永磁同步电机失磁故障的对策分析
简述永磁同步电机失磁解决方法和防备措施
简述永磁同步电机失磁解决方法和防备措施摘要:一、永磁同步电机失磁的定义及危害二、永磁同步电机失磁的原因1.电机本身问题2.控制系统故障3.供电系统问题4.负载变化三、永磁同步电机失磁的解决方法1.检查电机本身2.维修或更换控制系统3.优化供电系统4.调整负载四、永磁同步电机失磁的预防措施1.选购高质量电机2.定期维护电机和控制系统3.确保供电稳定4.合理分配负载正文:永磁同步电机失磁是指电机在运行过程中失去磁力,导致电机无法正常工作。
失磁现象对电机的运行性能和设备安全造成极大危害,可能导致电机过热、损坏甚至引发火灾等事故。
因此,及时解决失磁问题至关重要。
本文将对永磁同步电机失磁的解决方法和防备措施进行详细探讨。
一、永磁同步电机失磁的定义及危害永磁同步电机失磁是指电机在运行过程中,由于各种原因导致磁场强度不足或磁场失稳,使电机转子与定子之间的磁场作用减弱或消失。
失磁现象会对电机性能产生严重影响,如转速不稳定、输出功率下降、噪音增大等。
长期运行失磁电机可能导致设备损坏、安全隐患等问题。
二、永磁同步电机失磁的原因1.电机本身问题:电机生产质量不佳、磁钢性能下降、轴承磨损等原因可能导致失磁。
2.控制系统故障:控制器故障、传感器失灵、线路老化等问题可能导致电机失磁。
3.供电系统问题:电源电压不稳定、供电线路老化、谐波干扰等因素可能影响电机磁场。
4.负载变化:负载过大或过小,可能导致电机磁场不稳定,进而引发失磁。
三、永磁同步电机失磁的解决方法1.检查电机本身:检查磁钢、轴承等关键部件是否存在问题,及时更换磨损部件。
2.维修或更换控制系统:对故障的控制器和传感器进行维修或更换,确保电机控制系统正常运行。
3.优化供电系统:检查供电线路,排除老化、短路等问题,提高电源电压稳定性。
4.调整负载:合理分配负载,避免长时间过载或欠载运行电机。
四、永磁同步电机失磁的预防措施1.选购高质量电机:购买时注重电机品牌和质量,确保电机本身不存在问题。
电梯永磁同步曳引机的失磁原因分析
电梯永磁同步曳引机的失磁原因分析作者:方学合喻鹏来源:《科学与信息化》2020年第06期摘要永磁同步曳引机是电梯的核心部件,在电梯正常运行过程中非常重要,但是由于工作环境的改变以及日常维护不到位等原因,永磁同步曳引机时而会出现失磁的现象[1]。
同步曳引机失磁不仅会对电梯本身造成财产损坏,更重要的是有可能造成人身伤亡,因此本文对电梯永磁同步曳引机的失磁原因进行分析,从而希望能够找到合理的应对方法。
关键词电梯;永磁同步曳引机;失磁原因引言随着我国经济的发展,电梯市场越来越庞大,产量逐年递增。
据不完全统计,我国2019年电梯产量超过90万台(套)。
在我国电梯市场不断发展的今天,如何防范电梯曳引机的失磁问题就成为我国保证电梯运行安全的重中之重,本文就是从永磁同步曳引机的概念出发,在充分了解其运行原理的基础上,对曳引机的失磁原因进行了分析。
1 电梯永磁同步曳引机概述1.1 电梯永磁同步曳引机概念电梯永磁同步曳引机,俗称无减速箱传动器。
它安装在电梯机房内或电梯井道内,一般在建筑物顶层之上或井道内部,是电梯的动力装置。
永磁同步曳引机,由主机直接带动绳轮,无减速箱装置。
永磁同步曳引机是将无轴承技术运用到永磁同步曳引机上的新型无轴承电动机。
1.2 电梯永磁同步曳引机的优点电梯永磁同步曳引机被大规模应用是因为具有以下优点:运行平稳且噪声低,这主要是因为电磁转动比传统的机械转动的摩擦系数更低,因而能够降低噪声污染;使用寿命更长,这主要是因为永磁同步曳引机的电机没有集电环和电刷,因此减少了由于设备老化造成的使用寿命减少问题;节约空间,这主要是因为曳引机的零部件更少,体积更小;节能,由于缺少摩擦,从电能转化为动能的转化效率耕地;维护成本低,这更多是因为设备零部件更少,故障率更低。
1.3 电梯永磁同步曳引机工作原理同步发电机为了实现能量的转换,需要有一个直流磁场而产生这个磁场的直流电流,称为发电机的励磁电流。
根据励磁电流的供给方式,凡是从其他电源获得励磁电流的发电机,称为他励发电机,从发电机本身获得励磁电源的,则称为自励发电机。
同步发电机失磁异步运行分析与处理
159FORTUNE WORLD 2009.3同步发电机失磁异步运行分析与处理任纯榕 宁波镇海热电厂有限公司1 引言发电机在运行过程中,由于某种原因失去励磁电流,使转子的励磁磁场消失,被称作为发电机失磁。
若失磁后的发电机不从电网上解列,仍带有一定的有功功率,以某一滑差率与电网保持联系,这种特殊的运行方式,称之为发电机异步运行。
从提高供电电网的可靠性和不使故障扩大到整个系统的观点看,整体式转子的汽轮发电机在失去励磁后,最好不立即从系统中断开,维持在电网上运行一段时间,使我们有可能查出去励磁的原因并及时恢复励磁,即将主励磁机切换为备用励磁机供励,或将发电机的负荷转移到其它发电机上去。
因此,在处理励磁系统故障时,需要将发电机作短时的失磁异步运行。
发电机失去励磁的原因很多,往往是由于励磁系统发生某些故障引起的。
一般在同轴励磁系统中,常由于励磁回路断线,如转子回路断线、励磁机电枢回路断线、励磁机励磁绕组断线、自动灭磁开关受振动或误碰掉闸、磁场变阻器接头接触不良等造成励磁回路开路,以及转子回路短路和励磁机与原动机在联接对轮处的机械脱开等原因造成开路。
2 失磁异步运行的工作原理发电机失去励磁后,由于励磁绕组电感较大,励磁电流If及其产生的磁通φf,将按指数规律衰减到零,如图1所示,在励磁电流If减少时,电势Ef也随着减少,功率极限也随之下降,如图2所示。
功角θ将增大,定子合成磁场与转子磁场间的吸引减少。
发电机的转子力矩平衡关系将随着电磁力矩的下降而打破。
由于原动机主力矩未变,所以转子将获得使其加速的过剩转矩。
当励磁电流If减少时到θ角大于90㎜时,转子就可能超出同步点而失步,进入异步运行状态。
图1励磁电流衰减曲线图2 转矩、电势与功角θ的关系发电机失磁进入异步运行状态,由电网向发电机定子送入励磁电流,此电流在定子内感应出电势E,同时在气隙内产生旋转磁场。
