《球的表面积和体积》
高一数学人教A版必修二课件:1.3.2 球的体积和表面积
![高一数学人教A版必修二课件:1.3.2 球的体积和表面积](https://img.taocdn.com/s3/m/c231538476eeaeaad0f33026.png)
一二三
知识精要 典题例解 迁移应用
1.两个球的体积之比为1∶27,那么两个球的表面积之比为
()
A.1∶9 B.1∶27 C.1∶3 D.1∶1
答案:A
2.三个球的半径比是1∶2∶3,那么最大球的体积是其余两
球体积和的( ) A.1倍B.2倍 C.3倍 D.8倍
答案:C
一二三
知识精要 典题例解 迁移应用
一二三
知识精要 思考探究 典题例解 迁移应用
三、有关几何体的外接球与内切球 与球有关的组合体问题,一种是内切,一种是外接,解题时要
明确切点和接点的位置,确定有关元素间的数量关系,并作出
过球心的截面图.
一二三
知识精要 思考探究 典题例解 迁移应用
1.若一正方体边长为 a,则该正方体的内切球与外接球半径与 a
∴表面积 S 球=4πR2=64π(cm2),
体积 V 球=43πR3=2536π(cm3).
(2)∵S 球=4πR2=144π,∴R=6. ∴V 球=43πR3=43π×63=288π. (3)∵V 球=43πR3=5030π,∴R=5. ∴S 球=4πR2=4π×52=100π.
一二三
知识精要 典题例解 迁移应用
有什么关系? 提示:该正方体内切球直径应等于边长,所以半径 r=���2���,该正方体
外接球直径应等于正方体的体对角线长,所以半径 R= 23a. 2.若从球面上一点出发的三条弦两两垂直,其长分别为 a,b,c,则
该球的半径 R 与 a,b,c 有怎样的关系?
提示:从球面上一点出发的三条弦两两垂直,则以这三条弦为棱
������球
=
2 5πℎ2 4πℎ 2
人教版高中数学- 球的体积和表面积(共32张PPT)教育课件
![人教版高中数学- 球的体积和表面积(共32张PPT)教育课件](https://img.taocdn.com/s3/m/b51b48f6453610661fd9f417.png)
: 其实兴趣真的那么重要吗?很多事情我 们提不 起兴趣 可能就 是运维 我们没 有做好 。想想 看,如 果一件 事情你 能做好 ,至少 做到比 大多数 人好, 你可能 没有办 法岁那 件事情 没有兴 趣。再 想想看 ,一个 刚来到 人世的 小孩, 白纸一 张,开 始什么 都不会 ,当然 对事情 开始的 时候也 没有 兴趣这 一说了 ,随着 年龄的 增长, 慢慢的 开始做 一些事 情,也 逐渐开 始对一 些事情 有兴趣 。通过 观察小 孩的兴 趣,我 们可以 发现一 个规律 ,往往 不是有 了兴趣 才能做 好,而 是做好 了才有 了兴趣 。人们 总是搞 错顺序 ,并对 错误豪 布知晓 。尽管 并不绝 对是这 样,但 大多数 事情都 需要熟 能生巧 。做得 多了, 自然就 擅长了 ;擅长 了,就 自然比 别人做 得好; 做得比 别人好 ,兴趣 就大起 来,而 后就更 喜欢做 ,更擅 长,更 。。更 良性循 环。教 育小孩 也是如 此,并 不是说 买来一 架钢琴 ,或者 买本书 给孩子 就可以 。事实 上,要 花更多 的时间 根据孩 子的情 况,选 出孩子 最可能 比别人 做得好 的事情 ,然后 挤破脑 袋想出 来怎样 能让孩 子学会 并做到 很好, 比一般 人更好 ,做到 比谁都 好,然 后兴趣 就自然 出现了 。
Si
则球的体积为:V V1 V2 V3 Vn
4 R3
3
O
(四)球的表面积公式的推导
讨论:(1)如何求出每一个“准锥体”的体积呢? 你会算吗可?以怎样处理呢?
