2021年高考数学常考题型集锦
2021届高考数学(新课标) 题型全归纳 数列定义在解题中的潜在功能
数列定义在解题中的潜在功能高考作为一种选拔性考试,在重视基础学问考查的同时,更加重视对应用力气的考查.作为中学数学的重点内容之一,等差(比)数列始终是高考考查时重点,特殊是近几年,有关数列的高考综合题,几乎都与等差(比)数列有关.这里我们感爱好的是等差(比)数列的定义在解题中的潜在功能,即遇到数列问题,特殊是证明通项为an )1(1-+=n a d )(11-=n nq a a 或前n 项和)),1((2nn n q a S bn an S -=+=首先要证明它是等差(比)数列,必要时再进行适当转化,即将一般数列转化为等差(比)数列. 例1.设等差数列{}n a 的前m 项和为30,前2m 项和为100,则它的前3m 项和为( ).(A )130 (B )170 (C )210 (D )260 解 若等差数列{}n a 前m 项、次m 项、又次m 项和分别为S1,S2,S3,则S1,S2,S3也成等差数列.事实上,2)(2)(312131m m m a a m a a m S S +++=++2)]()[31212m n m a a a a m +++=+.22)(22)22(22121S a a m a a m m m m m =+⋅=+=++所以S1,S2,S3成等差数列.由于30,70,S3m -100成等差数列,所以30+S3m -100=140,即S3m=210.故应选(C ).例2.设{an }是等差数列,n a n b )21(=,已知,821321=++b b b 81321=b b b ,求等差数列的通项公式. 解 ∵{an }成等差数列,∴{bn }成等比数列,∴22b =b1b3.由b1b2b3=81,得b2=21. 从而有b1+b3= 817,b1b3=41.∴b1,b3是方程x2-x 817+041=两根.解得81,231==b b 或811=b ,.23=b ∴a1=-1,d=2或a1=3,d=-2.故an=a1+(n -1)d=2n -3或an=5-2n.例3.一个数列{an },当n 为奇数时, an=5n+1;当n 为偶数时,an=22n ,求这个数列的前2m 项的和. 解:∵a1,a3,a5,…,a2m -1成等差数列,ma a a a 2642,,,, 成等比数列,∴S2m=)()(2421231m m a a a a a a +++++++-mm m m m a a a m 2522)(212121++=⋅++=--.例4.设数列,,,,,21 n a a a 前n 项和Sn 与an 的关系是1+=n n ka S (其中k 是与n 无关的常数,且k ≠1).(1)试写出由n,k 表示的an 的表达式;(2)若1lim =∞→n S n ,求k 的取值范围.解:(1)当n=1时,由1111+==ka S a ,得);1(111≠-=k k a当n ≥2时,由111)1()1(----=+-+=-=n n n n n n n ka ka ka ka S S a ,得11-=-k ka a n n .若k=0,则an=1(n=1)或an=0(n ≥2).若k ≠0,则{an }是首项为k -11,公比为1-k k 的等比数列,所以1)1(11--⋅-=n n k k k a . (2)∵0lim ,1lim =∴=∞→∞→n a n S n n ,∴1-k k <1,解得k <21.例5.已知数列{an }的前n 项和的公式是)2(122n n S n +=π.(1)求证:{an }是等差数列,并求出它的首项和公差;(2)记21sin sin sin ++⋅⋅=n n n n a a a b ,求证:对任意自然数n ,都有1)1(82--=n n b .证明:(1)当n=1时,411π==S a ;当n ≥2时,=-=-1n n n S S a -+)2(122n n π)]1()1(2[122-+-n n π=)14(12-n π.∴).14(12-=n a n π =--1n na a .3]1)1(4[12)14(12πππ=----n n ∴{an }是首项为4π,公差为3π的等差数列.(2)只要证明{bn }是首项为82,公比为-1的等比数列. 1211sin 127sin4sinsin sin sin 3211πππ⋅⋅=⋅⋅=a a a b。
2021年高考数学常考题型集锦
2021年高考数学常考题型集锦2021年高考高频题型集锦命题热点一:集合与常用逻辑用语集合是高考每年必考的内容,主要考查集合的运算、集合间的关系和集合语言的运用。
这一考点一般以选择题的形式出现,属于较为简单的题目。
同时,集合知识也常常与函数、方程、不等式等知识交汇在一起,因此需要注意相关知识在解题中的应用。
常用逻辑用语也是高考必考内容之一,主要考查充分必要条件的推理判断、四种命题及其相互关系、全称命题与特称命题等。
这一考点也一般以选择题的形式出现,难度属于容易和中等。
除了考查常用逻辑用语本身的相关概念和方法,这一考点的试题还与其他数学知识联系在一起,因此需要注意知识的灵活运用。
预测1:已知集合$A=\{x|2x-x^2<0\}$,$B=(a,b)$,且$B\subseteq A$,则$a-b$的取值范围是()。
解析:化简$A$得$A=\{x|x2\}$,由于$B\subseteq A$,所以$a\geqslant b$,于是$a-b\geqslant -2$,即$a-b$的取值范围是$[-2,+\infty)$,故选B。
动向解读:本题考查集合间的关系,考查子集的概念与应用、不等式的性质等,解答时注意对集合进行合理的化简。
预测2:若集合$A=\{x||x|2\}$,$B=\{x|y=\log_3(1-x)\}$,则$A\cap B$的取值范围是()。
解析:依题意$A=\{x|x2\}$,所以$A\cap B=(-\infty,0)\cup(0,1)$。
故选C。
动向解读:本题考查集合的基本运算、函数的定义域、不等式的解法等问题,是高考的热点题型。
在解决与函数定义域、值域、不等式解集相关的集合问题时,要注意充分利用数轴这一重要工具,通过数形结合的方法进行求解。
预测3:已知命题$p:\existsx\in[0,\frac{\pi}{2}],\cos2x+\cos x-m\geqslant 0$为真命题,则实数$m$的取值范围是()。
2021年全国新课标2卷高考数学10大题型
高考数学最有可能考察10大题型摘要性分析1、纯三角函数问题注:(07年至15年没有一年考察过,尤其需要注意,06年07年的辽宁卷连续两年进行考察)2、超几何分布注:(07年至15年的全国新课标中,只有2014年全国新课标1考察过二项分布,没有考察过超几何分布)2、选修部分双绝对值问题注:07年、08年、09年、12年、13年新课标1、14年新课标2、15年新课标1均考查双绝对值不等式选修内容3、程序框图问题、三视图问题每年都考察注:今年考察程序框图填写判断框内容应当注意、三视图应当考虑原图形是由正方体或长方体切割而来的图形4、二项式定理问题++型的二项式问题、注意什么是常数项、有理项、配凑法注:注意求(x y z)n5、二分法、斜二测画法、辗转相除法、祖暅原理求体积、更相减损术(已经考过了)、演绎法、整体变量法(必修五教材)、秦九韶算法、杨辉三角、注意这些问题:应当解决三个问题;方法是用来干什么的,使用条件是什么,有什么性质和注意事项6、线性规划问题注:今年有可能考察非常规的线性规划问题,09年、11年、12年、14年新课标1、14年新课标2、15年新课标2、都是考察一般线性规划问题;15年新课标1考察的是分式型的线性规划问题,13年新课标2考察的是含参数的线性规划问题;今年应该注意其他类型的线性规划问题,主要有:含有参数的、含有绝对值的、含有平方的7、数列的放缩法警惕出题者杀回马枪,再次考察数列的放缩法,有可能降低难度放在小题中考察8、求线面角、二面角在选择填空题中出现注:07年、09年、特别是14年新课标2第11题考察的那种类型题,当年的立体几何综合题就未曾考察求角度而是考察求立体体积,特别要注意这一点9、压轴题:导数证明题注:只有09年、13年(新课标2)、14年(新课标1)考察过,高手们要注意练习几道证明题。
2021年高考数学真题分类汇编 10.6 圆锥曲线的综合问题 理
2021年高考数学真题分类汇编 10.6 圆锥曲线的综合问题理考点一定值与最值问题1.(xx湖北,9,5分)已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A. B. C.3 D.2答案A2.(xx福建,9,5分)设P,Q分别为圆x2+(y-6)2=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是( )A.5B.+C.7+D.6答案 D3.(xx四川,10,5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,·=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是( )A.2B.3C.D.答案 B4.(xx安徽,19,13分)如图,已知两条抛物线E1:y2=2p1x(p1>0)和E2:y2=2p2x(p2>0),过原点O 的两条直线l1和l2,l1与E1,E2分别交于A1,A2两点,l2与E1,E2分别交于B1,B2两点.(1)证明:A1B1∥A2B2;(2)过O作直线l(异于l1,l2)与E1,E2分别交于C1,C2两点.记△A1B1C1与△A2B2C2的面积分别为S1与S2,求的值.解析(1)证明:设直线l1,l2的方程分别为y=k1x,y=k2x(k1,k2≠0),则由得A1,由得A2.同理可得B1,B2.所以==2p1,==2p2,故=,所以A1B1∥A2B2.(2)由(1)知A1B1∥A2B2,同理可得B1C1∥B2C2,C1A1∥C2A2.所以△A1B1C1∽△A2B2C2.因此=.又由(1)中的=知=.故=.5.(xx浙江,21,15分)如图,设椭圆C:+=1(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(1)已知直线l的斜率为k,用a,b,k表示点P的坐标;(2)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a-b.解析(1)设直线l的方程为y=kx+m(k<0),由消去y得(b2+a2k2)x2+2a2kmx+a2m2-a2b2=0.由于l与C只有一个公共点,故Δ=0,即b2-m2+a2k2=0,解得点P的坐标为.又点P在第一象限,故点P的坐标为P.(2)由于直线l1过原点O且与l垂直,故直线l1的方程为x+ky=0,所以点P到直线l1的距离d=,整理得d=.因为a2k2+≥2ab,所以≤=a-b,当且仅当k2=时等号成立.所以,点P到直线l1的距离的最大值为a-b.6.(xx湖南,21,13分)如图,O为坐标原点,椭圆C1:+=1(a>b>0)的左、右焦点分别为F1、F2,离心率为e1;双曲线C2:-=1的左、右焦点分别为F3、F4,离心率为e2,已知e1e2=,且|F2F4|=-1.(1)求C1,C2的方程;(2)过F1作C1的不垂直于y轴的弦AB,M为AB的中点,当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值.解析(1)因为e1e2=,所以·=,即a4-b4=a4,因此a2=2b2,从而F2(b,0),F4(b,0),于是b-b=|F2F4|=-1,所以b=1,所以a2=2.故C1,C2的方程分别为+y2=1,-y2=1.(2)因为AB不垂直于y轴,且过点F1(-1,0),故可设直线AB的方程为x=my-1.由得(m2+2)y2-2my-1=0,易知此方程的判别式大于0,设A(x1,y1),B(x2,y2),则y1,y2是上述方程的两个实根,所以y1+y2=,y1y2=.因此x1+x2=m(y1+y2)-2=,于是AB的中点M的坐标为.故直线PQ的斜率为-,则PQ的方程为y=-x,即mx+2y=0.由得(2-m2)x2=4,所以2-m2>0,且x2=,y2=,从而|PQ|=2=2.设点A到直线PQ的距离为d,则点B到直线PQ的距离也为d,所以2d=,因为点A,B在直线mx+2y=0的异侧,所以(mx1+2y1)(mx2+2y2)<0,于是|mx1+2y1|+|mx2+2y2|=|mx1+2y1-mx2-2y2|,从而2d=.又因为|y1-y2|==,所以2d=.故四边形APBQ的面积S=|PQ|·2d==2 .而0<2-m2<2,故当m=0时,S取得最小值2.综上所述,四边形APBQ面积的最小值为2.7.(xx四川,20,13分)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=-3上任意一点,过F作TF的垂线交椭圆C于点P,Q.(i)证明:OT平分线段PQ(其中O为坐标原点);(ii)当最小时,求点T的坐标.解析(1)由已知可得解得a2=6,b2=2,所以椭圆C的标准方程是+=1.(2)(i)由(1)可得,F的坐标是(-2,0),设T点的坐标为(-3,m).则直线TF的斜率k TF==-m.当m≠0时,直线PQ的斜率k PQ=,直线PQ的方程是x=my-2.当m=0时,直线PQ的方程是x=-2,也符合x=my-2的形式.设P(x1,y1),Q(x2,y2),将直线PQ的方程与椭圆C的方程联立,得消去x,得(m2+3)y2-4my-2=0,其判别式Δ=16m2+8(m2+3)>0.所以y1+y2=,y1y2=,x1+x2=m(y1+y2)-4=.所以PQ的中点M的坐标为.所以直线OM的斜率k OM=-,又直线OT的斜率k OT=-,所以点M在直线OT上,因此OT平分线段PQ.(ii)由(i)可得,|TF|=,|PQ|====.所以==≥=.当且仅当m2+1=,即m=±1时,等号成立,此时取得最小值. 所以当最小时,T点的坐标是(-3,1)或(-3,-1).考点二存在性问题20062 4E5E 乞20677 50C5 僅929969 7511 甑 C28630 6FD6 濖)_F pr。
2021高考数学475道必考题型总结(全国卷新高考)
2021 年高考数学 必考题型总结
第一章 集合与常用逻辑用语
题型 1 集合元素的“三性” (详见《专题课-集合的概念与运算》)
例 1:设集合 A={2,3,a2-3a,a+
2
+7},B={|a-2|,3},已知 4∈A,且 4∉B,则 a 的取值集合为
a
.