由于转子转速超过同步转速,转子与旋转磁场间发生相对运动,其转差n1-n=Sn1(n1为定子磁场的同步转速,n为转子失磁后的转速),转子以转差Sn1的速度切割定子旋转磁场。
永磁同步电机防退磁方法
永磁同步电机防退磁方法
永磁同步电机是一种高效、节能的电机,广泛应用于工业生产和家用
电器中。
然而,永磁同步电机在运行过程中可能会出现退磁现象,导
致电机性能下降甚至无法正常工作。
因此,防止永磁同步电机退磁是
非常重要的。
永磁同步电机退磁的原因主要有两个:一是温度过高,二是电机过载。
因此,防止永磁同步电机退磁的方法也主要从这两个方面入手。
首先,要控制永磁同步电机的温度。
在电机运行过程中,要注意电机
的散热情况,保证电机的温度不会过高。
可以采用增加散热器面积、
增加散热风扇数量、降低电机负载等方法来控制电机温度。
此外,还
可以在电机上安装温度传感器,实时监测电机温度,一旦温度过高就
及时采取措施。
其次,要控制永磁同步电机的负载。
电机过载会导致电机工作电流过大,从而引起电机退磁。
因此,在使用永磁同步电机时,要根据电机
的额定负载来选择合适的负载,避免电机过载。
此外,还可以采用软
启动器、变频器等设备来控制电机的启动和运行,避免电机瞬间过载。
除了以上两种方法,还可以采用一些特殊的措施来防止永磁同步电机
退磁。
例如,在电机上安装磁场强度传感器,实时监测电机磁场强度,一旦发现磁场强度下降就及时采取措施;在电机上安装电流传感器,
实时监测电机工作电流,一旦发现电流异常就及时采取措施。
总之,防止永磁同步电机退磁是非常重要的。
通过控制电机温度、负
载和采用特殊措施等方法,可以有效地防止电机退磁,保证电机的正
常工作。
永磁同步电机失磁故障检测相关阐述
永磁同步电机失磁故障检测相关阐述摘要:随着科学技术的发展,永磁电机作为现阶段常见的电机类型之一,在保证电机作业质量的基础上加快电机作业效率,是现阶段社会发展的关键技术之一。
而在实际作业环节,永磁电机作为借助磁力发挥功能的设备,很容易出现失磁状况,失磁会导致电机中的磁力丧失,严重影响永磁电机的作业状况,实际发展过程中就需要相关人员结合永磁电机的特点对失磁原因进行研究,并且及时地对故障进行检测,以保证永磁同步电机功能的正常发挥。
关键词:永磁同步电机;失磁;原因;检测手段永磁同步电机作为先进技术的产物,具有效率较高、能量密度较为集中而且结构设计较为简单的特点,所以该技术应用十分广泛,已经覆盖到诸多工业领域。
然而实际运用环节,永磁同步电机作业环节很容易受到温度变化、电枢反应以及设备振动等方面的影响出现失磁状况,从而影响电机功能的顺利发挥。
在此背景下,针对永磁同步电机的失磁故障研究就成为相关行业发展的要点,要求专业的技术人员结合永磁同步电机的作业实际对失磁状况的原因以及影响进行研究,并且结合相关数据进行故障检测,及时地发现并对失磁状况进行检测,尽可能地规避失磁对电机产生的影响。
本文就基于专业的技术软件对调速永磁同步电机进行建模仿真,借助计算机分析失磁故障状态下电机状况,从而实现对电机失磁故障的检测,方便对电机进行质量保证。
一、永磁同步电机失磁故障概述(一)概念永磁同步电动机以永磁体提供励磁,使电动机结构较为简单,降低了加工和装配费用,且省去了容易出问题的集电环和电刷,提高了电动机运行的可靠性;又因无需励磁电流,没有励磁损耗,提高了电动机的效率和功率密度。
一般而言,永磁同步电动机由定子、转子和端盖等部件构成。
失磁故障则是指发电机的转子失去励磁电流的状况,发电机失磁后,引起发电机失步,将在转子的阻尼绕组、转子表面、转子绕组中产生差频电流,引起附加温升,可能引起转子局部高温,产生严重过热现象,危及转子安全【1】。
永磁同步电机存在的问题
永磁同步电机存在的问题永磁同步电机是一种高效、高性能的电机,被广泛应用于各个领域。
然而,它也存在一些问题需要解决。
本文将探讨永磁同步电机存在的问题,并提出相应的解决方案。
首先,永磁同步电机存在着温升问题。
由于电机工作时会产生热量,如果无法有效散热,电机温度会升高,从而影响电机的性能和寿命。
为了解决这个问题,可以采用散热器、风扇等散热设备,提高电机的散热效果。
此外,还可以通过优化电机的设计和控制算法,减少电机的功率损耗,从而降低温升的程度。
其次,永磁同步电机存在着磁场衰减问题。
由于永磁材料在长时间使用后会出现磁场衰减现象,导致电机性能下降。
为了解决这个问题,可以采用高性能的永磁材料,延长电机的使用寿命。
此外,还可以通过定期检测和维护电机,及时更换老化的永磁材料,保持电机的性能稳定。
再次,永磁同步电机存在着控制复杂度高的问题。
由于永磁同步电机的控制需要考虑到转子位置、转速等多个参数,使得控制算法相对复杂。
为了解决这个问题,可以采用先进的控制算法,如矢量控制、模型预测控制等,提高控制精度和稳定性。
此外,还可以利用现代化的控制器和传感器,实时监测电机运行状态,进行智能化控制。
最后,永磁同步电机存在着成本较高的问题。
由于永磁材料价格较高,并且制造工艺相对复杂,导致永磁同步电机的成本较高。
为了解决这个问题,可以通过技术创新和工艺改进,降低永磁材料的成本和制造工艺的复杂度。
此外,还可以提高电机的效率和性能,降低电机运行成本,从而降低整体成本。
综上所述,虽然永磁同步电机存在一些问题,但通过技术创新和改进,这些问题是可以得到解决的。
未来随着科技的进步和工艺的改进,相信永磁同步电机将会在各个领域得到更广泛的应用。
电梯永磁同步曳引机的失磁原因分析
全防护工作,比如防震、防雨、防潮处理;其次,做好环境突 变情况下的应急演练,在环境突变的情况下,及时清理负载, 暂定电梯的工作状态。
3.2 严格按照操作流程维护 在进行电梯维护的时候,维护人员一定要严格按照操作流 程维护,减少电梯之间和其他设备对所维护电梯的磁场干扰, 从而减少接触性或者感应性失磁的机会。维护人员还要定期依 照操作流程对电机表面的锈蚀进行处理,防止由于锈蚀过多造 成的消磁。 3.3 设计环节加强测试力度 为了尽可能地防止自身设计缺陷和自身材料缺陷造成的消 磁,要求曳引机设计者在设计时,对电磁方案充分验证,对磁 体的配方进行优化,对磁体的加工工艺优化调整,同时加强测 试力度,提高测试要求,尽量提高设计的科学性。