展开讨论
“准锥体”的底面是球面的一部分, 底面是“曲”的。
O
Si
Si
hi
O
以平代曲 O
“准锥体”近似看为小棱锥,用小棱锥的体积作 为“准锥体”体积的近似值。
高一数学课件:球的体积和表面积
![高一数学课件:球的体积和表面积](https://img.taocdn.com/s3/m/cb0ae45b580216fc700afde9.png)
□ 1.球的体积
如果球的半径为 R,那么它的体积 V=
1 43πR3 .
2.球的表面积
□ 如果球的半径为 R,那么它的表面积 S= 2 4πR2 .
4
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
A版 ·数学 ·必修2
1.判一判(正确的打“√”,错误的打“×”) (1)决定球的大小的因素是球的半径.( √ ) (2)球面被经过球心的平面截得的圆的半径等于球的半 径.( √ ) (3)球的体积 V 与球的表面积 S 的关系为 V=R3S.( √ )
S=12×4π×12+6×22-π×12=24+π. 该几何体的体积为 V=23+12×43π×13=8+23π.
15
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
A版 ·数学 ·必修2
拓展提升
(1)由三视图求球与其他几何体的简单组合体的表面积 和体积,关键要弄清组合体的结构特征和三视图中数据的含 义.
6
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
A版 ·数学 ·必修2
3.(教材改编,P27,例 4)若球的过球心的圆面圆周长是 c,
则这个球的表面积是( )
c2 A.4π
c2 B.2π
c2 C. π
D.2πc2
7
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
A版 ·数学 ·必修2
课堂互动探究
13
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
A版 ·数学 ·必修2
探究 2 球的三视图 例 2 某个几何体的三视图如图所示,求该几何体的表 面积和体积.
2第2课时 球的体积和表面积PPT课件(人教版)
![2第2课时 球的体积和表面积PPT课件(人教版)](https://img.taocdn.com/s3/m/e7a112b448649b6648d7c1c708a1284ac85005d9.png)
第八章 立体几何初步
球的表面积与体积
(1)已知球的体积是323π,则此球的表面积是( )
A.12π
B.16π
C八章 立体几何初步
(2)如图,某几何体的三视图是三个半径相等的圆及每个圆中两 条互相垂直的半径,若该几何体的体积是283π,则它的表面积是 ()
角度五 球的内接直棱柱问题
设三棱柱的侧棱垂直于底面,所有棱的长都为 a,顶点
都在一个球面上,则该球的表面积为( )
A.πa2
B.73πa2
C.131πa2
D.5πa2
栏目 导引
第八章 立体几何初步
【解析】 由题意知,该三棱柱为正三棱柱,且侧
棱与底面边长相等,均为 a.如图,P 为三棱柱上
底面的中心,O 为球心,易知 AP=23× 23a= 33a,
A.17π C.20π
B.18π D.28π
栏目 导引
第八章 立体几何初步
【解析】 (1)设球的半径为 R,则由已知得 V=43πR3=323π,解得 R=2. 所以球的表面积 S=4πR2=16π. (2)由三视图可得此几何体为一个球切割掉18后剩下的几何体, 设球的半径为 r, 故78×43πr3=238π, 所以 r=2,表面积 S=78×4πr2+34πr2=17π,选 A. 【答案】 (1)B (2)A
栏目 导引
第八章 立体几何初步
该圆锥的体积为 13×π× 23r2×32r=38πr3,球体积
为
4 3
πr3
,
所
以
该
圆
锥
的
体
积
和
此
球
体
积
的
比
值
为
3843ππrr33=392.
高中数学《球的表面积和体积》课件
![高中数学《球的表面积和体积》课件](https://img.taocdn.com/s3/m/b85ba6cea26925c52dc5bf9d.png)
课前自主学习
课堂互动探究
随堂巩固训练
课后课时精练
答案
例 3 过球的半径的中点,作一垂直于这条半径的截面,截面面积是 48π cm2,求球的表面积.