题型 2 集合间的关系 (详见《专题课-集合的概念与运算》)
题型 6 单调性+奇偶性解不等式 (详见《专题课-函数的单调性、奇偶性》)
1
例 9:(1)已知偶函数 f(x)在区间[0,+∞)上单调递增,则满足 f (2 x 1) f 的 x 的取值范围是________.
3
(2)已知函数 f(x-2)为奇函数,f(-2)=0 且 f(x)在区间[-2,+∞)上单调递减,则 f(3-x)>0 的解集为
A.c<b<a
B.a<b<c
C.a<c<b
例 33:设 x,y,z 为正数,且 2x=3y=5z,则 (
A.2x<3y<5z
B.5z<2x<3y
D.c<a<b
)
C.3y<5z<2x
D.3y<2x<5z
(
)
梅花香自苦寒
题型 20 构造法解抽象函数 (详见《专题课-指数、对数、幂函数》)
1
例 34:已知函数 f(x)定义域为(0,+∞),且满足 f(xy)=f(x)+f(y), f 1, 如果对于 0<x<y,都有 f(x)>f(y),则不等式
第二章 基本初等函数
2021届高考数学热点题型训练:第5章 第1节 数列的概念与简单表示 Word版含解析
第一节 数列的概念与简洁表示考点一由数列的前几项归纳数列的通项公式[例1] 依据数列的前几项,写出下列各数列的一个通项公式. (1)-1,7,-13,19,…; (2)0.8,0.88,0.888,…;(3)12,14,-58,1316,-2932,6164,….[自主解答] (1)数列中各项的符号可通过(-1)n表示,从第2项起,每一项的确定值总比它的前一项的确定值大6,故通项公式为a n =(-1)n(6n -5).(2)数列变为89⎝ ⎛⎭⎪⎫1-110,89⎝ ⎛⎭⎪⎫1-1102,89⎝ ⎛⎭⎪⎫1-1103,…, 故a n =89⎝⎛⎭⎪⎫1-110n .(3)各项的分母分别为21,22,23,24,…,易看出第2,3,4项的分子分别比分母小3.因此把第1项变为-2-32,原数列化为-21-321,22-322,-23-323,24-324,…,故a n =(-1)n 2n-32n .【方法规律】求数列的通项公式应关注的四个特征 (1)分式中分子、分母的特征; (2)相邻项的变化特征; (3)拆项后的特征;(4)各项符号特征等,并对此进行归纳、化归、联想.依据数列的前几项,写出各数列的一个通项公式. (1)3,5,7,9,…; (2)12,34,78,1516,3132,…; (3)-1,32,-13,34,-15,36,….解:(1)各项减去1后为正偶数,∴a n =2n +1.(2)每一项的分子比分母小1,而分母组成数列21,22,23,24,…,∴a n =2n-12n .(3)数列的奇数项为负,偶数项为正,故通项公式中含有因式(-1)n,各项确定值的分母组成数列{n },分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1.∴a n =(-1)n 2+-1nn.考点二由递推关系式求通项公式[例2] 依据下列条件,确定数列{a n }的通项公式.(1)a 1=1,a n =n -1na n -1(n ≥2);(2)a 1=2,a n +1=a n +3n +2; (3)a 1=1,a n +1=3a n +2;(4)a 1=56,a n +1=5a n4a n +1.[自主解答] (1)∵a n =n -1na n -1(n ≥2),∴a n -1=n -2n -1a n -2,…,a 2=12a 1.以上(n -1)个式子相乘,得a n =a 1×12×23×…×n -1n =a 1n =1n.(2)∵a n +1-a n =3n +2, ∴a n -a n -1=3n -1(n ≥2),∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =n 3n +12(n ≥2).当n =1时,a 1=12×(3×1+1)=2符合公式,∴a n =32n 2+n 2.(3)∵a n +1=3a n +2,∴a n +1+1=3(a n +1),即a n +1+1a n +1=3.∴数列{a n +1}为等比数列,公比q =3.又a 1+1=2,∴a n +1=2×3n -1.∴a n =2×3n -1-1.(4)∵a n +1=5a n4a n +1,∴1a n +1=45+15a n , ∴1a n +1-1=15⎝ ⎛⎭⎪⎫1a n -1. 又1a 1-1=15, ∴⎩⎨⎧⎭⎬⎫1a n -1是以15为首项,15为公比的等比数列,∴1a n -1=15·15n -1=15n , ∴a n =5n 1+5n .【方法规律】由递推关系式求通项公式的常用方法(1)已知a 1且a n -a n -1=f (n ),可用“累加法”求a n ;。
2021年高考数学《立体几何》大题必刷热点题型
,求点 D1 到平面 PAE 的距离.
21
(Ⅱ)在线段 A1D1 上有一点 P,若二面角 P﹣AE﹣D 的余弦值为
16.
(2020 春•静海区校级期中)如图所示,直角梯形 ABCD 中,AD∥BC,AD⊥AB,AB=BC=2AD=2,
四边形 EDCF 为矩形,DE=2,平面 EDCF⊥平面 ABCD.
(Ⅱ)求证:AC⊥平面 BCM;
4
(Ⅲ)在棱 AM 上是否存在一点 E,使得二面角 E﹣BC﹣M 的大小为 ?若存在,求出
的值;若不存
在,请说明理由.
27.
(2020•沙市区校级三模)已知如图一 Rt△ABC,AC=BC=4,∠ACB=90°,D,E 分别为 AC,AB 的
中点,F 在 BC 上,且 BF=3FC,G 为 DC 中点,将△ADE 沿 DE 折起,△BEF 沿 EF 折起,使得 A,B
6
(1)求证:DF∥平面 ABE;
(2)求二面角 B﹣EF﹣D 的正弦值;
√6
,若存在,求出线段
6
(3)在线段 BE 上是否存在点 P,使得直线 AP 与平面 BEF 所成角的正弦值为
BP 的长,若不存在,请说明理由.
17.
(2020•常熟市模拟)把一块边长为 a(a>0)cm 的正六边形铁皮,沿图中的虚线(虛线与正六边形的
出 MC 的长,若不存在,说明理由.
4
12.
(2020•道里区校级一模)如图,在四棱锥 P﹣ABCD 中,PA⊥平面 ABCD,AD=CD=1,∠ADC=120°,
PA=AB=BC= √3,点 M 是 AC 与 BD 的交点.