1 电梯永磁同步曳引机概述 1.1 电梯永磁同步曳引机概念 电梯永磁同步曳引机,俗称无减速箱传动器。它安装在电
梯机房内或电梯井道内,一般在建筑物顶层之上或井道内部, 是电梯的动力装置。永磁同步曳引机,由主机直接带动绳轮, 无减速箱装置。永磁同步曳引机是将无轴承技术运用到永磁同 步曳引机上的新型无轴承电动机。
2.3 设备老化原因 电梯的设计寿命一般是15年,如果正常维护,或许能达到 使用寿命年限,如果维护不当或者违规操作,那么就会导致永 磁同步曳引机失磁从而加剧老化报废的速度。维护不当是指在 维护过程中由于操作不当导致多部电梯的曳引机磁场发生相互 干扰或者曳引机设备与其他设备的磁场发生干扰从而加速设备 老化而失磁;违规操作是指维护人员没有按照操作指引要求对 曳引机进行维护从而导致曳引机设备快速老化(比如锈蚀、线 圈短路等)而失磁。 2.4 运行故障原因 运行故障原因有很多,比如短路、断路、电压不稳定、运 行过载等等导致的消磁。而在设计过程中,曳引机一般都会设 有短路保护、短路保护、稳压器保护,所以前三种运行故障导 致失磁的概率相对偏低,下面主要分析运行过载导致的消磁。 电梯在运行过程中,经常面临超载,比如客梯用作货梯、客梯 严重超员等等,如果超载,多余的载荷就会转移到曳引机机体 上进而导致曳引机机体电流激增形成冲击电流,永磁体在冲击 电流的作用下造成失磁。
三相永磁同步电机故障诊断与分析
三相永磁同步电机故障诊断与分析随着近年来环境污染和能源短的日益突出,世界各国开始相继重视这两个问题,并提出对策。
永磁同步电机作为一种高性能的交流电机,因其具有体积小,可靠性高,功率因数和功率密度高高,效率高等优点。
永磁同步电机的运行范围很宽,可以在其额定功率数值 25%-120%的范围内保持很高的运行效率,完全能够适应负载变化比较大的场合。
因此,永磁同步电机的发展和推广使用,将能够极大满足当今社会工业对高效电机的需求。
但与此同时,电机作为一个能够实现机电能量之间转换的系统,它的结构是由定子,转子,和轴承等电气系统和机械系统组成,其总体结构较为简单。
但电机工作时,具有复杂的机电能量转换过程,在长期运行中,受供电情况、负载工况和运行环境的影响,某些部件会逐渐失效,损坏。
电机的工作原理都是基于电磁理论,主要由电路(绕组)和磁路(铁芯)两大部分组成,其主要故障类型有绕组断线、绕组过热、匝间短路、绝缘老化、铁芯变形及电机转子偏心等,永磁同步电机因其转子上还装设有永磁体,还可能发生永磁体的不可逆退磁故障,总体来说,电机故障种类繁多,原因复杂。
电机集电气与机械部件于一体,加之处于高速运转状态中,故障征兆呈多样性,既有电气故障特性,又有机械故障特性;既有电气量(电压、频率、电流、功率等),也有非电气量(热、声、光、气、辐射、振动等)。
2. 电机的有限元分析模型将 RMxprt 模块中建立的电机模型导入 Maxwell 2D 中进行有限元仿真计算。
电机的主要参数如表 1 所示:2.1 空载特性分析首先,有限元分析了该电机模型的空载特性,包括求解空载反电动势,反电动势的谐波含量,气隙磁场中的径向磁密分布。
永磁同步电机空载时,由于电枢电流很小,电机内仅有永磁体所建立的永磁磁场(主磁场和漏磁场)。
空载反电动势是永磁同步电机的一个非常重要的参数,E 0 的大小对电机的动、稳态性能都有很大的影响,合理地设计电机的E 0 可以降低空载电流,提高功率因数和效率,降低电机温升。
同步电动机失磁问题的探讨百度
空压机同步电机失磁的分析和处理摘要:失磁问题对于同步电动机而言伤害是十分巨大的,由于我是初次遇到同步电动机的失磁问题,因此对这种现象并不是非常了解,所以在这里探讨一下同步电动机失磁的具体解决办法。
同步电动机失磁的通常现象,同步电动机定子电流以额定电流的3-5倍增长,转速急剧降低,考虑是异步电动机并且转子回路开路。
这样电机的状态为电机转速急剧下降,电机定子电流急剧上升,对同步电动机的损害十分严重。
一、前言我厂2002年建成投产的空分(即15000m3/h 制氧机)为炼钢生产发挥了巨大的作用。
该制氧机的安全稳定运行对炼钢生产影响很大。
离心空压机是制氧机配套的关键设备,担负着向空分提供原料压缩空气的重要生产任务,空压机能否连续安全稳定生产,直接关系着空分氧、氮、氩乃至炼钢和炼铁的稳产高产。
因此,确保空压机完好率显得尤其重要。
H700型离心压缩机主要技术参数如下:型号:3MSGE---25/15型离心空压机:进口容积流量:78000m3/min 1-2级转子转速:9560r/min 进口压力:0.093MPa(绝压) 3级转子转速:12084 r/min排出压力: 0.62 MPa(绝压) 大齿轮转速:1500 r/min轴功率:6431kw配套电机二、问题的发生2009年4月3MSGE---25/15型空压机因高压电事故非正常停机,到现场检查发现压缩机联轴器的电机侧膜片处由于承受过载,高温熔断损坏特别严重,电机地脚定位销变形,而且电机位移达10mm左右,此时空压机主电机还在以3000r/min的转速进行运转,现场紧急停车按钮失去作用,到高压室内19号运行柜上紧急停车按钮失去作用,当时看到电流值在100A左右,就直接使用开关上机械跳闸按钮使开关直接跳开。
停机后设备已不能正常开机。
于2008年5月3日开始对空压机拆卸检修,并且对其电气故障进行检查失磁问题对于同步电动机而言伤害是十分巨大的,同步电动机失磁的通常现象,同步电动机定子电流以额定电流的3-5倍增长,转速急剧降低,可以看作是异步电动机并且转子回路开路的情况。
「精华」关于退磁你清楚吗?永磁电机退磁的原因以及预防措施
「精华」关于退磁你清楚吗?永磁电机退磁的原因以及预防措施来源:网络永磁电机一旦失磁,基本上只能选择更换电机,维修的成本又是一大笔,怎么去判断永磁电机失磁了呢,我们接着往下看。
