(完整版)八年级数学角平分线的性质练习题

合集下载

人教版_部编版八年级数学上册第十二章第三节角的平分线的性质考试复习题(含答案) (28)

人教版_部编版八年级数学上册第十二章第三节角的平分线的性质考试复习题(含答案) (28)

人教版_部编版八年级数学上册第十二章第三节角的平分线的性质考试复习题(含答案)一、单选题1.如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB,若CD=4,则点D到AB的距离是( )A.4 B.3 C.2 D.5【答案】A【解析】【分析】根据角平分线的性质定理得出CD=DE,代入求出即可.【详解】如图,过D点作DE⊥AB于点E,则DE即为所求,∵∠C=90°,AD平分∠BAC交BC于点D,∴CD=DE(角的平分线上的点到角的两边的距离相等),∵CD=4,∴DE=4.故选A .【点睛】本题主要考查了角平分线的性质的应用,注意:角平分线上的点到角两边的距离相等.2.如图,在中,,是角平分线,垂直平分,,则的长为( )A .9B .5C .4D .【答案】A【解析】【分析】 根据垂直平分线的性质,得到BD=CD,进而得到,根据直角三角形可得 由角平分线的性质可以得到AD=DE=3,由的直角三角形中,直角边是斜边的一半,可求出CD 的长度,进而求出AC 的长度,【详解】DE 垂直平分BC,BD=CD,,BD 为的平分线,Rt ABC ∆90A ∠=BD DE BC 3AD =AC ABD CBD C ∠=∠=∠C ∠=30,︒30∴C CBD ∴∠=∠ABC ∠,,,BD 为的角平分线,, ,故AC 的长度为9,应选A.【点睛】熟练运用垂直平分线的性质和角平分线的性质是解决本题的关键.3.如图,小聪把一块含有30°角的直角三角尺ABC 的两个顶点A ,C 放在长方形纸片DEFG 的对边上,若AC 平分∠BAE ,则∠DAB 的度数是( )A .100°B .150°C .130°D .120°【答案】D【解析】【分析】 利用角平分线定义求得∠BAC=∠CAE=30°,再利用平角定义即可解答.【详解】ABD CBD ∴∠=∠ABD CBD C ∴∠=∠=∠90A ∠=︒19030,3C ∴∠=⨯︒=︒ABC ∠90A ∠=︒DE BC ⊥3,AD DE ∴==26,CD DE ∴==9.AC AD CD ∴=+=∵AC 平分∠BAE∴∠BAC=∠CAE=30°∵∠DAB+∠BAC+∠CAE=180°∴∠DAB=120°故选D【点睛】本题考查了角平分线的定义以及平角的定义,熟练掌握相关定理是解题关键.4.如图,在中,,BD 平分,交AC 于点D ,且,,则点D 到BC 的距离是( )A .3B .4C .5D .6【答案】A【解析】【分析】 首先根据勾股定理求得AD 的长,再根据角平分线的性质定理即可求得结果.【详解】解:∵,,,∴.∵BD 平分,Rt ABC △90A ∠=︒ABC ∠4AB =5BD=90A ∠=︒4AB =5BD=3AD =ABC ∠∴点D 到BC 距离.故选:A【点睛】本题考查了勾股定理和角平分线上的点到角两边距离相等的性质,读懂题意,明确所求,正确计算是解题的关键.5.如图,,,平分,则的度数为( )A .B .C .D .【答案】C【解析】【分析】 根据题意,由角度相加,得到∠ABD 的度数,由角平分线性质,得到∠ABE 的度数,然后求出∠CBE.【详解】解:∵,,∴∠ABD=82°,∵平分,∴∠ABE=41°,∴∠CBE=;故选择:C.3AD ==32ABC ︒∠=50CBD ︒∠=BE ABD ∠CBE∠8︒18︒9︒10︒32ABC ︒∠=50CBD ︒∠=BE ABD ∠41329︒-︒=︒本题考查了角平分线的性质,解题的关键是正确的进行角度的运算.6.下列是假命题的是()A.对顶角相等B.角的对称轴是这个角的平分线C.同角的余角相等D.角平分线上的点到角两边的距离相等【答案】B【解析】【分析】根据对顶角,对称轴,余角及角平分线的定义和性质依次判断各选项即可.【详解】A、对顶角相等,则A正确;B、角的对称轴是这个角的平分线所在的直线,则B错误;C、同角或等角的余角相等,则C正确;D、根据角平分线的性质,角平分线上的点到角两边的距离相等,则D正确;故选B.【点睛】熟练掌握对顶角,对称轴,余角及角平分线的定义和性质是解决本题的关键,难度不大.7.如图,△ABC的两个外角平分线交于点P,则下列结论正确的是()A.AB=AC B.BP平分∠APC C.BP平分∠ABC D.PA=PC【解析】【分析】过点P 作PD ⊥AB 于D ,作PE ⊥BC 于E ,作PF ⊥AC 于F ,根据角平分线上的点到角的两边距离相等可得到PD=PE=PF ,再根据到角的两边距离相等的点在角的平分线上判断出BP 平分∠ABC .【详解】如图,过点P 作PD ⊥AB 于D ,作PE ⊥BC 于E ,作PF ⊥AC 于F , ∵△ABC 的两个外角平分线相交于点P ,∴PD=PF ,PE=PF ,∴PD=PE ,又∵PD ⊥AB ,PE ⊥BC ,∴BP 平分∠ABC ,故选C .【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,到角的两边距离相等的点在角的平分线上,熟记性质是解题的关键,作出图形更形象直观.8.如图,在中,,是的角平分线,若,,则的面积是( )ABC ∆90C ∠=︒AD BAC ∠1CD =4AB =ABD ∆A .1.5B .2.5C .2D .3【答案】C【解析】【分析】 过点D 作DE ⊥AB 于E ,根据角平分线上的点到角的两边的距离相等可得DE=CD=1,然后根据三角形的面积公式列式计算即可得解.【详解】过点D ,作DE ⊥AB ,垂足为E.∵AD 是∠BAC 的角平分线,,故选:.90︒∠=C 1CD =1DE CD ∴==4AB =12ABDS AB DE ∴=⋅1412=⨯⨯2=C【点睛】本题考查角平分线的性质,能正确作辅助线并通过角平分线上的点到角的两边的距离相等求出DE 是解决此题的关键.9.已知射线,,,能判定是的平分线的是( )A .B .C .D .A 、B 、C 都能 【答案】A【解析】【分析】根据角平分线的定义来解答即可.【详解】A 、当∠AOC =∠BOC 时,OC 一定在∠AOB 的内部且OC 是∠AOB 的平分线,故本选项正确;B 、当∠AOB =2∠AOC 时,OC 在∠AOB 的外部也成立,故本选项错误;C 、当时,OC 在∠AOB 的外部也成立,故本选项错误;D 、因为A 正确,故本选项错误;故答案为:A.【点睛】此题考查角平分线的定义,解题关键在于掌握其定义.10.如图,在△ABC 中,BD 为∠ABC 的平分线,DE ⊥AB 于点E ,且DE =3cm ,AB =8cm ,BC =6cm ,则△ABC 的面积( )cm 2.OA OB OC OC AOB ∠AOC BOC ∠=∠2AOB AOC ∠=∠1BOC AOB 2∠=∠1BOC AOB 2∠=∠A .17B .21C .42D .52【答案】B【解析】【分析】 过点D 作DF ⊥BC 于点F ,根据角平分线的性质可知DE=DF ,则根据S △ABC =S △ABD + S △BCD ,即可得出结论.【详解】解:过点D 作DF ⊥BC 于点F ,∵BD 为∠ABC 的平分线,DE ⊥AB 于点E ,且DE=3cm , ∴DE=DF=3cm ,∴S △ABC =S △ABD +S △BCD =AB •DE+BC •DF =×8×3+×6×3 =12+9=21.故选:B .12121212【点睛】本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.11.如图,∠AOB=30°,OP 平分∠AOB,PC∥OB,PD⊥OB,如果PC=6,那么PD 等于()A.4 B.3 C.2 D.1【答案】B【解析】【分析】根据角平分线的性质,角平分线上的点到两角的距离相等,因而过P作PE⊥OA于点E,则PD=PE,因为PC∥OB,得角相等,而OP平分∠AOB,得∠ECP=∠COP+∠OPC=30°根据三角形的外角的性质得到答案.【详解】解:过P作PE⊥OA于点E,∵OP 平分∠AOB,则PD=PE,∵PC∥OB,∠AOB=30°∴∠ECP=∠AOB=30°在中, ∴PD=PE=3,故选:B .【点睛】 本题主要考查了角平分线的性质,角平分线上的点到角的两边距离相等.12.如图,点O 是△ABC 的内心,过点O 作EF ∥BC 交AB 于E ,交AC于F ,过点O 作OD ⊥AC 于D .下列四个结论:①∠BOC =90°+∠A ;②EF 不可能是△ABC 的中位线;③设OD =m ,AE+AF =n ,则S △AEF =mn ;④以E 为圆心、BE 为半径的圆与以F 为圆心、CF 为半径的圆外切.其中正确结论的个数是( )A .1个B .2个C .3个D .4个【答案】D【解析】【分析】 由在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,根据角平分线的定义与三角形内角和定理,即可求得①∠BOC =90°+∠A 正确;假设EF 是△ABC 的中位线,由三角形中两边之和大于第三边可得假设不成立,故②正确;过点O 作OM ⊥AB 于M ,作ON ⊥BC 于N ,由角平分线定理与三角形面积的Rt ECP 132126PE PC ==⨯=121212求解方法,即可求得当OD =m ,AE+AF =n 时,则S △AEF =mn ,故③正确;又由在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,过点O 作EF ∥BC 交AB 于E ,可判定△BEO 与△CFO 是等腰三角形,根据两圆位置关系与圆心距d ,两圆半径R ,r 的数量关系,即可求得④正确.【详解】解:∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴∠OBC =∠ABC ,∠OCB =∠ACB ,∠A+∠ABC+∠ACB =180°, ∴∠OBC+∠OCB =90°﹣∠A , ∴∠BOC =180°﹣(∠OBC+∠OCB )=90°+∠A ;故①正确; 假设EF 是△ABC 的中位线,则EA =EB ,FA =FC ,∴EO =EA ,FO =FA ,∴EA+FA =EO+FO =EF ,推出在△AEF 中两边之和等于第三边,不成立,∴EF 不可能是△ABC 的中位线,故②结论正确;过点O 作OM ⊥AB 于M ,作ON ⊥BC 于N ,连接OA ,∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴ON =OD =OM =m ,∴S △AEF =S △AOE +S △AOF =AE •OM+AF •OD =OD •(AE+AF )=mn ,故③正确;∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,121212121212121212∴∠EBO =∠OBC ,∠FCO =∠OCB ,∵EF ∥BC ,∴∠EOB =∠OBC ,∠FOC =∠OCB ,∴∠EBO =∠EOB ,∠FOC =∠FCO ,∴EB =EO ,FO =FC ,∴EF =EO+FO =BE+CF ,∴以E 为圆心、BE 为半径的圆与以F 为圆心、CF 为半径的圆外切,故④正确.∴其中正确的结论是①②③④.故选:D .【点睛】此题考查了角平分线的定义与性质,等腰三角形的判定与性质,以及圆与圆的位置关系.此题难度适中,解题的关键是注意数形结合思想的应用.13.如图,在△ABC 中,△C=90°,以点B 为圆心,任意长为半径画弧,分别交AB 、BC 于点M 、N 分别以点M 、N 为圆心,以大于MN 的长度为半径画弧两弧相交于点P 过点P 作线段BD,交AC 于点D,过点D 作DE △AB 于点E,则下列结论△CD=ED ;△△ABD=△ABC ;△BC=BE ;△AE=BE 中,一定正确的是( )1212A .△②△B .△ △ △C .△△△D .△△△【答案】A【解析】【分析】 由作法可知BD 是∠ABC 的角平分线,故②正确,根据角平分线上的点到角两边的距离相等可得①正确,由HL 可得Rt △BDC ≌Rt △BDE,故BC=BE ,③正确,【详解】解:由作法可知BD 是∠ABC 的角平分线,故②正确,∵∠C=90°,∴DC ⊥BC ,又DE ∠AB ,BD 是∠ABC 的角平分线,∴CD=ED ,故①正确,在Rt △BCD 和 Rt △BED 中,, ∴△BCD ≌△BED ,∴BC=BE ,故③正确.故选:A.DE DC BD BD =⎧⎨=⎩【点睛】本题考查了角平分线的画法及角平分线的性质,熟练掌握相关知识是解题关键.14.如图,在Rt △ABC 中,∠C =90°,以原点A 为圆心,适当的长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点E ,作射线AE 交BC 于点D ,若BD =5,AB =15,△ABD 的面积30,则AC +CD 的值是( )A .16B .14C .12D .【答案】A【解析】【分析】 过D 点作DF ⊥AB ,垂足为F ,利用三角形ABD 的面积,求出CD=DF=4,得到BC=9,再利用勾股定理求出AC ,最后即可得答案【详解】过D 点作DF ⊥AB ,垂足为F∵S △ABD =30∴AB ·DF=30 ∴DF=4根据作图得到AD 是∠CAB 的角平分线1212∴CD=DF=4∵BD=5∴BC=5+4=9在Rt△ABC中,∴AC+CD=12+4=16故选A【点睛】本题主要考查角平分线性质与勾股定理,解题关键在于能够做出正确辅助线15.如图,在Rt△ABC 中,△C=90°,在AC和AB 上分别截取AE、AD,使AE=AD分别以点D、E 为圆心,大于立DE 长为半径作弧,两弧在△BAC 内交于点F,作射线AF交边BC 于点G,若CG=4,AB=10,则△ABG 的面积为()A.12 B.20 C.30 D.40【答案】B【解析】12=12【分析】根据角平分线性质得△ABG 的面积为:【详解】作GH ⊥AB,由已知可得AF 是∠BAC 的平分线,因为∠C=90°所以GH=CG=4,所以△ABG 的面积为:故选B【点睛】考核知识点:角平分线的性质.16.如图,AE 与BF 交于点O ,点O 在CG 上,根据尺规作图的痕迹,判断下列说法不正确的是( )A .AE 、BF 是△ABC 的内角平分线B .CG 也是△ABC 的一条内角平分线C .AO =BO =CO1110 4.22AB GH •=⨯⨯111042022AB GH •=⨯⨯=D .点O 到△ABC 三边的距离相等【答案】C【解析】【分析】根据三角形角平分线的性质:三角形三条角平分线交于一点,且到三边的距离相等可以作判断.【详解】解:A 、由尺规作图的痕迹可知:AE 、BF 是△ABC 的内角平分线,所以选项A 正确;B 、根据三角形三条角平分线交于一点,且点O 在CG 上,所以CG 也是△ABC 的一条内角平分线,所以选项B 正确;C 、三角形三边中垂线的交点到三个顶点的距离相等,所以选项C 不正确;D 、因为角平分线的点到角两边的距离相等得:点O 到△ABC 三边的距离相等,所以选项D 正确;故选C .【点睛】本题考查了基本作图−角的平分线、角平分线的性质,明确三角形的角平分线交于同一点,且交点到三边的距离相等.17.下列说法:①若点C 是AB 的中点,则AC =BC ;②若AC =BC ,则点C 是AB 的中点;③若OC 是∠AOB 的平分线,则∠AOC =∠AOB ;④若∠AOC =∠AOB ,则OC 是∠AOB 的平分线.其中正确的有( ) 1212A .1个B .2个C .3个D .4个【答案】B【解析】【分析】 根据线段的中点的定义及角平分线的定义对选项进行判断,即可得出正确答案.【详解】①若C 是AB 的中点,则AC=BC ,该说法正确;②若AC=BC ,则点C 不一定是AB 的中点,该说法错误;③若OC 是∠AOB 的平分线,则∠AOC=∠AOB ,该说法正确; ④若∠AOC=∠AOB ,则OC 不一定是∠AOB 的平分线,该说法错误; 综上所述正确个数为2个.故选:B.【点睛】此题考查线段中点及角平分线,解题关键在于掌握线段中点及角平分线的定义.18.如图,已知点O 在直线AB 上,,OD 平分,,则的度数为( )A .B .C .D . 121290COE ︒∠=AOE ∠25COD ︒∠=BOD∠65︒100︒115︒130︒【答案】C【解析】【分析】先根据∠COE=90°,∠COD=25°,求得∠DOE=90°-25°=65°,再根据OD 平分∠AOE ,得出∠AOD=∠DOE=65°,最后得出∠BOD=180°-∠AOD=115°.【详解】解:∵∠COE=90°,∠COD=25°,∴∠DOE=90°-25°=65°,∵OD 平分∠AOE ,∴∠AOD=∠DOE=65°,∴∠BOD=180°-∠AOD=115°,故选:C .【点睛】本题主要考查了角的计算以及角平分线的定义的综合应用,解决问题的关键是运用角平分线以及直角的定义,求得∠AOD 的度数,再根据邻补角进行计算.19.如图,, AD 、BD 、CD 分别平分外角、内角、外角.以下结论:①:②;③;④:⑤.其中正确的结论有( )A ABC CB =∠∠ABC △EAC ∠ABC ∠ACF ∠//AD BC 2ABC ADB ∠=∠90ADC ABD ︒∠=-∠BDC BAC ∠=∠12ADC ABC ∠=∠A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据角平分线定义得出∠ABC=2∠ABD=2∠DBC,∠EAC=2∠EAD,∠ACF=2∠DCF,根据三角形的内角和定理得出∠BAC+∠ABC+∠ACB=180°,根据三角形外角性质得出∠ACF=∠ABC+∠BAC,∠EAC=∠ABC+∠ACB,根据已知结论逐步推理,即可判断各项.【详解】解:∵AD平分∠EAC,∴∠EAC=2∠EAD,∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,∴①正确;∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∠ABC=∠ACB,∴∠ABC=∠ACB=2∠DBC,∴∠ACB=2∠ADB ,∴②正确;∵AD 平分∠EAC ,CD 平分∠ACF ,∴∠DAC=∠EAC ,∠DCA=∠ACF , ∵∠EAC=∠ACB+∠ACB ,∠ACF=∠ABC+∠BAC ,∠ABC+∠ACB+∠BAC=180°,∴∠ADC=180°-(∠DAC+∠ACD )=180°-(∠EAC+∠ACF ) =180°-(∠ABC+∠ACB+∠ABC+∠BAC ) =180°-(180°-∠ABC ) =90°-∠ABC ,∴③正确; ∵BD 平分∠ABC ,∴∠ABD=∠DBC ,∵∠ADB=∠DBC ,∠ADC=90°-∠ABC , ∴∠ADB 不等于∠CDB ,∴④错误;∵AD ∥BC ,∴∠ADC=∠DCF ,∵BD 平分∠ABC ,∴∠ABC=∠DBC , ∵∠DCF=∠DBC +∠BDC ,1212121212121212∴∠DCF >∠DBC ,∴∠ADC >∠ABC ∴⑤错误; 即正确的有3个,故选:C .【点睛】本题考查了三角形外角性质,角平分线定义,平行线的判定,三角形内角和定理的应用,主要考查学生的推理能力,有一定的难度.20.如图,∠MON =90°,OB =4,点A 是直线OM 上的一个动点,连结AB ,作∠MAB 与∠ABN 的角平分线AF 与BF ,两条角平分线所在的直线相交于点F ,则点A 在运动过程中线段BF 的最小值为( )A .4BC .8 D.【答案】D【解析】【分析】 分情况讨论:当点A 在射线OM 上时,过F 作FE ⊥ON 于E ,FH ⊥OM 于H ,FG ⊥AB 于G ,由角平分线的性质得出FH =FG ,FG =FE ,得出FH =FE ,证出点F 在∠MON 的角平分线上;当点A 在射线OM 的反向延长线上时,同理得出点F 在∠MON 的角平分线上;当BF ⊥OF 时,BF 取最小值,证出△BOF 12是等腰直角三角形,即可得出答案.【详解】解:当点A在射线OM上时,过F作FE∠ON于E,FH∠OM于H,FG∠AB 于G,如图1所示:∠AF与BF分别是∠MAB与∠ABN的角平分线,∠FH=FG,FG=FE,∠FH=FE,∠点F在∠MON的角平分线上;当点A在射线OM的反向延长线上时,过F作FE∠ON于E,FH∠OM于H,FG∠AB交AB的延长线于G,如图2所示:∠AF与BF分别是∠MAB与∠ABN的角平分线,∠FH=FG,FG=FE,∠FH=FE,∠点F在∠MON的角平分线上;综上所述,点F在∠MON的角平分线上,∠当BF∠OF时,BF取最小值,∠∠MON =90°,OB =4,∠∠FON =∠MON =45°, ∠∠BOF 是等腰直角三角形,∠BF =OB =;故选:D .【点睛】本题考查了角平分线的判定与性质、等腰直角三角形的判定与性质、以及勾股定理等知识;熟练掌握角平分线的判定与性质是解题的关键. 122。