[解] 如图所示,设 O′为截面圆圆心,则 OO′⊥O′A,O′A 为截 面圆的半径,OA 为球的半径 R.
课前自主学习
课堂互动探究
随堂巩固训练
课后课时精练
7.3 球的表面积和体积
[学习目标] 1.了解球的截面. 2.掌握球的表面积和体积公式. 3. 会运用这些公式进行简单的有关计算.
课前自主学习
课前自主学习
课堂合作研究
随堂基础巩固
课后课时精练
【主干自填】
1.球的表面积公式:S 球面=_□0_1__4_π_R_2_(R 为球的半径).
2.球的体积公式:V 球=__□0_2_43__π_R_3 (R 为球的半径).
课前自主学习
课堂互动探究
随堂巩固训练
课后课时精练
【即时小测】 1.思考下列问题 (1)用一个平面去截球体,截面的形状是什么?该截面的几何量与球的半 径之间有什么关系?
课前自主学习
课堂互动探究
随堂巩固训练
课后课时精练
提示:可以想象,用一个平面去截球体,截面是圆面,在球的轴截面图 中,截面圆与球的轴截面的关系如图所示.
提示:V=43πR3 S=4πR2 这两个公式说明球的体积和表面积都由球的 半径 R 唯一确定.其中球的体积是半径 R 的三次函数,球的表面积是半径 R 的二次函数,并且表面积为半径为 R 的圆面积的 4 倍.
课前自主学习
课堂互动探究
随堂巩固训练
课后课时精练
提示
2.球的表面积扩大 2 倍,球的体积扩大( ) A.2 倍 B. 2倍 C.2 2倍 D.3 2倍
《球的表面积和体积》人教版高中数学必修二PPT课件(第1.3.2课时)
![《球的表面积和体积》人教版高中数学必修二PPT课件(第1.3.2课时)](https://img.taocdn.com/s3/m/876e04c803d276a20029bd64783e0912a2167cf7.png)
(3)若两球表面积之比为1:2,则其体积之比是 1: 2 2 .
(4)若两球体积之比是1:2,则其表面积之比是 1: 3 4 .
2、若一个圆锥的底面半径和一个半球的半径相等,体积也相等,则它们的高度之比为( A )
(A)2:1 (B) 2:3 (C) 2:
(D) 2:5
随堂练习
立体图形的内切和外接问题 例4:求球与它的外切圆柱、外切等边圆锥的体积之比。
初态温度T1=(273+27) K=300 K
由 p1V1 p2V2
T1
T2
V2 =
p1T2 p2T1
V1
6.25 m3
课堂训练
3.如图所示,粗细均匀一端封闭一端开口的U形玻
璃管,当t1=31 ℃,大气压强p0=76 cmHg时,
两管水银面相平,这时左管被封闭的气柱长L1=8
10.9150 1635(朵)
答:装饰这个花柱大约需要1635朵鲜花.
新知探究
例3、如图,圆柱的底面直径与高都等于球的直径,求证:
(1)球的体积等于圆柱体积的 2 ; 3
(2)球的表面积等于圆柱的侧面积.
RO
随堂练习
(1)若球的表面积变为原来的2倍,则半径变为原来的 2 倍.
(2)若球半径变为原来的2倍,则表面积变为原来的 4 倍.
3、从微观上说:分子间以及分子和器壁间,除碰撞外无其他作用力,分子本身没有体积,即它 所占据的空间认为都是可以被压缩的空间。
4、从能量上说:理想气体的微观本质是忽略了分子力,没有分子势能,理想气体的内能只有分 子动能。
一、理想气体
一定质量的理想气体的内能仅由温度决定 ,与气体的体积无关.
例1.(多选)关于理想气体的性质,下列说法中正确的是( ABC )
人教版高中数学必修二《球的体积和表面积》教学课件
![人教版高中数学必修二《球的体积和表面积》教学课件](https://img.taocdn.com/s3/m/81b7648ffad6195f312ba6d1.png)
你能求出下面物体的体积和表面积吗?
