理想MOS结构的表面空间电荷区全解

合集下载

10分钟详细图解MOS管的结构原理

10分钟详细图解MOS管的结构原理

10分钟详细图解MOS管的结构原理什么是MOS管MOS管是⾦属 (metal) — 氧化物 (oxide) — 半导体 (semiconductor) 场效应晶体管,或者称是⾦属 — 绝缘体 (insulator)— 半导体。

MOS管的source和drain是可以对调的,他们都是在P型backgate中形成的N型区。

在多数情况下,这个两个区是⼀样的,即使两端对调也不会影响器件的性能,这样的器件被认为是对称的。

双极型晶体管把输⼊端电流的微⼩变化放⼤后,在输出端输出⼀个⼤的电流变化。

双极型晶体管的增益就定义为输出输⼊电流之⽐ (beta) 。

另⼀种晶体管叫做场效应管 (FET) ,把输⼊电压的变化转化为输出电流的变化。

FET的增益等于它的transconductance,定义为输出电流的变化和输⼊电压变化之⽐。

市⾯上常有的⼀般为N沟道和P沟道,⽽P沟道常见的为低压MOS管。

场效应管通过投影⼀个电场在⼀个绝缘层上来影响流过晶体管的电流。

事实上没有电流流过这个绝缘体,所以FET管的GATE电流⾮常⼩。

最普通的FET⽤⼀薄层⼆氧化硅来作为GATE极下的绝缘体。

这种晶体管称为⾦属氧化物半导体(MOS) 晶体管,或⾦属氧化物半导体场效应管 (MOSFET) 。

因为MOS管更⼩更省电,所以他们已经在很多应⽤场合取代了双极型晶体管。

MOS管的优势•可应⽤于放⼤,由于场效应管放⼤器的输⼊阻抗很⾼,因此耦合电容可以容量较⼩,不必使⽤电解电容器•很⾼的输⼊阻抗⾮常适合作阻抗变换,常⽤于多级放⼤器的输⼊级作阻抗变换•可以⽤作可变电阻•可以⽅便地⽤作恒流源•可以⽤作电⼦开关•在电路设计上的灵活性⼤,栅偏压可正可负可零,三极管只能在正向偏置下⼯作,电⼦管只能在负偏压下⼯作;另外输⼊阻抗⾼,可以减轻信号源负载,易于跟前级匹配MOS管结构原理图解结构和符号 (以N沟道增强型为例)—— 在⼀块浓度较低的P型硅上扩散两个浓度较⾼的N型区作为漏极和源极,半导体表⾯覆盖⼆氧化硅绝缘层并引出⼀个电极作为栅极。

MOS的物理机制讲解

MOS的物理机制讲解

MOS的表面能带弯曲•说明:qψS ( 表面势能) = ( 半导体内的E i ) – ( 表面处的E i );V GS 可使表面势ψs 变化( 基本是线性变化关系) ;Q n(y) 是沟道中的少数载流子面电荷密度.•半导体的Fermi势ψB和表面状态:在半导体表面处的载流子浓度决定于表面能带的弯曲程度:n P0 = n i exp[(E F-E i)/kT] >> n i ;p P0 = n i exp[(E i-E F)/kT] << n i .在半导体内的Fermi势能(qψB = E i-E F ) 可用半导体内的参量来表示:∵半导体内的平衡多子浓度p P0 = n i exp[(E i-E F)/kT] = n i exp(qψB/kT) ≈ N A ,∴ψB =( E i-E F )/q = (kT/q) ln(N A / n i ).可见: 在ψs = ψB时, 表面处的多子浓度将小于体内的多子浓度, 而少子浓度将多于体内的少子浓度,即表面呈现为弱反型的表面;在ψs = 2ψB时, 表面处的多子浓度将远小于体内的多子浓度,而少子浓度将远多于体内的少子浓度,为强反型表面.理想MOSFET的阈值电压:•说明:①MOSFET是“理想”的含义:在MOS系统中不含有任何电荷状态(除栅电压在半导体表面产生的空间电荷以外, 不考虑表面态电荷和M-S功函数差).→在栅电压V GS = 0 时, 半导体表面的能带不发生弯曲(平带状态) .②在讨论V T时忽略了反型层中的电荷:因为刚达到强反型时, 正好沟道中的电子浓度= p-衬底内的空穴浓度; 而且反型层仅限于表面极薄的一层,其中的电荷Q n, 比耗尽层中的电荷Q B少得多(在刚强反型时, 耗尽层宽度最大). 所以可忽略反型层中的电荷Q n .MOS的非饱和特性•说明:沟道的长度(y方向)为L ;沟道的宽度(z方向)为Z ;沟道的厚度(x方向)为X(y) ;沟道的截面积为A ;沟道的电子浓度为n .•理想MOSFET的输出伏安特性计算~沟道电流I D是沟道中的面电荷密度Q n(y)漂移运动的结果:I D= Z X q n μn E(y) = Q n(y) Z μn E(y) ,代入Q n(y)与电压的关系, 并把E(y)用电压来表示为dV(y)/dy, 即有I D= Z μn C i [V GS - V T - V(y)] dV(y)/dy ,积分之∫I D dy = Z μn C i ∫[V GS - V T - V(y)] dV(y) ,[ 积分限: y= 0~L , V= 0~V DS ]则得到I D= ( Z μn C i / L ) {(V GS - 2ψB - V D/2) V DS-(2γ/ 3)×[ (V DS+ 2ψB)3/2 - (2ψB)3/2 ] },I D≈( m Z μn C i / L ) { (V GS - V T ) V DS - V DS2 }= m β{ (V GS - V T ) V DS - V DS2 } (Sah方程) ,其中γ≡( 2εε0 q N A )1/2 /C i称为衬偏系数; 对较小的N A , m = 1/2 .β = Z μn C i / L .①当V DS 较小时, 有线性特性:I D= ( Z μn C i / L ) {V GS - 2ψB - [2εε0 q N A(2ψB)]1/2 / C i } V DS= β (V GS - V T ) V DS∝V DS ,当V GS= 2ψB - [2εε0 q N A (2ψB)]1/2 / C i ≡V T 时, I D = 0, 即沟道夹断, 这时的栅电压就是阈值电压(夹断电压) .线性区的跨导为g m= ( Z μn C i / L ) V DS .系数( Z μn C i / L ) 称为器件的增益因子(或导电因子).②饱和区:由dI D / dV DS= 0 = β[(V GS - V T ) – V DS ] ,得到饱和电压V DSat = V GS - V T.把V DSat代入到I D表示式中, 求得饱和电流为I DSat= (β/2) (V GS - V T ) 2 ∝V GS2 .可见, 饱和电流与V DS无关, 而与V GS有抛物线关系; 而且饱和电压V DSat随着V GS 的增大而升高.•长沟道MOSFET的电流饱和机理:随着V DS的增加, 夹断点逐渐从漏端移向源端(夹断区扩大); 所增加的电压(V DS - V D sat ) 就降落在夹断区上(使电场↑), 而未夹断的沟道上的电压基本上维持在V D sat ; 当电子从源端漂移到夹断点时, 就被夹断区中的强电场拉到漏极, 则漏极电流基本上由未夹断的沟道区(有效沟道长度)决定, 而有效沟道上的电压基本不变, 故电流饱和(实际上, 由于有效沟道长度随V DS而变, 类似BJT中的Early效应, 所以电流并不完全饱和, g D≠0).饱和电流与V GS有抛物线关系; 饱和电压与V GS之间有线性关系.实际mos的VT•对于实际的MOSFET,需要考虑金属与半导体功函数之差、Si-SiO2系统中电荷的影响。