【初中数学】人教版八年级上册第1课时 角的平分线的性质(练习题)

【初中数学】人教版八年级上册第1课时 角的平分线的性质(练习题)

人教版八年级上册第1课时角的平分线的性质(348) 1.如图,已知∠1=∠2,BA<BC,P为BN上的一点,PF⊥BC于点F,PA=PC.求证:∠PCB+∠BAP=180∘2.证明命题“角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,∠AOC=∠BOC,点P在OC上,. 求证:.请你补全已知和求证,并写出证明过程.3.如图,已知AD//BC,∠D=90∘.(1)如图①,若∠DAB的平分线与∠CBA的平分线交于点P,CD经过点P.试问:P是线段CD的中点吗?为什么?(2)如图②,如果P是DC的中点,BP平分∠ABC,∠CPB=35∘,求∠PAD的度数4.如图OP是∠AOB的平分线,点P到OA的距离为3,N是OB上的任意一点,则线段PN的取值范围为()A.PN<3B.PN>3C.PN≥3D.PN≤35.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE等于()A.2cmB.3cmC.4cmD.5cm6.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长为()A.3B.4C.6D.57.如图,在△ABC中,∠C=90∘,AD平分∠BAC,过点D作DE⊥AB于点E,测得BC=9,BE=3,则△BDE的周长是.8.如图,在△ABC中,两条外角平分线交于点P,PM⊥AC交AC的延长线于点M.若PM=6cm,则点P到AB的距离为.9.如图,已知AB//CD,O是∠BAC与∠ACD的平分线的交点.OE⊥AC于点E,OE=2,则AB与CD之间的距离为.10.如图,已知点B,D分别在∠DAB的两边上,C为∠DAB的内部的一点,且AB=AD,DC=BC,CE⊥AD交AD的延长线于点E,CF⊥AB交AB的延长线于点F.试判断CE与CF是否相等,并说明理由.11.如图,利用尺规作∠AOB的平分线OC,其作法如下:①以O为圆心,任意长为半径画弧,分别交OA,OB于点D,E;DE的长为半径画弧,两弧在∠AOB的内部交于点②分别以D,E为圆心,以大于12C;③画射线OC,则OC就是∠AOB的平分线.这样作图的原理是一种三角形全等的判定方法,这种判定方法是()A.SSSB.SASC.ASAD.AAS12.如图,OP为∠AOB的平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,则下列结论错误的是()A.PC=PDB.∠CPD=∠DOPC.∠CPO=∠DPOD.OC=OD13.求证:直角三角形的两锐角互余14.如图,在△ABC中,∠C=90∘,∠CAB=50∘,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB,AC于点E,F;EF的长为半径画弧,两弧相交于点G;②分别以点E,F为圆心,大于12③作射线AG,交BC边于点D.则∠ADC的度数为()A.40∘B.55∘C.65∘D.75∘15.如图,AB∥CD,以点A为圆心,小于AC长为半径画圆弧,分别交AB,AC于E,EF的长为半径画圆弧,两条圆弧交于点G,F两点,再分别以E,F为圆心,大于12作射线AG交CD于点H.若∠C=140∘,则∠AHC的大小是()A.20∘B.25∘C.30∘D.40∘参考答案1.【答案】:证明:如图,过点P 作PE ⊥BA 交BA 的延长线于点E . ∵∠1=∠2,PF ⊥BC 于点F ,∴PE =PF ,∠PEA =∠PFC =90∘.在Rt △PEA 与Rt △PFC 中,PA =PC ,PE =PF ,∴Rt △PEA ≌Rt △PFC(HL ),∴∠PAE =∠PCB .∵∠PAE +∠BAP =180∘,∴∠PCB +∠BAP =180∘.2.【答案】:解:PD ⊥OA ,PE ⊥OB ,垂足分别为D,E 求证:PD =PE证明:∵PD ⊥OA ,PE ⊥OB ,∴∠PDO =∠PEO =90∘.在△PDO 和△PEO 中,{∠PDO =∠PEO ,∠AOC =∠BOC ,OP =OP.∴△PDO ≌△PEO(AAS ),∴PD =PE .3(1)【答案】解:P 是线段CD 的中点.理由如下: 如图,过点P 作PE ⊥AB 于点E .∵AD//BC ,∠D =90∘,∴∠C =180∘−∠D =90∘,即PC ⊥BC .∵∠DAB 的平分线与∠CBA 的平分线交于点P ,∴PD =PE ,PC =PE ,∴PC=PD,∴P是线段CD的中点.(2)【答案】解:如图,过点P作PE⊥AB于点E.∵AD//BC,∠D=90∘,∴∠C=180∘−∠D=90∘,即PC⊥BC.在△PBE与△PBC中,{∠PEB=∠C,∠PBE=∠PBC,PB=PB.∴△PBE≌△PBC(AAS),∴∠EPB=∠CPB=35∘,PE=PC.∵PC=PD,∴PD=PE.在Rt△PAD与Rt△PAE中,{PA=PA,PD=PE∴Rt△PAD≌Rt△PAE(HL),∴∠APD=∠APE.∵∠APD+∠APE=180∘−2×35∘=110∘,∴∠APD=55∘,∴∠PAD=90∘−∠APD=35∘.4.【答案】:C【解析】:作PM⊥OB于点M.∵OP是∠AOB的平分线,PE⊥OA,PM⊥OB,∴PM=PE=3,∴PN≥3. 故选 C5.【答案】:B【解析】:因为BE平分∠ABC,∠ACB=90°,DE⊥AB于点D,所以DE=EC,AE+DE=AE+EC=AC=3cm.故选 B.6.【答案】:A【解析】:如图,过点D作DF⊥AC于点F.∵AD是△ABC中∠BAC的平分线,DE⊥AB,∴DE=DF=2.由图可知S△ABC=S△ABD+S△ACD,即12×4×2+12AC×2=7,解得AC=3.故选A.7.【答案】:12【解析】:解:∵∠C=90∘,∴AC⊥CD.∵AD平分∠BAC,DE⊥AB,∴DE=CD.∵BC=9,BE=3,∴△BDE的周长=BE+BD+DE=BE+BD+CD=BE+BC=3+9=12.8.【答案】:6cm【解析】:如图,过点P作PN⊥BC于点N,PQ⊥AB,交AB的延长线于点Q.∵PB,PC分别是∠ABC与∠ACB的外角平分线,PM⊥AC,∴PN=PM,PQ=PN,∴PQ=PM.∵PM=6cm,∴PQ=6cm,即点P到AB的距离为6cm.9.【答案】:4【解析】:如图,过点O作MN,使MN⊥AB于M,交CD于N.∵AB//CD,∴MN⊥CD.∵AO是∠BAC的平分线,OM⊥AB,OE⊥AC,OE=2,∴OM=OE=2.∵CO是∠ACD的平分线,OE⊥AC,ON⊥CD,∴ON=OE=2,∴MN=OM+ON=4,即AB与CD之间的距离是4.10.【答案】:解:CE=CF.理由:∵AD=AB,DC=BC,AC=AC,∴△ACD≌△ACB,∴∠DAC=∠BAC,∴AC为∠EAF的平分线.∵CE⊥AE,CF⊥AF,∴CE=CF(角平分线上的点到角两边的距离相等).11.【答案】:A12.【答案】:B【解析】:∵OP为∠AOB的平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,∴PC=PD,故A项正确.在Rt△OCP与Rt△ODP中,∵OP=OP,PC=PD,∴Rt△OCP≌Rt△ODP,∴∠CPO=∠DPO,OC=OD,故C,D两项正确.不能得出∠CPD=∠DOP,故B项错误.故选B13.【答案】:已知:在△ABC中,∠C=90∘.求证:∠A+∠B=90∘.证明:∵∠A+∠B+∠C=180∘,而∠C=90∘,∴∠A+∠B=90∘,即∠A与∠B互余.14.【答案】:C【解析】:根据作图方法可得AG是∠CAB的平分线,∵∠CAB=50∘,∠CAB=25∘,∴∠CAD=12∵∠C=90∘,∴∠CDA=90∘−25∘=65∘.故选C.15.【答案】:A【解析】:解:由题意可得AH平分∠CAB.∵AB∥CD,∴∠C+∠CAB=180∘,∠HAB=∠AHC.∵∠ACD=140∘,∴∠CAB=40∘.∵AH平分∠CAB,∴∠HAB=20∘,∴∠AHC=20∘.。

人教版八年级数学上册12.3角的平分线的性质同步练习解析版

人教版八年级数学上册12.3角的平分线的性质同步练习解析版

人教版八年级数学上册12.3角的平分线的性质同步练习一.选择题(共11小题)1.下列作图属于尺规作图的是()A.画线段MN=3cmB.用量角器画出∠AOB的平分线C.用三角尺作过点A垂直于直线L的直线D.已知∠α,用没有刻度的直尺和圆规作∠AOB,使∠AOB=2∠α2.如图△ABC中,∠ACB=90゜,AD平分∠BAC交BC于D,DE垂直AB于E,若DE=1.5cm,BD=3cm,则BC=()A.3cm B.7.5cm C.6cm D.4.5cm3.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,CD=4,则点D到AB的距离是()A.4B.2C.3D.64.如图,AE为∠BAC的平分线,EB⊥AB,EF⊥AC,则下列结论不正确的是()A.EF=EB B.AF=AB C.AE=CE D.∠AEF=∠AEB 5.如图,在△ABC中,∠B、∠C的角平分线交于点0,OD⊥AB于D,OE⊥AC于E,则OD与OE的大小关系是()A.OD>OE B.OD<OE C.OD=OE D.不能确定6.如图,PC⊥OC于C,PD⊥OD于D,若PC=PD,则()A.∠1>∠2B.∠1=∠2C.∠1<∠2D.不能确定7.如图所示,点D在∠AOB的内部,DE⊥OA,DF⊥OB,垂足分别为E,F,DE=DF,则∠AOD与∠BOD的大小关系是()A.∠AOD>∠BOD B.∠AOD=∠BOD C.∠AOD<∠BOD D.无法确定8.下列关于三角形角平分线的说法错误的是()A.两角平分线交点在三角形内B.两角平分线交点在第三个角的平分线上C.两角平分线交点到三边距离相等D.两角平分线交点到三顶点距离相等9.给出下列结论,正确的有()①到角两边距离相等的点,在这个角的平分线上;②角的平分线与三角形平分线都是射线;③任何一个命题都有逆命题;④假命题的逆命题一定是假命题.A.1个B.2个C.3个D.4个10.如图,已知点P、D、E分别在OC、OA、OB上,下列推理:①∵OC平分∠AOB,∴PD=PE;②∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE;③∵PD⊥OA,PE⊥OB,∴PD=PE;其中正确的个数有()A.0个B.1个C.2个D.3个11.如图所示,PD=PE,PD⊥OA,PE⊥OB,垂足分别为D,E,则下列结论中错误的是()A.∠DOP=∠EOP B.OD=OE C.∠DPO=∠EPO D.PD=OD二.填空题(共8小题)12.如图,∠B=∠D=90°,根据角平分线性质,填空:(1)若∠1=∠2,则=;(2)若∠3=∠4,则=.13.点M在∠AOB的平分线上,点M到OA的距离为6,则点M到OB的距离为.14.射线OC平分∠AOB,点P在OC上,且PM⊥OA于点M,PN⊥OB予点N,且PM=2cm,则PN=cm.15.如图所示,在△ABC中,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E,F.则下列结论:①DA平分∠EDF;②AE=AF,DE=DF;③AD上的点到B,C两点的距离相等;④图中共有3对全等三角形,正确的有.16.如图,△ABC中,∠C=90°,AD为角平分线.若BC=5,BD=2,则点D到边AB 的距离为.17.如图,在△ABC中,∠C=90°,AD是∠CAB的平分线,DE⊥AB于点E,且DE=3cm,BD=5cm,则BC=cm.18.(1)如图,已知∠1=∠2,DE⊥AB,DF⊥AC,垂足分别为E、F,则DE DF.(2)已知DE⊥AB,DF⊥AC,垂足分别为E、F,且DE=DF,则∠1∠2.19.如图,△ABC中,∠C=90°,AB=13,AC=5,BC=12,点O为∠CAB和∠CBA的平分线的交点,则OP=.三.解答题(共9小题)20.如图,在直线MN上找一点P,使点P到直线AB和直线CD的距离相等.21.如图,△ABC中,∠C=90゜,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BE=CF,求证:(1)DE=DC;(2)BD=DF.22.如图所示,D是△ABC外角∠ACG的平分线上的一点.DE⊥AC,DF⊥CG,垂足分别为E,F.求证:CE=CF.23.如图,E是∠APB内的一点,CE⊥P A于点C,ED⊥PB于点D,CE=ED,点F在P A 上,∠APB=60°,∠PEF=15°.求∠CFE的度数.24.∠B=∠C=90°,EB=EC,DE平分∠ADC,求证:AE是∠DAB平分线.25.△ABC中,∠C=90°,AD为角平分线,BC=64,BD:DC=9:7,求D到AB的距离.26.如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=90,AB=18,BC=12,求DE 的长.27.如图,若S△ABD:S△ACD=AB:AC,求证:AD平分∠BAC.28.已知:如图所示,AQ,BM,CN是△ABC的三条角平分线.试说明AQ,BM,CN交于一点.参考答案一.选择题(共11小题)1.下列作图属于尺规作图的是()A.画线段MN=3cmB.用量角器画出∠AOB的平分线C.用三角尺作过点A垂直于直线L的直线D.已知∠α,用没有刻度的直尺和圆规作∠AOB,使∠AOB=2∠α【解答】解:A、画线段MN=3cm,需要知道长度,而尺规作图中的直尺是没有长度的,错误;B、用量角器画出∠AOB的平分线,量角器不在尺规作图的工具里,错误;C、用三角尺作过点A垂直于直线L的直线,三角尺也不在作图工具里,错误;D、正确.故选:D.2.如图△ABC中,∠ACB=90゜,AD平分∠BAC交BC于D,DE垂直AB于E,若DE=1.5cm,BD=3cm,则BC=()A.3cm B.7.5cm C.6cm D.4.5cm【解答】解:∵∠ACB=90°,∴AC⊥BC,∵DE⊥AB,AD平分∠BAC,∴DE=DC=1.5cm,∵BD=3cm,∴BC=BD+DC=3cm+1.5cm=4.5cm,故选:D.3.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,CD=4,则点D到AB的距离是()A.4B.2C.3D.6【解答】解:如图,过D点作DE⊥AB于点E,则DE即为所求,∵∠C=90°,AD平分∠BAC交BC于点D,∴CD=DE(角的平分线上的点到角的两边的距离相等),∵CD=4,∴DE=4.故选:A.4.如图,AE为∠BAC的平分线,EB⊥AB,EF⊥AC,则下列结论不正确的是()A.EF=EB B.AF=AB C.AE=CE D.∠AEF=∠AEB 【解答】解:∵AE为∠BAC的平分线,EB⊥AB,EF⊥AC,∴EF=EB,在Rt△ABE和Rt△AFE中,,∴Rt△ABE≌Rt△AFE(HL),∴AF=AB,∠AEF=∠AEB,∴结论不正确的是AE=CE.故选:C.5.如图,在△ABC中,∠B、∠C的角平分线交于点0,OD⊥AB于D,OE⊥AC于E,则OD与OE的大小关系是()A.OD>OE B.OD<OE C.OD=OE D.不能确定【解答】解:如图,连接AO,∵∠B、∠C的角平分线交于点0,∴AO平分∠BAC,∵OD⊥AB,OE⊥AC,∴OD=OE.故选:C.6.如图,PC⊥OC于C,PD⊥OD于D,若PC=PD,则()A.∠1>∠2B.∠1=∠2C.∠1<∠2D.不能确定【解答】解:∵PC⊥OC,PD⊥OD,PC=PD,∴P在∠COD的角平分线上,即∠1=∠2,故选:B.7.如图所示,点D在∠AOB的内部,DE⊥OA,DF⊥OB,垂足分别为E,F,DE=DF,则∠AOD与∠BOD的大小关系是()A.∠AOD>∠BOD B.∠AOD=∠BOD C.∠AOD<∠BOD D.无法确定【解答】解:∵DE⊥OA,DF⊥OB,DE=DF,∴点D在∠AOB的平分线上,∴∠AOD=∠BOD.故选:B.8.下列关于三角形角平分线的说法错误的是()A.两角平分线交点在三角形内B.两角平分线交点在第三个角的平分线上C.两角平分线交点到三边距离相等D.两角平分线交点到三顶点距离相等【解答】解:A、两角平分线交点在三角形内,正确;B、两角平分线交点在第三个角的平分线上,正确;C、根据角平分线的性质,两角平分线交点到三边距离相等,正确;D、根据角平分线的性质,两角平分线交点到三边距离相等,不是到三顶点距离相等,故本选项错误.故选:D.9.给出下列结论,正确的有()①到角两边距离相等的点,在这个角的平分线上;②角的平分线与三角形平分线都是射线;③任何一个命题都有逆命题;④假命题的逆命题一定是假命题.A.1个B.2个C.3个D.4个【解答】解:①根据角平分线性质的逆定理,在角的内部到角两边距离相等的点,在这个角的平分线上,故本选项错误;②角平分线是射线,三角形的角平分线是线段,故本选项错误;③任何一个命题都有逆命题,正确;④假命题的逆命题不一定是假命题,如:假命题“相等的两个角是对顶角”的逆命题“对顶角相等”是真命题,故本选项错误.故选:A.10.如图,已知点P、D、E分别在OC、OA、OB上,下列推理:①∵OC平分∠AOB,∴PD=PE;②∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE;③∵PD⊥OA,PE⊥OB,∴PD=PE;其中正确的个数有()A.0个B.1个C.2个D.3个【解答】解:∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE.故选:B.11.如图所示,PD=PE,PD⊥OA,PE⊥OB,垂足分别为D,E,则下列结论中错误的是()A.∠DOP=∠EOP B.OD=OE C.∠DPO=∠EPO D.PD=OD【解答】解:A、根据HL可求得Rt△POE≌Rt△POD,∴∠DOP=∠EOP,故正确;B、OD=OE,正确;C、DPO=∠EPO,正确;D、错误.故选:D.二.填空题(共8小题)12.如图,∠B=∠D=90°,根据角平分线性质,填空:(1)若∠1=∠2,则BC=DC;(2)若∠3=∠4,则AB=AD.【解答】解:(1)若∠1=∠2,则BC=DC;(2)若∠3=∠4,则AB=AD.故答案为:BC,DC;AB,AD.13.点M在∠AOB的平分线上,点M到OA的距离为6,则点M到OB的距离为6.【解答】解:∵点M在∠AOB的平分线上,点M到OA的距离为6,∴点M到OB的距离=6.故答案为:6.14.射线OC平分∠AOB,点P在OC上,且PM⊥OA于点M,PN⊥OB予点N,且PM=2cm,则PN=2cm.【解答】解:∵OC平分∠AOB,点P在OC上,且PM⊥OA于M,PN⊥OB于N,PM =2cm,∴PN=PM=2cm.故答案为:2.15.如图所示,在△ABC中,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E,F.则下列结论:①DA平分∠EDF;②AE=AF,DE=DF;③AD上的点到B,C两点的距离相等;④图中共有3对全等三角形,正确的有①②.【解答】解:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,在Rt△ADE与Rt△ADF中,,∴Rt△ADE≌Rt△ADF,∴∠ADF=∠ADE,AE=AF,∴DA平分∠EDF;故①②正确,∵无法判定AD⊥BC且平分BC,∴AD上的点到B,C两点的距离相等错误,∵图中只有1对全等三角形,故③④错误.故答案为:①②.16.如图,△ABC中,∠C=90°,AD为角平分线.若BC=5,BD=2,则点D到边AB 的距离为3.【解答】解:过D作DE⊥AB,∵BC=5,BD=2,∴CD=5﹣2=3,∵AD为角平分线,∴CD=DE=3,故答案为:3.17.如图,在△ABC中,∠C=90°,AD是∠CAB的平分线,DE⊥AB于点E,且DE=3cm,BD=5cm,则BC=8cm.【解答】解:∵∠C=90°,AD是∠CAB的平分线,DE⊥AB,∴CD=DE,∵DE=3cm,BD=5cm,∴BC=CD+BD=3+5=8cm.故答案为:8.18.(1)如图,已知∠1=∠2,DE⊥AB,DF⊥AC,垂足分别为E、F,则DE=DF.(2)已知DE⊥AB,DF⊥AC,垂足分别为E、F,且DE=DF,则∠1=∠2.【解答】解:(1)∵已知∠1=∠2∴AD为∠BAC的平分线又∵DE⊥AB,DF⊥AC,∴由角平分线性质得DE=DF.(2)∵已知DE⊥AB,DF⊥AC,∴DE,DF为点D到角两边的距离.又∵DE=DF,∴由角平分线性质知AD为角平分线.19.如图,△ABC中,∠C=90°,AB=13,AC=5,BC=12,点O为∠CAB和∠CBA的平分线的交点,则OP=2.【解答】解:作OE⊥BC,OF⊥AC,∴∠C=∠CFO=∠OEC=90°,∴四边形CFOE是矩形;∵∠CAB,∠CBA的平分线相交于点O,OE⊥BC,OF⊥AC,OP⊥AB,∴OE=OP=OF,∴四边形CFOE是正方形,设OE=OP=OF=x,则AP=AF=5﹣x,BP=BE=12﹣x,∴5﹣x+12﹣x=13,解得x=2,∴OP=OE=2.故答案为2.三.解答题(共9小题)20.如图,在直线MN上找一点P,使点P到直线AB和直线CD的距离相等.【解答】解:点P如图所示.21.如图,△ABC中,∠C=90゜,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BE=CF,求证:(1)DE=DC;(2)BD=DF.【解答】证明:(1)∵∠C=90°,AD是∠BAC的平分线,DE⊥AB,∴DE=DC;(2)在△BDE和△FDC中,,∴△BDE≌△FDC(SAS),∴BD=DF.22.如图所示,D是△ABC外角∠ACG的平分线上的一点.DE⊥AC,DF⊥CG,垂足分别为E,F.求证:CE=CF.【解答】证明:∵CD是∠ACG的平分线,DE⊥AC,DF⊥CG,∴DE=DF,在Rt△CDE和Rt△CDF中,,∴Rt△CDE≌Rt△CDF(HL),∴CE=CF.23.如图,E是∠APB内的一点,CE⊥P A于点C,ED⊥PB于点D,CE=ED,点F在P A 上,∠APB=60°,∠PEF=15°.求∠CFE的度数.【解答】解:∵CE⊥P A,ED⊥PB,CE=ED,∴∠APE=∠APB=×60°=30°,在△PEF中,∠CFE=∠APE+∠PEF=30°+15°=45°.24.∠B=∠C=90°,EB=EC,DE平分∠ADC,求证:AE是∠DAB平分线.【解答】证明:如图,过点E作EF⊥AD于F,∵DE平分∠ADC,∠C=90°,∴EC=EF,∵EB=EC,∴EF=BE,又∵∠B=90°,∴AE是∠DAB平分线.25.△ABC中,∠C=90°,AD为角平分线,BC=64,BD:DC=9:7,求D到AB的距离.【解答】解:∵BD:DC=9:7,BC=64,∴CD==28,∵AD为角平分线,∠C=90°,DE⊥AB,∴DE=DC=28.答:D到AB的距离为28.26.如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=90,AB=18,BC=12,求DE 的长.【解答】解:如图,过点D作DF⊥BC于F,∵BD是∠ABC的平分线,DE⊥AB,∴DE=DF,∴S△ABC=AB•DE+BC•DF=90,即×18•DE+×12•DE=90,解得DE=6.27.如图,若S△ABD:S△ACD=AB:AC,求证:AD平分∠BAC.【解答】证明:如图,过D作DM⊥AB于M,DN⊥AC于N,则S△ABD=AB•DM,S△ACD=AC•DN,∵S△ABD:S△ACD=AB:AC,∴DM=DN,∴AD平分∠BAC.28.已知:如图所示,AQ,BM,CN是△ABC的三条角平分线.试说明AQ,BM,CN交于一点.【解答】证明:设BM,CN交于点P,过点P作PD⊥AB,PE⊥BC,PF⊥AC,垂足分别为:D,E,F,∵BM平分∠ABC,CN平分∠ACB,∴PD=PE,PE=PF,∴PD=PF,∴AP平分∠BAC,即AQ,BM,CN交于一点P.。