5/27/2020
地球可近似地看作球体,地球的半径为 6370km.怎样计算它的体积?
如果球的半径 为R,那么它的体积
V=
4 3
πR3
5/27/2020
地球可近似地看作球体,地球的半径为 6370km.怎样计算它的表面积 ?
球的半径为R, 那么球的表面积
(2)球的表面积等于圆柱的侧面积
证明:(2)设球的半径为R,则 圆柱的地面半径也为R, 高为2R 因为S球=4πR2, S圆柱侧=2πR·2R=4πR2 所以s球= S圆柱侧
5/27/2020
将一个气球的半径扩大1倍,它的体积扩大 到原来的几倍?
解:设气球原来的半径为R
它的体积V1=
4 3
πR3,
气球半径扩大一倍,那么
它的体积V2=
4 3
π(2R)3=
332πR3
所以气球的半径扩大1倍,体积扩大8倍.
5/27/2020
一个球的体积是100cm3,试计算它的表面
积
(π取3.14,结果精确到1cm2) 解:设球的半径为R,那么根据题意有:
4 πR3= 100 3
4 3
×3.14×R3=
100
R≈2.88
球的表面积S=4πR2=4×3.14×2.882 ≈104(cm2半球形的 冰淇淋,如果冰淇淋融化了,会溢满杯子吗?
解:由图可知,半球的半径为4
半球的体积为 4 π43= 256π
3
3
圆锥的体积为
1 3
πR2×12=
1392π
因此,如果冰淇淋融化了,会 溢满杯子.
5/27/2020
祖暅原理也就是“等积原理”,它是 由我国南北朝杰出的数学家、祖冲之的儿 子祖暅首先提出来的.祖暅原理的内容是: 夹在两个平行平面间的两个几何体,被平 行于这两个平行平面的平面所截,如果截 得两个截面的面积总相等,那么这两个几 何体的体积相等.
球的体积和表面积57张.ppt
![球的体积和表面积57张.ppt](https://img.taocdn.com/s3/m/d1151b23a8956bec0875e34b.png)
(2)设木星和地球的半径分别为r、R. 依题意,有4πr2=120×4πR2,解得r=2 30R. 所以VV木地=4343ππRr33=43π243πR303 R3=240 30. 故木星的体积约是地球体积是240 30倍.
[点评] 求解球的体积的大小问题,实际是转化为求类问题的实质就是根据几何体的相关数据求球 的直径或半径,关键是根据“切点”和“接点”,作出轴截 面图,把空间问题转化为平面问题来计算.
(3)此类问题的具体解题流程:
[例3] (2010·全国高考)设长方体的长、宽、高分别为
2a、a、a,其顶点都在一个球面上,则该球的表面积为( )
A.3πa2
第一章
空间几何体
第一章
1.3 空间几何体的表面积与体积
第一章
1.3.2 球的体积和表面积
课前自主预习 思路方法技巧 探索延拓创新
课堂基础巩固 课后强化作业
课前自主预习
温故知新 在初中,我们已经学习了圆的概念和周长、面积公式, 即圆是“在平面内到定点的距离等于定长的点的集合”,周 长c=2πr ,面积S= πr2 ,其中r是圆的半径,而球面是“在空 间中到定点的距离等于定长的点的集合”.以半圆的直径所 在直线为旋转轴,半圆旋转一周,形成的旋转体叫做 球 ,半 圆的圆心叫 球心 ,半圆的 半径 叫球的半径.
43πr2 43πR3
=
8 27
,所
以Rr =23,则这两个球的表面积之比为44ππRr22=(Rr )2=49.
6.将一钢球放入底面半径为3cm的圆柱形玻璃容器中, 水面升高4cm,则钢球的半径是________.
[答案] 3cm
[解析] 圆柱形玻璃容器中水面升高4cm,则知钢球的体 积为V=π·32·4=36π,即有43πR3=36π,∴R=3.
