刘鸿文版材料力学课件全套一

合集下载

刘鸿文主编-材料力学课件

刘鸿文主编-材料力学课件

各向同性假设
总结词
各向同性假设认为材料在不同方向上具有相同的性质 和行为。
详细描述
各向同性假设是材料力学中的另一个重要假设。它意味 着材料在不同方向上具有相同的性质,如弹性模量、泊 松比等。这一假设使得我们可以用统一的数学模型来描 述材料的性质和行为,简化计算过程。在实际应用中, 对于一些各向同性较好的材料,可以采用统一的标准来 近似获得其整体性质。需要注意的是,各向同性材料并 不是指所有方向上的性质都完全相同,而是在一定范围 内可以近似认为各向同性。
机械零件设计
材料力学在机械领域中应用于各 种机械零件的设计,如轴、轴承
、齿轮等。
设备强度分析
对机械设备的强度进行分析,确保 设备在各种工况下的安全运行。
疲劳寿命预测
利用材料力学知识,预测机械零件 的疲劳寿命,提高设备的使用寿命 。
航空航天领域
飞行器结构分析
材料力学在航空航天领域 中应用于飞行器的结构分 析,确保飞行器的安全性 和稳定性。
详细描述
弹性力学理论是材料力学的基本理论之一,主要研究材料在弹性范围内受力时的变形和内力关系。该 理论基于胡克定律,即材料在弹性范围内受力时发生的形变与外力成正比,并引入了应变和应力等概 念来描述材料的变形和受力情况。
塑性力学理论
总结词
描述材料在超过弹性极限后发生塑性形 变时的应力-应变关系。
VS
根据船舶的工作环境和要求,选择具 有优良力学性能的材料。
05
材料力学的未来发展
新材料的研发
高强度轻质材料
如碳纤维复合材料、钛合金等, 在航空、汽车、体育器材等领域
有广泛应用前景。
智能材料
如形状记忆合金、压电陶瓷等, 具有自适应、自修复等特性,可 用于制造智能传感器、执行器等

刘鸿文版材料力学课件全套1

刘鸿文版材料力学课件全套1
目录
§2.1 轴向拉伸与压缩的概念和实例
目录
§2.1 轴向拉伸与压缩的概念和实例
目录
§2.1 轴向拉伸与压缩的概念和实例
受力特点与变形特点:
作用在杆件上的外力合力的作用线与 杆件轴线重合,杆件变形是沿轴线方向的伸 长或缩短。
拉(压)杆的受力简图
拉伸
F
FF
压缩
F
目录
§2.1 轴向拉伸与压缩的概念和实例
材料力学主要研究杆件
{ 直杆—— 轴线为直线的杆 曲杆—— 轴线为曲线的杆
{等截面杆——横截面的大小 形状不变的杆 变截面杆——横截面的大小 或形状变化的杆 等截面直杆 ——等直杆
目录
§1.2 变形固体的基本假设
在外力作用下,一切固体都将发生变形, 故称为变形固体。在材料力学中,对变形固体 作如下假设: 1、连续性假设: 认为整个物体体积内毫无空隙地充满物质 灰口铸铁的显微组织 球墨铸铁的显微组织
45° B
C
2
FN1
F
y
FN 2 45° B x
解:1、计算各杆件的轴力。 (设斜杆为1杆,水平杆为2杆) 用截面法取节点B为研究对象
Fx 0 FN1 cos 45 FN 2 0 Fy 0 FN1 sin 45 F 0
F
FN1 28.3kN
FN 2 20kN
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m F4
m
F3
F4
F3
目录
§1.4 内力、截面法和应力的概念 例如
F
a
a
F
M FS
FS=F M Fa
目录
§1.4 内力、截面法和应力的概念
例 1.1 钻床 求:截面m-m上的内力。