人教版八年级数学上册《角的平分线的性质》练习题附答案

人教版八年级数学上册《角的平分线的性质》练习题附答案

13.3 角的均分线的性质一、选择题 1.如图 1 所示 ,∠ 1=∠ 2,PD ⊥ OA ,PE ⊥ OB ,垂足分别为 D ,E ,则以下结论中错误的选项是 ( ).A . PD=PEB .OD=OE C.∠ DPO=∠ EPO D . PD=ODBEACPDEFOD ABDCA E B( 1) (2) (3)2.如图 2 所示,在△ ABC 中, AB=AC , AD 是△ ABC 的角均分线, DE ⊥AB , DF ⊥ AC ,垂足分别是 E ,F ,则以下四个结论:① AD 上随意一点到C ,B 的距离相等;② AD 上随意一点到 AB ,AC 的距离相等;③ BD=CD , AD ⊥ BC ;④∠ BDE=∠ CDF ,此中正确的个数是( ). A .1个 B.2个 C .3个 D. 4 个3.如图 3 所示,在 Rt △ ABC 中,∠ C=90°, AC=BC=1, AB=2 ,AD 在∠ BAC?的均分线上,DE ⊥ AB 于点 E ,则△ DBE 的周长为( ).A .2B .1+2C . 2D.没法计算AAAEDC EFPOEBOFB BDC(4)(5)(6)4.如图 4 所示,已知∠ AOB ,求作射线 OC ,使 OC 均分∠ AOB , ?作法的合理次序是().( 1)作射线 OC ;( 2)在 OA 和 OB 上,分别截取 OD , OE ,使 OD=OE ; ( 3)分别以 D , E 为圆心,大于1DE 的长为半径作弧,在∠ AOB 内,两弧交于点 C .2A .( 1)( 2)( 3)B .( 2)( 1)( 3)C .( 2)( 3)( 1)D .( 3)( 2)( 1) 二、填空题1.( 1)若 OC 为∠ AOB 的均分线,点 P 在 OC 上, PE ⊥OA , PF ⊥ OB ,垂足分别为 E ,F ,则PE=________,依据是 ________________ .( 2)如图 5 所示,若在∠ AOB 内有一点 P ,PE ⊥ OA ,PF ⊥ OB ,垂足分别为 E ,F ,且 PE=PF ,则点 P 在 _______,依据是 ____________ .2.△ ABC 中,∠ C=90°, AD均分∠ BAC,已知 BC=8cm,BD=5cm,则点 D?到 AB?的距离为 _______.3.如图 6 所示, DE⊥AB 于 E,DF⊥ AC 于点 F,若 DE=DF,只要O 增添一个条件, ?这个条件是 __________ .4.以下图,∠ AOB=40°, OM均分∠ AOB, MA⊥ OA于 A, MB?⊥OB?于 B, ?则∠ MAB的度数为 ________.三、解答题1.以下图,AD是∠ BAC的均分线, DE⊥ AB 于 E, DF⊥ AC于 F,且 BD=CD,那么相等吗?为何?AN M BBE与 CFEBDA F C2.以下图,∠ B=∠ C=90°, M是 BC中点, DM均分∠ ADC,判断 AM?能否均分∠ DAB,说明原因.M DCA B3.以下图,已知 PB⊥ AB,PC⊥ AC,且 PB=PC,D是 AP 上一点,由以上条件能够获得∠BDP= ∠ CDP吗?为何?ADCBP研究应用拓展性训练1.(与现实生活联系的应用题)以下图,在一次军事演习中,?红方侦探员发现蓝方指挥部设在 A 区,到公路、铁路的交错处 B 点 700m.假如你是红方指挥员,?请你以下图的作图地图上标出蓝方指挥部的地点.BA区比率尺 1:200002.(研究题)已知:在△ABC中, AB=AC.(1)依据以下要求画出图形:①作∠BAC的均分线交 BC于点 D;②过 D作 DE⊥ AB,垂足为点 E;③过点 D作 DF⊥ AC,垂足为点 F .(2)依据上边所画的图形,能够获得哪些相等的线段(AB=AC除外)?说明原因.3.以下图,在△ ABC中, P, Q?分别是 BC, AC上的点,作 PR⊥ AB, PS⊥ AC,垂足分别是R,S.若 AQ=PQ, PR=PS, ?下边三个结论① AS=AR,② QP∥ AR,③△ BRP≌△ CSP中,正确的是().A .①和③B.②和③C.①和② C .①,②和③BRPA Q S C、、答案 :一、1. D 分析:∵∠ 1=∠ 2, PD ⊥ OA 于 E , PE ⊥ OB 于 E ,∴ PD=PE .又∵ OP=OP ,∴△ OPE ≌△ OPD .∴ OD=OE ,∠ DPO=∠ EPO .故 A ,B , C 都正确.2. D 分析:如答图,设点 P 为 AD 上随意一点,连接PB ,PC .∵ AD 均分∠ BAC ,∴∠ BAD=∠ CAD .又∵ AB=AC , AP=AP ,∴△ ABP ≌△ ACP ,∴ PB=PC . A故①正确.由角的均分线的性质知②正确.∵ AB=AC ,∠ BAD=∠ CAD ,AD=AD ,P∴△ ABD ≌△ ACD .E F∴ BD=CD ,∠ ADB=∠ ADC .BDC又∵∠ ADB+∠ ADC=180°, ∴∠ ADB=∠ ADC=90°, ∴ AD ⊥BC ,故③正确.由△ ABD ≌△ ACD 知,∠ B=∠ C .又∵ DE ⊥ AB 于点 E , DF ⊥AC 于点 F ,∴∠ BED=∠ CFD=90°,∴∠ BDE=∠ CDF .故④正确.4. C 分析:∵ AD 均分∠ CAB , AC ⊥ BC 于点 C ,DE ⊥ AB 于 E ,∴ CD=DE .又∵ AD=AD ,∴ Rt △ACD ≌ Rt △ AED ,∴ AC=AE . 又∵ AC=BC ,∴ AE=BC ,∴△ DBE 的周长为 DE+BD+EB=CD+BD+EB=BC+EB=AC+EB=AE+EB=AB= 2 .提示:想法将 DE+BD+EB 转成线段 AB .5. C二、 1.( 1) PF 角均分线上的点到角的两边的距离同样( 2)∠ AOB 的均分线上 到角的两边距离相等的点在角的均分线上2.分析:以下图,AD 均分∠ CAB , DC ⊥ AC 于点 C , DM ⊥AB 于点 M .∴ CD=DM ,∴ DM=CD=BC-BD=8-5=3.答案: 3C提示:利用角的均分线的性质.D3. AD 均分∠ BAC .4.分析:∵ OM 均分∠ AOB ,∴∠ AOM=∠ BOM=AOB=20°.AMB2又∵ MA ⊥ OA 于 A , MB ⊥ OB 于 B ,∴MA=MB.∴Rt △OAM≌ Rt△ OBM,∴∠ AMO=∠ BMO=70°,∴△ AMN≌△ BMN,∴∠ ANM=∠ BNM=90°,∴∠ MAB=90° -70 ° =20°.答案: 20°三、 1.分析: BE=CF.∵AD均分∠ BAC, DE⊥ AB于点 E, DF⊥ AC于点 F,∴DE=DF.又∵ BD=DC,∴ Rt△ BDE≌Rt △ CDF,∴ BE=CF.提示:由角的均分线的性质可知DE=DF,进而为证△ BDE≌△ CDF供给了条件.2.分析: AM均分∠ DAB.原因:如答图13-9 所示,作 MN⊥ AD于点 N,∵ DM均分∠ CDA,MC ⊥ DC于点 C,MN⊥ AD于点 N,∴MC=MN.又∵ M是 BC的中点,∴ CM=MB,∴MN=BM,∴ AM均分∠ DAB.3.分析:能够.∵ PB⊥AB于点 B, PC⊥ AC于点 C,且 PB=PC,D CNM A B∴AP均分∠ BAC,∴∠ BAP=∠CAP.在 Rt△ ABP和 Rt△ ACP中,PB=PC , AP=AP,∴Rt △ABP≌ Rt△ ACP,∴ AB=AC.在△ ABD与△ ACD中,AB=AC ,∠ BAP=∠CAP, AD=AD,∴△ ABD≌△ ACD,∴∠ ADB=∠ ADC,∴∠ BDP=∠ CDP.研究应用拓展性训练1.如答图所示.分析:由题意可知,蓝方指挥部P 应在∠MBN的均分线上.又∵比率尺为1: 20000,∴ P 离 B 为 3. 5cm.提示:到角的两边距离相等的点在角的均分线上.2.( 1)分析:按题意绘图,如答图13-11 .(2)能够获得 ED=FD, AE=AF, BE=CF,BD=CD.原因以下:∵ AB=AC,∠ 1=∠ 2, AD=AD,∴△ ABD≌△ ACD,∴ BD=DC.∵∠ 1=∠2, DE⊥AB 于点 E, DF⊥ AC于点 F,∴DE=DF.A1 2E F BD C又∵ AD=AD,∴Rt △AED≌ Rt△ AFD,∴ AE=AF,∴AB-AE=AC-AF,即 BE=CF.提示:正确地画出图形是解决问题的重点,另三角形全等来找寻相等的线段.3. C分析:如答图所示,连接AP.∵PR⊥AB于点 R, PS⊥ AC于点 S, PR=PS,∴ AP均分∠ BAC,∴∠ 1=∠2.又∵ AQ=QP,∴∠ 2=∠ 3,∴∠ 1=∠ 3,∴ PQ∥ AR.在 Rt △APR和 Rt△ APS中,外此题主要应用角的均分线的性质及BRP312PR=PS , AP=AP,A Q S C ∴Rt △APR≌ Rt△ APS,∴ AR=AS.而△ BRP与△ CSP不具备三角形全等的条件,故①②正确.提示:此题的打破口是判断出点P 在∠ BAC的均分线上.。

八年级数学上册12.3角平分线的性质(讲+练)(8大题型)-【重要笔记】2022-2023学年八年级

八年级数学上册12.3角平分线的性质(讲+练)(8大题型)-【重要笔记】2022-2023学年八年级

12.3 角平分线的性质角的平分线的性质角的平分线的性质:角的平分线上的点到角两边的距离相等。

注意:用符号语言表示角的平分线的性质定理:若CD平分∠ADB,点P是CD上一点,且PE⊥AD于点E,PF⊥BD于点F,则PE=PF.角的平分线的尺规作图角平分线的尺规作图(1)以O为圆心,适当长为半径画弧,交OA于D,交OB于E.(2)分别以D、E为圆心,大于12DE的长为半径画弧,两弧在∠AOB内部交于点C.(3)画射线OC.射线OC即为所求.题型1:作已知角的平分线1.尺规作图:已知:∠CBA,求作∠CAB的平分线.【变式1-1】如图,在直线MN上求作一点P,使点P到射线OA和OB的距离相等。

(不写作法,保留作图痕迹)【变式1-2】如图,在Rt△ABC中,△C=90°.(1)作△BAC的平分线AD交边BC于点D.(尺规作图,保留作图痕迹,不写作法).(2)在(1)的条件下,若△BAC=28°,求△ADB的度数.题型2:角平分线的性质的应用-证明线段2.如图,已知OE平分△AOB,BC△OA于点C,AD△OB于点D,求证:EA=EB.【变式2-1】如图,点D、B分别在△A的两边上,C是△A内一点,AB = AD,BC = CD,CE△AD于E,CF△AF于F.求证:CE = CF.【变式2-2】已知:如图,OC是△AOB的平分线,P是OC上的一点,PD△OA,PE△OB,垂足分别为D、E,点F是OC上的另一点,连接DF,EF.求证:DF=EF.题型3:角平分线的性质的应用-和差关系3.如图,在△ABC中,△C=90°,△CAD=△BAD,DE△AB于E,点F在边AC 上,连接DF.(1)求证:AC=AE;(2)若AC=8,AB=10,求DE的长;(3)若CF=BE,直接写出线段AB,AF,EB的数量关系.【变式3-1】如图,△ABC的边BC的垂直平分线DE交△ABC的外角平分线AD于点D,DF△AB于点F,且AB>AC,试探究BF、AC、AF之间的数量关系,并说明理由.【变式3-2】题型4:角平分线的性质的应用-面积相关4.如图,BD是ΔABC的角平分线,DE⊥AB垂足为E,ΔABC的面积为70,AB= 16,BC=12,求DE的长.【变式4-1】如图,AD是△ABC的角平分线,DF△AB,垂足为F,如图DE=DG,△ADG和△AED的面积分别为50和38,求△EDF的面积【变式4-2】如图,在ΔABC中,AD为∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,若ΔABC的面积为21cm2,AB=8cm,AC=6cm,求DE的值.角的平分线的判定角平分线的判定:角的内部到角两边距离相等的点在角的平分线上.注意:用符号语言表示角的平分线的判定:若PE⊥AD于点E,PF⊥BD于点F,PE=PF,则PD平分∠ADB题型5:角平分线的判定5.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,求证:AM平分∠DAB.【变式5-1】如图所示,PA=PB,△1+△2=180°.求证:OP平分△AOB.【变式5-2】如图所示,AP、CP分别是△ABC外角△MAC和△NCA的平分线,它们交于点P.求证:BP为△MBN的平分线.题型7:角平分线的性质与判定综合6.如图,已知点A、C分别在△GBE的边BG、BE上,且AB=AC,AD△BE,△GBE的平分线与AD交于点D,连接CD.求证:(1)AB=AD;(2)CD平分△ACE.【变式6-1】如图,已知△ABC中BC边的垂直平分线DE与∠BAC的平分线交于点E,EF⊥AB交AB的延长线于点F,BG⊥AC交AC于点G.求证.(1)BF=CG.(2)若AB=6,AC=8,求AF的长度.【变式6-2】如图,在△ABC外作两个大小不同的等腰直角三角形,其中∠DAB=∠CAE=90°,AB=AD,AC=AE.连接DC、BE交于F点.(1)求证:△DAC△△BAE.(2)直线DC、BE是否互相垂直,请说明理由.(3)求证:AF平分∠DFE.【变式6-3】如图1,射线BD交△ABC的外角平分线CE于点P,已知△A=78°,△BPC=39°,BC=7,AB=4.(1)求证:BD平分△ABC;(2)如图2,AC的垂直平分线交BD于点Q,交AC于点G,QM△BC于点M,求MC的长度.题型7:角平分线的实际应用7.某地有两条相交叉的公路,计划修建一个饭馆:希望饭馆点P既在MN这条公路上,又到直线OA、OB的距离相等.你能确定饭馆应该建在什么位置吗?(保留作图痕迹)【变式7-1】如图:某地要在三条公路围成的一块平地上修建一个公园,要使公园到三条公路的距离相等,应在何处修建?(使用尺规作图,保留作图痕迹)并证明你的观点.【变式7-2】太和中学校园内有一块直角三角形(Rt △ABC)空地,如图所示,园艺师傅以角平分线AD为界,在其两侧分别种上了不同的花草,在△ABD区域内种植了月季花,在△ACD区域内种植了牡丹花,并量得两直角边AB=10m,AC=6m,分别求月季花与牡丹花两种花草的种植面积.题型8:三角形中的角平分线8.已知△ABC的三条角平分线相交于点O,过点O作OD△BC,OE△AC,OF△AB.求证:OD=OE=OF.【变式8-1】如图,△ABC中,AB=6,AC=7,BD、CD分别平分△ABC、△ACB,过点D作直线平行于BC,交AB、AC于E、F. 求△AEF的周长.【变式8-2】如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于?【变式8-3】如图①,在△ABC中,△ABC和△ACB的平分线交于点O,△A=α.(1)如图①,若△A=50°,求△BOC的度数.(2)如图②,连接OA,求证:OA平分△BAC.(3)如图③,若射线BO与△ACB的外角平分线交于点P,求证OC△PC.一、单选题1.如图,在△ABC中,△C=90°,BD平分△ABC,交AC于点D;若DC=3,AB=8则△ABD的面积是()A.8B.12C.16D.242.如图,OP平分△MON,PA△ON于点A,点Q是射线OM上的一个动点,若PA= 4,则PQ的长不可能是()A.3.5B.4C.4.5D.53.如图,已知点O是△ABC内一点,且点O到三边的距离相等,△A=40°,则△BOC=()A.110°B.120°C.130°D.140°4.如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S△PAB=S△PCD,则满足此条件的点P()A.有且只有1个B.有且只有2个C.组成△E的平分线D.组成△E的平分线所在的直线(E点除外)5.如图,在Rt△ACB中,∠ACB=90°,BC=12,BD=2CD,AD平分∠BAC,则点D到AB的距离等于()A.3B.4C.5D.9二、填空题6.如图,在△ABC中,BE平分△ABC交AC于点E,AF△BC于点F,BE、AF交于点P,若AB=9,PF=3,则△ABP的面积是.7.如图,已知△COB=2△AOC,OD平分△AOB,且△COD=18°,则△AOB的度数为.8.如图,在Rt△ABC中,∠ACB=90°, AC=6, BC=8, AB=10, AD是∠BAC的平分线.若P, Q分别是AD和AC上的动点,则PC+PQ的最小值是.9.如图,OP平分△AOB,PM△OA于M,点D在OB上,DH△OP于H.若OD=4,OP=7,PM=3,则DH的长为.三、作图题10.如图,电信部门要在S区修建一座电视信号发射塔.按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条高速公路m和n的距离也必须相等.发射塔应修建在什么位置?请用尺规作图标出它的位置.四、解答题11.如图,已知AD⊥BC于点D,E是延长线BA上一点,且EC⊥BC于点C,若∠ACE=∠E.求证:AD平分∠BAC.12.如图,在△ABC中,AD为△BAC的平分线,DE△AB于E,DF△AC于F,△ABC 面积是28cm2,AB=20cm,AC=8cm,求DE的长.13.如图,点P是△AOB的角平分线OC上一点,PE△OA,OE=12cm,点G是线段OP的中点,连接EG,点F是射线OB上的一个动点,若PF的最小值为4cm,求△PGE的面积.14.如图,直线AB△CD,点E在CD上,点O、点F在AB上,连接OE,过点F作FH△OE于点H.(1)尺规作图:作△EOF的角平分线OG交CD于点G;(不写作法,保留作图痕迹,并标明字母)(2)在(1)的条件下,已知△OFH=20°,求△OGD的度数.15.如图,△ABC和△EBD中,△ABC=△DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE△CD;(3)连接BM,有以下两个结论:①BM平分△CBE;②MB平分△AMD,其中正确的一个是(请写序号),并给出证明过程.。

