极限: (1)如果()()lim ,lim ,f x A g x B ==那么B A x g x f x g x f ±=±=±)(lim )(lim )]()(lim[ 若又有0≠B ,则BAx g x f x g x f ==)(lim )(lim )()(lim(2)如果)(lim x f 存在,而c 为常数,则)(lim )](lim[x f c x cf = (3)如果)(lim x f 存在,而n 为正整数,则n n x f x f )]([lim )](lim [= (4)如果)()(x x ϕδ≥,而b x a x ==)(lim ,)(lim ϕδ,则b a ≥ (5)设有数列{}n x 和{}n y ,如果()lim ;n n n x y A B →∞+=+那么,()lim ;n n n x y A B →∞+=+lim n n n x y A B →∞=⋅当()01,2,...n y n ≠=且0b ≠时,limn n n x A y B→∞= 求数列极限的时候可以将其转化为定积分[1]例33 已知()f x = ,在区间[]0,1上求()01lim ni i i f x λξ→=∆∑(其中将[]0,1分为n 个小区间[]1,i i x x -,1i i i x x ξ-≤≤,λ为i x ∆中的最大值).解 由已知得: ()()11lim ni i i f x f x dx λξ→=∆=∑⎰4π=.(注释:由已知可以清楚的知道,该极限的求解可以转化为定积分,求函数()f x 在区间[]0,1上的面积).在有的极限的计算中,需要利用到如下的一些结论、概念和方法:(1)定积分中值定理:如果函数()f x 在积分区间[],a b 上连续,则在[],a b 上至少有一个点,使下列公式成立:()()()ba f x dx xb a ϕ=-⎰ ()a b ϕ≤≤;(2)设函数()f x 在区间[],a +∞上连续,取t a >,如果极限 ()lim tat f x dx →+∞⎰存在,则称此极限为函数()f x 在无穷区间[],a +∞上的反常积分,记作⎰∞+0)(dx x f ,即⎰⎰+∞→∞+=tat adx x f dx x f )(lim)(;设()f x 在区间[],a b 上连续且()0f x ≥,求以曲线()y f x =为曲线,底为[],a b 的曲边梯形的面积A ,把这个面积A 表示为定积分:()b=a A f x dx ⎰ 的步骤是:首先,用任意一组的点把区间[],a b 分成长度为(1,2,...)i x i n ∆=的n 个小区间,相应地把曲线梯形分成n 个窄曲边梯形,第i 个窄曲边梯形的面积设为i A ∆,于是有1ni i A A ==∆∑;其次,计算i A ∆的近似值 ()()1i i i i i i A f x x x ϕϕ-∆≈∆≤≤; 然后,求和,得A 的近似值 ()1ni i i A f x ϕ=≈∆∑;最后,求极限,得⎰∑=∆==→bai ni i dx x f x f A )()(lim 1ϕλ.例34 设函数()f x 连续,且()00f ≠,求极限 ()()()[]2lim .xx x x t f t dt x f x t dt→--⎰⎰. 解 ()()()0limxx x x t f t dtx f x t dt→--⎰⎰ =()()()0lim,xxxx xf t dt tf t dtx f u du→-⎰⎰⎰()()()()()0+limx x x f t dt xf x xf x f u du xf x →-+⎰⎰由洛必达得:,()()()()()()001lim 002x f f f f x f f ϕϕ→===++.例35 计算反常积分: 21dxx +∞-∞+⎰.解 21dx x +∞-∞+⎰=[]arctan x +∞-∞=-lim arctan lim arctan x x x x →+∞→∞-=()22πππ--=.利用函数有界原理证明极限的存在性,利用数列的逆推求极限(1)单调有界数列必有极限;(2)单调递增且有上界的数列必有极限,单调递减且有下界的数列必有极限.[3]例36 数列{}n x :2 解 由已知可得{}n x 单调递增且有界,由单调有界原理,知lim n n x →∞存在.又n x =,lim n n n x →∞=记lim =t,n n x t →∞=则即可证2n x <,得到 2=t . 直接使用求导的定义求极限当题目中告诉你0)0(=F 时,)(x F 的导数等于0的时候,就是暗示你一定要用导数定义:(1)设函数()y f x =在点0x 的某个领域内有定义,当自变量x 在0x 处取得增量x ∆(点0x x ∆+仍在该领域内)时,相应的函数取得增量()()00y f x x f x ∆=∆+-;如果y ∆与x ∆之比0x ∆→时的极限存在,则称函数()y f x =在点0x 处可导,并称这个极限为函数()y f x =在点0x 处可导,并称这个极限为函数()y f x =在点0x 处的导数,记作()0f x ',即 ()()()00000limlim x x f x x f x yf x x x∆→∆→∆+-∆'==∆∆;(2)在某点处可导的充分必要条件是左右导数都存在且相等. 例36 ()()()()1f x x x e x π=---,求()'f π. 解 ()'f π ()()()()()()=limlim 11x x f x f x x e x x e x ππππ→→-=--=---. 例37 若函数()f x 有连续二阶导数且()0=0f ,()'0=1f ,()''0=-2f , 则 ()()2limx f x xx→-=.A:不存在 B :0 C :-1 D :-2解 ()20limx f x x x →-=()()()'''00101lim lim 220x x f x f x f x x →→--=-()''1012f ==-. 所以,答案为D.例38 若()(1)(2).....(2010)f x x x x x =++++,求(0)f '. 解 0()(0)(0)limx f x f f x→-'= 2010!=. 利用连续性求极限[1]例39 设()f x 在1x =处有连续的一阶导数,且(1)2f '=,求1lim x ddx+→+. 解原式1lim x f +→'=-1=-.数列极限转为函数极限求解数列极限中是n 趋近,而不是x 趋近.面对数列极限时,先要转化成求x 趋近情况下的极限,当然n 趋近是x 趋近的一种情况而已,是必要条件.(还有数列极限的n 当然是趋于正无穷的).[1]例40 求21lim (1sin )n n n n →∞-.解 令1t n =,则原式2320001sin sin 1cos lim (1)lim lim 3t t t t t t tt t t t→→→--=-==, 所以在0t →时,1cos t -与212t 等价,因此,原式20212lim 13t tt→=16=.。