材料力学全ppt课件

材料力学全ppt课件
x
切应变(角应变)
M点处沿x方向的应变: M点在xy平面内的切应变为:
x
lim
x0
s x
g lim ( LM N)
MN0 2
ML0
类似地,可以定义 y , z ,g 均为无量纲的量。
目录
§1.5 变形与应变
例 1.2
c
已知:薄板的两条边
4、稳定性:
在载荷 作用下,构 件保持原有 平衡状态的 能力。
强度、刚度、稳定性是衡量构件承载能力 的三个方面,材料力学就是研究构件承载能力 的一门科学。
目录
§1.1 材料力学的任务
三、材料力学的任务
材料力学的任务就是在满足强度、刚度 和稳定性的要求下,为设计既经济又安全的构 件,提供必要的理论基础和计算方法。
目录
§1.3 外力及其分类
按外力与时间的关系分类
静载: 载荷缓慢地由零增加到某一定值后,就保持不变或变动很不显著, 称为静载。
动载: 载荷随时间而变化。
如交变载荷和冲击载荷
交变载荷
冲击载荷
目录
§1.4 内力、截面法和应力的概念
内力:外力作用引起构件内部的附加相互作用力。 求内力的方法 — 截面法
传统具有柱、梁、檩、椽的木 制房屋结构
建于隋代(605年)的河北赵州桥桥 长64.4米,跨径37.02米,用石2800 吨
目录
§1.1 材料力学的任务
古代建筑结构
建于辽代(1056年)的山西应县佛宫寺释迦塔 塔高9层共67.31米,用木材7400吨 900多年来历经数次地震不倒,现存唯一木塔
目录
§1.1 材料力学的任务
架的变形略去不计。计算得到很大的简
化。
C
δ1

刘鸿文版材料力学课件全套

刘鸿文版材料力学课件全套

pq
Me
x
圆轴扭转的平面假设:
pq
圆轴扭转变形前原为平面的横截面,变形后仍 保持为平面,形状和大小不变,半径仍保持为直线; 且相邻两截面间的距离不变。
§3.4 圆轴扭转时的应力
Me
pq
Me
_ 扭转角(rad)
pq p
q
d
a
d
c
a' O b
R
p
b′ q
dx
d _ dx微段两截面的
x
相对扭转角
边缘上a点的错动距离:
§3.4 圆轴扭转时的应力
例题3.4
已知:P=7.5kW, n=100r/min,最大切应力不 得超过40MPa,空心圆轴的内外直径之比 = 0.5。二轴长度相同。
求: 实心轴的直径d1和空心轴的外直径D2;确 定二轴的重量之比。
解: 首先由轴所传递的功率计算作用在轴上的扭矩
P 7 .5 M x T 9 5 4 9 n 9 5 4 9 1 0 0 7 1 6 .2 N m
d
T GI p dx
G
d
dx
T Ip
§3.4 圆轴扭转时的应力
公式适用于:
1)圆杆
2) max
p
横截面上某点的切应力的方向与扭矩 方向相同,并垂直于半径。切应力的大 小与其和圆心的距离成正比。

Wt
Ip R
抗扭截面系数
m ax
T Wt
在圆截面边缘上, 有最大切应力
§3.4 圆轴扭转时的应力
个平面的交线,
方向则共同指向
各个截面上只有切应
或共同背离这一 力没有正应力的情况称为
交线。
纯剪切
§3.3 纯剪切

材料力学全套课件526页

材料力学全套课件526页

FmaxA
Fmax
W
sin
W
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
0.8m
B C
Fmax
FRCx C FRCy
d
由三角形ABC求出
1.9m
sin BC 0.8 0.388
A
AB 0.82 1.92
Fmax
W
sin
15 0.388
38.7kN
斜杆AB的轴力为
FN Fmax 38.7kN
目录
§1.1 材料力学的任务
{弹性变形 — 随外力解除而消失 塑性变形(残余变形)— 外力解除后不能消失 刚度:在载荷作用下,构件抵抗变形的能力。 3、内力:构件内由于 发生变形而产生的相 互作用力。(内力随 外力的增大而增大) 强度:在载荷作用下, 构件抵抗破坏的能力。
目录
§1.1 材料力学的任务
W
斜杆AB横截面上的应力为
Fmax
FmaxA
FN A
38.7 103
(20103)2
4
W
123106 Pa 123MPa
目录
§2.3 直杆轴向拉伸或压缩时斜截面上的应力
实验表明:拉(压)杆的破坏并不总是沿
4、稳定性:
在载荷 作用下,构 件保持ቤተ መጻሕፍቲ ባይዱ有 平衡状态的 能力。
强度、刚度、稳定性是衡量构件承载能力 的三个方面,材料力学就是研究构件承载能力 的一门科学。
目录
§1.1 材料力学的任务
三、材料力学的任务
材料力学的任务就是在满足强度、刚度 和稳定性的要求下,为设计既经济又安全的构 件,提供必要的理论基础和计算方法。
四川彩虹桥坍塌
目录