人教版_部编版八年级数学上册第十二章第三节角的平分线的性质习题(含答案) (64)

人教版_部编版八年级数学上册第十二章第三节角的平分线的性质习题(含答案) (64)

人教版_部编版八年级数学上册第十二章第三节角的平分线的性质考试复习题(含答案)如图,OC平分∠AOB,点D,E分别在OA,OB上,点P在OC上且有PD=PE.求证:∠PDO =∠PEB.【答案】证明见解析;【解析】试题分析:过点P作AO、BO的垂线,利用直角三角形全等的判定可证出结论.试题解析:过P做PM垂直OA于M PN垂直OB于N因为OC平分∠AOB所以PM="PN" (角平分线上的点到2边的距离相等)因为PD=PE所以∠PDM全等于∠PEN(HL)所以∠PDO=∠PEB考点:1.角平分线的性质;2.直角三角形全等的判定与性质.32.已知:如图,CD∠AB于D,BE∠AC于E,∠1=∠2.求证:OB=OC.【答案】证明见解析【解析】试题分析:又CD∠AB,BE∠AC,∠1=∠2,可得OE=OD,∠BDO=∠CEO=90°,再由∠BOD=∠COE,可得∠BOD∠∠COE,从而OB=OC.试题解析:∠CD∠AB,BE∠AC,∠1=∠2,∠OE=OD,∠BDO=∠CEO=90°,又∠∠BOD=∠COE,∠∠BOD∠∠COE,∠OB=OC.考点:1.角平分线的性质;2.三角形全等的判定与性质.33.如图,BD是△ABC的角平分线,DE⊥AB,垂足为E,AB=16,BC=12.(1)△ABD与△CBD的面积之比为;(2)若△ABC的面积为70,求DE的长.【答案】4:3;5.【解析】AB求出BC两个三角形的面积之比等于底的比求出△ABD与△CBD的面积之比;根据(1)求出的△ABD与△CBD的面积之比,得到△ABD的面积,根据三角形的面积公式求出DE.试题解析:(1)、∵BD是△ABC的角平分线,ABBC =43,∴△ABD与△CBD的面积之比为4:3;(2)、∵△ABC的面积为70,△ABD与△CBD的面积之比为4:3,∴△ABD的面积为40,又AB=16,则DE=5.考点:角平分线的性质34.根据图中尺规作图的痕迹,先判断得出结论:.然后证明你的结论(不要求写出已知、求证).【答案】OM平分∠BOA.【解析】试题分析:根据角作图的画法得出三角形全等,从而说明角平分线.试题解析:OM是∠AOB的角平分线连接CM、DM∠OC=OD,CM=DM,OM=OM,∠∠OCM∠∠OCD,∠∠BOM=∠AOM,∠OM是∠AOB的角平分线.考点:(1)、尺规作图;(2)、三角形全等35.(8分)已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)求证:AM平分∠BAD;(2)试说明线段DM与AM有怎样的位置关系?(3)线段CD、AB、AD间有怎样的关系?直接写出结果.【答案】(1)见解析(2)DM⊥AM,(3)CD+AB=AD【解析】试题分析:(1)首先要作辅助线,ME⊥AD则利用角的平分线上的点到角的两边的距离相等可知ME=MC,再利用中点的条件可知ME=MB,再利用到角两边距离相等的点在角的平分线上的逆定理证明AM平分∠DAB.(2)根据平行线性质得出∠CDA+∠BAD=180°,求出∠1+∠3=90°,根据三角形内角和定理求出即可.(3)证Rt△DCM≌Rt△DEM,推出CD=DE,同理得出AE=AB,即可得出答案.试题解析:(1)证明:作ME⊥AD于E,∵MC⊥DC,ME⊥DA,MD平分∠ADC,∴ME=MC,∵M为BC中点,∴MB=MC,又∵ME=MC,∴ME=MB,又∵ME⊥AD,MB⊥AB,∴AM平分∠DAB.(2)解:DM⊥AM,理由是:∵DM平分∠CDA,AM平分∠DAB,∴∠1=∠2,∠3=∠4,∵DC∥AB,∴∠CDA+∠BAD=180°,∴∠1+∠3=90°,∴∠DMA=180°﹣(∠1+∠3)=90°,即DM⊥AM.(3)解:CD+AB=AD,理由是:∵ME⊥AD,MC⊥CD,∴∠C=∠DEM=90°,在Rt△DCM和Rt△DEM中DM DM EM CM=⎧⎨=⎩ ∴Rt △DCM ≌Rt △DEM (HL ),∴CD=DE ,同理AE=AB ,∵AE+DE=AD ,∴CD+AB=AD .考点:角平分线的性质;全等三角形的判定与性质36.如图,在∠ABC 中,∠ACB=90°,AC=BC=AD(1)作∠A 的平分线交CD 于E ;(2)过B 作CD 的垂线,垂足为F ;(3)请写出图中两对全等三角形(不添加任何字母),并选择其中一对加以证明.【答案】(1)作图见试题解析;(2)作图见试题解析;(3)∠ACE ∠∠ADE ,∠ACE ∠∠CFB .【解析】试题分析:(1)利用角平分线的作法得出∠A的平分线;(2)利用钝角三角形高线的作法得出BF;(3)利用等腰三角形的性质及全等三角形的判定得出答案.试题解析:(1)如图所示:AE即为所求;(2)如图所示:BF即为所求;(3)如图所示:∠ACE∠∠ADE,∠ACE∠∠CFB,∠AC=AD,AE平分∠CAD,∠AE∠CD,EC=DE,在∠ACE和∠ADE中,∠AE=AE,∠AEC=∠AED,EC=ED,∠∠ACE∠∠ADE(SAS).考点:1.作图—复杂作图;2.全等三角形的判定.37.(8分)如图,在∠ABC中,∠B=90°,AB=BC=4,点E在BC上,将∠ABC沿AE折叠,使点B落在AC边上的点F处.(1)求BE的长;(2)判断∠CEF是什么特殊三角形.【答案】BE=4√2-4【解析】试题分析:(1)先由勾股定理求出AC的长,由折叠可得∠CEF为直角三角形,BE="EF," 设BE=,根据勾股定理可得;(2)由(1)可得EF=FC=,所以直角三角形CEF是等腰直角三角形.试题解析:在∠ABC中,∠B=90°,AB=BC=4,∠AC=42分将∠ABC沿AE折叠,使点B落在AC边上的点F处.所以BE=EF,∠∠CEF为直角三角形EC2=EF2+FC2 4分设BE=,(4-)2=2+(4-4)24分∠6分EF=FC=7分∠∠CEF是等腰直角三角形8分考点:1.勾股定理;2. 图形折叠的性质;3.等腰直角三角形的判定.38.如图,AD⊥BC于点D,EG⊥BC于点G,⊥E=⊥3.请问:AD平分⊥BAC吗?若平分,请说明理由.【答案】平分,理由见解析.【解析】【分析】先利用平面内垂直于同一条直线的两条直线互相平行,得到AD∥EG,再利用平行线的性质和已知条件求出∥1=∥2即可.【详解】解:平分.证明:∥AD∥BC于D,EG∥BC于G,(已知)∥∥ADC=∥EGC=90°,(垂直的定义)∥AD∥EG,(同位角相等,两直线平行)∥∥2=∥3,(两直线平行,内错角相等)∥E=∥1,(两直线平行,同位角相等)又∥∥E=∥3(已知)∥∥1=∥2(等量代换)∥AD平分∥BAC(角平分线的定义).【点睛】本题考查平行线的判定与性质;角平分线的定义.39.画图说明题,试用几何方法说明你所得结果的正确性.(1)作∠AOB=90°;(2)在∠AOB的内部任意画一条射线OP;(3)画∠AOP的平分线OM以及∠BOP的平分线ON;(4)用量角器量得∠MON= 度.【答案】45,理由见解析【解析】【分析】首先根据题意画出图形,再根据角平分线的性质可得∠POM=1∠POB,2∠PON=12∠POA,然后可得∠POM+∠PON=12(∠POB+∠POA),进而可得答案.【详解】如图所示:∥OM是∥AOP的平分线,ON是∥BOP的平分线,∥∥POM=12∥POA,∥PON=12∥POB,∥∥POB+∥POA=∥AOB=90°,∥∥POM+∥PON=12(∥POB+∥POA)=12∥AOB=12×90°=45°.【点睛】考查了基本作图,以及角平分线的作法,关键是掌握角平分线的画法.40.(本题满分10分)如图,把∠EFP按图所示的方式放置在菱形ABCD 中,使得顶点E、F、P分别在线段AB、AD、AC上.已知EP=FP=,EF=,∠BAD=60°,且AB.(1)求∠EPF的大小;(2)若AP=6,求AE+AF的值;(3)若∠EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.【答案】(1)∠EPF=120°;(2)AE+AF=;(3)AP的最大值为8,AP 的最小值为4.【解析】试题分析:(1)过点P作PG∠EF,垂足为G,在RtFPG中,利用锐角三角函数求得∠FPG=60°,即可得∠EPF的度数.(2)作PM∠AB,PN∠ND,垂足分别为M、N,可证RtPME∠RtPNF,可得FN=EM;在RtPMA中,利用锐角三角函数求得AM的长,同样的方法求得AN的长,根据AE+AF=(AM-EM)+(AN+NF)=AM+AN即可求得AE+AF的值.(3)当PE∠AB,PF∠AD时,AP的值最大为8,当点A与点E(或点F)重合时,PA的值最小为4.试题解析:解:(1)过点P作PG∠EF,垂足为G,∠PE=PF,PG∠EF,∠FG=EG=,∠FPG=∠EPG=∠EPF.在RtFPG中,,∠∠FPG=60°∠∠EPF=2∠FPG=120°.作PM∠AB,PN∠ND,垂足分别为M、N,在菱形ABCD中,∠AD=AB,,DC=BC,AC=AC,∠∠ABC∠∠ADC,∠∠DAC=∠BAC∠点P到AB、CD两边的距离相等,即PM=PN.在RtPME和RtPNF中,∠PM=PN,PE=PF,∠RtPME∠RtPNF∠FN=EM在RtPMA中,∠PMA=90°,∠PAM=∠DAB=30°,∠AM=同理,AN=∠AE+AF=(AM-EM)+(AN+NF)=AM+AN=.(3)AP的最大值为8,AP的最小值为4.考点:菱形的性质;角平分线的性质;全等三角形的判定及性质.。

部编数学八年级上册专题06角的平分线性质问题(解析版)含答案

部编数学八年级上册专题06角的平分线性质问题(解析版)含答案

2023--2024学年度人教版数学八年级上册期末复习核心考点三种题型精炼专题06 角的平分线性质问题一、选择题1. (2023湖南张家界)如图,已知直线AB CD P ,EG 平分BEF Ð,140Ð=︒,则2Ð的度数是( )A. 70︒B. 50︒C. 40︒D. 140︒【答案】A 【解析】根据平行线的性质可得140EFG ︒Ð=Ð=, 180EFG BEF Ð+Ð=︒,EGF BEG Ð=Ð,推得140BEF Ð=︒,根据角平分线的性质可求出BEG Ð的度数,即可求得2Ð的度数.∵AB CD P ,∴140EFG ︒Ð=Ð=,180EFG BEF Ð+Ð=︒,EGF BEG Ð=Ð,∴18040140BEF Ð=︒-︒=︒,又∵EG 平分BEF Ð,∴1702BEG BEF Ð=Ð=︒,∴027BEG =Ð=︒Ð故选:A .【点睛】考查平行线的性质和角平分线的性质.掌握平行线的性质和角平分线的性质是解决本题的关键.2.如图,CE 是△ABC 的外角∠ACD 的平分线,若∠B=35°,∠ACE=60°,则∠A=( )A .35°B .95°C .85°D .75°【答案】C .【解析】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.根据三角形角平分线的性质求出∠ACD ,根据三角形外角性质求出∠A 即可.∵CE 是△ABC 的外角∠ACD 的平分线,∠ACE=60°∴∠ACD=2∠ACE=120°∵∠ACD=∠B+∠A∴∠A=∠ACD ﹣∠B=120°﹣35°=85°3.如图,△ABC 中,AD 为△ABC 的角平分线,BE 为△ABC 的高,∠C=70°,∠ABC=48°,那么∠3是( )A.59°B.60°C.56°D.22°【答案】A .【解析】本题考查了三角形的内角和定理,角平分线的定义,高线的定义,熟记概念与定理并准确识图是解题的关键.根据高线的定义可得∠AEC=90°,然后根据∠C=70°,∠ABC=48°求出∠CAB ,再根据角平分线的定义求出∠1,然后利用三角形的内角和等于180°列式计算即可得解。

八年级数学上册《第二章 角平分线的性质》同步练习题及答案(青岛版)

八年级数学上册《第二章 角平分线的性质》同步练习题及答案(青岛版)

八年级数学上册《第二章角平分线的性质》同步练习题及答案(青岛版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是( )A.PC=PDB.∠CPD=∠DOPC.∠CPO=∠DPOD.OC=OD2.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=( )A.30°B.35°C.45°D.60°3.下列命题中真命题是( )A.三角形按边可分为不等边三角形,等腰三角形和等边三角形B.等腰三角形任一个内角都有可能是钝角或直角C.三角形的一个外角大于任何一个内角D.三角形三条内角平分线相交于一点,这点到三角形三边的距离相等4.如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S△PAB =S△PCD,则满足此条件的点P( )A.有且只有1个B.有且只有2个C.组成∠E的角平分线D.组成∠E的角平分线所在的直线(E点除外)5.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于( )A.10B.7C.5D.46.如图,两条笔直的公路l1、l2相交于点O,公路的旁边建三个加工厂A、B、D,已知AB=AD=5.2km,CB=CD=5km,村庄C到公路l1的距离为4km,则C村到公路l2的距离是( )A.3kmB.4kmC.5kmD.5.2km7.数学课上,小明进行了如下的尺规作图(如图所示):(1)在△AOB(OA<OB)边OA、OB上分别截取OD、OE,使得OD=OE;(2)分别以点D、E为圆心,以大于0.5DE为半径作弧,两弧交于△AOB内的一点C;(3)作射线OC交AB边于点P.那么小明所求作的线段OP是△AOB的( )A.一条中线B.一条高C.一条角平分线D.不确定8.如图,已知△ABC,∠ABC,∠ACB的角平分线交于点O,连接AO并延长交BC于D,OH⊥BC 于H,若∠BAC=60°,OH=3cm,OA长为( )cm.A.6B.5C.4D.3二、填空题9.如图所示,AO为∠A的平分线,OE⊥AC于E,且OE=2,则点O到AB的距离等于 .10.如图,在△ABC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD的面积是.11.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是 .12.如图,△ABC中,∠C=90°,BD是∠ABC的平分线,DE⊥AB于点E,AB=8cm,BC=6cm,=14cm2,则DE的长是 cm.S△ABC13.通过学习我们已经知道三角形的三条内角平分线是交于一点的.如图,P是△ABC的内角平分线的交点,已知P点到AB边的距离为1,△ABC的周长为10,则△ABC的面积为.14.如图,已知射线OC上的任意一点到∠AOB的两边的距离都相等,点D、E、F分别为边OC、OA、OB上,如果要想证得OE=OF,只需要添加以下四个条件中的某一个即可,请写出所有可能的条件的序号.①∠ODE=∠ODF;②∠OED=∠OFD;③ED=FD;④EF⊥OC.三、作图题15.如图,三条公路两两相交于点A,B,C,现在要在公路边建一所加油站,要求加油站的位置到三条公路的距离都相等,则符合要求的位置有几个?请你找出所有加油站的位置(要求:尺规作图,保留作图痕迹,写出结论).四、解答题16.如图,在△ABC中,点O是∠ABC、∠ACB平分线的交点,AB+BC+AC=20,过O作OD⊥BC 于D点,且OD=3,求△ABC的面积.17.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF(1)求证:AD平分∠BAC;(2)已知AC=20, BE=4,求AB的长.18.如图,AC平分∠BCD,AB=AD,AE⊥BC于E,AF⊥CD于F.(1)若∠ABE=60°,求∠CDA的度数.(2)若AE=2,BE=1,CD=4.求四边形AECD的面积.19.如图,在△ABC中,M为BC的中点,DM⊥BC,DM与∠BAC的角平分线交于点D,DE⊥AB,DF⊥AC,E、F为垂足,求证:BE=CF.20.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC.求证:∠A+∠C=180°.答案1.B2.B.3.D.4.D.5.C6.B7.C.8.A.9.答案为:2.10.答案为:4.11.答案为:5.12.答案为:2.13.答案为:5.14.答案为:①②④.15.解:如图所示,P1,P2,P3,P4即为加油站的位置,共有4个符合要求的位置.16.解:如图,过点O作OE⊥AB于E,OF⊥AC于F,连接OA.∵点O是∠ABC,∠ACB平分线的交点∴OE=OD,OF=OD,即OE=OF=OD=3∴S△ABC =S△ABO+S△BCO+S△ACO=12AB•OE+12BC•OD+12AC•OF=12×2×(AB+BC+AC)=12×3×20=30.17.证明:(1)∵DE⊥AB,DF⊥AC∴∠E=∠DFC=90°∴在Rt△BED和Rt△CFD中BD=CD,BE=CF.∴Rt△BED≌Rt△CFD(HL)∴DE=DF∵DE⊥AB,DF⊥AC∴AD平分∠BAC;(2)解:∵Rt△BED≌Rt△CFD∴AE=AF,CF=BE=4∵AC=20∴AE=AF=20﹣4=16∴AB=AE﹣BE=16﹣4=12.18.解:(1)∵AC平分∠BCD,AE⊥BC AF⊥CD∴AE=AF在Rt△ABE和Rt△ADF中,AE=AF,AB=AD.∴Rt△ABE≌Rt△ADF∴∠ADF=∠ABE=60°∴∠CDA=180°﹣∠ADF=120°;(2)由(1)知:Rt△ABE≌Rt△ADF∴FD=BE=1,AF=AE=2,CE=CF=CD+FD=5∴BC=CE+BE=6∴四边形AECD的面积=△ABC的面积+△ACD的面积=10.19.证明:连接DB.∵点D在BC的垂直平分线上∴DB=DC;∵D在∠BAC的平分线上,DE⊥AB,DF⊥AC∴DE=DF;∵∠DFC=∠DEB=90°在Rt△DCF和Rt△DBE中DB=DC,DE=DF.∴Rt△DCF≌Rt△DBE(HL)∴CF=BE(全等三角形的对应边相等).20.证明:过点D作DE⊥BC于E,过点D作DF⊥AB交BA的延长线于F∵BD平分∠ABC∴DE=DF,∠DEC=∠F=90°在RtCDE和Rt△ADF中∴Rt△CDE≌Rt△ADF(HL)∴∠FAD=∠C∴∠BAD+∠C=∠BAD+∠FAD=180°.。

人教版八年级数学上册12.3角的平分线的性质练习题( 配套)

人教版八年级数学上册12.3角的平分线的性质练习题( 配套)