1、机器在开始运行时电流正常,在经过一段时间后,电流变大,时间久了,就会报变频器过载。
首先需要确定空压机厂家变频器选型无误,再确认变频器内的参数是否被改动过。
如果两者都没有问题,则需要通过反电动势进行判断,将机头与电机脱开,进行空载辨识,空载运行至额定频率,此时输出的电压就是反电动势,如果低于电机铭牌上反电动势50V以上,即可确定电机退磁。
2、永磁电机退磁后运行电流一般会超出额定值较多那些只在低速或者高速运行才报过载或者偶尔报过载的情况一般不是退磁导致。
3、永磁电机退磁是需要一定时间的,有的几个月甚至一两年如果厂家选型错误导致报电流过载,不属于电机退磁。
电机退磁原因电机的散热风扇异常,导致电机高温电机没有设置温度保护装置环境温度过高电机设计不合理如何去预防永磁电机的退磁正确选择永磁电机功率退磁和永磁电机的功率选择有关。
正确选择永磁电机的功率可以预防或延缓退磁。
永磁同步电机退磁的主要原因是是温度过高,过载是温度过高的主要原因。
因此,在选择永磁电机功率时要留有一定的余量,根据负载的实际情况,一般20%左右比较合适。
避免重载起动和频繁起动笼型异步起动同步永磁电机尽量避免重载直接起动或频繁起动。
异步起动过程中,起动转矩是振荡的,在起动转矩波谷段,定子磁场对转子磁极就是退磁作用。
因此尽量避免异步永磁同步电机重载和频繁起动。
改进设计1:适当的增加永磁体的厚度从永磁同步电机设计和制造的角度,要考虑电枢反应、电磁转矩和永磁体退磁三者之间的关系。
在转矩绕组电流产生的磁通和径向力绕组产生的磁通的共同在作用下,转子表面永磁体容易引起退磁。
在电动机气隙不变的情况下,要保证永磁体不退磁,最为有效的方法就是适当增加永磁体的厚度。
2:转子内部有通风槽回路,降低转子温升影响永磁电机可靠性的重要因素是永磁体退磁。
《永磁同步电机常见故障原因及分析3400字(论文)》
永磁同步电机常见故障原因及分析1.1永磁同步电机故障类别电动汽车永磁同步电机的故障主要分为电机故障和电机控制器故障。
电动机是将电能转化为机械能,为车辆提供动力的关键部件。
这是一种典型的机电混合动力汽车。
任何系统出现故障或系统之间配合不当都会导致电机故障。
因此,电机故障比其他设备的故障更复杂,电机故障诊断涉及的技术范围更广。
此外,电机运行还与它的负载条件和环境因素有关,电机在不同的运行状态下,故障状态的表现是不同的,这进一步增加了电机故障诊断的难度。
一般来说,电机故障可分为过热故障、机械故障、电气故障。
1.1.1电机故障过热故障:当电动汽车频繁的过载,长时间大转矩输出,会使得电机的温度迅速上升从而使得温度过高长期发生此类现象会导致定子绕组间或匝间的绝缘层损坏,发生转子磁力消失故障和相间匝间短路等故障。
并且还由于在恶劣的工作环境下,可能会有未知的导体异物进入电机内部,导致电机发生单相甚至多相接地故障,由于这些因素导致电机的电源电压与绕组电压不稳定,过热故障就是电源电压不稳定导致电流过大定子绕组的热量上升,同时也包括机械上的原因产生的热量导致电机过热,电机的散热系统故障也是会导致电机过热。
机械故障:电动汽车中电机在开发设计的初期阶段有可能存在着设计结构或选择材料不合理,制造工艺未达标等情况,也可能电动汽车会行驶在超出预期的颠簸路段或处于一个高频率震动的工作环境中,使得电机的转子偏离平衡状态,轴承损坏弯曲,从而导致转子发生动静偏心等故障,这些故障都属于机械类故障。
而机械故障方面最为常见而且最主要的有定子铁心损坏、转子铁心损坏、轴承损坏和转轴损坏,其故障原因为由振动、润滑不充分、转速过高、静载过大、过热而引起的磨损、压痕、腐蚀、电蚀和开裂等;电气方面的故障则主要是定子绕组故障与转子绕组故障,故障原因包括电动机绕组接地、短路、断路、接触不良等。
电气故障:电气故障主要包括以下几类:IGBT故障、输入电源线和接地线故障、整流二极管短路、直流母线接地错误、直流侧电容短路、晶闸管短路、温度超限报警、相电流过流、过电压以及欠电压等高压电气系统故障。
《永磁同步电机故障排除及诊断流程分析综述2500字》
永磁同步电机故障排除及诊断流程分析综述目录永磁同步电机故障排除及诊断流程分析综述 (1)1.1电机过热故障诊断方法及检修 (1)1.1.1定子绕组短路故障诊断及检修 (1)1.1.2铁心过热故障诊断及检修 (3)1.1.3机械过热故障诊断及检修 (4)1.2永磁同步电机无法转动故障诊断及检修 (5)1.2.1永磁同步电机无法转动故障诊断方法及检修 (5)1.2.2电机控制器故障诊断及检修 (6)1.1电机过热故障诊断方法及检修1.1.1定子绕组短路故障诊断及检修诊断方法:(1)外部观察法。
观察接线盒、绕组端部有无烧焦,绕组过热后留下深褐色,并有臭味。
(2)探温检查法。
空载运行20分钟(发现异常时应马上停止),用手背摸绕组各部分是否超过正常温度。
(3)通电实验法。
用电流表测量,若某相电流过大,说明该相有短路处。
(4)电桥检查。
测量个绕组直流电阻,一般相差不应超过5%以上,如超过,则电阻小的一相有短路故障。
(5)短路侦察器法。
被测绕组有短路,则钢片就会产生振动。
(6)万用表或兆欧表法。
测任意两相绕组相间的绝缘电阻,若读数极小或为零,说明该二相绕组相间有短路。
(7)电压降法。
把三绕组串联后通入低压安全交流电,测得读书小的一组有短路故障。
(8)电流法。
电机空载运行,先测量三相电流,在调换两相测量并对比,若不随电源调换而改变,较大电流的一相绕组有短路。
短路处理方法:(1) 短路点在端部。
可用绝缘材料将短路点隔开,也可重包绝缘线,再上漆重烘干。
(2)短路在线槽内。
将其软化后,找出短路点修复,重新放入线槽后,再上漆烘干。
(3)对短路线匝少于1/12的每相绕组,串联匝数时切断全部短路线,将导通部分连接,形成闭合回路,供应急使用。
(4)绕组短路点匝数超过1/12时,要全部拆除重绕。
定子绕组接错故障诊断方法及检修:(1)滚珠法。
如滚珠沿定子内圆周表面旋转滚动,说明正确,否则绕组有接错现象。
(2)指南针法。