半导体物理基础 第六章 MOS

半导体物理基础   第六章   MOS

QS QB qNa xd
2 qNa xd S 2k s 0
(6-5)

(6-6)
6.2 理想MOS电容器
代入(6-44)式解出 x
d
Xd
kS 0 kS 0 2VG 1 C0 2 C0 C0 qkS 0 N a
2 0 12
(6-45)
C 2C 1 qN k VG C0 a S 0
6.2 理想MOS电容器
积累区( VG <0)
MOS系统的电容C基本上等于绝缘体电容 C0。当负偏压的数值逐渐减少时,空间电 荷区积累的空穴数随之减少,并且 QS 随 C也就变小。 平带情况( VG =0)
S
的变化也逐渐减慢, C S 变小。总电容
C FB C0
1 k 0 LD 1 k s x0
(6-1)
掌握载流子积累、耗尽和反型和强反型的概念。 正确画出流子积累、耗尽和反型和强反型四种情况的能带图。 导出反型和强反型条件
6.2 理想MOS电容器
6.2 理想MOS电容器
系统单位面积的微分电容
微分电容C与外加偏压 VG 的关系称为MOS系统的电容—电压特性。
dQM C dVG
(6-1)
S =半导体表面的电场
k0 =氧化物的相对介电常数
k S =半导体相对介电常数
xd =空间电荷区在半导体内部的边界亦即空间电荷区宽度。
外加电压 VG 为跨越氧化层的电压
V0和表面势 S 所分摊:
(6-2)
VG V0 S
6.1 理想MOS结构的表面空S结构内的电位分布
(6-22)
dV0 d s 1 dVG C dQM dQM dQM

第五章 MIS结

第五章 MIS结
(5)
理想 M I S 结构在正偏和负偏时,半导体表面可有三种情形: 积累 P型 耗尽 反型
能带向下弯曲增加 能带向下弯曲 能带向上弯曲, 多数载流子耗尽 本征能级与费米能级 价带顶接近费米能级 在表面相交, 多数载流子在表面处积累 表面处的少数载流子 多于多数载流子 理想MIS二极管在V≠ 0时的三种能带图。 (6)
2ε i C = [1 + V ]−1 / 2 Ci qN Aε S d 2
2
(20)
QS = −(2qN Aε sψ s )1/ 2
dQS ε s CD = − = dψ s W
5)V> ψB , 反型区
(1) (2) (3) (4) (5)
ψS= ψB:弱反型开 始。 ψS=2 ψB:强反型开 始。 由于电容增加依赖 于电子(少子)密度 对外加交流信号的 跟随能力,不同的 频率下,将有不同 的表现: • 低频下, 总电容减少到 一个极小值再增加 • 高频下电容不增加。
(1)
(2) (3) (4) (5)
4)V>0,耗尽开始, 耗尽区的表面势范 围:ψS=0 ~ψB 随着外加偏压的增 加,耗尽区宽度增 加,半导体电容减 小。总电容减小。 半导体表面耗尽 时,耗尽区的电离 受主为:QS =-qNAW
qN AW 2 M I S系统的电容 - 电压曲线 表面势:ψ s = 2ε s
空间电荷 半导体体内,电子和空穴密度与ψ的关系:
n p = n po exp(qψ / kT ) = n po exp(βψ ) p p = p po exp(− qψ / kT ) = p po exp(− βψ )
P型半导体体内电 子,空穴平衡密度 半导体表面,电子和空穴密度与ψs的关系:
β = q / kT

半导体器件物理哈理工复习资料缩印

半导体器件物理哈理工复习资料缩印

半导体器件物理哈理⼯复习资料缩印1.PN 结:采⽤不同的掺杂⼯艺,通过扩散作⽤,将P 型半导体和N 型半导体制作在同⼀块半导体基⽚上,在它们的交界⾯就形成空间电荷区称为PN 结。

2.雪崩击穿:随着PN 结反向电压的增加,势垒中电场强度也在增加。

当电场强度达到⼀定程度后,势垒区中载流⼦就会碰撞电离出新的电⼦—空⽳对。

新的电⼦—空⽳对在电场作⽤下继续碰撞产⽣新的载流⼦,如此反复即碰撞电离率增加,流过PN 结的电流急剧增⼤,击穿PN 结。

3.空间电荷区:在PN 结中,由于⾃由电⼦的扩散运动和漂移运动,使PN 结中间产⽣⼀个很薄的电荷区,就是空间电荷区。

4.耗尽层电容:由于耗尽层内空间电荷随偏压变化所引起的电容称为PN 结耗尽层电容。

5.MOS 阈值电压:阈值电压si -ψ+=O B TH C Q V 是形成强反型层时所需要的最⼩栅极电压。

它的第⼀项表⽰在形成强反型层时,要⽤⼀部分电压去⽀撑空间电荷QB ;第⼆项表⽰要⽤⼀部分电压为半导体表⾯提供达到强反型时需要的表⾯势si ψ。

6.强反型:当表⾯电⼦浓度等于体内平衡多⼦浓度时,半导体表⾯形成强反型层。

7.载流⼦扩散漂移观点分析空间电荷区形成当N 型P 型材料放在⼀起时,P 型材料中多的空⽳向N 型扩散,N 型多的电⼦向P 型扩散,由于扩散,在互相靠近N 侧和P 侧分别出现施主离⼦和受主离⼦,这些空间电荷建⽴⼀个电场,即空间电荷区。

