工程流体力学(水力学)-第1章绪论

合集下载

全套课件-工程流体力学 冯燕

全套课件-工程流体力学 冯燕

(五)牛顿流体和非牛顿流体
• 牛顿流体满足牛顿粘性定律( 常数) • 非牛顿流体切应力不仅与切变率成非线性关
系 ,而且还可能与时间有关。
三.压缩性与膨胀性
• 压缩性:流体受压后,分子间距减小,体积缩小,密度增大, 除去外力作用后能恢复原状的性质。
• 膨胀性:流体受热后,分子间距增大,体积膨胀,密度减小, 当温度下降后能恢复原状的性质。
0
273 273 t
p 101325
• ρ0为标准状态(0℃,101325Pa)下气体的密度。
三.压缩性与膨胀性
• (四)不可压缩流体模型 不可压缩流体:忽略压缩性,密度等于常数的
流体。
四.表面张力特性
• (一)液体的表面张力 • 用表面张力系数σ来度量 • 不同的液体在不同温度下具有不同表面张
• 研究流体平衡、宏观机械运动规律及其在 工程中应用的科学,是力学的一个分支学 科。
• 包括: • 基本原理 • 基本原理的应用
五、流体力学的研究方法
• 实验研究 • 理论分析 • 数值模拟 • 三种方法互相结合,为发展流体力学理论,
解决复杂的工程技术问题奠定了基础。
• 对于一些重要的工程流体力学问题的研究, 通常采用理论分析、数值模拟和实验研究相 结合的途径。
• (一)液体的压缩性

体积压缩系数
dV
κ=- V

dp
• 弹性模量 K = 1
κ
对于大多数液体,随压强的增加稍为减小。
三.压缩性与膨胀性
• (一)液体的压缩性
• K越大,愈不易压缩
• 在常温下,温度每升高1℃,水的体积相对增量仅为 万分之一点五;温度较高时,如90~100℃,也只 增加万分之七。

工程流体力学水力学--禹华谦-章习题解答

工程流体力学水力学--禹华谦-章习题解答

工程流体力学(水力学)——禹华谦—章习题解答--—-—-—-—-————-———————————-—————作者: -——--————----—-————-———--—-—————日期:第一章 绪论1—1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1—2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)?[解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。

试求m h 5.0=时渠底(y =0)处的切应力。

[解] μρ/)(002.0y h g dy du-=)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22。

620 (见图示),求油的粘度.uθδ[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg dd sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。

流体力学1

流体力学1

T(℃) 0° 2° 4° 6° 8° 10° 12°
ν(cm2 0.0177 0.0167 0.0156 0.0147 0.0138 0.0131 0.0123
/s)
5
4
8
3
7
0
9
T(℃) 14° 16° 18° 20° 22° 24° 26°
ν(cm2
/s)
0.0117 6
0.0118
0.0106 2
牛顿平板实验与内摩擦定律
设板间的y向流速呈直线分布,即:
u( y)
=
U Y
y

= du U
dy Y
实验表明,对于大多数流体满足:
F

AU Y
引入动力粘性系数μ,则得牛顿内 摩擦定律
τ
=
F A
=
μ
U Y
=
μ
du dy
du 式中:流速梯度 dy 代表液体微团的剪切
= du u
变形速率。线性变化时,即 dy y ;
第一章 绪论
本章学习要点:
1. 水力学的研究对象与任务 2. 液体的连续介质模型。流体质点 3. 量纲和单位 4. 液体的主要物理性质:密度、重度、粘性、压缩性、
毛细现象、汽化压强 5. 作用在液体上的力:表面力和质量力
1.1.1 水力学的任务及研究对象
• 液体的平衡规律
研究液体处于平衡状态 时,作用于液
非牛顿流体:不符合上述条件的均称为非牛顿流体。
弹 性
τ
1
宾汉型塑性流体
τ
=τ0
+
μ
(
du dy
)n

假(伪)塑性流体
τ0

第一章水力学绪论ppt课件

第一章水力学绪论ppt课件
的液体质量成比例的力。
• 单位质量力:作用在单位质量液体上的质量力。
fF M
X Fx ,Y Fy , Z Fz MMM
第四节 水力学的研究方法
1.理论分析(经典力学为基础) 2.科学试验 (1)原型观测 (2)模型试验 (3)系统实验 3.数值模拟和数值计算
1.理解连续介质和理想液体的概念。 2.掌握液体的基本特征和主要物理性质,特 别是液体的黏滞性和牛顿内摩擦定律及其应 用条件。 3.理解作用在液体上的两种力。
3)了解连续介质模型以及粘度随温度的变化规律。
第一节 课程概述 •水力学的学科性质
研究对象 力学问题载体
流体力学
流体
强调水是主要研究对象 比较偏重于工程应用
水力学