球的表面积和体积
![球的表面积和体积](https://img.taocdn.com/s3/m/98d50bc0bceb19e8b8f6ba4c.png)
球的表面积和体积球的表面积和体积1.球的表面积公式:S球面=4πR2(R为球半径) 2.球的体积公式:V球=43πR3(R为球半径)球的表面积和体积的计算过球的半径的中点,作一垂直于这条半径的截面,已知此截面的面积为12π cm2,试求此球的表面积.若截面不过球的半径的中点,而是过半径上与球心距离为1的点,且截面与此半径垂直,若此截面的面积为π,试求此球的表面积和体积.球的表面积及体积的应用一个倒立圆锥形容器,它的轴截面是正三角形,在此容器内注入水并且放入一个半径为r的铁球,这时水面恰好和球面相切,问将球从圆锥内取出后,圆锥内水面的高是多少?圆柱形容器的内壁底面半径为5 cm,两个直径为5 cm的玻璃小球都浸没于容器的水中,若取出这两个小球,则容器的水面将下降多少?有关球的切、接问题求棱长为a的正四面体P—ABC的外接球,内切球的体积.有三个球,第一个球内切于正方体的六个面,第二个球与这个正方体各条棱都相切,第三个球过这个正方体的各个顶点,求这三个球的表面积之比.一个球内有相距9 cm的两个平行截面,面积分别为49π cm2和400π cm2,求球的表面积.基础训练1.若球的体积与其表面积数值相等,则球的半径等于()A.12B.1C.2 D.32.用过球心的平面将一个球平均分成两个半球,则两个半球的表面积是原来整球表面积的________倍.3.过球的半径的中点,作一垂直于这条半径的截面,已知此截面的面积为48π cm2,试求此球的表面积和体积.4.正方体的表面积与其外接球表面积的比为()A.3∶π B.2∶πC.1∶2π D.1∶3π5.(2013·温州高一检测)长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( )A .25πB .50πC .125πD .都不对4.把3个半径为R 的铁球熔成一个底面半径为R 的圆柱,则圆柱的高为( ) A .R B .2R C .3R D .4R6.设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2 B.73πa 2C.113πa 2 D .5πa 27.圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球,则球的半径是________cm.提高训练.1.一只小球放入一长方体容器内,且与共点的三个面相接触.若小球上一点到这三个面的距离分别为4、5、5,则这只小球的半径是 ( )A .3或8B .8或11C .5或8D .3或112.已知A 、B 、C 是球O 的球面上三点,三棱锥O ABC -的高为22,且ABC ∠=60º ,AB =2, BC=4,则球O 的表面积为( )A . 24πB.32πC. 48πD.192π3.一几何体的三视图如右图所示,若主视图和左视图都是等腰直角三角形,直角边长为1,则该几何体外接球的表面积为( ) A .4π B .π3 C .π2 D .π4. 将半径都为1的四个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为 ( ) A.3263+ B. 2+263 C. 4+263 D. 43263+5. 某几何体的三视图如图所示,则该几何体的外接球的球面面积为( ) A .5π B .12π C .20π D .8π6.【江西省抚州市临川一中2015届高三10月月考】已知一个空间几何体的三视图如图所示,其中俯视图是边长为6的正三角形,若这个空间几何体存在唯一的一个内切球(与该几何体各个面都相切),则这个几何体的全面积是( )A . 18B .36C . 45D . 547.【浙江省重点中学协作体2015届第一次适应性训练】一几何体的三视图如右图所示,若主视图和左视图都是等腰直角三角形,直角边长为1,则该几何体外接球的表面积为( )A . 4πB .π3 C .π2 D .π8.【山西省大同市2015届高三学情调研测试】设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( )A.2a π B. 237a π C. 2311a π D.25a π9.