8.载流⼦扩散漂移分析PN 结单向导电性若在PN 结加正向电压,PN 结势垒⾼度下降,减⼩的势垒⾼度有助于扩散通过PN 结,形成⼤的电流,若加反向电压,势垒⾼度增加,漂移作⽤增强,阻挡载流⼦通过PN 结扩散,所以PN 结单向导电1.5种半导体器件:PN 结,光电⼆极管,JFET,MOSFET ,太阳能电池。

2.PN 结隧道电流产⽣条件:费⽶能级进⼊能带;空间电荷层的宽度很窄,因⽽有⾼的隧道3.穿透概率;在相同的能⼒⽔平上,在⼀侧的能带中有电⼦⽽在另⼀侧的能带中有空的状态。

22 第六章 62 理想MOS电容器讲解

22 第六章 62 理想MOS电容器讲解

1. 积累区(VG<0)
Physics of Semiconductor Devices
当MOS电容器的金属电极上加有较大的负偏压时,能带明显向 上弯曲,在表面造成多数载流子空穴的大量积累;只要表面势
φS稍有变化,就会引起表面空间电荷QS的很大变化;所以,半
导体表面电容比较大,可以忽略不计。MOS系统的电容基本上 等于绝缘体电容C0。
Physics of Semiconductor Devices
两个电容串联后,总电容变小,且其数值主要由较小的一个电 容所决定,因为大部分电压都降落在较小的电容上。
MOS电容的等效电路
C/C0称为系统的归一化电容
VG
C0 CS
对于理想MOS系统:
Physics of Semiconductor Devices
MOS电容积累区的C-V特性
2. 平带情况(VG=0)
Physics of Semiconductor Devices
VG=0时,φS=0,能带是平直的,称为平带情 况 在平带附近,空间电荷区中:
由空穴的过剩或欠缺引起的电荷密度:
在平带附近,‫׀‬φ‫<<׀‬VT。上式进行指数项展开,且只保留前两项:
空间电荷与表面 势符号相反
平带情况下半导体表面的小信号电容(微分电容):
在杂质饱和电离的情况下: 归一化平带电容:
Physics of Semiconductor Devices
正比掺杂浓度 正比厚度
理想MOS的归一化平带电容随杂质浓度和氧化层厚度的关系
3. 耗尽区(VG>0)
耗尽区:
Physics of Semiconductor Devices
Physics of Semiconductor Devices

device-3

device-3

VFB
Q0 = ms COX
7
多晶硅-SiO2-Si
ms = φ f (多晶硅 ) φ f (硅衬底)
ms = 0.56 φ f (V) p-type Si n+多晶硅 ms = 0.56 + φ f (V) n-type Si
8
P型硅:平带电压为负,C-V向负方向移动
9
2. 二氧化硅及其与硅界面的相关电荷的影响 热生长二氧化硅中的电荷
1 1 1 1 = + + C Cox C s + Co C poly
反型时,SiO2-Si界面电子 可能耗尽POLY中电子,出 现Cpoly,总电容变小
有效的tox增大
Vt增大,Ids降低
电容降低,速度仍受影响
16
4、尺寸量子化效应 MOSFET 在 表 面 反 型 沟道中载流子被限制 在一很窄的势阱之中 载流子在垂直于表 面方向量子化
MOSFET并不是在Vg=Vt处就突然关断,当Vg<Vt时, 存在泄漏电流,影响器件的静态功耗 亚阈区MOSFET的电流以扩散电流为主,不是多子电流, 未出现反型层
52
类似BJT
s ∝ VG
KT
s =
界面陷阱的充放电有频率响应,在高频下,跟不上信号的 变化,Cit=0
用低频和高频C-V的差别可以测Cit
c. 引起阈值电压不稳定、迁移率降
低、跨导降低
14
3. 多晶硅耗尽效应(PDE) 当tox很薄,POLY非简并,出现PDE
15
Vg = VFB + φ s + V poly + VOX
C poly = dQ poly dV poly
-16
-16

第6章(MOS电容)

第6章(MOS电容)
南京大学
半导体器件原理
(2)界面陷阱电容(并联于硅电容)
(3)表面产生复合中心(减小少子寿命)
在耗尽时起作用,而在反型或积累时不起作用。
(4)表面态或陷阱帮助的带到带隧穿
南京大学
半导体器件原理
二、高场效应
1. 碰撞离化和雪崩击穿 αp 单位距离内空穴导致电子空穴对产生 αn单位距离内电子导致电子空穴对产生
南京大学
半导体器件原理
(4)氧化层中的可动电荷 来源:沾污氧化层外表面的正离子,在电场或温度的 作用下,漂移到近界面处。 影响:在硅表面处感应负电荷,影响器件的稳定性。
成份:Na+,K+,Li+,H+。 热氧化后去除表层氧化层, 采用P处理, 无钠清洁工艺 用氮化硅作表面钝化。
南京大学
半导体器件原理
南京大学
半导体器件原理
1)对耗尽层情况: 由氧化层厚度,半导体掺杂浓度,可得ψs 随VG的变化关系。
南京大学
半导体器件原理
2)对强反型情况: 空间电荷密度还包括载流子,耗尽层宽度达极 大值。 外加电压只引起反型层中电子浓度的增加以及 金属电极上正电荷的增加。
南京大学
半导体器件原理
南京大学
半导体器件原理
南京大学
半导 实际常用实验测定。
南京大学
半导体器件原理
经验碰撞离化率 (1)αn>> αP, 特别在低电场时 (2)离化系数随电场迅速增长,PN结中,减小最大 电场以减小离化系数 掺杂缓变或使用轻掺杂区做i层, 可有效降低PN 结中的峰值电场.
南京大学
半导体器件原理
λ:Si中热电子能量损失的平均自由程 qV(d):发射的有效能量势垒 ER:光学声子能量 λ0:10.8 nm, λ的低温极限。