如果绕组没有接错,则在一相绕组中,指南针经过相邻的极(相)组时,所指的极性应相反,在三相绕组中相邻的不同相的极(相)组也相反;如极性方向不变时,说明有一极(相)组反接;若指向不定,则相组内有反接的线圈。
同步发电机的失磁保护
保护的配置
电流检测元件
用于检测发电机的机端电流,判 断是否出现失磁现象。
阻抗元件
通过测量发电机的功角和机端电压, 计算出发电机的阻抗,并与预设的 阻抗值进行比较,判断是否出现失 磁。
延时元件
用于防止因发电机在正常范围内的 波动而误发失磁信号,设定一定的 延时时间。
保护的整定
电流阈值
开展跨学科的研究合作,引入 新的理论和技术手段,推动失 磁保护技术的创新发展。
THANKS
谢谢
根据发电机的额定电流和允许的失磁电流,设定一个电流阈值,当 检测到的机端电流低于该阈值时,判断为失磁。
阻抗整定
根据发电机的特性,设定一个阻抗值作为判断失磁的依据。通常选 取发电机的正常阻抗与极端阻抗之间的某个值。
延时时间
根据发电机的运行特性和波动情况,合理设置延时时间,以避免误判。
保护的测试与校验
致磁场强度降低。
功角增大
由于磁场强度降低,同 步发电机输出的有功功 率会增大,功角随之增
大。
转子转速异常
失磁会导致转子转速异 常,可能高于正常转速。
无功电流反向
失磁会导致无功电流反 向流动,即从系统流向
发电机。
对电力系统的影响
01
02
03
04
电压下降
由于发电机输出的有功功率增 大,无功功率减小,导致系统
同步发电机的失磁保护
目录
CONTENTS
• 同步发电机失磁现象及影响 • 失磁保护的重要性及要求 • 失磁保护装置及原理 • 失磁保护的配置及整定 • 失磁保护的案例分析 • 总结与展望
01
CHAPTER
同步发电机失磁现象及影响
失磁现象描述
永磁直驱风力发电机转子磁极失磁原因
永磁直驱风力发电机转子磁极失磁原因下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!随着风力发电技术的不断发展,永磁直驱风力发电机因其结构简单、效率高等优点,越来越受到人们的青睐。
永磁电机为何会出现失磁问题1
永磁电机为何会出现失磁问题永磁材料是永磁电机的关键原材料,在电机制造、试验和使用过程中,总会出现失磁问题,从实际的故障案例分析,可以归结为以下几个方面的内容:
01 磁钢牌号选型不当
若电机设计时计算不够准确,错选了较低牌号,如本应选择180℃级的永磁体而错选为155℃级别,就有可能出现这样的情况:试验过程初始试验记录指标非常好,随着电机逐步趋向热稳定,电机的相关指标开始恶化,愈来愈偏离设计预期,有的到了某一时刻电流急剧增大、变频器迅速停机,并显示过流代码。
再次测试电机的空载特性,表征电机已失磁,必须更换磁钢。
02过热失磁问题
过热失磁是个比较敏感的话题,磁钢磁性能下降也会导致过电流而发生过热问题。
如果排除磁钢磁性能的影响而只考虑热因素,可以确定有两种情况会出现过热失磁现象:第一、电机内循环通风路不合理,违背冷热传导自然规律,导致局部热集聚;第二、绕组热负荷过高,发热情况超过电机热交换系统的换热水平。
03去磁电流过大问题
电机运行时,当负载电流的大小超过磁钢的抗去磁能力时,将引发磁钢发生不可逆退磁现象,进一步使负载电流加大,加重磁钢不可逆退磁现象,如此往复推波助浪,雪崩般加速不可逆退磁直至失磁。
近几年,永磁电机的应用领域在逐步扩大,特别是风机、水泵、空压
机等变化性负载场合,永磁电机的应用和节能效果比较明显,但如何确保电机和设备运行的安全性,则是电机制造商、使用者及永磁体供应者均应考虑的问题。
永磁同步电机失磁故障检测-1
永磁同步电机失磁故障检测及脉动抑制永磁同步电机的去磁现象:1.永磁体失磁引起的转矩脉动、齿槽效应转矩和电流测量等硬件误差引起的转矩脉动。
其中,磁密非正弦分布引起的转矩脉动较大,永磁体失磁导致磁密波形变化,包括幅值变化、幅值和位置变化以及非正弦畸变三种。
其中,非正弦畸变最为复杂。
2. 会使电机性能出现很明显的下降,电流增大再有出力不足,甚至严重的话会导致电机不能驱动负载以致烧坏电机。
原因分析:1.电磁控制原因致使永磁体失磁的电磁方面的因素包括两个方面:第一是失磁可能是高温或者去磁磁场一个因素所引起的,也可能是高温和去磁磁场两个因素同时的作用而导致。
而高温跟去磁磁场的同时作用导致失磁的概率较高。
第二是电机合成磁场谐波能够在永磁体外部产生涡流,很可能会使永磁体的本来的高温升的更高。
再有加入控制系统还不稳定,在高速度运转时可能会产生过大的去磁电流(Id),这时就有可能造成永磁体的失磁现象。
2.永磁体材料原因永磁体的检测数据方面显示样机的永磁体是很正常,但在永磁体的检测方面,现在的永磁体厂家所使用的检测方法普遍存在下列的问题,从而使得检测条件不能及时的地反映出实际的运用用情况:一方面,对永磁体的检测不是实际使用时电机运用交流去磁法,而采用的是直流去磁的方式,两种方式的去磁效果很明显是不一样的;另一方面,永磁体检测的试样方法也不能反映实际情况,试验时一般使用的是十乘十的圆柱体,而实际使用的是面积比较大的矩形。
稀土永磁电机在外界各方面都得到了广泛应用,这主要归功于它的功率密度,控制性能及转矩质量比等方面都表现出了很好的优势。
虽然稀土永磁电机的优势很多,但仍有其劣势,具体表现在失磁和磁场的波动上:因为钕铁硼永磁的内部材料的温度都相对偏低,在温度方面的稳定性则不够理想,不可逆性的损失以及温度系数均相对较高,以致使在高温运行时磁损就严重,并且在电机启动或者刹车以及故障的状况下电流都会激增,将会引起不可逆性的失磁。
因以上这些原因,导致永磁电机在实际的应用当中并不理想。
永磁同步电机弱磁失控机制及其应对策略研究