(1)求二面角 A﹣PC﹣B 的余弦值;
2021年高考真题汇编——理科数学(解析版)1:集合与简易逻辑
2021高|考真题分类汇编:集合与简易逻辑1.【2021高|考真题浙江理1】设集合A ={x|1<x <4} ,集合B ={x|2x -2x -3≤0}, 那么A ∩ (C R B ) =A .(1,4)B .(3,4) C.(1,3) D .(1,2)∪ (3,4 ) 【答案】B【解析】B ={x|2x -2x -3≤0} =}31|{≤≤-x x ,A ∩ (C R B ) ={x|1<x <4} }3,1|{>-<x x x 或 =}43|{<<x x .应选B.2.【2021高|考真题新课标理1】集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,那么B 中所含元素的个数为 ( )()A 3 ()B 6 ()C 8 ()D 10【答案】D【解析】要使A y x ∈-,当5=x 时 ,y 可是1 ,2 ,3 ,4.当4=x 时 ,y 可是 1 ,2 ,3.当3=x 时 ,y 可是1 ,2.当2=x 时 ,y 可是1 ,综上共有10个 ,选D.3.【2021高|考真题陕西理1】集合{|lg 0}M x x => ,2{|4}N x x =≤ ,那么M N =( ) A. (1,2) B. [1,2) C. (1,2] D. [1,2] 【答案】C.【解析】}22|{}4|{},1|{}0lg |{2≤≤-=≤=>=>=x x x x N x x x x M ,]2,1(=∴N M ,应选C.4.【2021高|考真题山东理2】全集{}0,1,2,3,4U = ,集合{}{}1,2,3,2,4A B == ,那么U C A B 为(A ){}1,2,4 (B ){}2,3,4 (C ){}0,2,4 (D ){}0,2,3,4 【答案】C【解析】}4,0{=A C U ,所以}42,0{,)(=B A C U ,选C.5.【2021高|考真题辽宁理1】全集U ={0,1,2,3,4,5,6,7,8,9} ,集合A ={0,1,3,5,8} ,集合B ={2,4,5,6,8} ,那么)()(B C A C U U 为(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6} 【答案】B【解析】1.因为全集U ={0,1,2,3,4,5,6,7,8,9} ,集合A ={0,1,3,5,8} ,集合B ={2,4,5,6,8} ,所以{}{}9,7,3,1,0,9,7,6,4,2==B C A C U U ,所以)()(B C A C U U 为{7,9} .应选B2. 集合)()(B C A C U U 为即为在全集U 中去掉集合A 和集合B 中的元素 ,所剩的元素形成的集合 ,由此可快速得到答案 ,选B【点评】此题主要考查集合的交集、补集运算 ,属于容易题 .采用解析二能够更快地得到答案 . 6.【2021高|考真题辽宁理4】命题p :∀x 1 ,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0 ,那么⌝p 是 (A) ∃x 1 ,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 (B) ∀x 1 ,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 (C) ∃x 1 ,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 (D) ∀x 1 ,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 【答案】C【解析】命题p 为全称命题 ,所以其否认⌝p 应是特称命题 ,又(f (x 2)-f (x 1))(x 2-x 1)≥0否认为(f (x 2)-f (x 1))(x 2-x 1)<0 ,应选C【点评】此题主要考查含有量词的命题的否认 ,属于容易题 .7.【2021高|考真题江西理1】假设集合A ={ -1 ,1} ,B ={0 ,2} ,那么集合{z ︱z =x +y,x ∈A,y ∈B }中的元素的个数为 A .5 B.4 C 【答案】C【命题立意】此题考查集合的概念和表示 .【解析】因为B y A x ∈∈, ,所以当1-=x 时 ,2,0=y ,此时1,1-=+=y x z .当1=x 时 ,2,0=y ,此时3,1=+=y x z ,所以集合}2,1,1{}2,1,1{-=-=z z 共三个元素 ,选C. 8.【2021高|考真题江西理5】以下命题中 ,假命题为 A .存在四边相等的四边形不.是正方形 B .1212,,z z C z z ∈+为实数的充分必要条件是12,z z 为共轭复数C .假设,x y ∈R ,且2,x y +>那么,x y 至|少有一个大于1D .对于任意01,nn n nn N C C C ∈+++都是偶数 【答案】B【命题立意】此题考查命题的真假判断 .【解析】对于B,假设21,z z 为共轭复数 ,不妨设bi a z bi a z -=+=21, ,那么a z z 221=+ ,为实数 .设di c z bi a z +=+=21, ,那么i d b c a z z )()(21+++=+ ,假设21z z +为实数 ,那么有0=+d b ,当c a ,没有关系 ,所以B 为假命题 ,选B.9.【2021高|考真题湖南理1】设集合M ={ -1,0,1} ,N ={x|x 2≤x} ,那么M ∩N = A.{0} B.{0,1} C.{ -1,1} D.{ -1,0,0} 【答案】B 【解析】{}0,1N = M ={ -1,0,1} ∴M ∩N ={0,1}.【点评】此题考查了{}0,1N =,再利用交集定义得出M ∩N. 10.【2021高|考真题湖南理2】命题 "假设α =4π,那么tan α =1”的逆否命题是 α≠4π ,那么tan α≠1 B. 假设α =4π,那么tan α≠1 C. 假设tan α≠1 ,那么α≠4π D. 假设tan α≠1 ,那么α =4π【答案】C【解析】因为 "假设p ,那么q 〞的逆否命题为 "假设p ⌝ ,那么q ⌝〞 ,所以 "假设α =4π ,那么tan α =1”的逆否命题是 "假设tan α≠1 ,那么α≠4π〞. 【点评】此题考查了 "假设p ,那么q 〞形式的命题的逆命题、否命题与逆否命题 ,考查分析问题的能力.11.【2021高|考真题湖北理2】命题 "0x ∃∈R Q ,30x ∈Q 〞的否认是A .0x ∃∉R Q ,30x ∈QB .0x ∃∈R Q ,30x ∉QC .x ∀∉R Q ,3x ∈QD .x ∀∈R Q ,3x ∉Q【答案】D【解析】根据对命题的否认知 ,是把谓词取否认 ,然后把结论否认 .因此选D 12.【2021高|考真题广东理2】设集合U ={1,2,3,4,5,6} , M ={1,2,4 } ,那么CuM = A .U B . {1,3,5} C .{3,5,6} D . {2,4,6}【答案】C【解析】}6,5,3{=M C U ,应选C.13.【2021高|考真题福建理3】以下命题中 ,真命题是 A. 0,00≤∈∃x eR xB. 22,x R x x >∈∀C.a +b =0的充要条件是ab= -1 D.a>1,b>1是ab>1的充分条件 【答案】D.【解析】此类题目多项选择用筛选法 ,因为0>xe 对任意R x ∈恒成立 ,所以A 选项错误;因为当3=x 时93,8223==且8<9,所以选项B 错误;因为当0==b a 时,0=+b a 而ab无意义 ,所以选项C 错误;应选D.14.【2021高|考真题北京理1】集合A ={x ∈R|3x +2>0} B ={x ∈R| (x +1 )(x -3)>0} 那么A ∩B = A ( -∞ , -1 )B ( -1 , -23 ) C ( -23,3 )D (3, +∞)【答案】D【解析】因为32}023|{->⇒>+∈=x x R x A ,利用二次不等式可得1|{-<=x x B 或}3>x 画出数轴易得:}3|{>=x x B A .应选D .15.【2021高|考真题安徽理6】设平面α与平面β相交于直线m ,直线a 在平面α内 ,直线b 在平面β内 ,且b m ⊥ ,那么 "αβ⊥〞是 "a b ⊥〞的 ( )()A 充分不必要条件 ()B 必要不充分条件 ()C 充要条件 ()D 即不充分不必要条件【答案】A【命题立意】此题借助线面位置关系考查条件的判断【解析】①,b m b b a αβα⊥⊥⇒⊥⇒⊥ ,②如果//a m ,那么a b ⊥与b m ⊥条件相同.16.【2021高|考真题全国卷理2】集合A ={1.3.} ,B ={1 ,m} ,A B =A, 那么m =A 0B 0或3C 1D 1或3 【答案】B【解析】因为A B A = ,所以A B ⊆,所以3=m 或m m =.假设3=m ,那么}3,1{},3,3,1{==B A ,满足A B A = .假设m m = ,解得0=m 或1=m .假设0=m ,那么}0,3,1{},0,3,1{==B A ,满足A B A = .假设1=m ,}1,1{},1,3,1{==B A 显然不成立 ,综上0=m 或3=m ,选B..17【2021高|考真题四川理13】设全集{,,,}U a b c d = ,集合{,}A a b = ,{,,}B b c d = ,那么B C A C U U ___________ .【答案】{},,a c d【命题立意】此题考查集合的根本运算法那么 ,难度较小. 【解析】},{d c A C U = ,}{a B C U = ,},,{d c a B C A C U U =∴18.【2021高|考真题上海理2】假设集合}012|{>+=x x A ,}2|1||{<-=x x B ,那么=B A .【答案】)3,21(-【解析】集合}21{}012{->=>+=x x x x A ,}31{}21{<<-=<-=x x x x B ,所以}321{<<-=x x B A ,即)3,21(- .19.【2021高|考真题天津理11】集合},32|{<+∈=x R x A 集合},0)2)((|{<--∈=x m x R x B 且),,1(n B A -= 那么m =__________ ,n =__________. 【答案】1,1-【解析】由32<+x ,得323<+<-x ,即15<<-x ,所以集合}15{<<-=x x A ,因为)1(n B A ,-= ,所以1-是方程0)2)((=--x m x 的根 ,所以代入得0)1(3=+m ,所以1-=m ,此时不等式0)2)(1(<-+x x 的解为21<<-x ,所以)11(,-=B A ,即1=n .20.【2021高|考江苏1】 (5分 )集合{124}A =,, ,{246}B =,, ,那么A B = ▲ .【答案】{}1,2,4,6 . 【考点】集合的概念和运算 . 【分析】由集合的并集意义得{}1,2,4,6AB = .21.【2021高|考江苏26】 (10分 )设集合{12}n P n =,,,… ,*N n ∈.记()f n 为同时满足以下条件的集合A 的个数:①n A P ⊆;②假设x A ∈ ,那么2x A ∉;③假设A C x n p ∈ ,那么A C x np ∉2 .(1 )求(4)f ;(2 )求()f n 的解析式 (用n 表示 ).【答案】解: (1 )当=4n 时 ,符合条件的集合A 为:{}{}{}{}21,42,31,3,4,,, , ∴ (4)f =4 .( 2 )任取偶数n x P ∈ ,将x 除以2 ,假设商仍为偶数.再除以2 ,··· 经过k 次以后.商必为奇数.此时记商为m .于是=2k x m ,其中m 为奇数*k N ∈ .由条件知.假设m A ∈那么x A k ∈⇔为偶数;假设m A ∉ ,那么x A k ∈⇔为奇数 .于是x 是否属于A ,由m 是否属于A 确定 .设n Q 是n P 中所有奇数的集合.因此()f n 等于n Q 的子集个数 . 当n 为偶数〔 或奇数 )时 ,n P 中奇数的个数是2n (12n + ) . ∴()()2122()=2nn n f n n +⎧⎪⎨⎪⎩为偶数为奇数. 【考点】集合的概念和运算 ,计数原理 .【解析】 (1 )找出=4n 时 ,符合条件的集合个数即可 . (2 )由题设 ,根据计数原理进行求解 .22.【2021高|考真题陕西理18】 (本小题总分值12分 )(1 )如图 ,证明命题 "a 是平面π内的一条直线 ,b 是π外的一条直线 (b 不垂直于π ) ,c 是直线b 在π上的投影 ,假设a b ⊥ ,那么a c ⊥〞为真 . (2 )写出上述命题的逆命题 ,并判断其真假 (不需要证明 )【答案】分析: (1 )证法一:做出辅助线 ,在直线上构造对应的方向向量 ,要证两条直线垂直 ,只要证明两条直线对应的向量的数量积等于0 ,根据向量的运算法那么得到结果.证法二:做出辅助线 ,根据线面垂直的性质 ,得到线线垂直 ,根据线面垂直的判定定理 ,得到线面垂直 ,再根据性质得到结论.(2 )把所给的命题的题设和结论交换位置,得到原命题的逆命题,判断出你命题的正确性.。