半导体物理第八章 半导体表面和MIS结构

半导体物理第八章 半导体表面和MIS结构

qN A xd2
2 rs 0
Cs
rs 0
xd
返回
8.1 表面电场效应 8.1.3 各种表面层状态下的电容情况
对于耗尽状态,空间电荷区也可以用“耗尽层近似”
来处理,即假设空间电荷区内所有负电荷全部由电
离受主提供,对于均匀掺杂的半导体,电荷密度为:
x qNA
代入泊松方程求解,得到:
电势分布 V qNAxd x2表面势
q 2 rs0k0T
k0T k0T
pp0
k0T k0T

1/ 2
LD
2 rs0k0T
q2 pp0
F( qV
,
np0 ) {[exp(
qV
)
qV
1]
np0
[exp( qV
)
qV
1
1]} 2
k0T pp0
k0T k0T
pp0
k0T k0T
12 3 4
8.1 表面电场效应 8.1.2 表面空间电荷层的电场、电势和电容
②强反型层出现的条件:当P型衬底表面处的电子浓 度等于体内的多子空穴浓度时。
Ec
ns
ni
exp
E f Eis kT
Ef
Ei0 Ef
p0
ni
exp Ei0 E f kT
Eis
Ev
p0 ns
Ef
Eis
Ei0 E f
qVB qVs
Ei0 Eis
2qVB
此时表面势为:Vs 2VB
分别称为德拜长度 ,F函数。 则
E 2k0T F ( qV , np0 ) qLD k0T pp0
式中当V大于0时,取“+”号;V小于0时, 取“-”号。

MOS结构电容-电压特性

MOS结构电容-电压特性

MOS 结构高频C-V 特性测试MOS 结构电容-电压特性(简称C-V 特性)测量是检测MOS 器件制造工艺的重要手段。

它可以方便地确定二氧化硅层厚度ox d 、衬底掺杂浓度N 、氧化层中可动电荷面密度I Q 、和固定电荷面密度fc Q 等参数。

本实验目的是通过测量MOS 结构高频C-V 特性及偏压温度处理(简称BT 处理),确定ox d 、N 、I Q 和fc Q 等参数。

一、 实验原理MOS 结构如图1(a )所示,它类似于金属和介质形成的平板电容器。

但是,由于半导体中的电荷密度比金属中的小得多,所以充电电荷在半导体表面形成的空间电荷区有一定的厚度(—微米量级),而不像金属中那样,只集中在一薄层(—0.1nm )内。

半导体表面空间电荷区的厚度随偏压G V 而改变,所以MOS 电容是微分电容 GG dV dQ A C = (1) 式中G Q 是金属电极上的电荷面密度,A 是电极面积。

现在考虑理想MOS 结构。

所谓理想情形,是假设MOS 结构满足以下条件:(1)金属与半导体间功函数差为零;(2)2O S i 绝缘层内没有电荷;(3)2O S i 与半导体界面处不存在界面态。

偏压V G 一部分在降在2O S i 上,记作ox V ;一部分降在半导体表面空间电荷区,记作S V ,即S OX G V V V += (2)S V 又叫表面势。

考虑到半导体表面空间电荷区电荷和金属电极上的电荷数量相等、符号相反,有G SC Q Q = (3)式中SC Q 是半导体表面空间电荷区电荷面密度。

将式(2)、(3)代入式(1),S ox S ox Sox S ox G G G C C C C C C dV dV dQ A dV dQ A C +=+=+==111 (4) 式(4)表明MOS 电容由ox C 和S C 串联构成,其等效电路如图1(b )所示。

其中ox C 是以2O S i 为介质的氧化层电容,它的数值不随改变G V ;S C 是半导体表面空间区电容,其数值随G V 改变,因此oxro ox G ox d A dV dQ A C εε0== (5) S SC S dV dQ AC = (6) 式中ro ε是2O S i 相对介电常数。