第31卷第18期中国电机工程学报V ol.31 No.18 Jun.25, 20112011年6月25日Proceedings of the CSEE ©2011 Chin.Soc.for Elec.Eng. 67 文章编号:0258-8013 (2011) 18-0067-06 中图分类号:TM 351 文献标志码:A 学科分类号:470·40永磁同步电机弱磁失控机制及其应对策略研究朱磊,温旭辉,赵峰,孔亮(中国科学院电工研究所,北京市海淀区 100190)Control Policies to Prevent PMSMs From Losing Control Under Field-weakening OperationZHU Lei, WEN Xuhui, ZHAO Feng, KONG Liang(Institute of Electrical Engineering Chinese Academy of Sciences, Haidian District, Beijing 100190, China)ABSTRACT: Field-weakening technology is important for permanent magnet synchronous machine (PMSM) control in wide speed range applications. In deep field-weakening operation, saturation of current regulators may lead to losing control and even damages. This paper analyzed the reason why current saturation happens for conventional field-weakening algorithm. It is concluded that precise limitation of d-axis current is necessary to keep the system under control. New control algorithm is proposed to prevent losing control from happening. It is verified by experimental result that the speed range of PMSM is enhanced by the proposed field-weakening algorithm.KEY WORDS: permanent magnet synchronous machine (PMSM); field-weakening; losing control; voltage saturation; d-axis current limitation摘要:弱磁控制技术可以使永磁同步电机实现宽转速范围调速运行。
永磁同步发电机失步的原因有哪些?如何判断什么程度进入失步状态?
永磁同步发电机失步的原因有哪些?如何判断什么程度进⼊失步状态?同步发电机如果失步,也⽐较好判断,发动机本⾝就会⼀会⼉发出功率,然后⼀会⼉倒进功率,发电机的定⼦电流⼤幅晃动,发电机会发出了周期性异响。
对系统来说,电压和电流,有功功率和⽆功功率都会⼤幅摆动,可能造成系统震荡,当然具体还要看系统和失步机组的容量以及失步机组是否失磁了,失步的机组是否带有失磁保护等因素,请关注:容济点⽕器⼀、如果失步的时间较长,电机会过热⽽烧坏电机转⼦和定⼦线圈,同时伴随发⽣电机异声和电流表指针打到头的现象,引发同步电机失步的主要原因分析:1、操作机构检查或者调整试验中存在问题;2、检修的时候,油开关操作机构的动作失灵引起振动,从⽽造成电动合闸机构跳闸;铁芯在铜套⾥的活动不太灵活,制造时候孔不圆,铁芯和铜套在孔内存在松动;3、负载太⼤导致转⼦转不动。
⼆、同步电机失步的预防措施如下:1、保证操作机构的检查以及调整试验的质量;2、要密切注视同步电机的电流异常变化和温升以及异常响声;当电机容量⼤和负载太⼤以⾄于发⽣失步事故时候,要尽快切断电源,以避免因为通过定⼦电流很⼤⽽造成电机过热,引起烧坏。
三、同步发电机失步本质分析在同步发电机正常运⾏时候,定⼦磁极和转⼦磁极之间可以看成有弹性的磁⼒线联系。
当负载增加的时候,功⾓将会增⼤,这相当于将磁⼒线拉长;当负载减⼩的时候,功⾓会减⼩,这相当于磁⼒线被缩短。
当负载突然变化的时候,由于转⼦有了惯性,转⼦的功⾓不能⽴即地稳定在新的数值,⽽是落在新的稳定值左右⽽且要经过若⼲次摆动,这种现象称之为同步发电机的振荡。
它的振荡有两种类型:⼀种是振荡的幅度会越来越⼩,⽽功⾓的摆动逐渐衰减,最后会稳定在某⼀新的功⾓下,仍然会以同步转速稳定运⾏,被称为同步振荡;另⼀种是振荡的幅度会越来越⼤,⽽功⾓不断增⼤,直⾄脱出乐稳定范围,使得发电机失步,发电机进⼊异步运⾏状态,被称为⾮同步振荡。
738 钕铁硼永磁电机转子磁钢失磁问题分析
2.会议论文 吴伟康 钕铁硼永磁电机的磁稳定 1998
钕铁硼永磁电机的磁稳定性是制约大中小永磁电机推广应用的关键因素之一,笔者初步经验总结提出四个相应措施确保钕硼永磁电机不退磁,提高 其可靠性。
3.学位论文 林岩 钕铁硼永磁电机防高温失磁技术的研究 2006
作为国家“十五”科技攻关计划项目“稀土应用工程”中“稀土永磁材料在高性能电机应用的共性关键技术”、辽宁省科技攻关计划和沈阳市科技 攻关计划项目的一部分,本文围绕永磁电机运行过程中出现的高温失磁现象,对永磁材料的性能状况、合理选择、热稳定性的快速无损检测以及磁性能 对电机设计的影响等技术问题进行了深入研究,取得了一些具有理论意义和工程实用价值的成果。
因此,电机磁钢是有使用寿命的,电机使用 一定的年限之后,磁钢也会失磁。然而目前 还没有见到磁钢因为时放而失磁。钕铁硼 永磁材料磁性能随时间的变化很小。
3.引起钕铁硼永磁电机磁钢失磁 的主要原因
钕铁硼水磁电机磁钢失磁,常常是几 种退磁机理共同作用的结果。引起钕铁硼 永磁电机磁钢失磁原因总结起来,集中在 以下几个方面。
电梯用永磁同步电机的失磁问题浅析
电梯用永磁同步电机的失磁问题浅析
刘浩;张磊
【期刊名称】《电梯工业》
【年(卷),期】2016(000)003
【摘要】0.前言电梯系统需要大扭矩、精度高、动态响应特性好等固有要求,