12.3角的平分线的性质练习题1.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=3,AB=10,则△ABD的面积等于()A.30 B.24 C.15 D.102.观察图中尺规作图痕迹,下列说法错误的是()A.OE是∠AOB的平分线B.OC=ODC.点C、D到OE的距离不相等D.∠AOE=∠BOE3.如图,已知P是∠AOB的角平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,点C是OB上的一个动点,若PC的最小值为3cm,则MD的长度为()A.3cm B.3cm C.2cm D.2cm4.如图,已知△ABC的周长是20,OB和OC分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=3,则△ABC 的面积是()A.20 B.25 C.30 D.355.如图,D为∠BAC的外角平分线上一点并且满足BD=CD,∠DBC=∠DCB,过D作DE⊥AC于E,DF⊥AB交BA的延长线于F,则下列结论:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正确的结论有()A.1个B.2个C.3个D.4个6.如图,P是∠AOB平分线上一点,CD⊥OP于F,并分别交OA、OB于CD,则CD()P点到∠AOB两边距离之和.A.小于B.大于C.等于D.不能确定7.已知,Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=32,且BD:CD=9:7,则D到AB的距离为()A.18 B.16 C.14 D.128.如图,△ABC中,∠C=90°,AM平分∠CAB,CM=20cm,那么M到AB的距离是()A.10cm B.15cm C.20cm D.25cm9.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DF⊥AC于点F,S△ABC=7,DE=2,AB=4,则AC长是.10.如图,已知△ABC的周长是24,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,则△ABC的面积是.11.在数学活动课上,小明提出这样一个问题:如图,∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,则∠EAB的度数是.12.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP 就是∠BOA的角平分线.”小明的做法,其理论依据是.13.已知:如图,P是OC上一点,PD⊥OA于D,PE⊥OB于E,F、G分别是OA、OB上的点,且PF=PG,DF=EG.求证:OC是∠AOB的平分线.14.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,交CD于K,交BC于E,F是BE上一点,且BF=CE,求证:FK∥AB.15.△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作一直线交AB、AC于E、F.且BE=EO.(1)说明OF与CF的大小关系;(2)若BC=12cm,点O到AB的距离为4cm,求△OBC的面积.16.(1)如图1,在△ABC中,AD平分∠BAC交BC于D,DE⊥AB于E,DF⊥AC于F,则有相等关系DE=DF,AE=AF.(2)如图2,在(1)的情况下,如果∠MDN=∠EDF,∠MDN的两边分别与AB、AC相交于M、N两点,其它条件不变,那么又有相等关系AM+ =2AF,请加以证明.(3)如图3,在Rt△ABC中,∠C=90°,∠BAC=60°,AC=6,AD平分∠BAC交BC于D,∠MDN=120°,ND∥AB,求四边形AMDN的周长.。

《123角平分线的性质》同步测试题((有答案))-(新课标人教版数学八年级)AlHKMK

《123角平分线的性质》同步测试题((有答案))-(新课标人教版数学八年级)AlHKMK

角平分线的性质测试题一、选择题(本大题共11小题,共33.0分)1.如图,AD是的角平分线,,垂足为E,交ED的延长线于点F,若BC恰好平分,给出下列四个结论:;;;,其中正确的结论共有A. 4个B. 3个C. 2个D. 1个2.如图,AD是的角平分线,,,垂足分别为点E、点F,连接EF与AD相交于点O,下列结论不一定成立的是A. B. C.D.3.如图,在中,,,点E在BC的延长线上,的平分线BD与的平分线CD相交于点D,连接AD,则下列结论中,正确的是A. B. C. D.4.如图,在中,,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若,,则的面积是A. 15B. 30C. 45D. 605.为促进旅游发展,某地要在三条公路围成的一块平地上修建一个度假村,如图所示,若要使度假村到三条公路的距离相等,则这个度假村应修建在A. 三角形ABC三条高线的交点处B. 三角形ABC三条角平分线的交点处C. 三角形ABC三条中线的交点处D. 三角形ABC三边垂直平分线的交点处6.如图,,,垂足分别为D、E,且,则与全等的理由是A. SASB. AAAC. SSSD. HL7.如图,OP平分,,垂足为A,,,Q是射线OM上的一个动点,则线段PQ的最小值是A. 10B. 8C. 4D. 68.三条公路将A、B、C三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是A. 三条高线的交点B. 三条中线的交点C. 三条角平分线的交点D. 三边垂直平分线的交点9.如图:的两个外角平分线交于点P,则下列结论正确的是平分到AB,BC的距离相等平分.A. B. C. D.10.如图,BD是的平分线,于E,,,,则DE的长是A. 2cmB. 4cmC.D.11.如图,点P为定角的平分线上的一个定点,且与互补,若在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:恒成立;的值不变;四边形PMON的面积不变;的长不变,其中正确的个数为A. 4B. 3C. 2D. 1二、填空题(本大题共11小题,共33.0分)12.如图,,,,若,则______.13.如图,已知于点B,于点C,且,,,则______.14.如图,的三条角平分线交于点O,O到AB的距离为3,且的周长为18,则的面积为______.15.如图,在中,,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于的长为半径画弧,两弧交于点P,作射线AB交边BC于点D,若,,则的面积是______.16.已知:如图,中,,沿过点B的一条直线BE折叠,使点C恰好落在AB边的中点D处,则______ 度17.边长为7,24,25的内有一点P到三边距离相等,则这个距离为______ .18.如图,OC平分,点P是OC上一点,于点M,点N是射线OA上的一个动点,若,则PN的最小值为______.19.如图,在中,,,AD平分,交BC边于点D,若,则的面积为______.20.如图,在中,,BD平分,若,则点D到AB的距离为______ cm.21.随着人们生活水平的不断提高,汽车逐步进入到千家万户,小红的爸爸想在本镇的三条相互交叉的公路如图所示,建一个加油站,要求它到三条公路的距离相等,这样可供选择的地址有______处22.已知OC平分,点P为OC上一点,于D,且,过点P作交OB于E,,求PE的长度______cm.三、计算题(本大题共3小题,共18.0分)23.如图,中,,,E,F分别是BC,AC的中点,若,求线段AB的长.24.如图,等腰梯形ABCD中,,,梯形周长为40,对角线BD平分,求梯形的腰长及两底边的长.25.某私营企业要修建一个加油站,如图,其设计要求是,加油站到两村A、B的距离必须相等,且到两条公路m、n的距离也必须相等,那么加油站应修在什么位置,在图上标出它的位置要有作图痕迹四、解答题(本大题共2小题,共16.0分)26.如图,BD是的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.请判断四边形EBGD的形状,并说明理由;若,,,点H是BD上的一个动点,求的最小值.两直角边分别与OA、OB相交于点C、D,问PC与PD相等吗?试说明理由.答案和解析【答案】1. A2. C3. B4. B5. B6. D7. D8. C9. C10. D11. B12. 413.14. 2715. 3016. 3017. 318. 519. 820. 321. 422. 623. 解:作BH平分交AC于H,连结HE,如图,平分,,,,为等腰三角形,点E为BC的中点,,,,,为的平分线,,,即,.24. 解:四边形ABCD是等腰梯形,,,,又BD平分,,,,又,,,,,,,即梯形腰长为8,两底边长为8和16,答:梯形的腰长是8,两底边的长分别是8,16.25. 解:作图如图,点P即为所求作的点.26. 解:四边形EBGD是菱形.理由:垂直平分BD,,,,,,,在和中,≌ ,,,四边形EBGD是菱形.作于M,于N,连接EC交BD于点H,此时最小,在中,,,,,,,,,,,在中,,,,,,在中,,,.,的最小值为10.27. 解:PC与PD相等理由如下:过点P作于点E,于点F.平分,点P在OM上,,,角平分线上的点到角两边的距离相等又,,四边形OEPF为矩形,,,又,,.在与中,,≌ ,.【解析】1. 解:,,平分,,,,是的角平分线,,,故正确,在与中,,≌ ,,,故正确;,,故正确.故选:A.根据等腰三角形的性质三线合一得到,,故正确;通过 ≌ ,得到,,故正确.本题考查了全等三角形的判定和性质,等腰三角形的性质,平行线的性质,掌握等腰三角形的性质三线合一是解题的关键.2. 解:是的角平分线,,,,,在和中,,≌ ,;是的角平分线,,在和中,,≌ ,;故选C.首先运用角平分线的性质得出,再由HL证明 ≌ ,即可得出;根据SAS 即可证明 ≌ ,即可得到.本题考查了角平分线的性质、全等三角形的判定与性质、等腰三角形的三线合一性质;熟练掌握全等三角形的判定方法是解决问题的关键.3. 解:,,,故A选项错误,平分,,在中,,,故B选项正确;平分,,平分,,,,故C选项错误;,,,故D选项错误.故选:B.根据三角形的内角和定理列式计算即可求出,再根据角平分线的定义求出,然后利用三角形的内角和定理求出,再根据对顶角相等可得,根据邻补角的定义和角平分线的定义求出,再利用三角形的内角和定理列式计算即可,判断出,根据,,即可判定.本题考查了角平分线的性质,三角形的内角和定理,角平分线的定义,熟记定理和概念是解题的关键.4. 解:由题意得AP是的平分线,过点D作于E,又,,的面积.故选:B.判断出AP是的平分线,过点D作于E,根据角平分线上的点到角的两边距离相等可得,然后根据三角形的面积公式列式计算即可得解.本题考查了角平分线上的点到角的两边距离相等的性质以及角平分线的画法,熟记性质是解题的关键.5. 解:度假村在三条公路围成的平地上且到三条公路的距离相等,度假村应该在三条角平分线的交点处.故选B.根据角平分线上的点到角的两边的距离相等的性质解答.本题考查了角平分线上的点到角的两边的距离相等的性质,是基础题,熟记性质是解题的关键.6. 解:,,,在和中,≌ ,故选:D.根据题中的条件可得和是直角三角形,再根据条件,可根据HL定理判定 ≌ .本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、结合已知条件在图形上的位置选择判定方法.7. 解:当时,PQ的值最小,平分,,,,故选D.根据垂线段最短得出当时,PQ的值最小,根据角平分线性质得出,求出即可.本题考查了角平分线性质,垂线段最短的应用,能得出要使PQ最小时Q的位置是解此题的关键.8. 解:在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,根据角平分线的性质,集贸市场应建在、、的角平分线的交点处.故选:C.根据角平分线上的点到角的两边的距离相等解答即可.本题主要考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.9. 解:过点P作与点D,于点E,于点F.平分,CP平分,.点P在的平分线上,P到AB,BC的距离相等.故正确.故选C.根据角平分线上的点到角的两边的距离相等,过点P作与点D,于点E,于点F,则点P在的平分线上.此题考查角平分线的性质:角平分线上的点到角的两边的距离相等;到角的两边距离相等的点在角的平分线上.10. 解:如图,过点D作于F,是的平分线,,,,,,解得.故选D.过点D作于F,根据角平分线上的点到角的两边距离相等可得,然后根据的面积列出方程求解即可.本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.11. 解:如图作于E,于F.,,,,,平分,于E,于F,,在和中,,≌ ,,在和中,,≌ ,,,故正确,,定值,故正确,四边形四边形定值,故正确,MN的长度是变化的,故错误,故选:B.如图作于E,于只要证明 ≌ , ≌ ,即可一一判断.本题考查全等三角形的性质、角平分线的性质定理、四边形的面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.12. 解:作于G,如图所示:,,,,,.故答案为:4.作于F,根据角平分线的性质得到EG的长度,再根据平行线的性质得到,然后利用三角形的外角和内角的关系求出,利用角所对的直角边是斜边的一半解题.本题考查了角平分线的性质、平行线的性质、含角的直角三角形的性质;熟练掌握角平分线的性质,证出是解决问题的关键.13. 解:于B,于C,且,是的平分线,,,.故答案为:先根据到角的两边距离相等的点在角的平分线上得到AD是的平分线,求出的度数,再根据三角形的一个外角等于与它不相邻的两个内角的和即可求解.本题考查了角平分线的判定与三角形的一个外角等于与它不相邻的两个内角的和的性质,仔细分析图形是解题的关键.14. 解:作于E,于F,于H,的三条角平分线交于点O,,,,,的面积,故答案为:27.作于E,于F,于H,根据角平分线的性质得到,根据三角形的面积公式计算即可.本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.15. 解:作于E,由基本尺规作图可知,AD是的角平分线,,,,的面积,故答案为:30.根据角平分线的性质得到,根据三角形的面积公式计算即可.本题考查的是角平分线的性质、基本作图,掌握角的平分线上的点到角的两边的距离相等是解题的关键.16. 解:在中,,与重合,,,又点D是AB的中点,,设,,..只要证明,设列出方程即可解决问题.本题考查翻折变换、垂直平分线的性质等知识,解题的关键是灵活运用翻折不变性,学会设未知数列方程解决问题,属于中考常考题型.17. 解:,是直角三角形,根据题意画图,如图所示:连接AP,BP,CP.设,,,则,.故答案为:3.首先根据三边长确定三角形是直角三角形,再根据题意画出图形,连接AP,BP,CP,根据直角三角形的面积公式即可求得该距离的长.此题主要考查了勾股定理逆定理,以及三角形的面积注意构造辅助线,则直角三角形的面积有两种表示方法:一是整体计算,即两条直角边乘积的一半;二是等于三个小三角形的面积和,即,然后即可计算x的值.18. 解:当时,PN的值最小,平分,,,,的最小值为5.故答案为:5.根据垂线段最短可得时,PN最短,再根据角平分线上的点到角的两边的距离相等可得,从而得解.本题考查了角平分线上的点到角的两边的距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.19. 解:作于E,平分,,,,的面积,故答案为:8.作于E,根据角平分线的性质求出DE的长,根据三角形的面积公式计算即可.本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.20. 解:如图,过点D作于E,,BD平分,,,,即点D到AB的距离为3cm.故答案为:3.过点D作于E,根据角平分线上的点到角的两边的距离相等可得,从而得解.本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.21. 解:如图所示,加油站站的地址有四处,故答案为:4.根据角平分线上的点到角的两边的距离相等作出图形即可得解.本题考查了角平分线的性质,掌握角平分线上的点到角的两边的距离相等的性质是解题的关键,作出图形更形象直观.22. 解:过P作于F,,OC平分,,,,,,平分,于D,于F,,,,故答案为:6.过P作于F,根据角平分线的定义可得,根据平行线的性质可得,从而可得,即可得出答案.此题主要考查:含度的直角三角形的性质:在直角三角形中,角所对的直角边等于斜边的一半,角平分线的性质:角的平分线上的点到角的两边的距离相等.23. 作BH平分交AC于H,连结HE,如图,由于,则,于是可判断为等腰三角形,根据等腰三角形的性质得,易得,根据平行线分线段成比例定理得,接着根据角平分线的性质定理得,则,然后把代入计算即可得到.本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例也考查了等腰三角形的判定与性质和角平分线性质.24. 根据等腰梯形性质得到,,根据角平分线性质推出,推出,根据已知梯形的周长求出即可.本题主要考查对等腰梯形的性质,平行线的性质,等腰三角形的性质,角平分线的性质等知识点的理解和掌握,能求出是解此题的关键.25. 连接A、B,作AB的垂直平分线,然后作两条公路m和n夹角的平分线,其交点即为加油站的位置.此题考查学生对角平分线的性质和线段垂直平分线的性质的理解和掌握特别要注意让学生牢记角平分线的性质定理.26. 结论四边形EBGD是菱形只要证明即可.作于M,于N,连接EC交BD于点H,此时最小,在中,求出EM、MC即可解决问题.本题考查平行四边形的判定和性质、菱形的判定和性质、角平分线的性质、垂直平分线的性质、勾股定理等知识,解题的关键是利用对称找到点H的位置,属于中考常考题型.27. 先过点P作于点E,于点F,构造全等三角形:和,这两个三角形已具备两个条件:的角以及,只需再证,根据已知,两个角都等于减去,那么三角形全等就可证.本题考查了角平分线的性质,以及四边形的内角和是、还有三角形全等的判定和性质等知识正确作出辅助线是解答本题的关键.。

八年级数学上册12-2《角的平分线性质》基础课时同步练习题(含答案)

八年级数学上册12-2《角的平分线性质》基础课时同步练习题(含答案)

八年级数学上册12-2《角的平分线性质》基础课时同步练习题(含答案)1、用直尺和圆规作已知角的平分线的示意图如图,则说明∠CAD=∠DAB的依据是().A. SSSB. SASC. ASAD. AAS2、如图,已知BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=6,则DF的长度是().A. 2B. 3C. 4D. 63、如图,OP为∠AOB的平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是().A. PC=PDB. ∠CPD=∠DOPC. ∠CPO=∠DPOD. OC= OD4、如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD:S△ACD=().A. 3:4B. 4:3C. 16:9D. 9:165、已知:如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C= 180°.6、如图,点P在∠AOB内,因为PM⊥OA,PN⊥OB,垂足分别是M,N,PM=PN,所以OP平分∠AOB,理由是:.7、如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在().A. 在AC、BC两边高线的交点处B. 在AC、BC两边中线的交点处C. 在∠A、∠B两内角平分线的交点处D. 在AC、BC两边垂直平分线的交点处8、如图,AB//CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是().A. 8B. 6C. 4D. 29、如图,四边形ABCD中,∠D=∠ABD=90°,点O为BD的中点,且OA平分∠BAC.(1) 求证:OC平分∠ACD.(2) 求证:AB+CD=AC.10、四边形ABCD中,AC平分∠BAD,CE⊥AB于E,∠ADC+∠EBC=180°,求证:2AE= AB+AD.11、如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是().A. 以点F为圆心,OE长为半径画弧B. 以点F为圆心,EF长为半径画弧C. 以点E为圆心,OE长为半径画弧D. 以点E为圆心,EF长为半径画弧12、如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为().A. 6B. 5C. 4D. 313、小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是().A. 角的内部到角的两边的距离相等的点在角的平分线上B. 角平分线上的点到这个角两边的距离相等C. 三角形三条角平分线的交点到三条边的距离相等D. 以上均不正确14、为了加快灾后重建的步伐,某市某镇要在三条公路围成的一块平地上修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址().A. 仅有一处B. 有四处C. 有七处D. 有无数处15、如图,在四边形ABCD中,∠A=90°,AD=3,连接BD,BD⊥CD,∠ADB=∠C.若P 是BC边上一动点,则DP长的最小值为.16、如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是().A. 3B. 4C. 6D. 517、如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为().A. 3B. 4C. 5D. 618、如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于().A. 1:1:1B. 1:2:3C. 2:3:4D. 3:4:519、如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,点F在AC上,BE=FC,求证:BD=DF.20、如图,在四边形ABCD中,CB=CD,∠D+∠ABC=180°,CE⊥AD于E.(1) 求证:AC平分∠DAB.(2) 若AE=3ED=6,求AB的长.1 、【答案】 A;【解析】 从角平分线的作法得出,△AFD 与△AED 的三边对应相等,则△AFD ≌△AED (SSS ),所以∠CAD =∠DAB .故选A .2 、【答案】 D;【解析】 ∵BG 是∠ABC 的平分线,DE ⊥AB ,DF ⊥BC ,∴DE =DF =6,故选:D .3 、【答案】 B;【解析】 ∵OP 为∠AOB 的平分线,PC ⊥OA ,PD ⊥OB ,垂足分别是C 、D ,∴PC =PD ,故A 正确;在Rt △OCP 与Rt △ODP 中,{OP =OP PC =PD, ∴Rt △OCP ≌Rt △ODP(HL),∴∠CPO =∠DPO ,OC =OD ,故C 、D 正确.不能得出∠CPD =∠DOP ,故B 错误.故选B .4 、【答案】 B;【解析】 作DE ⊥AB 于E ,DF ⊥AC 于F ,∵AD 是∠BAC 的平分线,∴DE =DF∴S△ABD:S△ACD=12AB⋅DE:12AC⋅DF=AB:AC=8:6=4:3.故选B.5 、【答案】证明见解析.;【解析】方法一 : 作DE⊥BA交BA延长线于点E,DF⊥BC,∠E=∠DFC=90°,∵BD平分∠ABC,∴DE=DF,在Rt△AED和Rt△CFD中,{AD=CDDE=DF,∴Rt△AED≌Rt△CFD(HL),∴∠DAE=∠C,∵∠BAD+∠DAE=180°,∴∠BAD+∠C=180°.方法二 : 在BC上截取BE=BA,连接DE,如图,∵BD平分∠ABC,∴∠ABD=∠EBD,在△ABD和△EBD中,{BA=BE∠ABD=∠EBDBD=BD,∴△ABD≌△EBD(SAS),∴∠A=∠1,DA=DE,又∵AD=DC,∴DE=DC,∴∠C=∠2,∵∠1+∠2=180°,∴∠A+∠C=180°.6 、【答案】在角的内部,到角两边距离相等的点在这个角的角平分线上;【解析】∵PM⊥OA,PN=OB,PM=PN,∴OP平分∠AOB,理由是:在角的内部,到角两边距离相等的点在这个角的角平分线上.7 、【答案】 C;【解析】∠A内角平分线上的点到AB,AC距离相等,∠B内角平分线上的点到AB,BC距离相等,∴要到三条公路距离相等,应在∠A,∠B内角平分线交点处满足到AB,AC,BC距离相等.故选C.8 、【答案】 C;【解析】过点P作PE⊥BC于E,∵AB//CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=4,∴PE=4.9 、【答案】 (1) 证明见解析.;(2) 证明见解析.;【解析】 (1) 过点O作OE⊥AC于E,∵∠ABD=90°,OA平分∠BAC,∴OB=OE,∵点O为BD的中点,∴OB=OD,∴OE=OD,∴OC平分∠ACD.(2) 在Rt△ABO和Rt△AEO中,{AO=AOOB=OE,∴Rt△ABO≌Rt△AEO(HL),∵Rt△ABO≌Rt△AEO,∴AB=AE,同理可得CD=CE,∵AC=AE+CE,∴AB+CD=AC.10 、【答案】证明见解析.;【解析】过C作CF⊥AD于F,∵AC平分∠BAD,∴∠FAC=∠EAC,∵CE⊥AB,CF⊥AD,∴∠DFC=∠AEC=∠CEB=90°,又AC=AC,∴△AEC≌△AFC,∴AF=AE,CF=CE,∵∠ADC+∠FDC=180°,∠ADC+∠EBC=180°,∴∠FDC=∠EBC,∴△FDC≌△EBC,∴DF=EB,∴AB+AD=AE+EB+AD=AE+DF+AD=AF+AE=2AE,∴2AE=AB+AD.11 、【答案】 D;【解析】用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,第二步的作图痕迹②的作法是以点E为圆心,EF长为半径画弧.12 、【答案】 A;【解析】如图,过点P作PE⊥OB于点E,∵OP平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE(角平分线上的点到角两边的距离相等),∵PD=6,∴PE=6,∴点P到边OB的距离为6,故选:A.13 、【答案】 A;【解析】解:如图所示:过两把直尺的交点P作PE⊥AO于点E,PF⊥BO于点F,∵两把长方形直尺完全相同,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选A.14 、【答案】 A;【解析】满足条件的点有一个,三角形内部:三个内角平分线交点一个.三角形外部,外角的角平分线三个(不合题意).15 、【答案】3;【解析】当DP⊥BC时,DP长的最小,易知BD平分∠ABC,由角平分线的性质定理可知,DP长的最小值为3.16 、【答案】 A;【解析】过D作DF⊥AC于F,∵AD平分∠BAC,∴DE=DF=2,又∴${{S}_{\triangle ABC}}={{S}_{\triangle ABD}}+{{S}_{\triangle ACD}}S△ABC=S△ABD+S△ACD=\frac{1}{2}AB\cdot DE+\frac{1}{2}AC\cdot DF=12AB⋅DE+12AC⋅DF=\frac{1}{2}\times4\times 2+\frac{1}{2} AC\times 2=12×4×2+12AC×2=7$,∴AC=3.故选A.17 、【答案】 A;【解析】如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,∴S△ABD=12AB⋅DE=12×10⋅DE=15,解得DE=3.故选A.18 、【答案】 C;【解析】过O分别作OD⊥AC于D,OE⊥AB于E,OF⊥BC于F,∵点O是内心,∴OE=OF=OD,∴S△ABO:S△BCO:S△CAO=12⋅AB⋅OE:12⋅BC⋅OF:12⋅AC⋅OD=AB:BC:AC=2:3:4.故选C.19 、【答案】证明见解析.;【解析】∵∠C=90°,∴DC⊥AC,∵AD平分∠CAB,DE⊥AB,∴DE=DC,∠DEB=∠C=90°,在△DCF和△DEB中,{DC=DE∠C=∠DEBFC=BE,∴△DCF≌△DEB(SAS),∴BD=DF.20 、【答案】 (1) 证明见解析.;(2) 4.;【解析】 (1) 过C点作CF⊥AB,交AB的延长线于点F,∵CE⊥AD,∴∠DEC=∠CFB=90°,∵∠D+∠ABC=180°,∠ABC+∠CBF=180°,∴∠D=∠CBF,∵CD=CB,∴△CDE≌△CBF(AAS),∴CE=CF,∴AC平分∠DAB.(2) 由(1)得BF=DE,∵CE=CF,CA=CA,∴Rt△ACE≌Rt△ACF(HL),∴AE=AF,∴AB=AF−BF=AE−DE,∵AE=3ED=6,∴AE=6,DE=2,∴AB=4.。