mos工作原理及详解

mos工作原理及详解

mos工作原理及详解哎呀,今天咱们来聊聊MOS工作原理。

这东西可真是个宝贝,虽然听起来有点高深,但其实也没有那么复杂。

你要知道,MOS就是金属氧化物半导体,它在电子设备中可谓是个“顶梁柱”。

想想你手里的手机、电脑,里面全靠它们来“撑场子”。

咱们先从MOS的结构说起,嘿,那结构可是有点意思哦。

MOS其实由三部分组成,源极、漏极和栅极。

听起来像个搞笑的三人组对吧?源极就像大厨房的水龙头,漏极就像排水管,栅极呢,则是个聪明的小门卫,专门控制水流的进出。

想象一下,如果没有这小门卫,水流想来就来,想走就走,那就乱了套。

栅极可不是普通的门卫,它可厉害了,借助电压来控制源极和漏极之间的电流。

你要是给栅极施加个电压,这小门卫就打开了,电流嗖的一下就流过来了。

再说说电流吧,它就像一群小精灵,源源不断地从源极跑到漏极。

如果电压不够,门卫就会把电流拦住,门口就静悄悄的,没有一丝动静。

哈哈,这是不是有点像你请客吃饭,如果不够钱,门卫可就把你挡在门外了。

说到这,咱们得提一提MOS的工作模式。

通常情况下,有增强型和耗尽型。

增强型就像个热情的小伙子,只要给点电压就开始工作,越给越欢。

耗尽型嘛,稍微有点矜持,得先有电流才能开工。

是不是感觉这俩像极了两种性格的人,一个开朗大方,一个内敛沉稳。

再来聊聊应用,MOS的身影无处不在。

比如说,家里的冰箱、洗衣机,甚至汽车,里面都少不了它们。

那些可爱的电动玩具,背后也少不了MOS的功劳。

你想呀,要是没有它,大家的生活可真是得打回石器时代,啥都没法用。

想象一下,早上起床还得用手摇磨豆浆,那日子简直不能忍!说到这里,咱们得提提它的优点。

MOS工作时功耗低,速度快,真是个“经济适用男”。

这让很多设计师爱不释手,谁不想在有限的空间里搞点大事情呢?它还耐高温,抗干扰,这简直就是电子设备的小超人。

就算是再复杂的电路,MOS都能轻松搞定,真是个全能选手。

不过,事情也不是全是美好。

嘿,缺点也有,比如容易受损,特别是静电。

MOS晶体管结构详细解析

MOS晶体管结构详细解析

-14 采用单边突变结的耗尽层近似 s 西安电子科技大学XIDIDIAN UNIVERSITY V1.0 © 2007 韩孝勇HanXiaoYong 2xyhan5151@
1.1 MOS电容
阈值反型点条件:
空间电荷区厚度:表面反型情形
表面势=费米势的2倍,表面处的电子浓度=体内的空穴浓度,栅电压=阈值电压
西安电子科技大学XIDIDIAN UNIVERSITY V1.0 © 2007 韩孝勇HanXiaoYong xyhan5151@
1.1 MOS电容
金属的功函数
功函数差:MOS接触前的能带图
二氧化硅的电子亲 和能 硅的电子亲和能
金属的功函数 Wm ≡ E0 − EFm = eφm
1.1 MOS电容
表面能带图:n型衬底(1)
正栅压情形
西安电子科技大学XIDIDIAN UNIVERSITY V1.0 © 2007 韩孝勇HanXiaoYong xyhan5151@
EFS ↑→ EC
1.1 MOS电容
小的负栅压情形
1.1 MOS电容
Vox0+φs0=- φφms Vox0+φs0=- ms
平带电压:公式
栅电压VG = ∆Vox + ∆φs = (Vox − Vox 0 ) + (φs − φs 0 ) = Vox + φs + φms
电中性条件Qm' + Qss ' = 0 Q 'm Q ' ss Vox = =− Cox Cox
P型衬底
表面空间电荷区 厚度
西安电子科技大学XIDIDIAN UNIVERSITY V1.0 © 2007 韩孝勇HanXiaoYong xyhan5151@

21-第六章-6.1-理想MOS结构的表面空间电荷区解析

21-第六章-6.1-理想MOS结构的表面空间电荷区解析
§6.1
Physics of Semiconductor Devices
抱负MOS构造的 外表空间电荷区
前言:
Physics of Semiconductor Devices
金属-氧化物-半导体场效应晶体管〔MOSFET〕是微处理 器、半导体存储器等超大规模集成电路中的核心器件和主 流器件,也是一种重要的功率器件。
Physics of Semiconductor Devices 在栅电压为0的条件下,假设漏、源之间加上电压UDS,则漏端PN结为反 偏,将只有很小的反偏PN结电流从漏极流到源极,但是假设栅极加上确定 的电压时,外表形成了沟道,它将漏区与源区连通,在UDS作用之下就消 逝明显的漏极电流,而且漏极电流的大小依靠于栅极电压。MOSFET的栅 极和半导体之间被氧化硅层阻隔,器件导通时只有从漏极经过沟道到源极 这一条电流通路。
MOSFET: Metal-Oxide-Semiconductor Field-effect transistor
Physics of Semiconductor Devices
场效应晶体管〔Field Effect Transistor,缩写为FET〕 是一种电压把握器件。
其导电过程主要涉及一种载流 子,故也称为“单极”晶体管。
S所分摊,即有:
Physics of Semiconductor Devices
V0
VG
S
空间电荷区半导 体内部边界
金属-氧比物和P型半导体的电位分布图
Physics of Semiconductor Devices
三 载流子的积存、耗尽和反型
空间电荷区静电势φ(x)的消逝转变了空间电荷区中的能带图。 依据VG极性和大小,有可能实现三种不同的外表状况:

7.2 表面空间电荷区的性质

7.2 表面空间电荷区的性质

第七讲7.2 表面空间电荷区的基本性质p00s s D 0p02()n k T qV E F qL k T p =±,p0r 00s S r 0s D 0p02()n k T qV Q E F qL k T p εεεε=-= ,p0s S 0p00r 0s p0S D0p0[exp()1][exp()1])n qV qVk T p k T C n qV L F k T p εε--++-=(,001p0p020p00p00()[11)]qV qVk T k T n n qV qV qV F e e k T p k T p k T-=+-+--,(当金属接正,即V S > 0 时,E S 取正, Q S 取负;当金属接负,即V S < 0 时,E S 取负, Q S 取正。

其中:MIS 结构P 型半导体表面空间电荷区的电场、电荷分布、电容与表面势的一般表达式V G < 0时,即V S < 0,且当和 足够大时,F 函数可以简化为:||s V G ||V p0s s0p00()exp()2n qV qV F k T p k T≈-,0s s D 02exp()2k T qVE qL k T=--rs 00ss D 02exp()2k T qV Q qL k Tεε=-rs 0ss 0Dexp()22qV C k T L εε=-所以:此时,E S 、Q S 、C S 随V S 按指数规律增大。

一、多子堆积状态V G = 0 时,V S = 0,故因此有 E S = 0 Q S = 0采用求极限的方法可以得到其中,,强电离时, N A = p p0,只要知道 N A ,可求出 L d ,便可求出表面的平带电容 C S0二、平带状态p0s 0p0()0n qV F k T p =,2rs 0s0D4C b acL εε=-1rs 002D 2p0()k T L q p εε=三、耗尽状态V G 为正,但不是很大 。

半导体器件物理实验报告格式[5篇模版]

半导体器件物理实验报告格式[5篇模版]

半导体器件物理实验报告格式[5篇模版]第一篇:半导体器件物理实验报告格式微电子学院《半导体器件实验》实验报告实验名称:作者姓名:作者学号:同作者:实验日期:实验报告应包含以下相关内容:实验名称:一、实验目的二、实验原理三、实验内容四、实验方法五、实验器材及注意事项六、实验数据与结果七、数据分析八、回答问题实验报告要求:1.使用实验报告用纸;2.每份报告不少于3页手写体,不含封皮和签字后的实验原始数据部分;3.必须加装实验报告封皮,本文中第一页内容,打印后填写相关信息。