永磁同步电动机出现于20世纪70年代初期,目前主要采用稀土材料作为永磁体,由于其固有特性的高磁能积和高矫顽力,使得永磁同步电动机具有体积小、重量轻、效率高等多种优点。
【总页数】4页(P68-71)
【作者】刘浩;张磊
【作者单位】[1]北京市特种设备检测中心;[2]北京市丰台区特种特种设备检测所【正文语种】中文
【中图分类】TU857
【相关文献】
1.一种永磁同步电机幅值失磁故障诊断方法
2.永磁同步电机失磁故障仿真研究
3.高密度永磁同步电机永磁体失磁特征量分析
4.一种永磁同步电机失磁故障滑模调速
方法5.永磁同步电机失磁故障电磁仿真分析
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
永磁同步电机失磁故障的对策分析1.引言永磁同步电机由于其结构简单、运行可靠、损耗少、功率密度高、电机的形状和尺寸可以灵活多样等显著优点,应用范围极为广泛,遍及航空航天、国防、工农业和产和日常生活的各个领域。
目前,永磁电机的应用领域仍在不断的拓展,风力发电、电动汽车等新能源领域也在大量使用永磁电机。
因此,为了确保像电动汽车这样的应用系统以及其它对可靠性要求更高的应用领域的安全性,必须重视永磁同步电动机运行的可靠性和稳定性。
嵌入电机内的永磁体是永磁同步电机重要的结构部件,它的磁性能直接影响永磁同步电机的效率、性能和可靠性。
在温度、电枢反应及机械振动等因素影响下,嵌入电机内的永磁体可能会产生不可逆失磁,使电机性能急剧下降,甚至有可能导致电机停转,对于像电动汽车这样的应用系统,永磁电机的突然失磁是非常危险的。
因此,分析永磁同步电机的永磁体磁性能及失磁故障,对电机安全高效运行具有十分重要的意义[1][2]。
2.国内外研究现状近年来,国内外对永磁材料的失磁机理和永磁同步电机的失磁故障进行了广泛的研究。
文献[3]对稀土永磁材料的交流失磁现象进行研究,总结出稀土永磁材料表面磁感应强度在不同频率的交变磁场作用下随时间的变化规律。
文献[4]针对稀土永磁同步电机在运行一段时间后性能下降这一现象,分析了引起电机失磁的原因,提出了在检修和运行中避免失磁的一些有效方法。
文献[5]提出了一种基于卡尔曼滤波器的永磁同步电机永磁体磁场状况在线监测方法。
文献[6][7]中通过建立参数模型或有限元模型来研究电机的失磁故障,提出了一些对永磁同步电机失磁故障的监测方法。
文献[10]对失磁故障原因进行了全面的分析,提出了离线和在线检测方法。
基于永磁体磁场状况的动态监测,可防止永磁电机失磁状况的恶化,降低不可逆失磁程度。
文献[13]提出一种改进的反电势法,可用于永磁体磁链估计。
3.永磁同步电机失磁的发生任何磁性材料都存在材料自身的磁性能稳定问题。
永磁材料也具有失磁特性,当嵌入电机内作为励磁磁极后,受电机运行时温度、电枢反应、机械振动以及其它因素的综合影响,永磁体发生不可逆失磁的风险增加,导致电机的性能下降甚至使电机停转。
●机械与化学原因引起永磁体失磁的机械方面的原因主要是发生剧烈振动使永磁体破损、碎裂,磁畴的磁矩方向发生变化从而使永磁体磁性能下降。
化学失磁主要是由于永磁体表面处理不当,或表面镀层破坏导致永磁体暴露而锈蚀引起的。
●温度温度对永磁体的磁性能有很大的影响。
在永磁体使用过程中,环境温度处于变化中,其磁性能随着温度的变化而变化,在其它工作条件都正常仅温度升高时,永磁体有可能产生不可逆失磁。
●冲击电流电机发生短路故障或瞬时过载产生的冲击电流都会引起同步电机失磁的发生。
●涡流在电机处于负载工况时,特别是高速弱磁时,电机的合成磁场存在大量谐波,将在永磁体表面产生涡流,导致永磁体温度升高,增加了永磁体的失磁风险。
●去磁磁场如果控制系统不稳定,在高速时会产生过大的去磁电流,可能导致永磁体失磁。
4.失磁对电机性能的影响失磁对同步电动机有很大危害。
永磁电机中的永磁体失磁后,电机的性能下降,出力不足。
如果失磁严重,电机将不能驱动负载甚至被烧毁。
假定在某一恒定负载下,永磁体发生了不可逆失磁,磁性能就会降低,剩余磁感应强度会下降。
如果电机负载不变,即要求输出的电磁功率不变,必然会使功角增大和电流增加来产生与负载平衡的电磁力矩。
随着永磁同步电机不可逆失磁的产生,电机的铁损和铜损都会增加,电机效率明显下降[11]。
永磁同步电机在设计时,通常会把空载反电动势设置在一个合理的范围,以便节省永磁材料、提高功率因素和电机效率。
失磁发生后,永磁体磁性能的改变直接影响气隙磁场的分布,气隙磁通的基波及谐波幅值也将发生改变。
若电机仍以额定转速旋转,在定子绕组中产生的感应电动势将随之发生改变。
空载感应电动势(反电动势)是反应电机永磁体磁性能最直接的变量。
反电动势的大小不仅决定电机运行于增磁状态还是去磁状态,而且对电机的动态性能和稳态性能都有很大的影响。
研究反电动势的变化便可以直接掌握永磁体磁性能的变化。
5.永磁电机失磁的检测方法5.1仪器检测文献[4]中提出了用仪器检测电动机的气隙磁场来判断电机是否失磁。
主要检测方法可分为以下几个方面:●特斯拉计特斯拉计(高斯计)是根据霍尔效应制成的,可以方便地测试气隙中的磁场、磁体的表面磁场和距磁体一定距离的磁场。
测试时,转动霍尔探头,使之与磁场方向垂直。
特斯拉计测试的磁场是霍尔片上的平均磁场,接近于点测试,可以测出磁场的不均匀性。
●磁通表磁通表(韦伯计)是利用电磁感应定律测量磁通量的直读仪表。
当测试线圈从磁场中抽出时,磁通表指针发生偏转。
线圈内被测磁通或磁通密度可用仪表说明书中给定的公式计算。
用抽拉线圈方法可以测得线圈面积内平均磁通密度或磁场值。
●直流磁特性测试仪直流磁特性测试仪能够同时测试材料的Br,Hc,其工作原理是用电子磁通计测出在外磁场作用下磁化强度或磁感应强度的变化,同时用另一电子磁通计或霍尔探头测出空隙中磁场的变化,将信号分别输入X—Y记录仪的x端和y端,由此自动记录材料的退磁曲线和磁滞回线。
仪器检测虽然简单易实现但并不准确,不能对失磁机理进行深入的分析。
除上述方法之外,还有Matlab仿真,有限元分析法等。