人教版八年级数学上册12.3角平分线的性质课时训练(含答案)

人教版八年级数学上册12.3角平分线的性质课时训练(含答案)

人教版八年级数学上册12.3角平分线的性质课时训练(含答案)人教版八年级数学上册12.3 角平分线的性质课时训练一、选择题1. 如图,PD⊥AB,PE⊥AC,垂足分别为D,E,且PD=PE,则△APD与△APE 全等的理由是()A.SAS B.AAA C.SSS D.HL2. 如图,P是∠AOB的平分线OC上一点,PD⊥OA,垂足为D.若PD=2,则点P到边OB的距离是()A.4 B. 3 C.2 D.13. 如图,P为OC上一点,PM⊥OA,PN⊥OB,垂足分别为M,N,PM=PN,∠BOC=30°,则∠AOB的度数为()A.30°B.45°C.60°D.50°4. 下面是黑板上给出的尺规作图题,需要回答横线上符号代表的内容.已知∠AOB.求作:∠AOB的平分线.作法如下:①以点O为圆心,适当长为半径画弧,交OA于点M,交__○__于点N;②分别以点__⊕__为圆心,大于__△__的长为半径画弧,两弧在__?__的内部交于点C;③画射线OC,OC即为所求.则下列回答正确的是()A.○表示OA B.⊕表示M,CC.△表示MN D.?表示∠AOB5. 如图,在直角坐标系中,AD是Rt△OAB的角平分线,点D的坐标是(0,-3),那么点D到AB的距离是()A.3B.-3C.2D.-26. 如图,利用尺规作∠AOB的平分线OC,其作法如下:(1)以点O为圆心,适当长为半径画弧,与OA,OB分别交于点D,E;(2)分别以点D,E为圆心,大于DE的长为半径画弧,两弧在∠AOB的内部交于点C;(3)画射线OC,则射线OC就是∠AOB的平分线.这样作图的原理是三角形全等的一种判定方法,这种判定方法是()A.SSSB.SASC.ASAD.AAS7. 如图,AB∥CD,以点A为圆心,小于AC的长为半径画弧,与AB,AC分别交于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧在∠CAB的内部交于点G,作射线AG交CD于点H.若∠C=140°,则∠AHC 的大小是()A.20°B.25°C.30°D.40°8. 如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D.若CD=4,AB=16,则△ABD的面积是()A.14 B.32 C.42 D.569. 如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC =9,CD=4,则四边形ABCD的面积是()A.24 B.30C.36 D.4210. 如图,AD是△ABC的角平分线,DE⊥AB,AB=6 cm,DE=4 cm,S△ABC=30 cm2,则AC的长为()A.10 cmB.9 cmC.4.5 cmD.3 cm二、填空题11. 如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为________.12. 如图,在△ABC中,两条外角平分线交于点P,PM⊥AC交AC的延长线于点M.若PM=6 cm,则点P到AB的距离为.13. 将两块完全相同的三角尺在∠AOB的内部如图摆放,两块三角尺较短的直角边分别与∠AOB的两边重合,且含30°角的顶点恰好也重合于点C,则射线OC 即为∠AOB的平分线,理由是______________________.14. 如图,∠B=∠D=90°,根据角平分线的性质填空:(1)若∠1=∠2,则________=________.(2)若∠3=∠4,则________=________.15. 如图,在△ABC中,E为AC的中点,AD平分∠BAC交BC于点D,AB︰AC=2︰3,AD与BE相交于点O.若△OAE的面积比△BOD的面积大1,则△ABC的面积是.三、解答题16. 育新中学校园内有一块直角三角形(Rt△ABC)空地,如图所示,园艺师傅以角平分线AD为界,在其两侧分别种上了不同的花草,在△ABD区域内种植了一串红,在△ACD区域内种植了鸡冠花,并量得两直角边AB=20 m,AC=10 m,分别求一串红与鸡冠花两种花草的种植面积.17. 如图,已知∠1=∠2,BA18. 如图,在∠AOB的两边OA,OB上分别取点D,M和点E,N,使OM=ON,OD=OE,DN和EM相交于点C.求证:点C在∠AOB的平分线上.19. 如图,A,B两点分别在射线OM,ON上,点C在∠MON的内部且CA=CB,CD⊥OM,CE⊥ON,垂足分别为D,E,且AD=BE.(1)求证:OC平分∠MON;(2)如果AO=10,BO=4,求OD的长.20. 如图,在Rt△ABC中,∠ACB=90°,∠B=60°,AD,CE是角平分线,AD 与CE相交于点F,FM⊥AB,FN⊥BC,垂足分别为M,N.求证:FE=FD.人教版八年级数学上册12.3 角平分线的性质课时训练-答案一、选择题1. 【答案】D2. 【答案】C[解析] 如图,过点P作PE⊥OB于点E.∵P是∠AOB的平分线OC上一点,PD⊥OA,PE⊥OB,∴PE=PD=2.3. 【答案】C[解析] ∵点P在OC上,PM⊥OA,PN⊥OB,PM =PN,∴OC是∠AOB的平分线.∵∠BOC=30°,∴∠AOB=60°.4. 【答案】D5. 【答案】A[解析] 如图,过点D作DE⊥AB于点E.∵点D的坐标是(0,-3),∴OD=3.∵AD是△OAB的角平分线,∴ED=OD=3,即点D到AB的距离是3.6. 【答案】A7. 【答案】A[解析] 由题意可得AH平分∠CAB.∵AB∥CD,∴∠C+∠CAB=180°,∠HAB=∠AHC.∵∠ACD=140°,∴∠CAB=40°.∵AH平分∠CAB,∴∠HAB=20°.∴∠AHC=20°.8. 【答案】B[解析] 如图,过点D作DH⊥AB于点H. 由作法得AP平分∠BAC.∵DC⊥AC,DH⊥AB,∴DH=DC=4.∴S△ABD=12×16×4=32.9. 【答案】B[解析] 过点D作DH⊥AB交BA的延长线于点H. ∵BD平分∠ABC,∠BCD=90°,∴DH=CD=4.∴四边形ABCD的面积=S△ABD+S△BCD=12AB·DH+12BC·CD=12×6×4+12×9×4=30.10. 【答案】B[解析] 如图,过点D作DF⊥AC于点F.∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=4.∵AB=6,∴S △ABC =S △ABD +S △ACD =×6×4+AC ×4=30, 解得AC=9(cm).故选B .二、填空题11. 【答案】3 【解析】如解图,过点P 作PD ⊥OA 于点D ,∵OP 为∠AOB 的平分线,PC ⊥OB 于点C ,∴PD =PC ,∵PC =3,∴PD =3,即点P 到点OA 的距离为3.12. 【答案】6 cm[解析] 如图,过点P 作PN ⊥BC 于点N ,PQ ⊥AB 交AB 的延长线于点Q.∵BP ,CP 是两条外角的平分线,PM ⊥AC ,∴PN=PM ,PQ=PN.∴PQ=PM.∵PM=6 cm,∴PQ=6 cm,即点P 到AB 的距离为6 cm .13. 【答案】角的内部到角的两边距离相等的点在角的平分线上14. 【答案】(1)BCCD (2)AB AD15. 【答案】10[解析] 如图,过点D 作DM ⊥AC 于点M ,DN ⊥AB 于点N.∵AD 平分∠BAC,DM ⊥AC ,DN ⊥AB , ∴DM=DN.∵S △ABD ︰S △ADC =BD ︰DC ,且S △ABD =·AB ·DN ,S △ADC =·AC ·DM ,∴BD ∶DC=AB ∶AC=2∶3. 设△ABC 的面积为S ,则S △ADC =S.∵E 为AC 的中点, ∴S △BEC =S.∵△OAE 的面积比△BOD 的面积大1, ∴△ADC 的面积比△BEC 的面积大1. ∴S-S=1.∴S=10.故答案为10.三、解答题16. 【答案】解:如图,过点D 作DE ⊥AB 于点E ,DF ⊥AC 于点F.∵AD 是∠BAC 的平分线,∴DE =DF. ∵AB =20 m ,AC =10 m ,∴S △ABC =12×20×10=12×20·DE +12×10·DF ,解得DE =203(m).∴△ACD 的面积=12×10×203=1003(m 2),△ABD 的面积=12×20×203=2003(m 2).故一串红的种植面积为2003 m 2,鸡冠花的种植面积为1003 m 2.17. 【答案】证明:如图,过点P 作PE ⊥BA 交BA 的延长线于点E.又∵∠1=∠2,PF ⊥BC ,∴PE=PF ,∠PEA=∠PFC=90°. 在Rt △PEA 与Rt △PFC 中,∴Rt △PEA ≌Rt △PFC (HL). ∴∠P AE=∠PCB. ∵∠P AE+∠BAP=180°, ∴∠PCB+∠BAP=180°.18. 【答案】证明:如图,过点C 作CG ⊥OA 于点G ,CF ⊥OB 于点F .在△MOE 和△NOD 中,∴△MOE ≌△NOD (SAS). ∴S △MOE =S △NOD .∴S △MOE -S 四边形ODCE =S △NOD -S 四边形ODCE ,即S △MDC =S △NEC .由三角形面积公式得DM ·CG=EN ·CF .∵OM=ON ,OD=OE ,∴DM=EN.∴CG=CF . 又∵CG ⊥OA ,CF ⊥OB ,∴点C 在∠AOB 的平分线上.19. 【答案】解:(1)证明:∵CD ⊥OM ,CE ⊥ON ,∴∠CDA =∠CEB =90°.在Rt △ACD 与Rt △BCE 中,CA =CB ,AD =BE ,∴Rt △ACD ≌Rt △BCE(HL).∴CD=CE.又∵CD ⊥OM ,CE ⊥ON ,∴OC 平分∠MON. (2)在Rt △ODC 与Rt △OEC 中,CD =CE ,OC =OC ,∴Rt △ODC ≌Rt △OEC. ∴OD =OE. 设BE =x.∵BO =4,∴OE =OD =4+x. ∵AD =BE =x ,∴AO =OD +AD =4+2x =10. ∴x =3.∴OD =4+3=7.20. 【答案】证明:如图,连接BF.∵F 是△ABC 的角平分线AD ,CE 的交点,∴BF 平分∠ABC. ∵FM ⊥AB ,FN ⊥BC ,∴FM =FN ,∠DNF =∠EMF =90°.∵在Rt △ABC 中,∠ACB =90°,∠ABC =60°,∴∠BAC =30°.∵AD 平分∠BAC ,∴∠DAC =12∠BAC =15°. ∴∠CDA =75°.∵CE 平分∠ACB ,∠ACB =90°,∴∠ACE =45°. ∴∠MEF =75°=∠NDF. 在△DNF 和△EMF 中,∠DNF =∠EMF ,∠NDF =∠MEF ,FN =FM ,∴△DNF ≌△EMF(AAS).∴FE =FD.。