2021年高考数学(理)一轮复习题型归纳与训练 专题8.6 立体几何中的向量方法(教师版含解析)
2021年高考理科数学一轮复习:题型全归纳与高效训练突破专题8.6 立体几何中的向量方法目录一、考点全归纳1.两条异面直线所成角的求法设a,b分别是两异面直线l1,l2的方向向量,则设直线l的方向向量为a,平面α的法向量为n,直线l与平面α所成的角为θ,a与n的夹角为β,则sin θ=|cos β|=|a·n||a||n|.3.求二面角的大小(1)如图①,AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(2)如图①①,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 【常用结论】 利用空间向量求距离 (1)两点间的距离设点A (x 1,y 1,z 1),点B (x 2,y 2,z 2),则|AB |=|AB →|=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2. (2)点到平面的距离如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为|BO →|=|AB →·n ||n |.二 题型全归纳题型一 异面直线所成的角【题型要点】用向量法求异面直线所成角的一般步骤 (1)选择三条两两垂直的直线建立空间直角坐标系.(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量. (3)利用向量的夹角公式求出向量夹角的余弦值.(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.【易错提醒】注意向量的夹角与异面直线所成的角的区别:当异面直线的方向向量的夹角为锐角或直角时,就是此异面直线所成的角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线所成的角.【例1】如图,在四棱锥P ABCD 中,P A ①平面ABCD ,底面ABCD 是菱形,AB =2,①BAD =60°.(1)求证:BD ①平面P AC ;(2)若P A =AB ,求PB 与AC 所成角的余弦值. 【解析】(1)证明:因为四边形ABCD 是菱形, 所以AC ①BD .因为P A ①平面ABCD ,所以P A ①BD . 又因为AC ∩P A =A ,所以BD ①平面P AC . (2)设AC ∩BD =O .因为①BAD =60°,P A =AB =2,所以BO =1,AO =CO = 3.如图,以O 为坐标原点,建立空间直角坐标系Oxyz ,则P (0,-3,2),A (0,-3,0),B (1,0,0),C (0,3,0). 所以PB →=(1,3,-2),AC →=(0,23,0). 设PB 与AC 所成角为θ,则cos θ=⎪⎪⎪⎪⎪⎪PB →·AC →|PB →||AC →|=622×23=64.即PB 与AC 所成角的余弦值为64. 【例2】.如图,在三棱锥P ABC 中,P A ①底面ABC ,①BAC =90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2.(1)求证:MN ①平面BDE ;(2)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长. 【解析】:如图,以A 为原点,分别以AB →,AC →,AP →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(1)证明:DE →=(0,2,0),DB →=(2,0,-2). 设n =(x ,y ,z )为平面BDE 的法向量, 则⎩⎪⎨⎪⎧n ·DE →=0,n ·DB →=0,即⎩⎪⎨⎪⎧2y =0,2x -2z =0.不妨设z =1,可取n =(1,0,1).又MN →=(1,2,-1),可得MN →·n =0. 因为MN ①平面BDE , 所以MN ①平面BDE .(2)依题意,设AH =h (0≤h ≤4),则H (0,0,h ), 进而可得NH →=(-1,-2,h ),BE →=(-2,2,2).由已知,得|cos 〈NH →,BE →〉|=|NH →·BE →||NH →||BE →|=|2h -2|h 2+5×23=721,整理得10h 2-21h +8=0,解得h =85或h =12.所以,线段AH 的长为85或12.题型二 直线与平面所成的角【题型要点】(1)利用向量求直线与平面所成的角有两个思路:①分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);①通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.(2)若直线l 与平面α的夹角为θ,直线l 的方向向量l 与平面α的法向量n 的夹角为β,则θ=π2-β或θ=β-π2. 【易错提醒】求解直线和平面所成角,要注意直线的方向向量与平面法向量的夹角和所求角之间的关系,线面角的正弦值等于两向量夹角的余弦值的绝对值.【例1】(2020·深圳模拟)如图,四棱锥P -ABCD 中,底面ABCD 为菱形,PD =PB ,H 为PC 上的点,过AH 的平面分别交PB ,PD 于点M ,N ,且BD ①平面AMHN .(1)证明:MN ①PC ;(2)设H 为PC 的中点,P A =PC =3AB ,P A 与平面ABCD 所成的角为60°,求AD 与平面AMHN 所成角的正弦值.【解析】:(1)证明:如图①,连接AC 交BD 于点O ,连接PO .因为四边形ABCD 为菱形,所以BD ①AC ,且O 为BD 的中点. 因为PD =PB ,所以PO ①BD ,因为AC ∩PO =O ,且AC ,PO ①平面P AC ,所以BD ①平面P AC . 因为PC ①平面P AC ,所以BD ①PC .因为BD ①平面AMHN ,且平面AMHN ∩平面PBD =MN ,所以BD ①MN , 所以MN ①PC .(2)由(1)知BD ①AC 且PO ①BD , 因为P A =PC ,且O 为AC 的中点, 所以PO ①AC ,所以PO ①平面ABCD ,因为P A 与平面ABCD 所成的角为①P AO ,所以①P AO =60°,所以AO =12P A ,PO =32P A .因为P A =3AB ,所以BO =36P A .以O 为坐标原点,OA →,OD →,OP →的方向分别为x 轴,y 轴,z 轴的正方向,建立如图①所示的空间直角坐标系,记P A =2,则O (0,0,0),A (1,0,0),B ⎝⎛⎭⎫0,-33,0,C (-1,0,0),D ⎝⎛⎭⎫0,33,0,P (0,0,3),H ⎝⎛⎭⎫-12,0,32, 所以BD →=⎝⎛⎭⎫0,233,0,AH →=⎝⎛⎭⎫-32,0,32,AD →=⎝⎛⎭⎫-1,33,0. 设平面AMHN 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BD →=0,n ·AH →=0,即⎩⎨⎧233y =0,-32x +32z =0,令x =2,解得y =0,z =23,所以n =(2,0,23)是平面AMHN 的一个法向量. 记AD 与平面AMHN 所成角为θ,则sin θ=|cos 〈n ,AD →〉|=⎪⎪⎪⎪⎪⎪n ·AD →|n ||AD →|=34.所以AD 与平面AMHN 所成角的正弦值为34. 【例2】如图,在几何体ACD -A 1B 1C 1D 1中,四边形ADD 1A 1与四边形CDD 1C 1均为矩形,平面ADD 1A 1①平面CDD 1C 1,B 1A 1①平面ADD 1A 1,AD =CD =1,AA 1=A 1B 1=2,E 为棱AA 1的中点.(1)证明:B 1C 1①平面CC 1E ;(2)求直线B 1C 1与平面B 1CE 所成角的正弦值.【解析】(1)证明:因为B 1A 1①平面ADD 1A 1,所以B 1A 1①DD 1, 又DD 1①D 1A 1,B 1A 1∩D 1A 1=A 1,所以DD 1①平面A 1B 1C 1D 1, 又DD 1①CC 1,所以CC 1①平面A 1B 1C 1D 1. 因为B 1C 1①平面A 1B 1C 1D 1,所以CC 1①B 1C 1.因为平面ADD 1A 1①平面CDD 1C 1,平面ADD 1A 1∩平面CDD 1C 1=DD 1,C 1D 1①DD 1, 所以C 1D 1①平面ADD 1A 1.经计算可得B 1E =5,B 1C 1=2,EC 1=3,从而B 1E 2=B 1C 21+EC 21,所以在①B 1EC 1中,B 1C 1①C 1E .又CC 1,C 1E ①平面CC 1E ,CC 1∩C 1E =C 1,所以B 1C 1①平面CC 1E . (2)如图,以点A 为坐标原点,建立空间直角坐标系,依题意得A (0,0,0),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0),则CE →=(-1,1,-1),B 1C →=(1,-2,-1).设平面B 1CE 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·B 1C →=0,m ·CE →=0,即⎩⎪⎨⎪⎧x -2y -z =0,-x +y -z =0,消去x 得y +2z =0, 不妨设z =1,可得m =(-3,-2,1)为平面B 1CE 的一个法向量, 易得B 1C 1→=(1,0,-1),设直线B 1C 1与平面B 1CE 所成角为θ,则sin θ=|cos 〈m ,B 1C 1→〉|=⎪⎪⎪⎪⎪⎪m ·B 1C 1→|m |·|B 1C 1→|=⎪⎪⎪⎪⎪⎪-414×2=277, 故直线B 1C 1与平面B 1CE 所成角的正弦值为277.题型三 二面角【题型要点】利用向量计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐(钝)二面角.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.【易错提醒】:判断二面角的平面角是锐角还是钝角,可结合图形进行.【例1】(2020·深圳模拟)已知四棱锥PABCD,底面ABCD为菱形,PD=PB,H为PC上的点,过AH的平面分别交PB,PD于点M,N,且BD①平面AMHN.(1)证明:MN①PC;(2)当H为PC的中点,P A=PC=3AB,P A与平面ABCD所成的角为60°,求AD与平面AMHN所成角的正弦值.【解析】(1)证明:连接AC、BD且AC∩BD=O,连接PO.因为ABCD为菱形,所以BD①AC,因为PD=PB,所以PO①BD,因为AC∩PO=O且AC、PO①平面P AC,所以BD①平面P AC,因为PC①平面P AC,所以BD①PC,因为BD①平面AMHN,且平面AMHN∩平面PBD=MN,所以BD①MN,MN①平面P AC,所以MN ①P C.(2)由(1)知BD ①AC 且PO ①BD , 因为P A =PC ,且O 为AC 的中点, 所以PO ①AC ,所以PO ①平面ABCD , 所以P A 与平面ABCD 所成的角为①P AO , 所以①P AO =60°,所以AO =12P A ,PO =32P A ,因为P A =3AB ,所以BO =36P A . 以OA →,OD →,OP →分别为x ,y ,z 轴,建立空间直角坐标系,如图所示.设P A =2,所以O (0,0,0),A (1,0,0),B (0,-33,0),C (-1,0,0),D (0,33,0),P (0,0,3),H (-12,0,32),所以BD →=(0,233,0),AH →=(-32,0,32),AD →=(-1,33,0).