力学
宏观力学分支 遵循三大守恒原 理
力学
1.水力学的概念 水力学就是研究以水为代表的液体机械运动规
律及其在实际应用的科学。 水力学所研究的基本规律:两大主要组成部分,水 静力学和水动力学。
水静力学:关于液体平衡的规律,它研究液体处 于静止(或相对平衡)状态时,作用于液体上的各种 力之间的关系。
水动力学:关于液体运动的规律,它研究液体在 运动状态时,作用于液体上的力与运动要素之间的关 系,以及液体的运动特性与能量转换等等。
定义概括了三个涵义:
第一:水力学虽以水为研究对象,但其基本原理同 样适用于一般常见的液体和可以忽略压缩性影响的 气体。 第二:水力学的主要研究内容是在外力作用下,静 止与运动的规律,液体与边界的相互作用。 第三:水力学研究的目的在于应用。
流体运动的三大要素:流体、运动、力
水力学中研究的液体是一种易流动、不易压缩、 粘性很小、均质等向的连续介质。
2.水力学的任务及其在工程中的应用

工程流体力学

工程流体力学
τ
我们将会看到,是否忽略粘性影响将对流动问题的处理带来很大的区别,理想流体假设可以大大简化理论分析过程。 而 是流体的客观属性,所以往往是在变形速率不大的区域将实际流体简化为理想流体。
ΔV
流体的压缩性
V
流体能承受压力,在受外力压缩变形时,产生内力(弹性力)予以抵抗,并在撤除外力后恢复原形,流体的这种性质称为压缩性。
长度单位:m(米)
质量单位:kg(公斤)
时间单位:s(秒)
流体力学课程中使用的单位制
SI 国际单位制(米、公斤、秒制)
三个基本单位
导出单位,如:
01
密度 单位:kg/m3
02
力的单位:N(牛顿),1 N=1 kgm/s2
03
应力、压强单位:Pa(帕斯卡),1Pa=1N/m2
04
动力粘性系数 单位:Ns/m2 =Pas
05
运动粘性系数 单位:m2/s
06
体积弹性系数 K 单位: Pa
07
一般取海水密度为
常压常温下,空气的密度是水的 1/800 与水和空气有关的一些重要物理量的数值 1大气压,40C 1大气压,100C
空气的密度随温度变化相当大,温度高,密
度低。
水的密度随温度变化很小。 1大气压,00C 1大气压,800C
04
流体不能承受集中力,只能承受分布力。
02
一般情况下流体可看成是连续介质。
03
力学
§1-1 课程概述
工程流体力学的学科性质
研究对象 力学问题载体
宏观力学分支 遵循三大守恒原理
流体力学
水力学
流体

力学
强调水是主要研究对象 偏重于工程应用,水利工程、流体动力工程专业常用

第一章 水力学绪论(完整版)

第一章 水力学绪论(完整版)
减小,密度增加,除去外力后能恢复原状的性质。
➢体积压缩系数
K
当温度保持不变,单位压强增 量引起的体积变化率
K V V
P
P
K dV V d
dp dp
单位:m2 / N
式中的负号表示压强增大体积缩小
第一章 绪论
➢体积弹性模量 E : 压缩系数的倒数
工程上常用体积模 量衡量流体压缩性
第一章 绪论
1.5 水力学的研究方法
水力学是一门实践性很强的学科,它的理论都是生 产实践和实验研究的总结,并在解决实际工程问题过 程中经受检验、得到修正和进一步完善。
理论分析法
•无限微量法 •有限控制体法(平均值法)
实验研究法
数值计算法
第一章 绪论
20th century
Ludwig Prandtl (1875-1953) Boundary theory(1904)
The father of modern fluid mechanics
Vonkarman (1881-1963)
I.Taylor (1886-1975)
现代流体力 理论的奠基者
表面张力系数σ——液面上单位长度所受的拉 力,单位N/m。
第一章 绪论
1.4.5 汽化压强 •汽化压强是指液体汽化和凝结达到平衡时液面的压强。
•汽化压强随液体的种类和温度的不同而改变。
•实际应用中的空化现象与液体的汽化压强有关, 需要注意。
•液体的惯性、重力特性和粘滞性对液体运动有重要 的影响,而液体的可压缩性、表面张力和汽化压强 只有在特殊问题中才需要考虑,请注意区分。
第一章 绪论
Leonardo da Vinci(达芬奇) (1452-1519)

水力学课件 第1章绪论

水力学课件  第1章绪论
A0 A dA
作用于单位面积上的切力称为切应力,以τ表示
A
lim d
A0 A dA
压强和切应力的单位:N/m2(Pa),KN/m2(KPa)
54
1.4.2质量力
质量力是作用于液体的每一个质点上且与 质量成正比的力。
❖ 对于均质流体,质量力与体积成正比, 又称体积力。
❖ 质量力包括重力和惯性力。质量力又称 超距力
33
2 对于μ和ν=μ/ρ的定义及解释
μ称为粘度或者粘滞系数,是粘滞性的度量。 μ随压强和温度的变化而变化,但是压强影响比较小,可以 不加考虑。温度是影响μ的主要因素。对于液体,温度升高, μ降低,对于气体,温度升高, μ加大。 μ:单位是pa•s ,称为动力粘度 ν: 单位是m2/s,称为运动粘度
水动力学:关于液体运动的规律,它研究 液体运动状态时作用于液体上的力与运动 要素之间的关系,以及液体的运动特性与 能量转换等等。
4
5
◇机械运动 求解运动要素(v,a,Q,h,p,P,R等运动要素) 依据三大基本方程: 质量守恒——连续方程 动能定理——能量方程 动量定理——动量方程
6
应用 管道水流、明渠水流、堰流等;渗流等
51
1.4作用于液体的力
表面力 作用于液体的力
质量力
52
1.4.1表面力 表面力是作用在液体的表面或截面上且与 作用面的面积成正比的力。 表面力也称面积力、接触力
53
❖ 表面力包括压力和切力。如:摩擦力、水压力、边界对 液体的反作用力
作用于单位面积上的压力称为压强,以p表示
p P A
P dP p lim
20
研究的最小物质单元为“质点”,而不是分子。 同牛顿质点的不同:这些质点有形状变化 质点特点:

工程流体力学(水力学)-第1章绪论

工程流体力学(水力学)-第1章绪论

§1.4
流体的主要物理性质
y
F’
x
牛顿发现:
F U F A 1 F h
AU h y F T h
F
U x
o
并且F与流体的种类有关 即:
U F A h
式中,μ为流体的动力粘度,与流体的种类、温度、压强有关,在一定 的温度压强下为常数,单位Pa· S;
U/h为速度梯度,表示在速度的垂直方向上单位长度的速度增量,单位 S-1;
§1.4
2. 流体的压缩性 体积压缩率
流体的主要物理性质
流体在一定温度下,压强增高,体积缩小。
在一定温度下单位压强增量引起的体积变化率,单位Pa-1。

V V V p Vp
为了保证压缩率为正, 故加上负号“-”
式中,δp为压强增量,δV为体积的变化量。 可见,对于同样的压强增量,κ值大的流体体积变化率大,容易压 缩; κ值小的流体体积变化率小,不容易压缩。 体积弹性模量 为压缩率的倒数,单位为Pa。
都江堰
流体力学的发展
• 古代流体力学
– 16世纪以后,西方资本主义处于上升阶段,工农业生 产有了很大的发展,对于液体平衡和运动规律的认识 才随之有所提高 – 18至19世纪,沿着两条途径建立了液体运动的系统理 论
流体力学的发展
• 途径一 –一些数学家和力学家,以牛顿力学理论和数学分析为基本 方法,建立了理想液体运动的系统理论,称为“水动力学 ”或古典流体力学 – 代表人物有伯努利(D.I.Bernouli)、欧拉(L.Euler)等
0 C,1mm3 水含3.4×1019个分子 如此大量的分子, 容易取得它们共同 作用的有代表性的 统计平均值
气体含2.7×1016个分子

工程流体力学(清华版)第1章 绪论

工程流体力学(清华版)第1章 绪论

dV / V dρ / ρ =− dT dT
单位:1/K
9
10
例:表1-4、1-5: 水: K≈2.1×109 Pa,αp ≈0.5×10-9 1/Pa, αV = 1.5×10-4 1/K (常温) 。 p增加108 Pa (约1000大气压),体积减少仅5%; 水温变化10度,体积变化1.5‰ 。 其他液体情况类似。
解:M = 2πRL•τR
δ小,流速分布近似为线性
δ τ R ω δ
y ωR
du μωR τ=μ = dy δ
也作用在轴表面
M = 2πRL
μωR 2πμωR 3L πμωD 3L R= = δ δ 4δ
N = Mω =
2πμω2R 3L πμω2D 3L = δ 4δ
23
24
1.3.4 液体表面张力 一、表面张力
课件制作: 赵

流体力学的应用领域:土木与水利工程,动力工程,航空航天, 环境工程,化工,海洋、船舶,生物,气象,等
2
武汉大学水利水电学院
1
1.2 流体的基本特征和连续介质假设
第1章
1. 1 、1. 5 自学 本章介绍: 流体的主要特征


1.易流动性:流体受微小的剪切力作用即会发生持续变形 ——流动 ◆固体:一定的剪切力产生一定的剪切变 形,流体则不然。 ◆静止的流体一定没有受剪切力作用 。 2.液体的特点:没有一定形状(取容器的形状),有一定 体积,可以形成自由表面。(有分子力作用) 气体的特点:没有一定的体积和形状,可以充满任何可能的 空间。(没有分子力作用) 3.流体几乎不能承受拉力。
★ 流体重度
γ=ρg=单位体积流体的重量
一 个 标 准 大 气 压 , 4℃ 时 , ρ 水 = 1000 kg/m 3 , (计 算 时 可 作 为 标 准 值 ) γ 水 ≈ 9800 N /m 3

工程流体力学教学课件ppt作者工程流体力学习题答案

工程流体力学教学课件ppt作者工程流体力学习题答案
题2-10图
解:
,,=83.3
求:

2-11 绕轴转动的自动开启式水闸,当水位超过时,闸门自动开启。若闸门另一侧的水位,角,试求铰链的位置。
题2-21图
解: (取)
第三章 流体运动学基础
3-1 已知不可压缩流体平面流动的流速场为,,试求在时刻时点处流体质点的加速度。
解:
将代入得:,
3-2 用xx观点写出下列各情况下密度变化率的数学表达式:
基本比例尺之间的换算关系需满足相应的相似准则(如Fr,Re,Eu相似准则)。线性比例尺可任意选择,视经济条件、场地等条件而定。
4-2 何为决定性相似准数?如何选定决定性相似准数?
解:若决定流动的作用力是粘性力、重力、压力,则只要满足粘性力、重力相似准则,压力相似准则数自动满足。
所以,根据受力情况,分别确定这一相似相似流动的相似准则数。
1)假定截面1、2和3上的速度是均匀分布的,在三个截面处圆管的直径分别为、、,求三个截面上的速度。2)当,,,时计算速度值。3)若截面1处的流量,但密度按以下规律变化,即,,求三个截面上的速度值。
题3-4图
解:1) ,,
2) ,,
3) ,


3-5 二维、定常不可压缩流动,方向的速度分量为,求方向的速度分量,设时,。
1-3 底面积为的薄板在液面上水平移动(图1-3),其移动速度为,液层厚度为,当液体分别为的水和时密度为的原油时,移动平板所需的力各为多大?
题1-3图
解: 水:
,, 原油:
水:
油:
1-4 在相距的两平行平板间充满动力粘度液体(图1-4),液体中有一边长为的正方形薄板以的速度水平移动,由于粘性带动液体运动,假设沿垂直方向速度大小的分布规律是直线。

工程流体力学

工程流体力学

工程流体力学(水力学)第一章 绪论学习重点:流体的粘性及牛顿内摩擦定律。

尤其是牛顿内摩擦定律应熟练掌握。

了解工程的发展及在工程中的应用。

§1—1 工程流体力学简介1. 工程流体力学——是利用实验和理论分析的方法研究流体的平衡和运动规律及其在工程中的应用的一门学科。

2. 自然界中物质的存在形式有:(1)固体 ← 相应的研究学科有材料力学、弹性力学 等。

(2)液体(3)气体← 统称流体 。

相应的研究学科即流体力学。

3.流体与固体的比较:(1)从微观上说,流体分子之间的距离相对较大,分子运动丰富(振动、转动、移动)。

(2)从宏观上说,流体没有固定的形状,易流动、变形,静止的流体不能承受剪力及拉力。

4.发展史(随着生产的发展,继固体力学之后发展起来的一门学科):论浮体 (建立在实验、直观基础上)古典水力学(纯理论分析、理论模型) 计算流体力学5.意义:流体力学已经发展成一门涉及多专业的基础性学科。

工程流体力学在工程中的应用也越来越广泛。

例如:给排水、农田灌溉、道路、桥涵、港口设计等等。

§1—2 连续介质假设 流体的主要物理性质 一. 连续介质假设1. 流体的组成:由大量不断运动的分子组成,分子之间有间隙,不连续。

2. 假设:假设将流体看作是由无数质点组成的连续的介质。

因为我们研究的是流体的宏观机械运动而不是微观运动,这样的假设可以满足工程需要。

3. 连续介质:假定流体在充满一个体积空间时,不留任何空隙,整个空间均被流体质点所占据。

4. 质点——宏观体积足够小(可以忽略线性尺寸),但又包含大量分子的集合体。

5. 注:流体的分子运动是客观存在的,在一般的工程计算中可以把流体看成连续的介质,但在特殊情况下还是应加以考虑的。

二. 流体的主要物理性质1.易流动性——是指流体在静止时不能承受切力及不能抵抗剪切变形的性质。

一般的,固体可承受一定的拉力、压力及剪力;而静止的流体只能承受一定的压力。

《流体力学》课件-(第1章 绪论)

《流体力学》课件-(第1章 绪论)

流体力学
流体
强调水是主要研究对象 比较偏重于工程应用 土建类专业常用
力学
宏观力学分支 遵循三大守恒原 理
水力学

力学
§1.1.1 流体力学的任务和研究对象
二、研究对象 流体 指具有流动性的物体,包括气体和 液体二大类。
流动性
•即 任 一 微 小 剪
切力都能使流体 发生连续的变形

流体的共性特征
基本特征:具有明显的流动性;气体的流动性大于液体。 流体只能承受压力,不能承受拉力,在即使是很小剪切力
二. 表面力 是指作用在所研究的流体表面上的力,它是相邻流 体之间或固体壁面与流体之间相互作用的结果。 它的大小与流体的表面积成正比; 方向可分解为切向和法向。
• 设 面 积 为 ΔA 的 流 体
nFLeabharlann 面元,法向为 n ,指 向表面力受体外侧, 所受表面力为 ΔF ,则 应力
F f n lim A0 A
第一阶段:古典流体力学阶段 奠基人是瑞士数学家伯努利(Bernoulli,D.)和他的 亲密朋友欧拉(Euler,L.)。1738年,伯努利推导出了著 名的伯努利方程,欧拉于1755年建立了理想流体运动微分 方 程 , 以 后 纳 维 (Navier,C .H.) 和 斯 托 克 斯 (Stokes , G.G.)建立了粘性流体运动微分方程。拉格朗日 (Lagrange)、拉普拉斯(Laplace)和高斯(Gosse)等人, 将欧拉和伯努利所开创的新兴的流体动力学推向完美的分 析高度。
第1章 绪论 第2章 流体静力学 第3章 一元流体动力学理论基础 第4章 流动阻力与能量损失 第5章 孔口、管嘴出流和有压管流 第6章 量纲分析与相似原理
第一章 绪论