【四川省成都实验外国语高2015届高三11月月考】某四面体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此四面体的外接球的表面积为( ) A .3π B .π4 C .π2 D .π2510. 【全国高考新课标(I )理】如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为( )A 、500π3cm 3B 、866π3cm 3C 、1372π3cm 3D 、2048π3cm 311. 矩形ABCD 中,4,3,AB BC ==沿AC 将矩形ABCD 折成一个直二面角B AC D--,则四面体ABCD 的外接球的体积是( )A.π12125B.π9125C.π6125D.π312512.在半径为R 的球内放入大小相等的4个小球,则小球半径r 的最大值为( )A. (2-1)R B . (6-2)R C.14R D.13R13. 一个平面截一个球得到直径是6的圆面,球心到这个平面的距离是4,则该球的体积是 .14.三棱锥P ABC -的四个顶点均在同一球面上,其中ABC ∆是正三角形,PA ⊥平面ABC ,26PA AB ==,则该球的体积是 .15.一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是16. 四棱锥ABCD P -的五个顶点都在一个球面上,且底面ABCD 是边长为1的正方形,ABCD PA ⊥,2=PA ,则该球的体积为 _ .17. 过球O 表面上一点A 引三条长度相等的弦AB 、AC 、AD ,且两两夹角都为︒60,若球半径为R ,求弦AB 的长度.19. 【改编自浙江高考题】已知球O 的面上四点A 、B 、C 、D ,DA ABC⊥平面,AB BC ⊥,DA=AB=BC=3,求球O 的体积.20. 【改编自山东高考题】在等腰梯形ABCD 中,AB=2DC=2,0DAB=60∠,E为AB 的中点,将ADE ∆与BEC ∆分布沿ED 、EC 向上折起,使A B 、重合于点P ,求三棱锥P-DCE 的外接球的体积.21. 一个正四棱锥的底面边长为2,侧棱长为3,五个顶点都在同一个球面上,求此球的表面积.22. 球面上有3个点,其中任意两点的球面距离都等于大圆周1,经过3个点的小圆的周长为 4,求这个球的半径.长的6。
高中数学必修二1.3.2《球的体积和表面积》课件
![高中数学必修二1.3.2《球的体积和表面积》课件](https://img.taocdn.com/s3/m/22c8691db4daa58da1114a18.png)
函数即S=4πR2.
3.求球的表面积和体积关键是求出球的半径,为此常考虑
球的轴截面.
一个球内有相距9 cm 的两个平行截面,它们的面 积分别为49π cm2和400π cm2,求球的表面积和体积. [提示] 因为题中并没有说明两个平行截面是在球心的 两侧,还是同侧,因此解题时应分类讨论.
[解] (1)当截面在球心的同侧时,如图所 示为球的轴截面.由球的截面性质,知
AO1∥BO2,且O1、O2分别为两截 面圆的圆心,则OO1⊥AO1, OO2⊥BO2. 设球的半径为R. ∵π·O2B2=49π,∴O2B=7. 同理,π·O1A2=400π,∴O1A=20.
设 OO1=x,则 OO2=x+9. 在 Rt△OO1A 中,R2=x2+202, 在 Rt△OO2B 中,R2=(x+9)2+72, ∴x2+202=72+(x+9)2.解得 x=15.
设球O的半径为5,一个内接圆台的两底 面半径分别是3和4,求圆台的体积.
[错解] 如图,由球的截面的性质知, 球心到圆台的上、下底面的距离分别为 d1= 52-32=4,d2= 52-42=3. ∴圆台的高为 d1-d2=h=4-3=1. ∴圆台的体积为 V=13πh(r21+r22+r1r2) =13×π×1×(32+42+3×4)=337π.
答案:D
探究点三 球的表面积和体积的实际应用
球是非常常见的空间几何体,应用比较广泛, 特别在实际生活中,应用球的表面积和体积公式解 决问题的例子更是普遍.
如图所示,一个圆锥形的空杯 子上放着一个直径为8 cm的半球形的 冰淇淋,请你设计一种这样的圆锥形 杯子(杯口直径等于半球形的冰淇淋的 直径,杯子壁厚忽略不计),使冰淇淋 融化后不会溢出杯子,怎样设计最省 材料? [提示] 应使半球的体积小于或等于圆锥的体积.可 先设出圆锥的高,再求其侧面积.