4.实验报告格式为:封皮、内容和实验原始数据。

第二篇:半导体器件物理教学内容和要点教学内容和要点第一章半导体物理基础第二节载流子的统计分布一、能带中的电子和空穴浓度二、本征半导体三、只有一种杂质的半导体四、杂质补偿半导体第三节简并半导体一、载流子浓度二、发生简并化的条件第四节载流子的散射一、格波与声子二、载流子散射三、平均自由时间与弛豫时间四、散射机构第五节载流子的输运一、漂移运动迁移率电导率二、扩散运动和扩散电流三、流密度和电流密度四、非均匀半导体中的自建场第六节非平衡载流子一、非平衡载流子的产生与复合二、准费米能级和修正欧姆定律三、复合机制四、半导体中的基本控制方程:连续性方程和泊松方程第二章 PN结第一节热平衡PN结一、PN结的概念:同质结、异质结、同型结、异型结、金属-半导体结突变结、缓变结、线性缓变结二、硅PN结平面工艺流程(多媒体演示图2.1)三、空间电荷区、内建电场与电势四、采用费米能级和载流子漂移与扩散的观点解释PN结空间电荷区形成的过程五、利用热平衡时载流子浓度分布与自建电势的关系求中性区电势及PN结空间电荷区两侧的内建电势差六、解poisson’s Eq 求突变结空间电荷区内电场分布、电势分布、内建电势差和空间电荷区宽度(利用耗尽近似)第二节加偏压的P-N结一、画出热平衡和正、反偏压下PN结的能带图,定性说明PN结的单向导电性二、导出空间电荷区边界处少子的边界条件,解释PN结的正向注入和反向抽取现象第三节理想P-N结的直流电流-电压特性一、解扩散方程导出理想PN结稳态少子分布表达式,电流分布表达式,电流-电压关系二、说明理想PN结中反向电流产生的机制(扩散区内热产生载流子电流)第四节空间电荷区的复合电流和产生电流一、复合电流二、产生电流第五节隧道电流一、隧道电流产生的条件二、隧道二极管的基本性质(多媒体演示 Fig2.12)第六节 I-V特性的温度依赖关系一、反向饱和电流和温度的关系二、I-V特性的温度依赖关系第七节耗尽层电容,求杂质分布和变容二极管一、PN结C-V特性二、过渡电容的概念及相关公式推导求杂质分布的程序(多媒体演示 Fig2.19)三、变容二极管第八节小讯号交流分析一、交流小信号条件下求解连续性方程,导出少子分布,电流分布和总电流公式二、扩散电容与交流导纳三、交流小信号等效电路第九节电荷贮存和反响瞬变一、反向瞬变及电荷贮存效应二、利用电荷控制方程求解τs三、阶跃恢复二极管基本理论第十节 P-N结击穿一、PN结击穿二、两种击穿机制,PN结雪崩击穿基本理论的推导三、计算机辅助计算例题2-3及相关习题第三章双极结型晶体管第一节双极结型晶体管的结构一、了解晶体管发展的历史过程二、BJT的基本结构和工艺过程(多媒体图3.1)概述第二节基本工作原理一、理想BJT的基本工作原理二、四种工作模式三、放大作用(多媒体Fig3.6)四、电流分量(多媒体Fig3.7)五、电流增益(多媒体Fig3.8 3.9)第三节理想双极结型晶体管中的电流传输一、理想BJT中的电流传输:解扩散方程求各区少子分布和电流分布二、正向有源模式三、电流增益~集电极电流关系第四节爱拜耳斯-莫尔(Ebers-Moll)方程一、四种工作模式下少子浓度边界条件及少子分布二、E-M模型等效电路三、E-M方程推导第五节缓变基区晶体管一、基区杂质浓度梯度引起的内建电场及对载流子的漂移作用二、少子浓度推导三、电流推导四、基区输运因子推导第六节基区扩展电阻和电流集聚一、基区扩展电阻二、电流集聚效应第七节基区宽度调变效应一、基区宽度调变效应(EARLY效应)二、hFE和ICE0的改变第八节晶体管的频率响应一、基本概念:小信号共基极与共射极电流增益(α,hfe),共基极截止频率和共射极截止频率(Wɑ ,Wß),增益-频率带宽或称为特征频率(WT),二、公式(3-36)、(3-65)和(3-66)的推导三、影响截止频率的四个主要因素:τB、τE、τC、τD及相关推导四、Kirk效应第九节混接π型等效电路一、参数:gm、gbe、CD 的推导二、等效电路图(图3-23)三、证明公式(3-85)、(3-86)第十节晶体管的开关特性一、开关作用二、影响开关时间的四个主要因素:td、tr、tf、ts三、解电荷控制方程求贮存时间ts第十一节击穿电压一、两种击穿机制二、计算机辅助计算:习题阅读§3.12、§3.13、§3.14第四章金属—半导体结第一节肖特基势垒一、肖特基势垒的形成二、加偏压的肖特基势垒三、M-S结构的C-V特性及其应用第二节界面态对势垒高度的影响一、界面态二、被界面态钳制的费米能级第三节镜像力对势垒高度的影响一、镜像力二、肖特基势垒高度降低第四节肖特基势垒二极管的电流电压特性一、热电子发射二、理查德-杜师曼方程第五节肖特基势垒二极管的结构一、简单结构二、金属搭接结构三、保护环结构第六节金属-绝缘体-半导体肖特基势垒二极管一、基本结构二、工作原理第七节肖特基势垒二极管和PN结二极管之间的比较一、开启电压二、反向电流三、温度特性第八节肖特基势垒二极管的应用一、肖特基势垒检波器或混频器二、肖特基势垒钳位晶体管第九节欧姆接触一、欧姆接触的定义和应用二、形成欧姆接触的两种方法第五章结型场效应晶体管和金属-半导体场效应晶体管第一节JFET的基本结构和工作过程一、两种N沟道JFET二、工作原理第二节理想JFET的I-V特性一、基本假设二、夹断电压三、I-V特性第三节静态特性一、线性区二、饱和区第四节小信号参数和等效电路一、参数:gl