工程流体力学水力学

工程流体力学水力学

且垂直于AB线,如下图。在AB线上H 各点的每一点
上各绘亦垂直AB线的γhi线γhi 段,等于各该点上的 静压强,这些线段的终点将处在一条直线AC上。
三角形ABC图就是铅垂线AB上的静压强分布图。
事实上,由式〔1-9〕C 知,当液B 体重度γ为常数
时,静压强p只是随淹没深γH度h而变化,两者成直
线关系。因此,在绘制静压图 1-强5 分布图时,只需在
单位重量流体从某一基准面算起所具有的位能,
因为对重量而言,所以称单位位能。的物理意义
是:单位重量流体所具有的压能,称单位压能。 因此流体静力学根本方程的物理意义是:在静止
❖ 流体中任以点的单位位能与单位压能之和,亦即 单位势能为常数。对于气体来说,因为重度γ值 较小,常忽略不计。由上式可知,气体中任意两 点的静压强,在两点间高差不大时,可认为相等。 对于液体来说,因为自由外表上的静压强p0常为 大气压强,是的。所以由上式可知液体中任一点 的静压强p为
止流体中任一点上流体静压强的大小与其作用面的方
位无关,即同一点上各个方向的静压强大小均相等

2.重力作用下的流体平衡方程

在实际工程中,静止流体所受的质量力只有重力。
这种流体通常称静止重力流体,因此,对于静止不可
压缩均质流体来说,总有一平衡方程式:

(1-12)
z p c
❖ 对于静止流体中任意两点来说,上式可写为:
❖ 〔二〕质量•密度
❖ 流体和其它物质一样,具有质量。流体单位
体积内所具有的质量称密度,以ρ表示。对于均
质流体,设体积为V的流体具有的质量为m,那
么密度ρ为

m
V
❖ 密度的单位为kg/m3。
〔1-1〕

第1章水力学-绪论-正式 (2)

第1章水力学-绪论-正式 (2)
有一定体积和自由表面。 不能承受拉力,但可承 受较大压力。 易流动性:在微小剪切 力的作用下变形不止,表现 为流动。 区别气体和固体/气体和液体 区别固体和流体(即液体和气体)
水力学的任务 流体连续介质概念 液体的主要物理性质以及作用于流体上的力
介绍内容
§ 1.1 水力学的任务
水力学的定义:研究液体的平衡和运动规律,并运 用这些规律去解决工程实际问题的一门工程技术 基础学科。 水力学的任务:研究液体(主要是水)的平衡和运 动规律及其实际应用。 水力学的研究对象:以水为代表的部分液体及可忽 略压缩影响的气体。
水 力 学
资源与环境学院
《水力学》教材
主编:高学平,张效先 出版社:中国建筑工业出版社 出版时间:2006年8月 参考书: 吴持恭主编:水力学 高等教育出版社 2003 西南交通大学:水力学 第三版 高等教育出版 社 1983 闻德荪主编. 工程流体力学(水力学) 人民教育出 版社 1991
§ 1.2 连续介质
质点:宏观小,微观大的流体分子团。 微团:流体质点的集合体,具有一定线性尺度的微 小流体团。 连续介质(假定) :
流体是由质点组成的,质点一个挨着一个, 质点间既不留空隙,也不存在真空的连续体。 为什么要建立连续介质的概念?
便于利用数学工具 如连续函数分析法
ux f1 ( x, y, z, t )
温度升高 分子运动速度加快、碰撞次数增加,内摩擦力增加 分子间距离增加,内摩擦力减小 液体: 分子间距比气体分子间距小、分子间距变大是矛 盾的主要方面,所以升温使黏性力减小; 气体: 分子运动速度加快、碰撞次数增加是主要方面, 所以升温使黏性力增大。
牛顿内摩擦定律只适用于部分流体。 一般把符合牛顿内摩擦定律的流体称为牛顿流体;反 之称为非牛顿流体。 一般常见液体和气体多属于牛顿流体,如水、空气等。 非牛顿流体属于流变学的研究范畴,一般包括: (1)理想宾汉流体:当切应力达到一定数值τ0时, 才开始发生剪切变形,但变形率仍为常数,常见的如 泥浆、血浆、高含沙水流。 ( 2 )伪塑性流体:粘滞系数随剪切变形速度的增加 而减小,常见的有尼龙、橡胶溶液、颜料、油漆等。 ( 3 )膨胀性流体:粘滞系数随剪切变形速度的增加 而增加,常见的有生面团、浓淀粉糊等。