高中数学人教版必修二:1.3.2《球的体积与表面积》课件
![高中数学人教版必修二:1.3.2《球的体积与表面积》课件](https://img.taocdn.com/s3/m/541e649fcc22bcd127ff0c00.png)
D1
C1
A1
B1
表面积为 4 ( 3 a) 2 3 a 2 2
典例展示
由三视图求几何体的体积和表面积 2r
例5.(2015年新课标I)圆柱被一 个平面截去一部分后与半球(半 径为r)组成一个几何体,该几何 体三视图中的正视图和俯视图如 r 图所示。若该几何体的表面积为 16 + 20 ,则r=( ) ( A) 1 ( B) 2 ( C) 4 ( D) 8
正视图
侧视图
1 ( A) 8 1 ( C) 6
1 (B) 7 1 ( D) 5
俯视图
【解析】由三视图得,在正方体 ABCD A1B1C1D1 中,截去四面体 A A1B1D1,如图所示, 设正方体棱长为 a 则 VA A B D
1 1 1
D1
C1
A1
B1
【答案】D
1 所以截去部分体积与剩余部分体积的比值为 5
2 V球 = V柱 3
与球组合的组合体的表面积和体积
两个几何体相切: 一个几何体的各个面与另一个几何体的各面相切.
典例展示
例3.求棱长为
a 的正方体的内切球的体积和表面积.
D1 A1 C1
分析:正方体的中心为球的球心, 正方体的棱长为球的直径。
【解析】正方体的内切球的直径为
4 3 所以球的体积为 a . 3
1 3 5 3 故剩余几何体体积为 a a a 6 6
3
1 1 3 1 3 a a 3 2 6
一、基本知识
柱体、锥体、台体、球的表 面积 展开图
圆柱 S 2r (r l ) 圆台S (r2 r 2 rl rl )
圆锥 S r (r l )
第一章 §1.3.1 球的表面积和体积.
![第一章 §1.3.1 球的表面积和体积.](https://img.taocdn.com/s3/m/29a1bd3c2f60ddccdb38a015.png)
例题讲解
例1.钢球直径是5cm,求它的体积.
4 4 5 3 125 3 V R ( ) cm 3 3 3 2 6
(变式1)一种空心钢球的质量是142g,外径是5cm,求它 的内径.(钢的密度是7.9g/cm2)
例题讲解
圆锥的母线长 2a,底面半径 a. ∴圆柱的侧面积 S1=2π·2a· 3a=4 3πa2, 圆锥的侧面积 S2=π·a· 2a=2πa2, 圆柱的底面积 S3=π(2a)2=4πa2, 圆锥的底面积 S4=πa2, ∴组合体上底面积 S5=S3-S4=3πa2, ∴旋转体的表面积 S=S1+S2+S3+S5=(4 3+9)πa2.
分析:正方体内接于球,则由球和正方 体都是中心对称图形可知,它们中心重 合,则正方体对角线与球的直径相等。
略解: RtB1 D1 D中 : ( 2 R ) 2 a 2 ( 2a ) 2 , 得 3 R a 2 S 4R 2 3a 2
A
D D
B
C
O
A1 A
1
C1 B1 B
D
夹在两个平行平面之间的两个空间几何体,被平行 于这两个平面的任意平面所截,如果截得的两个截面的 面积总相等,那么这两个空间几何体的体积相等.
棱柱的体积公式:V=S h
重要结论:等底等高的两个棱柱的体积相等
棱锥的体积
棱柱的体积公式:V=S h
问题1.棱锥的体积公式是什么?
问题2.棱锥的体积公式是如何推导的.
(2)因为 S 球=4πR2,S 圆柱侧=2πR· 2R=4πR2, 所以 S 球=S 圆柱侧.