设平面AMHN 的法向量为n =(x ,y ,z ), 所以⎩⎪⎨⎪⎧n ·BD →=0,n ·AH →=0,即⎩⎨⎧233y =0,-32x +32z =0,令x =2,则y =0,z =23,所以n =(2,0,23),设AD 与平面AMHN 所成角为θ,所以sin θ=|cos 〈n ,AD →〉|=|n ·AD →|n ||AD →||=34. 所以AD 与平面AMHN 所成角的正弦值为34. 【例2】图1是由矩形ADEB ,Rt①ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,①FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连接DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ①平面BCGE ;(2)求图2中的二面角B -CG -A 的大小.【解析】:(1)证明:由已知得AD ①BE ,CG ①BE ,所以AD ①CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ①BE ,AB ①BC ,故AB ①平面BCGE .又因为AB ①平面ABC ,所以平面ABC ①平面BCGE .(2)作EH ①BC ,垂足为H .因为EH ①平面BCGE ,平面BCGE ①平面ABC ,所以EH ①平面ABC .由已知,菱形BCGE 的边长为2,①EBC =60°,可求得BH =1,EH = 3. 以H 为坐标原点,HC →的方向为x 轴的正方向,建立如图所示的空间直角坐标系H xyz , 则A (-1,1,0),C (1,0,0),G (2,0,3),CG →=(1,0,3),AC →=(2,-1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧CG →·n =0AC →·n =0,即⎩⎨⎧x +3z =0,2x -y =0. 所以可取n =(3,6,-3).又平面BCGE 的法向量可取为m =(0,1,0),所以cos n ,m =n ·m |n ||m |=32. 因此二面角B CG A 的大小为30°.题型四 利用空间向量求距离【题型要点】求解点到平面的距离可直接转化为求向量在平面的法向量上的射影的长.如图,设点P 在平面α外,n 为平面α的法向量,在平面α内任取一点Q ,则点P 到平面α的距离d =|PQ →·n ||n |.【易错提醒】该题中的第(2)问求解点到平面的距离时,利用了两种不同的方法——等体积法与向量法,显然向量法直接简单,不必经过过多的逻辑推理,只需代入坐标准确求解即可.【例1】(2020·云南师范大学附属中学3月月考)如图,在直三棱柱ABC A 1B 1C 1中,①ABC 是边长为2的正三角形,AA 1=26,D 是CC 1的中点,E 是A 1B 1的中点.(1)证明:DE ①平面A 1BC;(2)求点A 到平面A 1BC 的距离.【解析】 (1)证明:如图取A 1B 的中点F ,连接FC ,FE .因为E ,F 分别是A 1B 1,A 1B 的中点,所以EF ①BB 1,且EF =12BB 1. 又在平行四边形BB 1C 1C 中,D 是CC 1的中点,所以CD ①BB 1,且CD =12BB 1,所以CD ①EF ,且CD =EF . 所以四边形CFED 是平行四边形,所以DE ①CF .因为DE ①/平面A 1BC ,CF ①平面A 1BC ,所以DE ①平面A 1BC .(2)法一:(等体积法)因为BC =AC =AB =2,AA 1=26,三棱柱ABC A 1B 1C 1为直三棱柱,所以V 三棱锥A 1-ABC =13S ①ABC ×AA 1=13×34×22×26=2 2. 又在①A 1BC 中,A 1B =A 1C =27,BC =2,BC 边上的高h = A 1B 2-⎝⎛⎭⎫12BC 2=33,所以S ①A 1BC =12BC ·h =3 3. 设点A 到平面A 1BC 的距离为d ,则V 三棱锥A -A 1BC =13S ①A 1BC ×d =13×33×d =3d . 因为V 三棱锥A 1-ABC =V 三棱锥A -A 1BC ,所以22=3d ,解得d =263, 所以点A 到平面A 1BC 的距离为263. 法二:(向量法)由题意知,三棱柱ABC A 1B 1C 1是正三棱柱.取AB 的中点O ,连接OC ,OE .因为AC =BC ,所以CO ①AB .又平面ABC ①平面ABB 1A 1,平面ABC ∩平面ABB 1A 1=AB ,所以CO ①平面ABB 1A 1.因为O 为AB 的中点,E 为A 1B 1的中点,所以OE ①AB ,所以OC ,OA ,OE 两两垂直.如图,以O 为坐标原点,以OA ,OE ,OC 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C (0,0,3),A (1,0,0),A 1(1,26,0),B (-1,0,0).则BA 1→=(2,26,0),BC →=(1,0,3).设平面A 1BC 的法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧n ①BA 1→,n ①BC →,可得⎩⎪⎨⎪⎧n ·BA 1→=2x +26y =0,n ·BC →=x +3z =0, 整理得⎩⎨⎧x +6y =0,x +3z =0,令x =6,则y =-1,z =- 2. 所以n =(6,-1,-2)为平面A 1BC 的一个法向量.而BA →=(2,0,0),所以点A 到平面A 1BC 的距离d =|BA →·n ||n |=6×26+1+2=263. 【例2】如图,①BCD 与①MCD 都是边长为2的正三角形,平面MCD ①平面BCD ,AB ①平面BCD ,AB =23,求点A 到平面MBC 的距离.【答案】见解析【解析】:如图,取CD 的中点O ,连接OB ,OM ,因为①BCD 与①MCD 均为正三角形,所以OB ①CD ,OM ①CD ,又平面MCD ①平面BCD ,平面MCD ∩平面BCD =CD ,OM ①平面MCD ,所以MO ①平面BCD .以O 为坐标原点,直线OC ,BO ,OM 分别为x 轴,y 轴,z 轴,建立空间直角坐标系Oxyz .因为①BCD 与①MCD 都是边长为2的正三角形,所以OB =OM =3,则O (0,0,0),C (1,0,0),M (0,0,3),B (0,-3,0),A (0,-3,23),所以BC →=(1,3,0).BM →=(0,3,3).设平面MBC 的法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ①BC →,n ①BM →得⎩⎪⎨⎪⎧n ·BC →=0,n ·BM →=0,即⎩⎨⎧x +3y =0,3y +3z =0, 取x =3,可得平面MBC 的一个法向量为n =(3,-1,1).又BA →=(0,0,23),所以所求距离为d =|BA →·n ||n |=2155.三、高效训练突破一、选择题1.若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于( )A .120°B .60°C .30°D .60°或30°【答案】C【解析】设直线l 与平面α所成的角为β,直线l 与平面α的法向量的夹角为γ.则sin β=|cos γ|=|cos 120°|=12. 又0°≤β≤90°,①β=30°.2.在正方体A 1B 1C 1D 1ABCD 中,AC 与B 1D 所成角大小为( )A.π6B.π4C.π3D.π2 【答案】D【解析】建立如图所示的空间直角坐标系设正方体边长为1,则A (0,0,0), C (1,1,0),B 1(1,0,1),D (0,1,0). ①AC →=(1,1,0),B 1D →=(-1,1,-1),①AC →·B 1D →=1×(-1)+1×1+0×(-1)=0,①AC →①B 1D →,①AC 与B 1D 所成的角为π2. 3.如图,在空间直角坐标系中有直三棱柱ABC A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( )A.55B.53C.255D.35【答案】A 【解析】设CA =2,则C (0,0,0),A (2,0,0),B (0,0,1),C 1(0,2,0),B 1(0,2,1),可得向量AB 1→=(-2,2,1),BC 1→=(0,2,-1),由向量的夹角公式得cos 〈AB 1→,BC 1→〉=-2×0+2×2+1×(-1)0+4+1·4+4+1=15=55. 4.将边长为1的正方形AA 1O 1O (及其内部)绕OO 1旋转一周形成圆柱,如图,AC ︵长为2π3,A 1B 1︵长为π3,其中B 1与C 在平面AA 1O 1O 的同侧.则异面直线B 1C 与AA 1所成的角的大小为( )A.π6 B .π4C.π3D .π2【答案】B 【解析】:.以O 为坐标原点建系如图则A (0,1,0),A 1(0,1,1),B 1⎝⎛⎭⎫32,12,1,C ⎝⎛⎭⎫32,-12,0. 所以AA 1→=(0,0,1),B 1C →=(0,-1,-1),所以cos 〈AA 1→,B 1C →〉=AA 1→·B 1C →|AA 1→||B 1C →|=0×0+0×(-1)+1×(-1)1×02+(-1)2+(-1)2=-22, 所以〈AA 1→,B 1C →〉=3π4,所以异面直线B 1C 与AA 1所成的角为π4.故选B. 5.如图,已知长方体ABCD A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =13AB ,则DC 1与平面D 1EC 所成的角的正弦值为( )A.33535B .277 C.33 D .24 【答案】A.【解析】:如图以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C 1(0,3,1),D 1(0,0,1),E (1,1,0),C (0,3,0),所以DC 1→=(0,3,1),D 1E →=(1,1,-1),D 1C →=(0,3,-1).设平面D 1EC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·D 1E →=0,n ·D 1C →=0,即⎩⎪⎨⎪⎧x +y -z =0,3y -z =0,即⎩⎪⎨⎪⎧x =2y ,z =3y ,取y =1,得n =(2,1,3). 因为cos 〈DC 1→,n 〉=DC 1→·n |DC 1→|·|n |=(0,3,1)·(2,1,3)10×14=33535,所以DC 1与平面D 1EC 所成的角的正弦值为33535,故选A. 6.二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217.则该二面角的大小为( )A .150°B .45°C .60°D .120°【答案】C.【解析】:如图所示二面角的大小就是〈AC →,BD →〉.因为CD →=CA →+AB →+BD →,所以CD →2=CA →2+AB →2+BD →2+2(CA →·AB →+CA →·BD →+AB →·BD →)=CA →2+AB →2+BD →2+2CA →·BD →,所以CA →·BD →=12[(217)2-62-42-82]=-24.因此AC →·BD →=24,cos 〈AC →,BD →〉=AC →·BD →|AC →||BD →|=12, 又〈AC →,BD →〉①[0°,180°],所以〈AC →,BD →〉=60°,故二面角为60°.7.已知斜四棱柱ABCD A 1B 1C 1D 1的各棱长均为2,①A 1AD =60°,①BAD =90°,平面A 1ADD 1①平面ABCD ,则直线BD 1与平面ABCD 所成的角的正切值为( ) A.34B.134C.3913D.393 【答案】C【解析】取AD 中点O ,连接OA 1,易证A 1O ①平面ABCD .建立如图所示的空间直角坐标系得B (2,-1,0),D 1(0,2,3),BD 1→=(-2,3,3),平面ABCD 的一个法向量为n =(0,0,1),设BD 1与平面ABCD 所成的角为θ,①sin θ=|BD 1→·n ||BD 1→||n |=34,①tan θ=3913. 8.