水力学第一章 绪论PPT课件

水力学第一章 绪论PPT课件
区别
压缩性:液体受压后体积要缩小,压力撤除后也 能恢复原状,这种性质称为液体的压缩性或弹性。
用体积压缩率 或体积模量K来描述液体的压缩 性。
体积压缩率:
dV V
dp
为体积压缩系数,单 位为m2/N
体积模量K: K1 K值越大,表示液体愈不容易压缩。对一般水
利工程来说,可认为水不可压缩的。但在有压管道 中水击计算时,则必须考虑水的压缩性。
水力学课件 第一章 绪论
一.课程的性质和任务
(一)课程地位 水力学是一门重要的专业基
础课程,它是连接前期基础课程和后续专业课程的 桥梁。课程的学习将有利于力学基础知识的巩固与 提高,培养分析、解决实际问题的能力,为专业课 程的学习打下坚实基础。
力学 基础课程
水力学 专业基础课程
水利学科 有关专业课程
➢3.分析水流流动形态
➢4.确定水流能量消耗和利用
农村小型自来水厂
三峡大坝泄洪
➢5.特殊的水力学问题
某污水处理厂
二、水力学由以下内容构成
两大主要组成部分,水静力学和水动力学。
水静力学:关于液体平衡的规律,它研究液 体处于静止(或相对平衡)状态时,作用于 液体上的各种力之间的关系。
水动力学:关于液体运动的规律,它研究液体 在运动状态时,作用于液体上的力与运动要素 之间的关系,以及液体的运动特性与能量转换 等等。
一个标准大 气Vm压下,国温际度单为位4℃:,k水g/密m度3 为1000kg/m3 。
2.万有引力特性,重力与容重
物质三态 的共同性质
万有引力:是指任何物体之间相互具有吸引 力的性质,其吸引力称为万有引力。
重力:地球对物体的引力称为重力,或称为重 量。大小为:G=Mg, g:重力加速度。

水力学 第1章 绪论

水力学 第1章   绪论
第1章 绪论
连续介质模型
水力学在研究液体运动时,由于只研究 水力学在研究液体运动时, 外力作用下的机械运动, 外力作用下的机械运动,而液体分子又是极 为密集的,因此把液体视为连续介质既有必 为密集的,因此把液体视为连续介质既有必 要又有可能。 要又有可能。 长期的生产和科学实验证明: 长期的生产和科学实验证明:利用连续 介质假定所得出的有关液体运动规律的基本 理论与客观实际是十分符合的。 理论与客观实际是十分符合的。
考核方式及成绩评定标准
考核方式: 考核方式:闭卷 成绩评定标准: 成绩评定标准: 平时成绩:20% 平时成绩:20% 期末考试:80% 期末考试:80%
第1 章
绪论
1.1. 流体力学的发展简史 1.2. 水力学的研究内容 1.3. 液体的主要物理性质 1.4. 作用在液体上的力
1.1 流体力学的发展简史
G Mg M γ = = ρ = V V V 3 γ = 9.8 kN m
第1章 绪论
γ = ρg
熟 记
工程计算中使用水的密度 容重: 工程计算中使用水的密度和容重: 密度和 采用1个标准大气压下而且温度为4 采用1个标准大气压下而且温度为4ºC时的纯净 水: ρ=1000 kg/m3 ; γ=9.8 kN/ m3 .
17世纪-1653年,D.Pascal(帕斯卡)发现了静止流体 17世纪 1653年 D.Pascal(帕斯卡) 世纪的压强可以均匀地传遍整个流场定律。 的压强可以均匀地传遍整个流场- Pascal 定律。 17世纪-1687年,I.Newton(牛顿)用粘性实验方法 , 17世纪 1687年 I.Newton(牛顿) 世纪提出了内摩擦定律。 提出了内摩擦定律。 18世纪-1738年,D.Bernoulli(柏努利)对管流进行 18世纪 1738年 D.Bernoulli(柏努利) 世纪了大量的观测,提出了定常-不可压缩了大量的观测,提出了定常-不可压缩-理想流体的能 量守恒定律-Bernoulli方程 方程。 量守恒定律-Bernoulli方程。 18世纪-1775年,Euler(欧拉)提出了理想流体的运 18世纪 1775年 Euler(欧拉) 世纪动方程。 动方程。

工程流体力学孔珑第四版ppt课件

工程流体力学孔珑第四版ppt课件

《工程流体力学》——第一章 绪论——课程的工程地位 石油化工
专业基础课
11
2021/4/11
《工程流体力学》——第一章 绪论——课程的工程地位 机械冶金
专业基础课
12
2021/4/11
《工程流体力学》——第一章 绪论——课程的工程地位 环境
专业基础课
13
2021/4/11
《工程流体力学》——第一章 绪论——课程的工程地位 气象
1883年用实验验证了粘性流体 的两种流动状态——层流和紊流的 客观存在,找到了实验研究粘性流 体运动规律的相似准则——雷诺数, 以及判别层流和紊流的临界雷诺数。
专业基础课
32
2021/4/11
《工程流体力学》——第一章 绪论——流体力学发展简史
专业基础课
L. Prandtl (1875-1953)
一、流体的定义、特征
1、定义:能够流动的物质为流体;力学定义,则在任何微小 切力的作用下都能发生连续变形的物质称为流体。
2、特征: 流动性、压缩、膨胀性、粘性
物态
固体 液体 气体
专业基础课
分子间的作用力、分子间距离的影响下
固定 固定 自由 明显压 抵抗微 体积 形状 液面 缩 小剪力
有有 否