gml gm CG二、JFET小信号等效电路图第五节JFET的截止频率一、输入电流和输出电流二、截止频率第六节夹断后的JFET性能一、沟道长度调制效应二、漏极电阻第七节金属-半导体场效应晶体管一、基本结构二、阈值电压和夹断电压三、I-V特性第八节 JFET和MESFET的类型一、N—沟增强型 N—沟耗尽型二、P—沟增强型 P—沟耗尽型阅读§5.8 §5.9 第六章金属-氧化物-场效应晶体管第一节理想MOS结构的表面空间电荷区一、MOSFET的基本结构(多媒体演示Fig6-1)二、半导体表面空间电荷区的形成三、利用电磁场边界条件导出电场与电荷的关系公式(6-1)四、载流子的积累、耗尽和反型五、载流子浓度表达式六、三种情况下MOS结构能带图七、反型和强反型条件,MOSFET工作的物理基础第二节理想MOS电容器一、基本假设二、C~V特性:积累区,平带情况,耗尽区,反型区三、沟道电导与阈值电压:定义公式(6-53)和(6-55)的推导第三节沟道电导与阈值电压一、定义二、公式(6-53)和(6-55)的推导第四节实际MOS的电容—电压特性一、M-S功函数差引起的能带弯曲以及相应的平带电压,考虑到M-S功函数差,MOS结构的能带图的画法二、平带电压的概念三、界面电荷与氧化层内电荷引起的能带弯曲以及相应的平带电压四、四种电荷以及特性平带电压的计算五、实际MOS的阈值电压和C~V曲线第五节 MOS场效应晶体管一、基本结构和工作原理二、静态特性第六节等效电路和频率响应一、参数:gd gm rd二、等效电路三、截止频率第七节亚阈值区一、亚阈值概念二、MOSFET的亚阈值概念第九节 MOS场效应晶体管的类型一、N—沟增强型 N—沟耗尽型二、P—沟增强型 P—沟耗尽型第十节器件尺寸比例MOSFET制造工艺一、P沟道工艺二、N沟道工艺三、硅栅工艺四、离子注入工艺第七章太阳电池和光电二极管第一节半导体中光吸收一、两种光吸收过程二、吸收系数三、吸收限第二节 PN结的光生伏打效应一、利用能带分析光电转换的物理过程(多媒体演示)二、光生电动势,开路电压,短路电流,光生电流(光电流)第三节太阳电池的I-V特性一、理想太阳电池的等效电路二、根据等效电路写出I-V公式,I-V曲线图(比较:根据电流分量写出I-V公式)三、实际太阳能电池的等效电路四、根据实际电池的等效电路写出I-V公式五、RS对I-V特性的影响第四节太阳电池的效率一、计算 Vmp Imp Pm二、效率的概念η=FFVOCIL⨯100% Pin第五节光产生电流和收集效率一、“P在N上”结构,光照,GL=αΦOe-αx少子满足的扩散方程二、例1-1,求少子分布,电流分布三、计算光子收集效率:ηcol=JptJnGΦO讨论:波长长短对吸收系数的影响少子扩散长度和吸收系数对收集效率的影响理解Fig7-9,Fig7-10所反映的物理意义第六节提高太阳能电池效率的考虑一、光谱考虑(多媒体演示)二、最大功率考虑三、串联电阻考虑四、表面反射的影响五、聚光作用第七节肖特基势垒和MIS太阳电池一、基本结构和能带图二、工作原理和特点阅读§7.8 第九节光电二极管一、基本工作原理二、P-I-N光电二极管三、雪崩光电二极管四、金属-半导体光电二极管第十节光电二极管的特性参数一、量子效率和响应度二、响应速度三、噪声特性、信噪比、噪声等效功率(NEP)四、探测率(D)、比探测率(D*)第八章发光二极管与半导体激光器第一节辐射复合与非辐射复合一、辐射复合:带间辐射复合,浅施主和主带之间的复合,施主-受主对(D-A 对)复合,深能级复合,激子复合,等电子陷阱复合二、非辐射复合:多声子跃迁,俄歇过程(多媒体演示),表面复合第二节 LED的基本结构和工作过程一、基本结构二、工作原理(能带图)第三节 LED的特性参数一、I-V特性二:量子效率:注射效率γ、辐射效率ηr、内量子效率ηi,逸出概率ηo、外量子效率三、提高外量子效率的途径,光学窗口四、光谱分布,峰值半高宽 FWHM,峰值波长,主波长,亮度第四节可见光LED一、GaP LED二、GaAs1-xPx LED三、GaN LED 第五节红外 LED 一、性能特点二、应用光隔离器阅读§8.6 , §8.7 , §8.8 , §8.9 , §8.10(不做作业和考试要求)第九章集成器件第十章电荷转移器件第一节电荷转移一、CCD基本结构和工作过程二、电荷转移第二节深耗尽状态和表面势阱一、深耗尽状态—非热平衡状态二、公式(10-8)的导出第三节 MOS电容的瞬态特性深耗尽状态的能带图一、热弛豫时间二、信号电荷的影响第四节信息电荷的输运转换效率一、电荷转移的三个因素二、转移效率、填充速率和排空率第五节电极排列和CCD制造工艺一、三相CCD二、二相CCD 第六节体内(埋入)沟道CCD一、表面态对转移损耗和噪声特性的影响二、体内(埋入)沟道CCD的基本结构和工作原理第七节电荷的注入、检测和再生一、电注入与光注入二、电荷检测电荷读出法三、电荷束的周期性再生或刷新第八节集成斗链器件一、BBD的基本结构二、工作原理三、性能第九节电荷耦合图象器件一、行图象器二、面图象器三、工作原理和应用主要参考书目孟庆巨、刘海波、孟庆辉编著《半导体器件物理》,科学出版社,2005第二次印刷。