如图,在四棱锥P ABCD 中,四边形ABCD 为平行四边形,且BC ①平面P AB ,P A ①AB ,M 为PB 的中点,P A =AD =2.若AB =1,则二面角B AC M 的余弦值为( )A.66B.36C.26D.16【答案】A【解析】因为BC ①平面P AB ,P A ①平面P AB ,所以P A ①BC ,又P A ①AB ,且BC ∩AB =B ,所以P A ①平面ABCD .以点A 为坐标原点,分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系A xyz .则A (0,0,0),C (1,2,0),P (0,0,2),B (1,0,0),M ⎝⎛⎭⎫12,0,1,所以AC →=(1,2,0),AM →=⎝⎛⎭⎫12,0,1,求得平面AMC 的一个法向量为n =(-2,1,1),又平面ABC 的一个法向量AP →=(0,0,2),所以cos 〈n ,AP →〉=n ·AP →|n ||AP →|=24+1+1×2=16=66. 所以二面角B AC M 的余弦值为66. 9.设正方体ABCD A 1B 1C 1D 1的棱长为2,则点D 1到平面A 1BD 的距离是( )A.32B.22 C.223 D.233【答案】D【解析】如图建立坐标系则D 1(0,0,2),A 1(2,0,2),B (2,2,0),D 1A 1→=(2,0,0),DB →=(2,2,0),DA 1→=(2,0,2).设平面A 1BD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DA 1→=0,n ·DB →=0,①⎩⎪⎨⎪⎧2x +2z =0,2x +2y =0,令z =1,得n =(-1,1,1). ①D 1到平面A 1BD 的距离d =|D 1A 1→·n ||n |=23=233. 二、填空题1.如图,正三棱柱ABC A 1B 1C 1的所有棱长都相等,E ,F ,G 分别为AB ,AA 1,A 1C 1的中点,则B 1F 与平面GEF 所成角的正弦值为________.【答案】:35【解析】:设正三棱柱的棱长为2,取AC 的中点D ,连接DG ,DB ,分别以DA ,DB ,DG 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则B 1(0,3,2),F (1,0,1),E ⎝⎛⎭⎫12,32,0,G (0,0,2),B 1F →=(1,-3,-1),EF →=⎝⎛⎭⎫12,-32,1,GF →=(1,0,-1). 设平面GEF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧EF →·n =0,GF →·n =0,即⎩⎪⎨⎪⎧12x -32y +z =0,x -z =0,取x =1,则z =1,y =3,故n =(1,3,1)为平面GEF 的一个法向量,所以|cos 〈n ,B 1F →〉|=|1-3-1|5×5=35, 所以B 1F 与平面GEF 所成角的正弦值为35. 2.如图,平面ABCD ①平面ABEF ,四边形ABCD 是正方形,四边形ABEF 是矩形,且AF =12AD =a ,G 是EF 的中点,则GB 与平面AGC 所成角的正弦值为________.【答案】63【解析】如图以A 为原点建立空间直角坐标系,则A (0,0,0),B (0,2a ,0),C (0,2a ,2a ),G (a ,a ,0),AG →=(a ,a ,0),AC →=(0,2a ,2a ),BG →=(a ,-a ,0),设平面AGC 的法向量为n 1=(x 1,y 1,1),由⎩⎪⎨⎪⎧AG →·n 1=0AC →·n 1=0①⎩⎪⎨⎪⎧ax 1+ay 1=02ay 1+2a =0①⎩⎪⎨⎪⎧x 1=1y 1=-1①n 1=(1,-1,1).sin θ=|BG →·n 1||BG →||n 1|=2a 2a ×3=63. 3.已知正四棱锥S ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE 与SD 所成角的余弦值为________.【答案】33 【解析】以两对角线AC 与BD 的交点O 作为原点,以OA ,OB ,OS 所在直线分别为x ,y ,z 轴建立空间直角坐标系设边长为2,则有O (0,0,0),A (2,0,0),B (0,2,0),S (0,0,2),D (0,-2,0),E ⎝⎛⎭⎫0,22,22, AE →=⎝⎛⎭⎫-2,22,22,SD →=(0,-2,-2), |cos AE →,SD →|=|AE →·SD →||AE →||SD →|=22×3=33, 故AE 与SD 所成角的余弦值为33. 4.在正四棱柱ABCD A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于________.【答案】23【解析】以D 为坐标原点,建立空间直角坐标系,如图设AA 1=2AB =2,则D (0,0,0),C (0,1,0),B (1,1,0),C 1(0,1,2),则DC →=(0,1,0),DB →=(1,1,0),DC 1→=(0,1,2).设平面BDC 1的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DB →=0,n ·DC 1→=0,所以有⎩⎪⎨⎪⎧x +y =0,y +2z =0, 令y =-2,得平面BDC 1的一个法向量n =(2,-2,1).设CD 与平面BDC 1所成的角为θ,则sin θ=|cos 〈n ,DC →〉|=⎪⎪⎪⎪⎪⎪⎪⎪n ·DC →|n ||DC →|=23. 5.(2020·汕头模拟)在底面是直角梯形的四棱锥S ABCD 中,①ABC =90°,AD ①BC ,SA ①平面ABCD ,SA=AB =BC =1,AD =12,则平面SCD 与平面SAB 所成锐二面角的余弦值是________. 【答案】63 【解析】如图所示建立空间直角坐标系,则依题意可知,D ⎝⎛⎭⎫12,0,0,C (1,1,0),S (0,0,1),可知AD →=⎝⎛⎭⎫12,0,0是平面SAB 的一个法向量.设平面SCD 的一个法向量n =(x ,y ,z ),因为SD →=⎝⎛⎭⎫12,0,-1,DC →=⎝⎛⎭⎫12,1,0,所以⎩⎪⎨⎪⎧n ·SD →=0,n ·DC →=0,即⎩⎨⎧x 2-z =0,x 2+y =0.令x =2,则有y =-1,z =1,所以n =(2,-1,1).设平面SCD 与平面SAB 所成的锐二面角为θ,则cos θ=|AD →·n ||AD →||n |=12×2+0×(-1)+0×1⎝⎛⎭⎫122×22+(-1)2+12=63. 6.(2020·北京模拟)如图所示,四棱锥P ABCD 中,PD ①底面ABCD ,底面ABCD 是边长为2的正方形,PD =2,E 是棱PB 的中点,M 是棱PC 上的动点,当直线P A 与直线EM 所成的角为60°时,那么线段PM 的长度是________.【答案】542 【解析】如图建立空间直角坐标系,则A (2,0,0),P (0,0,2),B (2,2,0),①AP →=()-2,0,2,①E 是棱PB 的中点,①E (1,1,1),设M (0,2-m ,m ),则EM →=()-1,1-m ,m -1,①||cos 〈AP →,EM →〉=⎪⎪⎪⎪⎪⎪⎪⎪AP →·EM →|AP →||EM →|=||2+2()m -1221+2(m -1)2=12, 解得m =34,①M ⎝⎛⎭⎫0,54,34, ①PM =2516+2516=54 2. 三 解答题1.如图所示,菱形ABCD 中,①ABC =60°,AC 与BD 相交于点O ,AE ①平面ABCD ,CF ①AE ,AB =AE =2.(1)求证:BD ①平面ACFE ;(2)当直线FO 与平面BED 所成的角为45°时,求异面直线OF 与BE 所成角的余弦值的大小.【答案】见解析【解析】:(1)证明:因为四边形ABCD 是菱形,所以BD ①AC .因为AE ①平面ABCD ,BD ①平面ABCD ,所以BD ①AE .又因为AC ∩AE =A ,AC ,AE ①平面ACFE .所以BD ①平面ACFE .(2)以O 为原点,OA ,OB 所在直线分别为x 轴,y 轴,过点O 且平行于CF 的直线为z 轴(向上为正方向),建立空间直角坐标系,则B (0,3,0),D (0,-3,0),E (1,0,2),F (-1,0,a )(a >0),OF →=(-1,0,a ).设平面EBD 的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧n ·OB →=0,n ·OE →=0,即⎩⎨⎧3y =0,x +2z =0, 令z =1,则n =(-2,0,1),由题意得sin 45°=|cos 〈OF →,n 〉|=|OF →·n ||OF →||n |=|2+a |a 2+1·5=22, 解得a =3或a =-13(舍去). 所以OF →=(-1,0,3),BE →=(1,-3,2),cos 〈OF →,BE →〉=-1+610×8=54, 故异面直线OF 与BE 所成角的余弦值为54. 2.(2020·湖北十堰4月调研)如图,在三棱锥P -ABC 中,M 为AC 的中点,P A ①PC ,AB ①BC ,AB =BC ,PB =2,AC =2,①P AC =30°.(1)证明:BM ①平面P AC ;(2)求二面角B -P A -C 的余弦值.【答案】:见解析(1)证明:因为P A ①PC ,AB ①BC ,所以MP =MB =12AC =1, 又MP 2+MB 2=BP 2,所以MP ①MB .因为AB =BC ,M 为AC 的中点,所以BM ①AC ,又AC ∩MP =M ,所以BM ①平面P AC .(2)法一:取MC 的中点O ,连接PO ,取BC 的中点E ,连接EO ,则OE ①BM ,从而OE ①AC .因为P A ①PC ,①P AC =30°,所以MP =MC =PC =1.又O 为MC 的中点,所以PO ①AC .由(1)知BM ①平面P AC ,OP ①平面P AC ,所以BM ①PO .又BM ∩AC =M ,所以PO ①平面ABC .以O 为坐标原点,OA ,OE ,OP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图所示,由题意知A ⎝⎛⎭⎫32,0,0,B ⎝⎛⎭⎫12,1,0,P ⎝⎛⎭⎫0,0,32,BP →=⎝⎛⎭⎫-12,-1,32,BA →=(1,-1,0), 设平面APB 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BP →=-12x -y +32z =0,n ·BA →=x -y =0,令x =1,得n =(1,1,3)为平面APB 的一个法向量,易得平面P AC 的一个法向量为π=(0,1,0),cos 〈n ,π〉=55, 由图知二面角B -P A -C 为锐角,所以二面角B -P A -C 的余弦值为55. 法二:取P A 的中点H ,连接HM ,HB ,因为M 为AC 的中点,所以HM ①PC ,又P A ①PC ,所以HM ①P A .由(1)知BM ①平面P AC ,则BH ①P A ,所以①BHM 为二面角B -P A -C 的平面角.因为AC =2,P A ①PC ,①P AC =30°,所以HM =12PC =12. 又BM =1,则BH =BM 2+HM 2=52, 所以cos①BHM =HM BH =55,即二面角B -P A -C 的余弦值为55. 3.(2020·合肥模拟)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,BF ①平面ABCD ,DE ①平面ABCD ,BF =DE ,M 为棱AE 的中点.(1)求证:平面BDM ①平面EFC ;(2)若DE =2AB ,求直线AE 与平面BDM 所成角的正弦值.【答案】:见解析(1)证明:连接AC ,交BD 于点N ,连接MN ,则N 为AC 的中点,又M 为AE 的中点,所以MN ①EC .因为MN ①平面EFC ,EC ①平面EFC ,所以MN ①平面EFC .因为BF ,DE 都垂直底面ABCD ,所以BF ①DE .因为BF =DE ,所以四边形BDEF 为平行四边形,所以BD ①EF .因为BD ①平面EFC ,EF ①平面EFC ,所以BD ①平面EFC .又MN ∩BD =N ,所以平面BDM ①平面EFC .(2)因为DE ①平面ABCD ,四边形ABCD 是正方形,所以DA ,DC ,DE 两两垂直,如图,建立空间直角坐标系D xyz .设AB =2,则DE =4,从而D (0,0,0),B (2,2,0),M (1,0,2),A (2,0,0),E (0,0,4),所以DB →=(2,2,0),DM →=(1,0,2),设平面BDM 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DB →=0,n ·DM →=0,得⎩⎪⎨⎪⎧2x +2y =0,x +2z =0. 令x =2,则y =-2,z =-1,从而n =(2,-2,-1)为平面BDM 的一个法向量.因为AE →=(-2,0,4),设直线AE 与平面BDM 所成的角为θ,则sin θ=|cos 〈n ·AE →〉|=⎪⎪⎪⎪⎪⎪n ·AE →|n |·|AE →|=4515, 所以直线AE 与平面BDM 所成角的正弦值为4515.。