有无 有
w —4o C时 水 的 密 度 。 2021/4/11
《工程流体力学》——第二章 流体及物理性质
四、流体的密度
混合物的密度:
11 22 ii nn 其中,i — 第i种物质的密度;i — 第i种物质的体积百分比;
或者,混合物的密度:
1
2
1
i
n
1 2
i
n
其 中 ,i — 第i种 物 质 的 密 度 ;i — 第i种 物 质 的质 量百 分 比 ;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

都江堰
流体力学的发展
• 古代流体力学
– 16世纪以后,西方资本主义处于上升阶段,工农业生 产有了很大的发展,对于液体平衡和运动规律的认识 才随之有所提高 – 18至19世纪,沿着两条途径建立了液体运动的系统理 论
流体力学的发展
• 途径一 –一些数学家和力学家,以牛顿力学理论和数学分析为基本 方法,建立了理想液体运动的系统理论,称为“水动力学 ”或古典流体力学 – 代表人物有伯努利(D.I.Bernouli)、欧拉(L.Euler)等
产生部位:液体与气体接触面,液体与固体接触面,及两种互不相混的 液体接触面上。
通常,由于环境不同,处于界面的分子与处于相本体内的分子所受 力是不同的。在水内部的一个水分子受到周围水分子的作用力的合力为 0,但在表面的一个水分子却不如此。因上层空间气相分子对它的吸引 力小于内部液相分子对它的吸引力,所以该分子所受合力不等于零,其 合力方向垂直指向液体内部,促使了液体表面层具有收缩的趋势,这种 收缩力称为表面张力。如空气中的小液滴、草叶上的露珠往往呈圆球形 状。
2. 流体的定义
若按照力学术语定义则,在任何微小切力的作用下都能 发生连续变形的物质称为流体。
§1.1
流体力学研究的对象和应用
固体、液体、气体的区别
呈现易流动性?

流体的特征
状态 有无固定体积 流体 能否形成自由液面 固体

是否容易被压缩
液体
气体






没有固定的形状,液体的形状取决于盛装它的容器;气体则完全充满 容器; 流体具有可压缩性;液体可压缩性小,水受压从1个大气压增加至100 个大气压时,体积仅减小0.5%;气体可压缩性大;
流体的压缩性 和膨胀性
通常情况下,水和其它液体可视为不可压缩流体,而将气体视为密 度可变的可压缩流体 特例:水下爆炸、水击、热水采暖需考虑水的压缩性和膨胀性;当气体 流速比声速小很多时,也可视为不可压缩流体。
§1.4
4. 表面张力
流体的主要物理性质
定义:在液体自由表面的分子作用半径范围内,由于分子引力大于斥力, 在表层沿表面方向产生的张力,称表面张力。
均质流体
m V
式中,m为流体的质量,V为流体的体积。 非均质流体
m dm lim V 0 V dV
常用流体 的密度值
式中,δV为在空间某点取的流体体积,流体的质量为δm 。
注 意
这里数学上的δV→0, 从物理上应理解为体积 缩小到前面所讲的流体 质点。
4℃ 水的密度 ρ= 1000kg/m3 0℃水银的密度 ρ= 13600kg/m3 0℃空气的密度 ρ= 1.29 kg/m3
工程流体力学
水利电力学院
第1章 绪论
§1.1 流体力学研究的对象和应用 §1.2 流体力学发展史简述 §1.3 连续介质模型
§1.4 流体的主要物理性质
§1.5 作用在流体上的力
§1.6 流体力学的研究方法
返回目录
§1.1
流体力学研究的对象和应用
1. 流体力学研究的对象
流体,包括气体和液体。
通常说能够流动的物质为流体;
§1.4
流体的主要物理性质
y
F’
x
牛顿发现:
F U F A 1 F h
AU h y F T h
F
U x
o
并且F与流体的种类有关 即:
U F A h
式中,μ为流体的动力粘度,与流体的种类、温度、压强有关,在一定 的温度压强下为常数,单位Pa· S;
U/h为速度梯度,表示在速度的垂直方向上单位长度的速度增量,单位 S-1;
A为两平板的接触面积。
由壁面不滑移假设,下板上流体质点的速度为 零,紧贴上板的液体质点速度为U。当h及U不太大时, 板间沿法线方向的点流速可看成线性分布,即:
U du h dy
U du T A A h dy
§1.4
流体的主要物理性质
牛顿内摩擦定律的几点解释: 切应力:是指流层间单位面积上的内摩擦力,用τ表示,
§1.4
2. 流体的压缩性 体积压缩率
流体的主要物理性质
流体在一定温度下,压强增高,体积缩小。
在一定温度下单位压强增量引起的体积变化率,单位Pa-1。