MOS场效应晶体管ppt课件

MOS场效应晶体管ppt课件
MOS 场效应晶体管基本结构示意图
16
2. MOS管的基本工作原理
MOS 场效应晶体管的工作原理示意图
17
4.2.2 MOS 场效应晶体管的转移特性
MOS 场效应晶体管可分为以下四种类型:N沟增强型、 N沟耗尽型、P沟增强型、P沟耗尽型。 1. N沟增强型MOS管及转移特性
18
2. N沟耗尽型MOS管及转移特性 3.P沟增强型MOS管及转移特性
理想 MOS 二极管不同 偏压下的能带图及 电荷分布
a) 积累现象 b) 耗尽现象 c) 反型现象
3
2.表面势与表面耗尽区 下图给出了P型半导体MOS结构在栅极电压UG>>0情况 下更为详细的能带图。
4
在下面的讨论中,定义与费米能级相对应的费米势为
F
(Ei
EF )体内 q
因此,对于P型半导体, F
如图所示,当漏源电压UDS增高到某一值时,漏源电流 就会突然增大,输出特性曲线向上翘起而进入击穿区。 关于击穿原因,可用两种不同的击穿机理进行解释:漏 区与衬底之间PN结的雪崩击穿和漏-源之间的穿通。
41
1. 漏区-衬底之间的PN结击穿 在MOS晶体管结构中,栅极金属有一部分要覆盖在漏极上。 由于金属栅的电压一般低于漏区的电位,这就在金属栅极 与漏区之间形成附加电场,这个电场使栅极下面PN结的耗 尽区电场增大,如下图,因而使漏源耐压大大降低。
a) N 沟 MOS b) P 沟 MOS
29
3. 衬底杂质浓度的影响
衬底杂质浓度对阀值电压的影响
30
4. 功函数差的影响
功函数差也将随衬底杂质浓度的变化而变化。但实验证明, 该变化的范围并不大。 从阀值电压的表示式可知,功函数越大,阀值电压越高。 为降低阀值电压,应选择功函数差较低的材料,如掺杂多 晶体硅作栅电极。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
理想MOS结构的 表面空间电荷区
1.结构与工作原理 2.半导体表面空间电荷区
3.载流子的积累、耗尽和反型
4.反型和强反型的条件
前言:
半导体器件的特性与半导体表面特征性质有特 别重要的联系。在超、特大集成电路迅速发展的 今天,半导体器件的制造相当多是在很薄的一层 表面内完成的(几个微米甚至更小),因而,如 何有效控制和完善半导体的表面质量,从而进一 步利用半导体表面效应,可用来制造例如MOS(金 属 -氧化物-半导体)器件、 CCD (电荷耦合器件)、 LED (发光二极管)、 LCD (液晶显示)、半导体 激光等表面发光器件,以及太阳能电池等表面感 应器件。
因此:
即使有外加电压,表面空间电荷区也处于热平衡状态,使得 整个表面空间电荷区中费米能级为常数。
ℰ0为SiO2层的内建电场,QM为金属极板上的电荷,则半导体
表面感应电荷为QS=-QM。在外电场的作用下,在半导体表面 形成具有相当厚度(μm)的空间电荷区,它对电场起到屏
蔽作用。空间电荷区的形成是由于自由载流子的过剩或欠缺
S / VT
f / VT
OR
n( x ) ni e[ ( x ) f ] / VT nS ni e[S f ] / VT
n0 ni e
( E F Ei0 ) / KT ( Ei0 E F ) / KT
n ni e ( EF Ei ) / KT p pi e ( Ei EF ) / KT
穴的耗尽,少数载流子电子有所增加。当由于平衡少子数目极
小,因此,少子数目仍然可以忽略。 空间电荷由没有空穴中和的、固定的受主离子构成。
Ei ( x) Ei0 q ( x)
在半导体表面处有:
n ni e ( EF Ei ) / KT p pi e ( Ei EF ) / KT
Ei s Ei0 qs
令:
( Ei0 EF ) 为半导体内的费米势 f q
可以得到:
n0 ni e
( E F Ei0 ) / KT ( Ei0 E F ) / KT
p 0 pi e
半导体表面层的载流子分布:
Ei ( x) Ei0 q ( x)
( Ei0 EF ) f q
p ( x) p0 e ( x ) / VT ps p0 e S / VT p0 pi e
f / VT
OR
p ( x ) ni e[f ( x )] / VT pS ni e
理想表面(清洁表面)
原子完全有规则排列所终止的一个平面。 表面排列整齐的硅原子与体内的硅原子形成共价键,
但由于表面价键处于所谓“悬挂键”的空置状态,其状
态极其不稳定,表面很容易吸附一些其他原子例如空气 中的氧原子而形成氧化层。
真实表面
用物理或化学方法形成的半导体表面,暴露在 空气中,存在氧化层或吸附其他原子。 表面存在“悬挂键”,对电子有受主的性质,存在 一些可以容纳电子的能量状态,称为“表面能级”或“ 表面态”。 表面能级在禁带中靠近价带顶的位置,准连续。
以及杂质能级上电子浓度的变化引起的。
电场 ℰ 从半导体表面到内部逐渐减弱,直到空间电荷区内边 界上基本全部被屏蔽而为零。则每个极板上的感应电荷与电场 之间满足如下关系:
QM QS 0 s sE
εsE:半导体表面电场
在空间电荷区中电场的出现使半导体表面与体内之间产生电位 差,半导体表面的电势,称为表面势 S 。在加上电压VG时,外 加电压VG为跨越氧化层源自电压V0和表面势 S 所分摊,即有:
n ni e ( EF Ei ) / KT p pi e ( Ei EF ) / KT
p 0 pi e
Ei ( x) Ei0 q ( x)
半导体表面层的载流子分布:
( Ei0 EF ) f q
n( x) n0 e ( x ) / VT nS n0 e n0 ni e
(f S ) / VT
1. 载流子的积累
当紧靠硅表面的多数载流子浓度大于体内热平衡多数载流子浓
度时,称为载流子积累。
当金属电极上加负电压时,在半导体表面形成负表面电势 S , 表面空间电荷区中能带向上弯曲,由于费米能级EF保持常数, 能带向上弯曲使接近表面处有更大的Ei-EF,与体内相比,在表 面处有更高的空穴浓度和更低的电子浓度,使空穴在表面积累,
增加表面的电导率。
表面电荷为: QS q 0 [ p( x) p0 ]dx
xd
QS q [ p( x) p0 ]dx
0
xd
载流子积累
2. 载流子耗尽
当金属电极上施加正偏压VG时,表面势 S 为正,空间电荷区
中能带向下弯曲,准费米能级能级Ei靠近费米能级EF, (Ei –EF) 值减小,表面空穴浓度低于体内热平衡值,造成多数载流子空
VG V0 S
金属-氧比物和P型半导体的电位分布图
VG V0 S
三 载流子的积累、耗尽和反型
空间电荷区静电势 ( x) 的出现改变了空间电荷区中的能带
图。根据VG极性和大小,有可能实现三种不同的表面情况:
① 载流子积累;
② 载流子耗尽;
③ 半导体表面反型。
设半导体体内本征费米能级为Ei0,则空间电荷区内:
表面势
空间电荷区表面到内部另一端,电场从最大逐渐减弱到零,其 各点电势也要发生变化,这样表面相对体内就产生电势差,并伴随 能带弯曲,常称空间电荷区两端的电势差为表面势Ψ S。
一 结构
MOSFET结构示意图
源极、衬底和漏极构成两个背靠背的二极管。在不加栅压 时,只能有很小的反向饱和电流通过源漏极。当栅压足够 大时,栅极下面半导体会反型。
衬底N型半导体-P型反型层-P沟道MOSFET 衬底P型半导体-N型反型层-N沟道MOSFET
反型层出现后,再增加电极上的电压,主要是反型层中的电
子增加,由电离受主构成的耗尽层电荷基本上不再增加。
二 半导体表面空间电荷区
理想MOS结构假设:
① 在氧化物中或在氧化物和半导体之间的界面上不存在电荷 ② 金属和半导体之间的功函数差为零 ③ SiO2层是良好的绝缘体,能阻挡直流电流流过
相关文档
最新文档