2021年全国新高考卷数学试题含答案
2021年全国新高考卷数学试题含答案一、选择题(每题1分,共5分)1. 下列函数中,奇函数的是()A. y = x^2B. y = |x|C. y = x^3D. y = x^2 + 12. 已知集合A={x|0<x<3},B={x|x≤2},则A∩B等于()A. {x|0<x<2}B. {x|0<x≤2}C. {x|0≤x<3}D. {x|0≤x≤2}3. 在等差数列{an}中,若a1=1,a3=3,则公差d等于()A. 1B. 2C. 3D. 44. 若复数z满足|z|=1,则z的共轭复数z的模等于()A. 0B. 1C. 2D. z5. 下列函数中,在区间(0,+∞)上单调递减的是()A. y = e^xB. y = ln(x)C. y = x^2D. y = 1/x二、判断题(每题1分,共5分)1. 两个平行线的斜率相等。
()2. 若矩阵A可逆,则其行列式值不为0。
()3. 任何两个实数的和都是实数。
()4. 二项式展开式中,各项系数的和等于2的n次方。
()5. 函数y = x^3在区间(∞,+∞)上单调递增。
()三、填空题(每题1分,共5分)1. 若向量a=(1,2),b=(1,3),则向量a与向量b的夹角余弦值为______。
2. 在等比数列{bn}中,若b1=2,公比q=3,则b6=______。
3. 若函数f(x)=3x^24x+1,则f'(x)=______。
4. 三角形内角和为______。
5. 圆的标准方程为(xa)^2+(yb)^2=r^2,其中圆心坐标为______。
四、简答题(每题2分,共10分)1. 简述函数的极值的定义。
2. 什么是排列组合?请举例说明。
3. 请写出余弦定理的公式。
4. 简述概率的基本性质。
5. 举例说明平面向量的线性运算。
五、应用题(每题2分,共10分)1. 已知函数f(x)=x^22x+1,求f(x)的最小值。
2. 设有4个红球,3个蓝球,求从中任取3个球,恰有2个红球的概率。
2021年新高考数学题型全归纳之排列组合-专题20 定序问题(解析版)
专题20 定序问题例1.《数术记遗》是《算经十书》中的一部,相传是汉末徐岳(约公元2世纪)所著,该书主要记述了:积算(即筹算)太乙、两仪、三才、五行、八卦、九宫、运筹、了知、成数、把头、龟算、珠算计数14种计算器械的使用方法某研究性学习小组3人分工搜集整理14种计算器械的相关资料,其中一人4种、另两人每人5种计算器械,则不同的分配方法有()A.455314105322C C C AAB.455214105233C C C AAC.4551410522C C CAD.45514105C C C【解析】先将14种计算器械分为三组,方法数有4551410522C C CA种,再排给3个人,方法数有455314105322C C CAA⨯种,故选A.例2.今年3月10日湖北武汉某方舱医院“关门大吉”,某省驰援湖北“抗疫”的9名身高各不相同的医护人员站成一排合影留念,庆祝圆满完成“抗疫”任务,若恰好从中间往两边看都依次变低,则身高排第4的医护人员和最高的医护人员相邻的概率为()A.27B.29C.514D.17【解析】将身高从低到高的9个人依次编号为1,2,3,4,5,6,7,8,9,则9号必须排在正中间,从其余8个人中任选4人排在9号的左边,剩下的4个人排在9号的右边,有4870C=种,当排名第四的6号排在最高的9号的左边时,从1,2,3,4,5中任选3个排在6号的左边,其余四个排在9号的右边,有3510C=种,同理当当排名第四的6号排在最高的9号的右边时,也有10种,所以身高排名第四的6号与最高的9号相邻的排法有10+10=20种,所以身高排第4的医护人员和最高的医护人员相邻的概率为202 707=.故选:A.例3.现有5名学生:甲、乙、丙、丁、戊排成一队照相,要求甲与乙相邻,且甲、乙、丁的左右顺序固定,站法种数为()A.36B.24C.20D.12【解析】因为甲与乙相邻,且甲、乙、丁的左右顺序固定,所以可将甲和乙看作一个整体,共有1种站法,再与其余三人进行排列,共有442212AA=种站法.故选:D.例4.某次数学获奖的6名高矮互不相同的同学站成两排照相,后排每个人都高于站在他前面的同学,则共有多少种站法()A.36B.90C.360D.720【解析】6个高矮互不相同的人站成两排,后排每个人都高于站在他前面的同学的站法数为222342633390 C C CAA⋅=,故选:B例5.4名护士和2名医生站成一排,2名医生顺序固定,则不同的排法种数为()A.480B.360C.288D.144【解析】4名护士和2名医生站成一排,共有66A种,又因为2名医生顺序固定,所以不同的排法种数为66227203602AA==种.故选:B.例6.A,B,C,D,E五个字母排成一排,字母A排在字母B的左边(但不一定相邻)的排法种数为(). A.24B.12C.60D.120【解析】先5个字母全排列,由于字母A不是排在字母B的左边,就是排在字母B的右边两种情况,且这两种情况排列数相等,所以所求排列数为5560 2A=.故选:C.例7.元宵节灯展后,悬挂有8盏不同的花灯需要取下,如图所示,每次取1盏,则不同的取法共有().A.32种B.70种C.90种D.280种【解析】因为取灯时每次只能取一盏,所以每串灯必须先取下面的灯,即每串灯取下的顺序确定,取下的方法有88444470AA A=种.故选:B例8.有6张卡片分别写有数字1、1、1、2、2、2,从中任取4张,可排出的四位数有________个.【解析】根据题意,分三种情况讨论:①取出的4张卡片有3张1、1张2,有44334AA=个四位数;②取出的4张卡片有3张1、1张2,有44334AA=个四位数;③取出的4张卡片有2张2、2张1,有4422226AA A=个四位数.综上所述,共有44614++=个四位数.故答案为:14.例9.将1,2,3,4,5,这五个数字放在构成“W”型线段的5个端点位置,要求下面的两个数字分别比和它相邻的上面两个数字大,这样的安排方法种数为_______.【解析】由已知1和2必须在上面,5必须在下面,分两大类来计算:(1)下面是3和5时,有2(1+1)=4种情况;(2)下面是4和5时,有233A=12种情况,所以一共有4+12=16种方法种数.故答案为16.例10.某活动中,有42人排成6行7列,现从中选出3人进行礼仪表演,要求这3人中的任意2人不同行也不同列,则不同的选法种数为(用数字作答).【解析】先按顺序依次选三人共有111423020C C C,再去掉顺序数:111423020334200.C C CA=故答案为:4200.例11.一个房间的地面是由12个正方形所组成,如图所示.今想用长方形瓷砖铺满地面,已知每一块长方形瓷砖可以覆盖两块相邻的正方形,即或,则用6块瓷砖铺满房间地面的方法有_______种.【解析】(1)先贴如图这块瓷砖,然后再贴剩下的部分,按如下分类:5个:5!15!=,3个,2个:4!43!=, 1个,4个:3!32!=, (2)左侧两列如图贴砖,然后贴剩下的部分:3个:3!13!=, 1个,2个:2!2=,综上,一共有1431211++++=(种).故答案为:11.例12.书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有_____种不同的插法(具体数字作答)【解析】原来的6本书,加上新买的3本书,随意排列共有99A 种排法,原来的6本书随意排列共有66A 种排法,而原来特有的顺序只有1种,所以共有9966=987=504A A ⨯⨯种方法. 故答案为:504.例13.某地环保部门召集6家企业的负责人座谈,其中甲企业有2人到会,其余5家企业各有1人到会,会上有3人发言,则发言的3人来自3家不同企业的可能情况的总数为_______.【解析】(1)当发言的3人有来自甲企业,则共有:122520C C⋅=;(2)当发言的3人没有来自甲企业,则共有:3510C=;所以可能情况的总数为201030+=种.例14.如图所示,某货场有三堆集装箱,每堆2个,现需要全部装运,每次只能从其中一堆取最上面的一个集装箱,则在装运的过程中不同取法的种数是____________(用数字作答).【解析】因为有六个集装箱,需要全部装运,共有66720A=种取法,又因为每次只能从其中一堆取最上面的一个集装箱,由排列中的定序问题,可知不同的取法有66222222720908AA A A==种.故答案为:90.例15.五个人并排站在一排,如果甲必须站在乙的右边(甲乙可不相邻),则不同的排法有_______种. 【解析】五个人并排站在一排,共有55120A=种,其中甲、乙两人共有222A=种顺序,各占一半,所以甲必须站在乙的右边(甲乙可不相邻)的不同的排法有5522120602AA==种,故答案为:60例16.某工程队有6项工程需要先后单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后进行,又工程丁必须在丙完成后立即进行,那么安排这6项工程的不同的排法种数是____. 【解析】因为工程丁必须在丙完成后立即进行,等价于丙丁看成一个元素,共五个元素进行排序,共有55120A=种,其中3个元素共有336A=种顺序,所以安排这6项工程的不同的排法种数是5533120206A A ==种, 故答案为:20例17.在班级活动中,4名男生和3名女生站成一排表演节目:(写出必要的数学式,结果用数字作答) (1)女生甲不能站在左端,女生乙不能站在右端,有多少种不同的排法?(2)甲乙丙三人按高低从左到右有多少种不同的排法?(甲乙丙三位同学身高互不相等)(3)现在有7个座位连成一排,仅安排4个男生就坐,怡好有两个空座位相邻的不同坐法共有多少种?【解析】(1)根据题意,分2种情况讨论:①,女生甲站在右端,其余6人全排列,有66720A =种情况,②,女生甲不站在右端,甲有5种站法,女生乙有5种站法,将剩余的5人全排列,安排在剩余的位置,有55120A =种站法,则此时有551203000⨯⨯=种站法,则一共有65655572030003720A A +⨯⨯=+=种站法;(2)根据题意,首先把7名同学全排列,共有77A 种结果,甲乙丙三人内部的排列共有336A =种结果, 要使的甲乙丙三个人按照一个高矮顺序排列,结果数只占6种结果中的一种,则有7733840A A =种. (3)根据题意,恰好有两个空座位相邻分2种情况:①两个相邻空座位在两边,12或67上,第三个空座有4种选择;②两个相邻空座位在中间,可能是23,34,45,56中的一个,第三个空位有3种选择,4个男生全排列有4424A =种坐法,共(2443)24480⨯+⨯⨯=种选派方法.例18.(1)4本不同的书平均分成两堆,每堆两本,有几种分法?(2)10人坐成一排,要求甲、乙、丙三人按从左到右的顺序就坐(不一定要相邻),有几种坐法?。
高考数学必考题型及答题技巧锦集
高考数学必考题型及答题技巧锦集【篇1】高考数学必考题型及答题技巧①单项选择考试范围。
集合的基本运算、复数的基本运算、统计与概率-排列组合、立体几何、概率事件、指数与对数函数、平面向量与平面几何、函数的与导数。
②多项选择考试范围。
解析几何(双曲线)、三角函数、不等式应用、对数运算及不等式基本性质。
③填空题考试范围。
解析几何(抛物线)、数列(等差或等比)、三角函数、立体几何轨迹计算。
④解答题考试范围。
三角函数(正弦余弦定理)、等比数列及其求和、统计与概率、立体几何、解析几何、函数与导数。
高考数学不及格影响院校录取吗?高考有科目不及格,不会影响太大,只要总分足够高,还是能上好的大学,只是在同等分数下,你的分数不及格,学校可能会优先选择及格的学生。
