因式分解方法:提公因式法与公式法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解方法:提公因式法与公式法

因式分解

即和差化积,其最后结果要分解到不能再分为止。而且可以肯定一个多项式要能分解因式,则结果唯一,因为:数域F上的次数大于零的多项式f(x),如果不计零次因式的差异,那么f(x)可以唯一的分解为以下形式:

f(x)=aP1k1(x)P2k2(x)…Piki(x)*,其中α是f(x)的最高次项的系数,

P1(x),P2(x)……Pi(x)是首1互不相等的不可约多项式,并且Pi(x)(I=1,2…,t)是f(x)的Ki重因式。

(*)或叫做多项式f(x)的典型分解式。证明:可参见《高代》P52-53

初等数学中,把多项式的分解叫因式分解,其一般步骤为:一提二套三分组等

要求为:要分到不能再分为止。

因式分解方法介绍

1、提公因式法

如果多项式各项都有公共因式,则可先考虑把公因式提出来,进行因式分解,注意要每项都必须有公因式。

例15x3+10x2+5x

解析显然每项均含有公因式5x故可考虑提取公因式5x,接下来剩下

x2+2x+1仍可继续分解。

解:原式=5x(x2+2x+1)=5x(x+1)2

2、公式法

即多项式如果满足特殊公式的结构特征,即可采用套公式法,进行多项式的因式分解,故对于一些常用的公式要求熟悉,除教材的基本公式外,数学竞赛中常出现的一些基本公式现整理归纳如下:

a2-b2=(a+b)(a-b)

a2±2ab+b2=(a±b)2

a3+b3=(a+b)(a2-ab+b2)

a3-b3=(a-b)(a2+ab+b2)

a3±3a2b+3ab2±b2=(a±b)3

a2+b2+c2+2ab+2bc+2ac=(a+b+c)2

a12+a22+…+an2+2a1a2+…+2an-1an=(a1+a2+…+an)2a3+b3+c3-

3abc=(a+b+c)(a2+b2+c2-ab-ac-bc)

an+bn=(a+b)(an-1-an-2b+…+bn-1)(n为奇数)

说明由因式定理,即对一元多项式f(x),若f(b)=0,则一定含有一次因式x-b。可判断当n为偶数时,当a=b,a=-b时,均有an-bn=0故an-bn中一定含有a+b,a-b因式。

例2分解因式:①64x6-y12②1+x+x2+…+x15

解析各小题均可套用公式

解①64x6-y12=(8x3-y6)(8x3+y6)

=(2x-y2)(4x2+2xy2+y4)(2x+y2)(4x2-2xy2+y4)

②1+x+x2+ (x15)

=(1+x)(1+x2)(1+x4)(1+x8)

注多项式分解时,先构造公式再分解。

相关文档
最新文档