最新人教版八年级初二数学上册《角的平分线的性质》同步练习含答案解析

最新人教版八年级初二数学上册《角的平分线的性质》同步练习含答案解析

《12.3 角的平分线的性质》一、填空题1.如图,∠B=∠D=90゜,根据角平分线性质填空:(1)若∠1=∠2,则______=______.(2)若∠3=∠4,则______=______.2.如图,BD是∠ABC的平分线,DE⊥AB于E,DF⊥BC于F,AB=12,BC=15,S△ABD =36,则S△BCD=______.3.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分成三个三角形,则S△ABO :S△BCO:S△CAO等于______.4.如图,AD是△ABC的角平分线,若AB=2AC.则S△ABD :S△ACD=______.二、选择题5.如图,已知点P、D、E分别在OC、OA、OB上,下列推理:①∵OC平分∠AOB,∴PD=PE;②∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE;③∵PD⊥OA,PE⊥OB,∴PD=PE;其中正确的个数有()A.0个B.1个C.2个D.3个6.如图△ABC中,∠ACB=90゜,AD平分∠BAC交BC于D,DE垂直AB于E,若DE=1.5cm,BD=3cm,则BC=()A.3cm B.7.5cm C.6cm D.4.5cm7.在△ABC中,∠C=90゜,AD平分∠BAC交BC于D,BD:DC=3:2,点D到AB的距离为6,则BC 长为()A.10 B.20 C.15 D.258.如图,在△ABC中,∠B、∠C的角平分线交于点0,OD⊥AB于D,OE⊥AC于E,则OD与OE的大小关系是()A.OD>OE B.OD<OE C.OD=OE D.不能确定三、解答题9.如图,△ABC中,∠C=90゜,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BE=CF,求证:(1)DE=DC;(2)BD=DF.10.如图,四边形ABCD中,AB=AD,CB=CD,点P是AC上一点,PE⊥BC于E,PF⊥CD于F,求证:PE=PF.11.已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.=90,AB=18,BC=12,求DE的长.12.如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC13.如图.已知在△ABC中,∠A、∠B的角平分线交于点O,过O作OP⊥BC于P,OQ⊥AC于Q,OR ⊥AB于R,AB=7,BC=8,AC=9.(1)求BP、CQ、AR的长.(2)若BO的延长线交AC于E,CO的延长线交AB于F,若∠A=60゜,求证:OE=OF.《12.3 角的平分线的性质》参考答案与试题解析一、填空题1.如图,∠B=∠D=90゜,根据角平分线性质填空:(1)若∠1=∠2,则BC = DC .(2)若∠3=∠4,则AB = AD .【考点】角平分线的性质.【分析】(1)根据角平分线性质推出即可;(2)根据角平分线性质推出即可.【解答】解:(1)∵∠B=∠D=90°,∴AB⊥BC,AD⊥DC,∵∠1=∠2,∴BC=CD,故答案为:BC,DC.(2)∵AB⊥BC,AD⊥DC,∵∠3=∠4,∴AB=AD,故答案为:AB,AD.【点评】本题考查了角平分线性质的应用,注意:角平分线上的点到角两边距离相等.2.如图,BD是∠ABC的平分线,DE⊥AB于E,DF⊥BC于F,AB=12,BC=15,S△ABD =36,则S△BCD= 45 .【考点】角平分线的性质.【分析】首先根据△ABD的面积计算出DE的长,再根据角平分线上的点到角两边的距离相等可得DE=DF,然后计算出DF的长,再利用三角形的面积公式计算出△BCD的面积即可.【解答】解:∵S△ABD=36,∴•AB•ED=36,×12×ED=36,解得:DE=6,∵BD是∠ABC的平分线,DE⊥AB于E,DF⊥BC于F,∴DE=DF,∴DF=6,∵BC=15,∴S△BCD=•CB•DF=×15×6=45,故答案为:45.【点评】此题主要考查了角平分线的性质,关键是掌握角平分线上的点到角两边的距离相等.3.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分成三个三角形,则S△ABO :S△BCO:S△CAO等于2:3:4 .【考点】角平分线的性质;三角形的面积.【专题】常规题型.【分析】由角平分线的性质可得,点O 到三角形三边的距离相等,即三个三角形的AB 、BC 、CA 的高相等,利用面积公式即可求解.【解答】解:过点O 作OD ⊥AC 于D ,OE ⊥AB 于E ,OF ⊥BC 于F ,∵O 是三角形三条角平分线的交点,∴OD=OE=OF ,∵AB=20,BC=30,AC=40,∴S △ABO :S △BCO :S △CAO =2:3:4.故答案为:2:3:4.【点评】此题主要考查角平分线的性质和三角形面积的求法,难度不大,作辅助线很关键.4.如图,AD 是△ABC 的角平分线,若AB=2AC .则S △ABD :S △ACD = 2 .【考点】角平分线的性质.【分析】过D 作DM ⊥AC 于M ,DN ⊥AB 于N ,根据角平分线性质得出DM=DN ,根据三角形面积公式求出即可.【解答】解:过D 作DM ⊥AC 于M ,DN ⊥AB 于N ,∵AD 是△ABC 的角平分线,∴DM=DN ,∴S △ABD :S △ACD =(AB ×DN ):(AC ×DM )=AB :AC=2AC :AC=2,故答案为:2.【点评】本题考查了角平分线性质的应用,注意:角平分线上的点到角两边的距离相等.二、选择题5.如图,已知点P、D、E分别在OC、OA、OB上,下列推理:①∵OC平分∠AOB,∴PD=PE;②∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE;③∵PD⊥OA,PE⊥OB,∴PD=PE;其中正确的个数有()A.0个B.1个C.2个D.3个【考点】角平分线的性质.【分析】直接根据角平分线的性质进行解答即可.【解答】解:∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE.故选B.【点评】本题考查的是角平分线的性质,即角平分线上的点到角两边的距离相等.6.如图△ABC中,∠ACB=90゜,AD平分∠BAC交BC于D,DE垂直AB于E,若DE=1.5cm,BD=3cm,则BC=()A.3cm B.7.5cm C.6cm D.4.5cm【考点】角平分线的性质.【分析】根据角平分线的性质得出CD长,代入BC=BD+DC求出即可.【解答】解:∵∠ACB=90°,∴AC⊥BC,∵DE⊥AB,AD平分∠BAC,∴DE=DC=1.5cm,∵BD=3cm,∴BC=BD+DC=3cm+1.5cm=4.5cm,故选D.【点评】本题考查了角平分线性质的应用,注意:角平分线上的点到角两边的距离相等.7.在△ABC中,∠C=90゜,AD平分∠BAC交BC于D,BD:DC=3:2,点D到AB的距离为6,则BC 长为()A.10 B.20 C.15 D.25【考点】角平分线的性质.【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边的距离相等可得DC=DE,然后求出BD的长,再根据BC=BD+DE代入数据进行计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵点D到AB的距离为6,∴DE=6,∵∠C=90°,AD平分∠BAC交BC于D,∴DC=DE=6,∵BD:DC=3:2,∴BD=×3=9,∴BC=BD+DE=9+6=15.故选C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.8.如图,在△ABC中,∠B、∠C的角平分线交于点0,OD⊥AB于D,OE⊥AC于E,则OD与OE的大小关系是()A.OD>OE B.OD<OE C.OD=OE D.不能确定【考点】角平分线的性质.【分析】根据三角形的角平分线相交于一点,连接AO,则AO平分∠BAC,然后根据角平分线上的点到角的两边的距离相等解答.【解答】解:如图,连接AO,∵∠B、∠C的角平分线交于点0,∴AO平分∠BAC,∵OD⊥AB,OE⊥AC,∴OD=OE.故选C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,根据三角形的角平分线相交于一点作辅助线并判断出AO平分∠BAC是解题的关键.三、解答题9.如图,△ABC中,∠C=90゜,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BE=CF,求证:(1)DE=DC;(2)BD=DF.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据角平分线上的点到角的两边的距离相等证明即可;(2)利用“边角边”证明△BDE和△FDC全等,再根据全等三角形对应边相等证明即可.【解答】证明:(1)∵∠C=90°,AD是∠BAC的平分线,DE⊥AB,∴DE=DC;(2)在△BDE和△FDC中,,∴△BDE≌△FDC(SAS),∴BD=DF.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,是基础题,熟记性质是解题的关键.10.如图,四边形ABCD中,AB=AD,CB=CD,点P是AC上一点,PE⊥BC于E,PF⊥CD于F,求证:PE=PF.【考点】全等三角形的判定与性质;角平分线的性质.【专题】证明题.【分析】根据“SSS”可得到△ABC≌△ADC,则∠BCA=∠DCA,再利用角平分线的性质即可得到结论.【解答】证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,∵PE⊥BC于E,PF⊥CD于F,∴PE=PF.【点评】本题考查了全等三角形的判定与性质:三边都对应相等的两三角形全等;全等三角形的对应边相等,对应角相等.角平分线的性质:角的平分线上的点到角的两边的距离相等.11.已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】根据角平分线的性质以及已知条件证得△ABD≌△CBD(SAS),然后由全等三角形的对应角相等推知∠ADB=∠CDB;再由垂直的性质和全等三角形的判定定理AAS判定△PMD≌△PND,最后根据全等三角形的对应边相等推知PM=PN.【解答】证明:在△ABD和△CBD中,AB=BC(已知),∠ABD=∠CBD(角平分线的性质),BD=BD(公共边),∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB(全等三角形的对应角相等);∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°;又∵PD=PD(公共边),∴△PMD≌△PND(AAS),∴PM=PN(全等三角形的对应边相等).【点评】本题考查了角平分线的性质、全等三角形的判定与性质.由已知证明△ABD≌△CBD是解决的关键.=90,AB=18,BC=12,求DE的长.12.如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC【考点】角平分线的性质.【分析】过点D作DF⊥BC于F,根据角平分线上的点到角的两边的距离相等可得DE=DF,然后根据三角形的面积列出方程求解即可.【解答】解:如图,过点D作DF⊥BC于F,∵BD是∠ABC的平分线,DE⊥AB,∴DE=DF,∴S=AB•DE+BC•DF=90,△ABC即×18•DE+×12•DE=90,解得DE=6.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,三角形的面积,熟记性质并作出辅助线是解题的关键.13.如图.已知在△ABC中,∠A、∠B的角平分线交于点O,过O作OP⊥BC于P,OQ⊥AC于Q,OR ⊥AB于R,AB=7,BC=8,AC=9.(1)求BP、CQ、AR的长.(2)若BO的延长线交AC于E,CO的延长线交AB于F,若∠A=60゜,求证:OE=OF.【考点】角平分线的性质;全等三角形的判定与性质.【分析】(1)根据角平分线性质得出OR=OQ=OP,根据勾股定理起床AR=AQ,CQ=CP,BR=BP,得出方程组,求出即可;(2)过O作OM⊥AC于肘,ON⊥AB于N,求出OM=ON,证出△FON≌△EOM即可.【解答】解:连接AO,OB,OC,∵OP⊥BC,OQ⊥AC,OR⊥AB,∠A、∠B的角平分线交于点O,∴OR=OQ,OR=OP,∴由勾股定理得:AR2=OA2﹣OR2,AQ2=AO2﹣OQ2,∴AR=AQ,同理BR=BP,CQ=CP,即O在∠ACB角平分线上,设BP=BR=x,CP=CQ=y,AQ=AR=z,则x=3,y=5,z=4,∴BP=3,CQ=5,AR=4.(2)过O作OM⊥AC于M,ON⊥AB于N,∵O在∠A的平分线,∴OM=ON,∠ANO=∠AMO=90°,∵∠A=60°,∴∠NOM=120°,∵O在∠ACB、∠ABC的角平分线上,∴∠EBC+∠FCB=(∠ABC+∠ACB)=×(180°﹣∠A)=60°,∴∠FON=∠EOM,在△FON和△EOM中∴△FON≌△EOM,∴OE=OF.【点评】本题考查了角平分线性质和全等三角形的性质和判定的应用,注意:角平分线上的点到角两边的距离相等.。

八年级数学上册角平分线的性质精选练习题

八年级数学上册角平分线的性质精选练习题

八年级数学上册角平分线的性质精选练习题八年级上册数学的角平分线的性质知识点即将学完,教师们腰围同学们准备精选练习题,下面是店铺为大家带来的关于八年级数学上册角平分线的性质精选的练习题,希望会给大家带来帮助。

八年级数学上册角平分线的性质精选练习题目一、选择题1. 用尺规作已知角的平分线的理论依据是( )A.SASB.AASC.SSSD.ASA2. ∠1=∠2,PD⊥OA,PE⊥OB,垂足分别为D,E,下列结论错误的是( )A、PD=PEB、OD=OEC、∠DPO=∠EPOD、PD=OD3. Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若CD=3cm,则点D到AB的距离DE是( )A.5cmB.4cmC.3cmD.2cm4. △ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6㎝,则△DEB的周长为( )A. 4㎝B. 6㎝C. 10㎝D. 不能确定5.OP平分,,,垂足分别为A,B.下列结论中不一定成立的是( )A. B. 平分 C. D. 垂直平分6.AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S△ABC =7,DE=2,AB=4,则AC长是( )A. 4B. 3C. 6D. 57.AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为( )A、11B、5.5C、7D、3.58.已知:△ABC中,∠C=90o,点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,且AB=10cm,BC=8cm,CA=6cm,则点O到三边AB、AC和BC的距离分别等于( )(A)2cm、2cm、2cm. (B)3cm、3cm、3cm.(C)4cm、4cm、4cm. (D)2cm、3cm、5cm.二、填空题9.P是∠AOB的角平分线上的一点,PC⊥OA于点C,PD⊥OB于点D,写出中一对相等的线段(只需写出一对即可) .10.在△ABC中,∠A=90°,BD平分∠AB C,AD=2 cm,则点D到BC的距离为________cm.11 .OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=3,则PQ的最小值为.12.在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是13.在Rt△ABC中,∠C=90°,若BC=10,AD平分∠BAC交BC于点D,且BD:CD=3:2,则点D到线段AB的距离为14.已知△ABC中,AD是角平分线,AB=5,AC=3,且S△ADC=6,则S△ABD=.15.AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为点E,F,连接EF,则EF与AD的关系是16.通过学习我们已经知道三角形的三条内角平分线是交于一点的.P是△ABC的内角平分线的交点,已知P点到AB边的距离为1,△ABC的周长为10,则△ABC的面积为.17.AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为18. △ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO =三、解答题19.已知:AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E、F,BD=CD,求证:∠B=∠C.20. 画∠AOB=90°,并画∠AOB的平分线OC,将三角尺的直角顶点落在OC的任意一点P上,使三角尺的两条直角边与∠AOB的两边分别相交于点E、F,试猜想PE、PF的大小关系,并说明理由.21.AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于 EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M.(1)若∠ACD=114°,求∠MAB的度数;(2)若CN⊥AM,垂足为N,求证:△ACN≌△MCN.22. 已知△ABC中,AB=AC,BE平分∠ABC交AC于E,若∠A=90°,那么BC、BA、AE三者之间有何关系?并加以证明.23. △ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线AE于点E,EF⊥AB于F,EG⊥AG交AC的延长线于G.求证:BF=CG.八年级数学上册角平分线的性质精选练习题答案一、选择题1.C2.D3.C4.B5.D6.B7.B8.A二、填空题9. PC=PD(答案不唯一) 10. 2 11. 3 12. 15 13. 4 14. 1015. AD垂直平分EF 16. 5 17. 4 18. 4:5:6三、解答题19.证明:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,在Rt△DEB与Rt△DFC中,BD=CD,DE=DF,∴Rt△DEB≌Rt△DFC(HL),∴∠B=∠C.20. 解:PE=PF,理由是:过点P作PM⊥OA,PN⊥OB,垂足是M,N,则∠PME=∠PNF=90°,∵OP平分∠AOB,∴PM=PN,∵∠AOB=∠PME=∠PNF=90°,∴∠MPN=90°,∵∠EPF=90°,∴∠MPE=∠FPN,在△PEM和△PFN中∴△PEM≌△PFN,∴PE=PF.21.(1)解:∵AB∥CD,∴∠ACD+∠CAB=180°,又∵∠ACD=114°,∴∠CAB=66°,由作法知,AM是∠CAB的平分线,∴∠MAB= ∠CAB=33°(2)证明:∵AM平分∠CAB,∴∠CAM=∠MAB,∵AB∥CD,∴∠MAB=∠CMA,∴∠CAM=∠CMA,又∵CN⊥AM,∴∠ANC=∠MNC,在△ACN和△MCN中,∴△ACN≌△MCN.22 . 解:BC、BA、AE三者之间的关系:BC=BA+AE,理由如下:过E作ED⊥BC交BC于点D,∵BE平分∠ABC,BA⊥CA,∴AE=DE,∠EDC=∠A=∠BDE=90°,∵在Rt△BAE和Rt△BDE中∴Rt△BAE≌Rt△BDE(HL),∴BA=BD,∵AB=AC,∠A=90°∴∠C=45°,∴∠CED=45°=∠C,∴DE=CD,∵AE=DE,∴AE=CD=DE,∴BC=BD+DC=BA+AE. 23. 证明:连接BE、EC,∵ED⊥BC,D为BC中点,∴BE=EC,∵EF⊥AB EG⊥AG,且AE平分∠FAG,∴FE=EG,在Rt△BFE和Rt△CGE中,∴Rt△BFE≌Rt△CGE (HL),∴BF=CG。

人教版八年级数学上册角的平分线的性质同步练习题(含答案)

人教版八年级数学上册角的平分线的性质同步练习题(含答案)

人教版八年级数学上册角的平分线的性质同步练习题(含答案)12.3 角的平分线的性质第1课时角的平分线的性质要点感知1 角的平分线的性质:角的平分线上的点到角的两边的距离_____.预习练习1-1 如图,OP平分∠AOB,PC⊥OA,垂足为C,PD⊥OB,垂足为D,则PC与PD的大小关系是( )A.PC>PDB.PC=PDC.PC<PDD.不能确定要点感知2 命题证明的一般步骤为:(1)明确命题中的已知和求证;(2)根据题意画出图形,并用数学符号表示已知和求证;(3)写出证明过程.预习练习2-1 命题“全等三角形对应角的角平分线长度相等”的已知是____,求证是____.知识点1 角平分线的作法1.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是( )A.SSSB.ASAC.AASD.角平分线上的点到角两边距离相等2.已知△ABC,用尺规作图作出∠ABC的角平分线,保留作图痕迹,但不写作法.知识点2 角平分线的性质3.如图,BD是∠ABC的平分线,P是BD上的一点,PE⊥BA于点E,PE=4 cm,则点P到边BC的距离为cm.4.如图所示,E 是∠AOB 的平分线上一点,EC ⊥OA,ED ⊥OB,垂足分别为C ,D.求证:OC=OD.5.如图,BD 平分∠ABC ,DE 垂直于AB 于E 点,△ABC 的面积等于90,AB=18,BC=12,求DE 的长.知识点3 命题证明6.命题“全等三角形对应边上的高线相等”的已知是____,结论是____.7.证明:全等三角形对应边上的中线相等.8.如图,AD ∥B C,∠ABC 的角平分线BP 与∠BAD 的角平分线AP 相交于点P,作PE ⊥AB 于点E.若PE =2,则两平行线AD 与BC 间的距离为____.9.如图,在△ABC ,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A 为圆心,小于AC 的长为半径画弧,分别交AB ,AC 于点E 、F ;②分别以点E,F 为圆心,大于21EF 的长为半径画弧,两弧相交于点G ;③作射线AG 交BC 边于点D ,则∠CDA 的度数为____. 10.已知,如图所示,△ABC 的角平分线AD 将BC 边分成2∶1两部分,若AC=3 cm ,则AB=____.11.已知:如图所示,点O 在∠BAC 的平分线上,BO ⊥AC,CO ⊥AB,垂足分别为D ,E,求证:OB =OC.12.如图,△ABC 中,∠C=90°,AC=BC,AD 平分∠BAC 交BC 于D,DE ⊥AB,垂足为E,且AB=10 cm,求△DEB 的周长.13.求证:有两个角及其中一个角的角平分线对应相等的两个三角形全等.挑战自我14.如图,∠AOB=90°,OM 平分∠AOB ,直角三角板的顶点P 在射线OM 上移动,两直角边分别与OA 、OB 相交于点C 、D ,问PC 与PD 相等吗?试说明理由.参考答案课前预习要点感知1 相等 预习练习1-1 B预习练习2-1 全等三角形对应角的角平分线 对应角的角平分线长度相等 当堂训练 1.A 2.图略. 3.4 4.证明:∵E 是∠AOB 的平分线上一点,CE ⊥OA,ED ⊥OB ,∴EC=ED.在Rt △OCE 和Rt △ODE 中,OE=OE,EC=ED,∴Rt △OCE ≌Rt △ODE(HL).∴OC=OD.5.∵BD 平分∠ABC ,DE 垂直于AB 于E 点,∴点D 到BC 的距离等于DE 的长度.∵AB=18,BC=12,∴S △ABC =S △ABD +S △BCD =21×18·DE+21×12·DE=21DE(18+12)=15·DE.∵△ABC 的面积等于90,∴15·DE=90.∴DE=66.全等三角形对应边的高线 对应边的高线相等7.已知:△ABC ≌△A ′B ′C ′,AD ,A ′D ′分别是BC ,B ′C ′边上的中线.求证:AD=A ′D ′.证明:∵△ABC ≌△A ′B ′C ′,∴AB=A ′B ′,∠B=∠B ′,BC=B ′C ′.又∵AD ,A ′D ′分别是BC ,B ′C ′边上的中线,∴BD=21BC,B ′D ′=21B ′C ′.∴BD=B ′D ′.∴△ABD ≌△A ′B ′D ′(SAS).∴AD=A ′D ′.课后作业 8.4 9.65° 10.6 cm 11.证明:∵点O 在∠BAC 的平分线上,BO ⊥AC,CO ⊥AB,∴OE =OD,∠BEO =∠CDO =90°.在△BEO 与△CDO 中,∠BEO =∠CDO,OE =OD,∠EOB =∠DOC,∴△BEO ≌△CDO(ASA).∴OB =OC.12.∵AD 平分∠BAC 交BC 于D,DE ⊥AB,∠C=90°,∴CD=DE.∴Rt △ACD ≌Rt △AED.∴AE=AC.∴△DEB 的周长=DE+DB+EB=CD+DB+BE=BC+BE=AC+BE=AE+BE=AB=10 cm. 13.已知:如图,在△ABC 和△A ′B ′C ′中,∠B=∠B ′,∠BAC=∠B ′A ′C ′,AD,A ′D ′分别是∠BAC,∠B ′A ′C ′的平分线,且AD=A ′D ′.求证:△ABC ≌△A ′B ′C ′.证明:∵∠BAC=∠B ′A ′C ′,AD ,A ′D ′分别是∠BAC ,∠B ′A ′C ′的角平分线,∴∠BAD=∠B ′A ′D ′.∵∠B=∠B ′,AD=A ′D ′,∴△ABD ≌△A ′B ′D ′(AAS).∴AB=A ′B ′.在△ABC 和△A ′B ′C ′中,∠B=∠B ′,AB=A ′B ′,∠BAC=∠B ′A ′C ′,∴△ABC ≌△A ′B ′C ′(ASA).14.PC=PD.理由如下:过点P 分别作PE ⊥OA ,PF ⊥OB ,垂足分别为点E ,F.又∵OM 平分∠AOB ,∴PE=PF.又∵∠AOB=90°,∠PEO=∠PFO=90°,∴∠EPF=90°.∴∠EPC+∠CPF=90°.又∵∠CPD=90°,∴∠CPF+∠FPD=90°.∴∠EP C=∠FPD.在△PCE 与△PDF 中,∠PEC=∠PFD ,PE=PF ,∠EPC=∠FPD ,∴△PCE ≌△PDF(ASA).∴PC=PD.第2课时 角的平分线的判定要点感知1 角的内部到角的两边的距离相等的点在角的______上.预习练习1-1 已知点P 为∠AOB 内部的一点,PD ⊥OB 于点D,PC ⊥OA 于点C,且PC=PD,则OP 平分_____.要点感知2 三角形的三条内角平分线相交于一点,并且这一点到_____.预习练习2-1 如图,在△ABC 中,BD ,CE 分别平分∠ABC ,∠ACB,并且BD ,CE 相交于点O,过O 点作OP ⊥BC 于点P,OM ⊥AB 于点M,ON ⊥AC 于点N,则OP ,OM ,ON 的大小关系是_____.知识点1 角平分线的判定1.已知:如图,OC是∠AOB内部的一条射线,P是射线OC上任意点,PD⊥OA,PE⊥OB.下列条件中:①∠AOC=∠BOC,②PD=PE,③OD=OE,④∠DPO=∠EPO,能判定OC是∠AOB的角平分线的有( )A.1个B.2个C.3个D.4个2.已知:如图所示,BE=CF,DF⊥AC于点F,DE⊥AB于点E,BF和CE相交于点D.求证:AD平分∠BAC.知识点2 角平分线的性质与判定的综合运用3.如图,△ABC中,∠ABC,∠ACB的角平分线相交于O,下面结论中正确的是( )A.∠1>∠2B.∠1=∠2C.∠1<∠2D.不能确定4.如图,∠ABC的平分线与∠ACB的外角平分线相交于点D,连接AD.求证:AD是∠BAC的外角平分线.知识点3 角平分线的性质与判定的实际应用5.如图,铁路OA和铁路OB交于O处,河道AB与铁路分别交于A处和B处,试在河岸上建一座水厂M,要求M到铁路OA,OB的距离相等,则该水厂M应建在图中什么位置?请在图中标出M点的位置.6.某市有一块由三条公路围成的三角形绿地,现准备在其中建一小亭子,供人们休息,而且要使小亭中心到三条公路的距离相等,试确定小亭的中心位置.7.如图所示,AD⊥OB,BC⊥OA,垂足分别为D,C,AD与BC相交于点P,若PA=PB,则∠1与∠2的大小关系是( )A.∠1=∠2B.∠1>∠2C.∠1<∠2D.无法确定8.如图所示,P为△ABC外部一点,D,E分别在AB,AC的延长线上,若点P到BC,BD,CE 的距离都相等,则关于点P的说法最佳的是( )A.在∠DBC的平分线上B.在∠BCE的平分线上C.在∠BAC的平分线上D.在∠DBC,∠BCE,∠BAC的平分线上9.三条公路两两相交于A,B,C三点,现计划修建一个商品超市,要求这个超市到三条公路距离相等,则可供选择的地方有_____处.10.已知:如图,CD⊥AB于点D,BE⊥AC于点E,BE,CD相交于点O.求证:(1)当∠1=∠2时,OB=OC;(2)当OB=OC时,∠1=∠2.11.如图,D,E,F分别是△ABC三边上的点,CE=BF,△DCE和△DBF的面积相等,求证:AD平分∠BAC.12.如图所示,△ABC中,∠B=∠C,D是BC边上一动点,过D作DE⊥AB,DF⊥AC,E,F分别为垂足,则当D 移动到什么位置时,AD 恰好平分∠BAC,请说明理由.挑战自我13.已知:如图所示,在△ABC 中,BD=DC,∠1=∠2,求证:AD 平分∠BAC.参考答案课前预习要点感知1 平分线 预习练习1-1 ∠AOB要点感知2 三边的距离相等 预习练习2-1 OP=OM=ON 当堂训练 1.D 2.证明:∵DF ⊥AC 于点F ,DE ⊥AB 于点E ,∴∠DEB=∠DFC=90°,在△BDE 和△CDF 中,∠BDE=∠CDF, ∠DEB=∠DFC,BE=CF,∴△BDE ≌△CDF(AAS).∴DE=DF.又∵DF ⊥AC 于点F ,DE ⊥AB 于点E ,∴AD 平分∠BAC. 3.B 4.证明:过点D 分别作DE ⊥AB,DG ⊥AC,DF ⊥BC,垂足分别为E,G,F.又∵BD 平分∠ABC,CD 平分∠ACF,∴DE=DF,DG=DF.∴DE=DG.∴AD 平分∠EAC,即AD 是∠BAC 的外角平分线.5.图略.提示:作∠AOB 的角平分线,与AB 的交点即为点M 的位置.6.在三角形内部分别作出两条角平分线,其交点O 就是小亭的中心位置,图略. 课后作业7.A8.D9.410.(1)证明:∵∠1=∠2,OD ⊥AB ,OE ⊥AC ,∴OE =OD ,∠ODB =∠OEC =90°.在△BOD 和△COE 中,∠BOD=∠COE ,OD=OE ,∠ODB=∠OEC,∴△BOD ≌△COE(ASA).∴OB =OC. (2)证明:在△BOD 和△COE 中,∠ODB=∠OEC ,∠BOD=∠COE , OB=OC ,∴△BOD ≌△COE(AAS).∴OD =OE.又∵OD ⊥AB ,OE ⊥AC ,∴AO 平分∠BAC ,即∠1=∠2.11.证明:过点D 作DH ⊥AB 于H ,DG ⊥AC 于G.∵S △DCE =21CE ·DG,S △DB F=21BF ·DH,S△DCE=S △DBF ,∴21CE ·DG=21BF ·DH.又∵CE=BF,∴DG=DH.∴点D 在∠BAC 的平分线上,即AD 平分∠BAC.12.移动到BC 的中点时,AD 恰好平分∠BAC.理由如下:∵D 是BC 的中点,∴BD =CD.∵DE ⊥AB,DF ⊥AC,∴∠DEB =∠DFC =90°.又∵∠B =∠C,∴△DEB ≌△D FC(AAS).∴DE =DF.又∵DE ⊥AB,DF ⊥AC,∴AD 平分∠BAC.13.证明:过D 作DE ⊥AB 于E ,DF ⊥AC 于F.在△BED 和△CFD 中,∠BED=∠CF D=90°,∠1=∠2,BD=CD,∴△BED ≌△CFD(AAS).∴DE=DF.又DE ⊥AB ,DF ⊥AC ,∴AD 平分∠BAC.。