V V V p Vp
为了保证压缩率为正, 故加上负号“-”
式中,δp为压强增量,δV为体积的变化量。 可见,对于同样的压强增量,κ值大的流体体积变化率大,容易压 缩; κ值小的流体体积变化率小,不容易压缩。 体积弹性模量 为压缩率的倒数,单位为Pa。
§1.1
流体力学研究的对象和应用
3. 流体力学
研究流体力学是研究液体平衡和机械运动规律及其应用这 些规律解决工程实际问题的一门学科,是力学的一个分支。 在交通土建专业中是一门重要的技术基础课。 流体静力学; 流体动力学;
4. 流体力学 的研究内容
应用。
分类: 理论流体力学:内容侧重于理论,主要用严密的数学推理 方法,力求准确性和严密性的流体力学。
§1.3
连续介质模型
3. 连续介质模型假设-1753年欧拉提出
不考虑分子间存在的间隙,而把流体视为由无数连续分布的流体微 团组成的连续介质
不必去研究流体的微观分子运动,而只研究描述流体运动的宏观物 理属性(如密度、压强、速度、温度、粘度、热力学能等)
重要意义: 按照连续介质模型,流体的密度、压强、速度、温度等物理量一般在 时间和空间上都是连续分布,是空间坐标和时间的单值连续可微函数, 这样可以用解析函数的诸多数学工具去研究流体的平衡和运动规律, 为流体力学的研究提供了很大的方便。
1738年伯努利给出理 想流体运动的能量方程
1755年欧拉导出理 想流体运动微分方程
1821-1845年,纳维埃(Navier) 和斯托克斯(Stokes)导出适用于实 际流体运动的纳维埃-斯托克斯方程, 即N-S方程
Hale Waihona Puke 流体力学的发展• 途径二 – 一些土木工程师,根据实际工程的需要,凭借实地观察和 室内试验,建立实用的经验公式,以解决实际工程问题。 这些成果被总结成以实际液体为对象的重实用的水力学。 – 代表人物有皮托( H.Pitot)、谢才( A.de Chezy)、达 西(H.Darcy)等
§1.4
5. 粘性 流体的粘性
流体的主要物理性质
当流体处在运动状态时,若流体质点之间存在相对运动, 则质点间要产生内摩擦力抵抗其相对运动,这种性质称为 流体的粘性(亦称粘滞性),此内摩擦力又称为粘滞力, 这是粘性的宏观表现。
流体受切力作用发生连续变形,这种变形亦称为剪切变形。 流体在流动状态下抵抗剪切变形的性质也称为流体的粘性, 是流体的固有属性。 是运动流体产生机械能损失的根源。
§1.1
水利
流体力学研究的对象和应用
§1.1
采矿通风
流体力学研究的对象和应用
§1.1
石油化工
流体力学研究的对象和应用
§1.1
机械冶金
流体力学研究的对象和应用
§1.1
环境
流体力学研究的对象和应用
§1.1
气象
流体力学研究的对象和应用
§1.1
生物
流体力学研究的对象和应用
§1.2
流体力学发展简述
1732年,皮托发明了 量测流速的皮托管
1769年,谢才建立了 计算均匀流的谢才公式
1856年,达西提出了线 性渗流的达西定律
流体力学的发展
• 流体力学的超大牛 – 1883年雷诺(O.Reynolds)发 表了关于层流、紊流两种流态的系 列试验结果(著名的雷诺实验田) ,又于1895年导出了紊流运动的 雷诺方程。 – 1904年普朗特(L.Prandtl)提出 边界层概念,创立了边界层理论。 使理论流体力学与工程流体力学( 水力学)两种研究途径的成果得到 了统一
• 早期文明中流体力学的应用
– 大禹治水、都江堰、南北运河、郑国渠 – 埃及等国的灌溉渠道、古罗马的供水管道系统
§1.2
流体力学发展简述
人类对流体力学的认识最早从治水、灌溉、航行等方面开始。 中国古代提水 灌溉所用风车
大禹治水(公元 前2300年)
§1.2
流体力学发展简述
李冰 (302-235 BC)
流体力学的发展
• 我国现代流体力学的大大牛 – 钱学森、郭永怀、赵九章、任新民、孙家栋等两弹一星元勋 – 歼10、歼20等多个飞机型号研制之父——宋文骢
§1.3
1. 问题的提出
连续介质模型
从微观上看,由于构成流体的无数分子之间存在间隙,流体不连续。
从宏观上看,流体力学并不研究流体的微观分子运动,而只研究流体的 宏观机械运动。
§1.4
流体的主要物理性质
例如:毛细管现象 解释:液体分子间的吸引力(内聚力)和液体与固体分子间的吸 引力(附着力)之间的相互作用来说明。 当液体(水)与固体(如玻璃)壁面接触时,如果液体的内聚力 小于液体与固体的附着力,液体将附着湿润壁面,沿壁面向上延 伸致使液面向上弯曲成凹形;继由表面张力作用,使液面再有所 上升,直到表面张力的向上铅锤分量和上升液柱的重量相平衡为 止,如图1-5a所示。反之,如图1-5a所示.
K
1


Vp V
可见,K值大的流体压缩性小,K值小的流体压缩性大。
§1.4
3. 流体的膨胀性
流体的主要物理性质
温度升高,体积膨胀
体胀系数 在一定压强下单位温升引起的体积变化率,单位1/k或1/C 。
V V V V T VT
式中,δT为温度的增量。
§1.4
流体的主要物理性质
流体粘性的形成因素
(1)两层液体之间的粘性力主要由分子内聚力形成 (2)两层气体之间的粘性力主要由分子动量交换形成
相关文档
最新文档