材料力学课件-刘鸿文

材料力学课件-刘鸿文

FmaxA
Fmax
W
sin
W
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
0.8m
B C
Fmax
FRCx C FRCy
d
由三角形ABC求出
1.9m
sin BC 0.8 0.388
A
AB 0.82 1.92
Fmax
W
sin
15 0.388
38.7kN
斜杆AB的轴力为
FN Fmax 38.7kN
圣 维 南 原 理
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
A 1
例题2.2
图示结构,试求杆件AB、CB的
应力。已知 F=20kN;斜杆AB为直
径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
45° B
C
2
FN 1
F
y
FN 2 45° B x
目录
§2.1 轴向拉伸与压缩的概念和实例
受力特点与变形特点:
作用在杆件上的外力合力的作用线与 杆件轴线重合,杆件变形是沿轴线方向的伸 长或缩短。
拉(压)杆的受力简图
拉伸
F
FF
压缩
F
目录
§2.1 轴向拉伸与压缩的概念和实例
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m
F m
F
FN
FN
Fx 0
目录
§1.1 材料力学的任务
{弹性变形 — 随外力解除而消失 塑性变形(残余变形)— 外力解除后不能消失 刚度:在载荷作用下,构件抵抗变形的能力。 3、内力:构件内由于 发生变形而产生的相 互作用力。(内力随 外力的增大而增大) 强度:在载荷作用下, 构件抵抗破坏的能力。

材料力学课件全套刘鸿文版课件

材料力学课件全套刘鸿文版课件
杆件受力与变形的的几种形式
内容 种类
轴向拉伸 及 压缩
Axial Tension
剪切 Shear
外力特点
扭转 Torsion
平面弯曲 Bending
组合受力(Combined Loading)与变形
变形特点
材料力学
Mechanics of Materials
刚体静力学中关于平衡的理论和方法能否应用于材料力学?
符合假设1、2、3的构件称为理想变形体,符合小变形假设的理想变形体称为理想弹性体,这就是材料力 学的研究对象。
材料力学
§1-3 外力及其分类
Mechanics of Materials
外力按作用方式分: 体积力: 重力、惯性力; 表面力:水压力、面接触的力;
表面力分: 分布力:连续作用于表面的力; 集中力:火车车轮对钢轨、支座等。
材料力学
Mechanics of Materials
应力p可分解:
正应力—— ; 切应力——。
p
应 力 单 位 : 牛 / 米 2 ( N/m2 ) , 称 为 帕 斯 卡 或 简 称 帕 ( Pa ) 。 通 常 使 用 的 是 兆 帕 , 即 MPa ( 1MPa=106Pa)
2021/7/4
构件 的抗 变形 能力
Mechanics of Materials
2021年7月4日星期日
材料力学
▪ 3 稳定性
保持 原有 平衡 状态 的能 力
Mechanics of Materials
2021年7月4日星期日
材料力学
Mechanics of Materials
在满足上述强度、刚度和稳定性要求的同时,须尽可能合理选用材料和降低材料消耗量,以节 约投资。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