证明
小结
(1)球与正方体的六个面均相切,则球的直径等于正方
7.3 北师大版 《球的表面积和体积》优质课件
![7.3 北师大版 《球的表面积和体积》优质课件](https://img.taocdn.com/s3/m/19b30ef80975f46527d3e13e.png)
o
O
2.小圆:球面被不经过球 心的平面截得的圆叫做小 圆.如⊙O′(黄色圆面).
探究点2
球的切线
直线与球相切:当直线与球有唯一交点时,称直 线与球相切,其中它们的交点称为直线与球的切 点. 问题:过球外一点P,有无数条切线,那么所有 切线长都相等吗?所有切点组成什么图形?
①
②
提示:如图 ① 可知 AP PO2 R2 ,AP为定值, 这说明,过球外一点的所有切线长都相等,
小球的体积
H
等于它排开
h
液体的体积
这样可以求出球体体积为
球的体积 球的表面积
4 3 V球 R 3
S球 4 R
2
都是以R为自变量的函数
O R
观察球的体积与表面积公式,思考下列问题:
4 3 V R ,S 4R 2 . 3
思考1:计算球的表面积与体积,关键需要确定哪
个量? 提示:要计算球的表面积与体积,关键需要确定 球的半径R.
这些切点的集合是一个圆.
探究点3
球的表面积和体积
知识探究 怎样求球的体积?
实验:排液法测小球的体积
h
实验:排液法测小球的体积
h
实验:排液法测小球的体积
h
实验:排液法测小球的体积
h
实验:排液法测 小球的体积
h
实验:排液法测小球的体积
h
实验:排液法测小球的体积
h
实验:排液法测小球的体积
1.理解球的截面,并能解决相应问题; 2.了解圆的切线的相关概念; 3.记住球的表面积和体积公式.(重点) 4.会用球的表面积和体积公式进行有关的计算 .(难点) 5.并能解决一些简单的实际问题.(能力)
探究点1 球的截面 问题1:一条直线与圆相交,在圆内的部分是什么图形? 提示:弦(线段).
高中数学:.2《球的表面积和体积》【新人教A版必修2】PPT完美课件
![高中数学:.2《球的表面积和体积》【新人教A版必修2】PPT完美课件](https://img.taocdn.com/s3/m/124c98b1fc4ffe473368abd0.png)
高中数学:.2《球的表面积和体积》 【新人 教A版必 修2】P PT完美 课件
高中数学:.2《球的表面积和体积》 【新人 教A版必 修2】P PT完美 课件
球的表面积
第 一 步: 分 割
高中数学:.2《球的表面积和体积》 【新人 教A版必 修2】P PT完美 课件
高中数学:.2《球的表面积和体积》 【新人 教A版必 修2】P PT完美 课件
•
1应该认识到,阅读是学校教育的重要 组成部 分,一 个孩子 如果在 十多年 的教育 历程中 没有养 成阅读 的习惯 、兴趣 和能力 ,一旦 离开校 园,很 可能把 书永远 丢弃在 一边, 这样的 结果一 定是我 们所有 的教育 工作者 不想看 到的。
•
10保尔身上的人格特征或完美的精神 操守: 自我献 身的精 神、坚 定不移 的信念 、顽强 坚韧的 意志
•
11把记叙、描写、抒情和议论有机地 融合为 一体, 充满诗 情画意 。如描 写百草 园的景 致,绘 声绘色 ,令人 神往。
•
12简·爱人生追求有两个基本旋律:富 有激情 、幻想 、反抗 和坚持 不懈的 精神; 对人间 自由幸 福的渴 望和对 更高精 神境界 的追求 。
温故知新
回顾圆面积公式的推导
n=6
O
假设将圆n等分,则
A1
n=12 An
A2 S 正多 S A 1 O 边 2 A S 形 A 2 O 3 A S A n O 1
1 2p(A 1A2A2A3 AnA 1) 1
2 pC正多边形
O
当 n 时 p , R ,C 正多 边 C 圆形
p A3 A1 A2