123角的平分线的性质(原卷版)-2021-2022学年八年级数学上册精选新题汇编(人教版)

123角的平分线的性质(原卷版)-2021-2022学年八年级数学上册精选新题汇编(人教版)

20212022学年人教版数学八年级上册精选新题汇编第十二章《全等三角形》12.3 角的平分线的性质一.选择题1.(2021春•雁塔区校级期末)如图,在△ABC中,∠ACB=90°,AD平分∠BAC交BC于点D,BC=10cm,点D到AB的距离为4cm,则BD的长为()A.4cm B.5cm C.6cm D.8cm2.(2021春•漳州期末)如图,在△ABC中,AD是∠BAC的平分线,DE⊥AC,垂足为E,若AB=12,DE =4,则△ABD的面积是()A.4B.12C.24D.483.(2021春•隆回县期末)如图,△ABC中,AD平分∠BAC,AD交BC于点D,DE⊥AB,垂足为E,若DE=3,AC=4,则△ADC的面积为()A.3B.4C.5D.64.(2021春•禅城区期末)如图,OD平分∠AOB,DE⊥AO于点E,DE=4.2,F是射线OB上的任一点,则DF的长度不可能是()A.3.9B.4.2C.4.7D.5.845.(2021•青海)如图,在四边形ABCD中,∠A=90°,AD=3,BC=5,对角线BD平分∠ABC,则△BCD 的面积为()A.8B.7.5C.15D.无法确定6.(2021春•毕节市期末)如图,已知△ABC中,∠C=90o,AC=BC,AD平分∠CAB,交BC于点D,DE ⊥AB于点E,且AB=10,则△DEB的周长为()A.9B.5C.10D.不能确定7.(2021春•成都月考)如图,三条公路两两相交,现计划修建一个油库,计划使得该油库到三条公路的距离相等,则油库的可选位置有()处.A.1B.2C.3D.48.(2021春•铁岭月考)下列作图语句错误的个数是()①以点O为圆心作弧;②延长射线OM到点A;③延长线段AB到C,使BC=AB;④过三点A,B,C作直线.A.1个B.2个C.3个D.4个9.(2021•雁塔区校级模拟)如图,在△ABC中,∠ACB=90°,AD平分∠BAC,BC=10cm,点D到AB 的距离为4cm,则DB=()A.6cm B.8cm C.5cm D.4cm10.(2021春•武侯区校级期中)如图,AD是△ABC的角平分线,DF⊥AB于点F,且DE=DG,S△ADG=24,S△AED=18,则△DEF的面积为()A.2B.3C.4D.6二.填空题11.(2021春•西安期末)如图,△ABC中,∠CAB和∠CBA的角平分线交于点P,连接PC,若△P AB、△PBC、△P AC的面积分别为S1、S2、S3,则S1S2+S3.(填“>”“<”或“=”)12.(2021春•郫都区期末)如图,OP平分∠AOB,PC⊥OA,点D是OB上的动点,若PC=1cm,则PD 的长的最小值为.13.(2021春•绥宁县期末)如图,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,则点D到BC的距离是.14.(2021春•历下区期末)如图,OC是∠AOB的角平分线,点P是OC上一点,PM⊥OB于点M,点N 是射线OA上的一个动点,若PM=6,则PN的最小值为.15.(2021春•渝中区校级期末)如图所示,AD是△ABC的平分线,DF⊥AB于点F,DE=DG,若S△DEF=2,S△ADG=9:则△ADE的面积为.16.(2021春•南山区期末)如图,在△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,若BE=3,△BDE的周长为11,则BC=.17.(2021•福建)如图,AD是△ABC的角平分线.若∠B=90°,BD=,则点D到AC的距离是.18.(2021春•株洲期末)如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是.19.(2021•长沙)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,若BC=4,DE=1.6,则BD的长为.20.(2020秋•肥西县期末)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D.若BC=3,且BD:DC=5:4,AB=5,则△ABD的面积是.三.解答题21.(2021春•江岸区期末)已知直线EF与直线AB、CD分别交于E、F两点,∠AEF和∠CFE的角平分线交于点P,且∠AEP+∠CFP=90°.(1)求证:AB∥CD;(2)如图2,∠PEF和∠PFM的角平分线交于点Q,求∠Q的度数;(3)如图3,若∠AEP:∠CFP=2:1,延长线段EP得射线EP1,延长线段FP得射线FP2,射线EP1绕点E以每秒15°的速度逆时针旋转360°后停止,射线FP2绕点F以每秒3°的速度顺时针旋转180°以后停止.设它们同时旋转t秒,问t为多少时,射线EP1∥FP2,直接写出t的值t=秒.22.(2021春•侯马市期末)如图,△ABE中,∠E=90°,AC是∠BAE的角平分线.(1)若∠B=40°,求∠BAC的度数;(2)若D是BC的中点,△ADC的面积为16,AE=8,求BC的长.23.(2020秋•云南期末)如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC 面积是152cm2,AB=20cm,AC=18cm,求DE的长.24.(2021•章丘区模拟)如图,BD平分∠ABC交AC于点D,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8,若S△ABC=28,求DE的长.25.(2020秋•肇州县期末)如图,在△ABC中,AD是∠BAC的角平分线,DE⊥AB,DF⊥AC,D是BC的中点,证明:∠B=∠C.26.(2020秋•大安市期末)如图,已知点D、E、F分别是△ABC的三边上的点,CE=BF,且△DCE的面积与△DBF的面积相等.求证:AD平分∠BAC.27.(2020秋•长春期末)教材呈现:如图是华师版八年级上册数学教材第96页的部分内容.定理证明:请根据教材中的分析,结合图①,写出“角平分线的性质定理”完整的证明过程.定理应用:如图②,△ABC的周长是12,BO、CO分别平分∠ABC和∠ACB,OD⊥BC于点D,若OD=3,则△ABC的面积为.。

2022-2023学年八年级数学上《角的平分线的性质》测试卷及答案解析

2022-2023学年八年级数学上《角的平分线的性质》测试卷及答案解析
A.4B. C. D.6
5.(2021秋•博兴县期末)如图,是尺规作图中“画一个角等于已知角”的示意图,该作法运用了“全等三角形的对应角相等”这一性质,则判定图中两三角形全等的条件是( )
A.SASB.ASAC.AASD.SSS
6.(2020秋•大连期末)下列作图语句中,叙述正确的是( )
A.延长线段AB到点C,使BC=AB
参考答案与试题解析
一.选择题(共10小题)
1.(2022春•高陵区期中)如图,在△ABC中,O是在△ABC内一点,且点O到在△ABC三边的距离相等,∠BOC=126°,则∠A的度数为( )
A.72°B.27°C.54°D.108°
【考点】角平分线的性质.
【专题】三角形;推理能力.
【分析】由条件可知BO、CO平分∠ABC和∠ACB,利用三角形内角和可求得∠A.
14.(2021秋•西平县期末)如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是.
15.所谓尺规作图中的尺规是指:.
16.判断下列作图语句是否正确.
延长线段AB=a.
三.解答题(共4小题)
17.(2021秋•台江区校级期末)如图,在△ABC中,∠C=90°.
【解答】解:∵点O到△ABC三边的距离相等,
∴BO平分∠ABC,CO平分∠ACB,
∴∠A=180°−(∠ABC+∠ACB)=180°−2(∠OBC+∠OCB)=180°−2×(180°−∠BOC)=180°−2×(180°−126°)=72°,
故选:A.
【点评】本题主要考查角平分线的性质,掌握角平分线的交点到三角形三边的距离相等是解题的关键.
2.(2022•丽水二模)如图,Rt△ABC中,∠C=90°,∠B=30°,要求用圆规和直尺作图,把它分成两个三角形,其中一个三角形是等腰三角形.其作法错误的是( )

《4 角平分线》(同步训练)初中数学八年级下册_北师大版_2024-2025学年

《4 角平分线》(同步训练)初中数学八年级下册_北师大版_2024-2025学年

《4 角平分线》同步训练(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、在等腰三角形ABC中,AB=AC,点D是边BC上的任意一点,若AD平分∠BAC,则以下说法正确的是()A. ∠BAD = ∠CADB. ∠BAD = ∠BC. ∠BAD = ∠CAD/2D. ∠BAD = ∠B/22、在等边三角形ABC中,点D是边AB上的任意一点,若DE是∠BAC的角平分线,则以下说法正确的是()A. ∠ADE = ∠BB. ∠ADE = ∠CC. ∠ADE = (∠B + ∠C)/2D. ∠ADE = (∠B - ∠C)/23、在等腰三角形ABC中,AB=AC,点D在边AC上,且AD=BD。

若∠ABC的度数为50°,则∠ADB的度数为:A. 40°B. 50°C. 60°D. 70°4、在四边形ABCD中,对角线AC和BD相交于点O,且AO=CO,BO=DO。

如果∠AOD 的度数为60°,则下列说法正确的是:A. 四边形ABCD是菱形B. 四边形ABCD是矩形C. 四边形ABCD是等腰梯形D. 四边形ABCD是平行四边形5、在△ABC中,若∠BAC=50°,点D在BC边上,且∠ADB=40°,∠ADC=30°,则∠BDC的度数是:A. 30°B. 40°C. 50°D. 70°6、已知点P是等腰三角形ABC的底边BC的中点,点D在AB上,且∠APD=60°,∠B=70°,则∠A的度数是:A. 30°B. 40°C. 70°D. 80°7、在等腰三角形ABC中,AB=AC,D是BC的中点,E是AD的延长线上的一点,且AE=AD。

那么下列说法正确的是:A. BE=ECB. ∠B=∠CC. ∠AED=∠BEAD. ∠BEC=∠BDE8、在等腰三角形ABC中,AB=AC,点D在BC上,且BD=DC。

初中数学八年级数学上册 角平分线的性质与判定课后练习二(含详解)

初中数学八年级数学上册 角平分线的性质与判定课后练习二(含详解)

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:如图,PB、PC分别是△ABC的外角平分线,它们相交于点P,求证:点P在∠A的平分线上.试题2:已知,如图,O是△ABC的∠ABC、∠ACB的角平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E,若BC=16cm,则△ODE 的周长是多少cm?试题3:如图,已知AD是△ABC的角∠BAC的角平分线,DF垂直AB于F,DE垂直AC于E,求证:AE=AF,AD平分∠EDF.试题4:评卷人得分如图,四边形ABCD中,AC平分∠BAD,CE⊥AB于E,AD+AB=2AE.求证:∠B+∠ADC=180°.试题5:如图,已知△ABC中,∠BAC:∠ABC:∠ACB=4:2:1,AD是∠BAC的平分线.求证:AD=AC AB.试题1答案:点P在∠A的平分线上.详解:作PM⊥AC于M,PN⊥BC于N,PE⊥AB于E,∵PB、PC分别是△ABC的外角平分线,∴PM=PN,PN=PE,∴PM=PE,∵PM⊥AC,PE⊥AB,∴点P在∠A的平分线上.试题2答案:16cm.详解:∵OC、OB分别是∠ACB、∠ABC的角平分线,∴∠5=∠6,∠1=∠2,∵OD∥AB,OE∥AC,∴∠4=∠6,∠1=∠3.∴∠4=∠5,∠2=∠3,OD=BD,OE=CE.∵BC=16cm,∴△ODE的周长=OD+DE+OE=BD+DE+CE=BC=16cm.试题3答案:AE=AF.AD平分∠EDF.详解:∵DF⊥AB,DE⊥AC,∴∠AFD=∠AED=90°,∵AD是∠BAC的角平分线,∴∠EAD=∠FAD,∵∠EAD+∠AED+∠ADE=180°,∠DAF+∠AFD+∠ADF=180°,∴∠ADE=∠A DF,即AD平分∠EDF,∴AE=AF.试题4答案:∠B+∠ADC=180°.详解:延长AD,过C作CF垂直AD的延长线于点F,∵AC平分∠BAD,∴∠FAC=∠EAC,∵CE⊥AB,CF⊥AD,∴∠DFC=∠CEB=90°,∴△AFC≌△AEC,∴AF=AE,CF=CE,∵2AE=AB+AD,又∵AD=AF DF,AB=AE+BE,AF=AE,∴2AE=AE+BE+AE DF,∴BE=DF,∵∠DFC=∠CEB=90°,CF=CE,∴△CDF≌△CEB,∴∠ABC=∠CDF,∵∠ADC+∠CDF=180°,∴∠B+∠ADC=180°.试题5答案:AD=AC AB.详解:在AC上截取AE=AB,连DE,如图,设∠C=x,∵∠BAC:∠ABC:∠ACB=4:2:1,∴∠BAC=4x,∠B=2x,∵AD是∠BAC的平分线,∴∠3=∠4=2x,∵在△ABD和△AED中,AB=A E,∠3=∠4,AD=AD,∴△ABD≌△AED(SAS),∴∠B=∠1=2x,∴∠1=∠4,∴DA=DE,∵∠1=∠2+∠C,∠C=x,∴∠2=2x x=x,即∠2=∠C,∴ED=EC,∴DA=EC,∴AC=AE+EC=AB+AD,即AD=AC AB.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

角平分线的性质练习题
1角平分线上的点到_________________距离相等;到一个角的两边距离相等的点都在
_____________.
2、∠AOB 的平分线上一点M ,M 到 OA 的距离为1.5 cm ,则M 到OB 的距离为_________.
3、如图,∠AOB =60°,CD ⊥OA 于D ,CE ⊥OB 于E ,且CD =CE ,则∠DOC =_________.
4、如图,在△ABC 中,∠C =90°,AD 是角平分线,DE ⊥AB 于E ,且DE =3 cm ,BD =5 cm ,则BC =_____cm .
5、三角形的三条角平分线相交于一点,并且这一点到________________相等。

6、点O 是△ABC 内一点,且点O 到三边的距离相等,∠A =60°,则∠BOC 的度数为_____________.
7、在△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,若BC =32,且BD ∶CD =9∶7,则D 到AB 的距离为 .
8、三角形中到三边距离相等的点是( )
A 、三条边的垂直平分线的交点
B 、三条高的交点
C 、三条中线的交点
D 、三条角平分线的交点
9、如图,∠1=∠2,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E ,下列结论错误的是( )
A 、PD =PE
B 、OD =OE
C 、∠DPO =∠EPO
D 、PD =OD
10、如图,直线l 1,l 2,l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )
A 、1处
B 、2处
C 、3处
D 、4处
11、如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB =6㎝,则△DEB 的周长为( )
A 、4㎝
B 、6㎝
C 、10㎝
D 、不能确定 2
1
D
A
P
O
E
B
l 2
l 1
l 3
第9题 第10题 第11题
第3题
第4题
D
C
A
E
B
12、如图,MP ⊥NP ,MQ 为△MNP 的角平分线,MT =MP ,连接TQ ,则下列结论中不正确的是( )
A 、TQ =PQ
B 、∠MQT =∠MQP
C 、∠QTN =90°
D 、∠NQT =∠MQT
N
T
Q
P
M
E
D
C
B A
E
D
C B
A
F
第12题 第13题 第14题
13、如图在△ABC 中,∠ACB =90°,BE 平分∠ABC ,DE ⊥AB 于D ,如果AC =3 cm ,那么AE +DE 等于( )
A .2 cm
B .3 cm
C .4 cm
D .5 cm
14、如图,已知AB =AC ,AE =AF ,BE 与CF 交于点D ,则对于下列结论:①△ABE ≌△ACF ;②△BDF ≌△CDE ;③D 在∠BAC 的平分线上.其中正确的是( )
A .①
B .②
C .①和②
D .①②③
15、△ABC 中,∠C =90°,点O 为△ABC 三条角平分线的交点,OD ⊥BC 于D ,OE ⊥AC 于E ,OF ⊥AB 于F ,且AB =10cm ,BC =8cm ,AC =6cm ,则点O 到三边AB 、AC 、BC 的距离为( )
A .2cm ,2cm ,2cm ;
B . 3cm ,3cm ,3cm ;
C . 4cm ,4cm ,4cm ;
D . 2cm ,3cm ,5cm
16、在Rt △ABC 中,∠C =90°,DE 是AB 的垂直平分线, 且∠BAD ∶∠BAC =1∶3,求∠B 的度数.
17、已知:如图△ABC 中,AB=AC ,∠C=30°, AB ⊥AD ,AD=4cm ,求BC 的长.
18、如图11.3—4,在△ABC中∠C=900,AC=BC,AD平分.交BC于点D,DE⊥BE
求证:(1)DE+BD=AC
(2)若AB=6cm,求△DBE的周长
19、如图11.3—6,已知:AB=AC,BD=CD,
求证:DE=DF
20、如图11.3—3,在,交BC于D,
若BC=10cm,BD=6cm,
求点D到AB的距离.
21、如图ll.3—7,BN是的平分线,P在BN上,D、E分别在AB、BC上,
都不是直角,
求证:PD=PE
22.如图11.3—10,已知0为的平分线的交点,
0E_kAC于E,若0E=2
求0到AB与0到CD的距离之和.
23.如图11.3一ll,已知于F,BE、CF相交于点D若BD=CD 求证:。

相关文档
最新文档