从平面假设可以判断:
(1)所有纵向纤维伸长相等
(2)因材料均匀,故各纤维受力相等
(3)内力均匀分布,各点正应力相等,为常量
ac
F
a
c
b
d
bd
F FN dA
A
dA A
A
FN A
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
FN
A
该式为横截面上的正应力σ计算公式。正应力σ和轴力FN同号。即 拉应力为正,压应力为负。
2、轴力:截面上的内力 m
F
F
由于外力的作用线与杆件的轴线重合,内力
的作用线也与杆件的轴线重合。所以称为轴力。
m
F
FN
FN
Fx 0
FN F0 FN F
F 3、轴力正负号: 拉为正、压为负
4、轴力图:轴力沿杆 件轴线的变化
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
例题2.1 A
1B
2C
3D
0.8m
B C
F m ax
FRCx C
F RCy
d
由三角形ABC求出
sinBC 0.8 0.388
A
AB 0.821.92
1.9m
W 15
Fm axsin0.38838.7kN
斜杆AB的轴力为
FNFm ax38.7kN
W
斜杆AB横截面上的应力为
F m ax
F m axA
FN A
38.7 103
(20103)2
动载: 载荷随时间而变化。
如交变载荷和冲击载荷
交变载荷
冲击载荷
目录
§1.4 内力、截面法和应力的概念
内力:外力作用引起构件内部的附加相互作用力。 求内力的方法 — 截面法
(1)假想沿m-m横截面将 杆切开
(2)留下左半段或右半段
(3)将弃去部分对留下部 分的作用用内力代替
(4)对留下部分写平衡方 程,求出内力的值。
若:不恰当地加大横截面尺寸或 选用优质材料
___ 不满足上述要求, 不能保证安全工作.
___ 增加成本,造成浪费
} 均 不 可 取
研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。因此在进行理论分析的基础上, 实验研究是完成材料力学的任务所必需的途径和手段。
目录
§1.1 材料力学的任务
四、材料力学的研究对象 构件的分类:杆件、板壳*、块体*
25 CD段
Fx 0
FN3F425kN
x
2、绘制轴力图。
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力 目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力 杆件的强度不仅与轴力有关,还与横截面面积有关。必须用应力来比较和判断杆件的强度。
在拉(压)杆的横截面上,与轴力FN对应的应力是正应力 。 根据连续性假设,横截面上到处都存在着内力。于是得静力关系:
目录
§2.1 轴向拉伸与压缩的概念和实例 目录
§2.1 轴向拉伸与压缩的概念和实例 目录
§2.1 轴向拉伸与压缩的概念和实例 受力特点与变形特点: 作用在杆件上的外力合力的作用线与杆件轴线重合,杆件变形是沿轴线方向的伸长或缩短。
拉(压)杆的受力简图
拉伸 F
FF
压缩
F 目录
§2.1 轴向拉伸与压缩的概念和实例 目录
在载荷作用下,构件 保持原有平衡状态的能力。
强度、刚度、稳定性是衡量构件承载能力的三个方面,材料力学就是研究构件承载能力的 一门科学。
目录
§1.1 材料力学的任务
三、材料力学的任务
材料力学的任务就是在满足强度、刚度和稳定性的要求下,为设计既经济又安全的构 件,提供必要的理论基础和计算方法。
若:构件横截面尺寸不足或形状 不合理,或材料选用不当
建于隋代(605年)的河北赵州桥桥长64.4米, 跨径37.02米,用石2800吨
目录
§1.1 材料力学的任务
古代建筑结构
建于辽代(1056年)的山西应县佛宫寺释迦塔 塔高9层共67.31米,用木材7400吨 900多年来历经数次地震不倒,现存唯一木塔
目录
§1.1 材料力学的任务
四川彩虹桥坍塌
目录
45°
B
C
2
F
FN1
y
45°
FN 2
B
x
F
1
FN1 A1
28.3103 202 106
4
90106 Pa 90MPa
2
FN2 A2
20103 152 106
89106Pa 89MPa
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
B
d
例题2.2 悬臂吊车的斜杆AB为直径d=20mm的钢杆,载荷W=15kN。