5.2 Matlab仿真Matlab提供了强大的信号处理能力和图形处理能力,在此基础上结合Matlab可视化编程功能对电机故障诊断中信号处理部分进行可视化编程,使得信号处理过程简单方便,并且能够对信号进行多种变换,有利于诊断人员观察故障特征,得出正确的故障诊断结果。
5.3有限元分析法有限元法是将连续的求解域离散为一组单元的组合体,用在每个单元内假设的近似函数来分片地表示求解域上待求的未知场函数,从而使一个连续的无限自由度问题变成离散的有限自由度问题[9]。
有限元法在20世纪40年代被提出后逐渐应用于飞机设计和工程电磁分析领域,能对复杂的电磁场进行高精度求解。
它具有适应复杂边界条件或边界形状、较高的求解精度、能求解非线性问题等优点,因此,特别适合求解电机这类边界条件复杂、存在非线性材料的磁场问题。
5.3.1 电磁场有限元法电磁场有限元法是对电磁场偏微分方程求数值解,它的求解步骤是首先将整个求解区域离散化,分割成许多小的区域,称之为“单元”或者“有限元”。
然后将偏微分方程的边值问题等价为条件变分问题及泛函数求极值的问题,利用剖分插值在单元上构造插值函数,离散化变分问题为普通多元函数的极值问题,以及最终演变成求解一组多元代数方级组,这些方程的解就是待求边值问题的数值解。
通过电磁场有限元法求得各点磁位后,再通过变换(即后处理)就可以得到分析所需要的力、转矩、损耗、电抗、电动势等参数[11] 。
5.3.2 电磁场仿真软件Ansoft介绍如果借助有限元电磁场仿真元件,电机设计和故障分析会变得非常方便,其求解精度满足工程要求,且速度相当快。
Ansoft是世界著名的商用电磁场有限元软件之一,主要用于设计和分析各种电磁设备和机电设备,例如:电机、变压器、传感器及其它电磁设备。
它基于麦克斯韦方程,采用有限元离散形式,将工程中的电磁场计算转变为庞大的矩阵求解,具有操作界面友好,能够进行分布式计算和并行计算,求解准确性高等特点。
Ansoft 能够自动自适应产生适当、高效和准确的网格剖分,这种自动自适应剖分技术可以使有限元分析变得更简单。
利用Ansoft软件,可以分析电机在不同工况下的磁场分布情况,获得各种性能参数曲线与数据。
6.总结通过以上文献资料的整理,大致确定了对永磁同步电机进行失磁诊断的思路:基于功能强大的有限元电磁场仿真软件Ansoft对永磁同步电机进行建模仿真,模拟其发生失磁故障,对失磁状态下的空载反电动势频谱进行分析,并与正常状态下的运行情况进行比较;同时分析电机在额定负载下失磁后一些状态参数的变化情况。
参考文献[1] 唐任远.现代永磁电机[M] .北京:机械工业出版社,1997.[2] 王秀和.永磁电机[M] .北京:中国电力出版社,2007.[3] 黄浩,柴建云,姜忠良,等.钕铁硼稀土永磁材料交流失磁[J].清华大学学报,2004,44(6):721-724.[4] 刘荣林.永磁电动机失磁分析[J].中国民航学院学报,2004,22(6):18-20.[5] 张猛,肖曦,李永东.基于扩展卡尔曼滤波器的永磁同步电机转速和磁链观测器[J].中国电机工程学报,2007,27(36) :36-40.[6] Casadei D,Filippetti F,Rossi C,stefani A.Magnets Faults Characterization for Permanent Magnet Synchronous Motors[J].IEEE Trans on Magnetics,2009 ,42(6):1307-1314.[7] Kang G,Hur J,Nam H,et al.Analysis of Irreversible Magnet Demagnetization in Line-Start Motors Based on the Finite-Element Method[J] .IEEE Trans on Magnetics,003,33(6):1488-1491 [8] 王广生,黄守道,高剑.基于Ansoft软件设计分析内置式永磁同步电动机.《微电机》2011年第02期.[9] 王振,刘建国,王爱凤.基于ANSOFT的永磁同步电机有限元分析.《能源研究与管理》2010年第03期.[10] 陈本章.浅谈永磁同步电机的失磁检测.《科协论坛(下半月)》2012年02期.[11] 王刚,马宏忠.永磁同步电机失磁故障分析./week114.[12] 马宏忠.电机状态监测与故障诊断[M].北京:机械工业出版社,2007 :230-245[13] Chen Zhiqian,Tomita Mutuwo,Doki Shinji,et al.An extended electromotive force model for sensorless control of Interior permanent-magnet synchronous motors[J].IEEE Trans.on IE,2003,50(2):288-295[14] 刘国强,赵凌志,等.《ansoft工程电磁场有限元分析》.电子工业出社.2005年8月.[15] Qi Fengchun.Magnetic stability of permanent magnet materials[J].Journal of Magn.Mater.Devices,1999,29(5):26-31(in Chinese).[16] 王刚,马宏忠,梁伟铭,陈诚.稀土永磁同步电动机失磁对电机损耗的影响.《现代电子技术》2012年02期.[17] 陈致初,符敏利,彭俊.永磁牵引电动机的失磁故障分析及预防措施.《大功率变流技术》2010年第03期.[18] Stefani S,Ruoho E,Dlala A.Comparison of demagnetization models for finite-element analysis of permanent magnet synchronous machines[J],IEEE,Trans on Magnetics,2007,43(11):3964–3968.。