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m F
m
F
FN
FN
Fx 0
FN F0 FN F
1、截面法求内力 F (1)假想沿m-m横截面将
杆切开
(2)留下左半段或右半段 F
(3)将弃去部分对留下部分 的作用用内力代替
(4)对留下部分写平衡方程 求出内力即轴力的值
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
刘鸿文版材料力学课件全套一
第一章 绪论
目录
第一章 绪论
§1.1 材料力学的任务 §1.2 变形固体的基本假设 §1.3 外力及其分类 §1.4 内力、截面法及应力的概念 §1.5 变形与应变 §1.6 杆件变形的基本形式
目录
§1.1 材料力学的任务 一、材料力学与工程应用
古代建筑结构
传统具有柱、梁、檩、椽的木制房屋结 构
250
目录
§1.6 杆件变形的基本形式
杆件的基本变形:
拉伸(压缩)、剪切、扭转、弯曲
拉压变形
剪切变形 目录
§1.6 杆件变形的基本形式
扭转变形
弯曲变形 目录
第二章 拉伸、压缩与剪切(1)
目录
第二章 拉伸、压缩与剪切
§2.1 轴向拉伸与压缩的概念和实例 §2.2 轴向拉伸或压缩时横截面上的内力和应力 §2.3 直杆轴向拉伸或压缩时斜截面上的应力 §2.4 材料拉伸时的力学性能 §2.5 材料压缩时的力学性能 §2.7 失效、安全因数和强度计算 §2.8 轴向拉伸或压缩时的变形 §2.9 轴向拉伸或压缩的应变能 §2.10 拉伸、压缩超静定问题 §2.11 温度应力和装配应力 §2.12 应力集中的概念 §2.13 剪切和挤压的实用计算
x
F
解:1、计算各杆件的轴力。(设斜杆为1杆,水平杆为2杆)用截 面法取节点B为研究对象
Fx 0 FN1co4s5FN20 Fy 0 FN1si4 n5F0
FN1 28.3kN FN2 20kN
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
A
FN1 28.3kN FN2 20kN
1
2、计算各杆件的应力。
4
W
123106 Pa 123MPa
目录
§2.3 直杆轴向拉伸或压缩时斜截面上的应力 实验表明:拉(压)杆的破坏并不总是沿横截面发生,有时却是沿斜截面发生的。
k
F
F
FN F
k
AA
F
k p
F
F F
A
A
cos
F
k
k
p
pF A A F F Acoscos
k
0 , max
45 , m ax
FN dA A
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
观察变形:
横向线ab、cd仍为直线,且 仍垂直于杆轴线,只是分别平 行移至a’b’、c’d’。
ac
F
a
c
F
b
d
bd
平面假设—变形前原为平面的横截面,变形后仍保持为平面且仍垂直于轴线。
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
材料力学主要研究杆件
{ 直杆—— 轴线为直线的杆
曲杆—— 轴线为曲线的杆
{ 等截面杆
——横截面的大小 形状不变的杆
变截面杆
——横截面的大小 或形状变化的杆
等截面直杆
——等直杆
目录
§1.2 变形固体的基本假设
在外力作用下,一切固体都将发生变形,故称为变形固体。在材料力学中,对变形固体作 如下假设:
1、连续性假设: 认为整个物体体积内毫无空隙地充满物质
目录
§1.5 变形与应变
例 1.2 已知:薄板的两条边 固定,变形后a'b, a'd 仍为直线。
250
c b
200 0.025
求:ab 边的m 和 ab、ad 两边夹角的变化。
a
解:
d
g
m
a'b ab ab
0.025 200
125106
a'
ab, ad 两边夹角的变化:
即为切应变g 。
gtagn 0.025 100106 (rad )
已知F1=10kN;F2=20kN; F3=35kN; F4=25kN;试画出图示杆件的轴力图。
F1 F1 F1
FNkN
1 F2
2
FN1
F2 FN3
10
F3
3
FN2
10
F4
解:1、计算各段的轴力。
AB段
Fx 0
FN1F110kN
BC段
Fx 0 FN2F2 F1
FN2 F1F2
F4
102010kN
目录
§1.1 材料力学的任务 { 弹性变形 — 随外力解除而消失
相关文档
最新文档