【篇2】高考数学必考题型及答题技巧高考数学必考题型是什么题型一运用同三角函数关系、诱导公式、和、差、倍、半等公式进行化简求值类。
题型二运用三角函数性质解题,通常考查正弦、余弦函数的单调性、周期性、最值、对称轴及对称中心。
题型三解三角函数问题、判断三角形形状、正余弦定理的应用。
题型四数列的通向公式的求法。
高考数学答题技巧有哪些1、函数或方程或不等式的题目,先直接思考后建立三者的联系。
首先考虑定义域,其次使用“三合一定理”。
2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3、面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
如所过的定点,二次函数的对称轴或是……;4、选择与填空中出现不等式的题目,优选特殊值法;5、求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6、恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7、圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;【篇3】高考数学必考题型及答题技巧无论是全国卷,还是各个省的自命题卷,虽然对知识的考察重点不同,但是,题型却有很多共性。
考点01 定义域——2021年高考数学专题复习真题练习
考点1:定义域【题组一 已知解析式求定义域】1.函数()11f x x =+-的定义域为 . 2.函数f(x)的定义域为 .3.函数01()()2f x x =-+的定义域为 .4.已知0()(2)f x x =-的定义域是 .5.函数f (x )=15x +-的定义域为 . 6.函数()1f x x =-的定义域为__________.7.函数0y =的定义域是 .8.函数21log 1y x ⎛⎫=-⎪⎝⎭的定义域为 .9.函数y =________10.函数0(2)()1x f x x +=-的定义域___________11.函数y =的定义域是________12.若()f x =,则()f x 的定义域为____________.【题组二 抽象函数求定义域】1.已知函数f (x )的定义域为(﹣1,1),则函数()()22x g x f f x ⎛⎫=+-⎪⎝⎭的定义域为 .2.已知()21f x -定义域为[]0,3,则()21f x -的定义域为 .3.已知函数()y f x =的定义域为[]8,1-,则函数()()212f x g x x +=+的定义域是 .4.若函数()y f x =的定义域是[0,2],则函数()g x =的定义域是__________.【题组三---根据定义域求参数】1.函数2()lg(43)f x x x a =++的定义域为R ,则实数a 的取值范围是 .2.若函数y =R ,则a 的取值范围为 .3.函数24()43x f x mx mx -=++的定义域是R ,则m 的取值范围是 .4已知函数()f x =的定义域是R ,则实数a 的取值范围是 .5.若函数R ,则a 的取值范围为_______.6.若函数()f x =R ,则实数a 取值范围是___________.7.若函数()f x =R ,则实数a 的取值范围是__________.8.函数21x y kx kx =++的定义域为R ,则实数k 的取值范围为________.9.已知函数()f x =R ,则实数m 的取值范围是__________.10已知函数2()lg 1f x x ax 的定义域为R ,则实数a 的取值范围是____________.12.已知22()ln[(1)(1)1]g x m x m x =---+的定义域为R ,求实数m 的取值范围 ..13.函数()f x =若()f x 的定义域为R ,求实数a 的取值范围. 如何学好数学1.圆锥曲线中最后题往往联立起来很复杂导致k 算不出,这时你可以取特殊值法强行算出k 过程就是先联立,后算代尔塔,用下伟达定理,列出题目要求解的表达式,就ok了2.选择题中如果有算锥体体积和表面积的话,直接看选项面积找到差2倍的小的就是答案,体积找到差3倍的小的就是答案,屡试不爽!3.三角函数第二题,如求a(cosB+cosC)/(b+c)coA之类的先边化角然后把第一题算的比如角A等于60度直接假设B和C都等于60°带入求解。
切线问题综合十一类题型(学生版)2025年高考数学热点题型
切线问题综合近5年考情(2020-2024)考题统计考点分析考点要求2024年甲卷第6题,5分考察导数的几何意义,切线的相关计算求值求参(1)求在某处的切线(2)设切点求过某点的切线以及公切线(3)利用切线的条数求参数范围2024年新高考I 卷第13题,5分2023年甲卷第8题,5分2022年I 卷第15题,5分2021年甲卷第13题,5分2021年I 卷第7题,5分热点题型解读(目录)【题型1】求在曲线上一点的切线【题型2】求过某点的切线【题型3】已知切线斜率求参数【题型4】通过切线求曲线上的点到直线距离最小值【题型5】奇偶函数的切线斜率问题【题型6】切线斜率取值范围问题【题型7】公切线问题【题型8】由切线条数求参数范围【题型9】两条切线平行、垂直、重合问题【题型10】与切线有关的参数范围或最值问题【题型11】牛顿迭代法核心题型·举一反三【题型1】求在曲线上一点的切线函数y =f (x )在点A (x 0 ,f (x 0))处的切线方程为y -f (x 0)=f (x 0)(x -x 0),抓住关键y 0=f (x 0)k =f (x 0)1.(2024年高考全国甲卷数学(文))曲线f x =x6+3x-1在0,-1处的切线与坐标轴围成的面积为()A.16B.32C.12D.-322.(2024年高考全国甲卷数学(理))设函数f x =e x+2sin x1+x2,则曲线y=f x 在0,1处的切线与两坐标轴围成的三角形的面积为()A.16B.13C.12D.233.已知曲线f x =x ln x在点1,f1处的切线为l,则l在y轴上的截距为()A.-2B.-1C.1D.24.(23-24高三·福建宁德·期末)已知函数f x 在点x=-1处的切线方程为x+y-1=0,则f -1+ f-1=()A.-1B.0C.1D.2【题型2】求过某点的切线【方法技巧】设切点为P(x0,y0),则斜率k=f (x0),过切点的切线方程为:y-y0=f (x0)(x-x0),又因为切线方程过点A(a,b),所以b-y0=f (x0)(a-x0)然后解出x0的值.5.(2024·全国·模拟预测)过坐标原点作曲线f x =e x x2-2x+2的切线,则切线共有()A.1条B.2条C.3条D.4条6.(2022年新高考全国I卷T15)曲线y=ln|x|过坐标原点的两条切线的方程为,.7.已知直线y=ex-2是曲线y=ln x的切线,则切点坐标为()A.1e ,-1B.e,1C.1e,1D.0,18.(2024·山西吕梁·二模)若曲线f x =ln x在点P x0,y0处的切线过原点O0,0,则x0=.9.(2019·江苏卷)在平面直角坐标系xOy中,点A在曲线y=ln x上,且该曲线在点A处的切线经过点(-e,-1)(e为自然对数的底数),则点A的坐标是.10.(23-24高三·广东·期中)过点P1,1作曲线y=x3的两条切线l1,l2.设l1,l2的夹角为θ,则tanθ= ()A.513B.713C.913D.1113【题型3】已知切线斜率求参数已知切线或切点求参数问题,核心是根据曲线、切线、切点的三个关系列出参数的方程:①切点处的导数是切线的斜率;②切点在曲线上;③切点在切线上.11.(2024·湖北武汉·模拟预测)已知曲线f x =ln x +x 2a 在点1,f 1 处的切线的倾斜角为π3,则a 的值为.12.(2024·贵州六盘水·三模)已知曲线y =x 2-3ln x 的一条切线方程为y =-x +m ,则实数m =()A.-2B.-1C.1D.213.(2024·全国·高考真题)若曲线y =e x +x 在点0,1 处的切线也是曲线y =ln (x +1)+a 的切线,则a =.14.(23-24高三·山西晋城·期末)过原点O 作曲线f (x )=e x -ax 的切线,其斜率为2,则实数a =()A.eB.2C.e +2D.e -215.(2024·四川·模拟预测)已知m >0,n >0,直线y =1ex +m +1与曲线y =ln x -n +3相切,则m +n =.16.(23-24高三·安徽合肥·期末)若函数f x =ln xx与g x =e x -a -b 在x =1处有相同的切线,则a +b =()A.-1B.0C.1D.217.(2024·河北沧州·模拟预测)已知直线l :y =kx 是曲线f x =e x +1和g x =ln x +a 的公切线,则实数a =.【题型4】通过切线求曲线上的点到直线距离最小值利用导数的几何意义求最值问题,利用数形结合的思想方法解决,常用方法平移切线法.18.(23-24高三·安徽·阶段练习)已知P 是函数f x =e x +x 2图象上的任意一点,则点P 到直线x -y -9=0的距离的最小值是()A.32B.5C.6D.5219.(23-24高三·广东惠州·阶段练习)已知点P 在函数f x =e 2x +x +9的图象上,则P 到直线l :3x -y -10=0的距离的最小值为.20.(23-24高三·河南南阳·阶段练习)点P 是曲线f (x )=x 上一个动点,则点P 到直线x -y +2=0的距离的最小值是()A.728B.74C.324D.3421.(23-24高三·河北石家庄·阶段练习)曲线y =ln (3x -2)上的点到直线3x -y +7=0的最短距离是()A.5 B.10C.35D.122.(23-24高三·河南·阶段练习)最优化原理是要求在目前存在的多种可能的方案中,选出最合理的,达到事先规定的最优目标的方案,这类问题称之为最优化问题.为了解决实际生活中的最优化问题,我们常常需要在数学模型中求最大值或者最小值.下面是一个有关曲线与直线上点的距离的最值问题,请你利用所学知识来解答:若点P 是曲线y =3ln x -12x 2上任意一点,则P 到直线4x -2y +5=0的距离的最小值为.23.(2024·山西朔州·模拟预测)已知A ,B 分别为曲线y =2e x +x 和直线y =3x -3上的点,则AB 的最小值为.【题型5】奇偶函数的切线斜率问题奇函数的导数是偶函数,偶函数的导数是奇函数.24.已知f x 为奇函数,且当x <0时,f x =xe x,其中e 为自然对数的底数,则曲线f x 在点1,f 1 处的切线方程为.25.(2024·福建福州·模拟预测)已知函数f x 是偶函数,当x >0时,f x =x 3+2x ,则曲线y =f x 在x =-1处的切线方程为()A.y =-5x -2B.y =-5x -8C.y =5x +2D.y =5x +826.(2024·湖北·一模)已知函数f x 为偶函数,其图像在点1,f 1 处的切线方程为x -2y +1=0,记f x的导函数为f x ,则f -1 =()A.-12B.12C.-2D.227.已知f x 是奇函数,当x <0时,f x =xx +2,则函数f x 的图象在x =1处的切线方程为()A.2x -y +1=0B.x -2y +1=0C.2x -y -1=0D.x +2y -1=028.(23-24高三·河南洛阳·期末)已知函数g x 为奇函数,其图象在点a ,g a 处的切线方程为2x -y +1=0,记g x 的导函数为g x ,则g -a =()A.2B.-2C.12D.-1229.(2024·山东济宁·三模)已知函数f (x )为偶函数,当x <0时,f (x )=ln (-x )+x 2,则曲线y =f (x )在点(1,f (1))处的切线方程是()A.3x -y -2=0B.3x +y -2=0C.3x +y +2=0D.3x -y +2=030.(2024·海南海口·二模)已知函数f x 的定义域为R ,f x +1 是偶函数,当x <12时,f x =ln 1-2x ,则曲线y =f x 在点2,f 2 处的切线斜率为()A.25B.-25C.2D.-231.(23-24高三·广东深圳·期中)已知函数f x =e x ln x 与偶函数g x 在交点1,g 1 处的切线相同,则函数g x 在x =-1处的切线方程为()A.ex -y +e =0B.ex +y -e =0C.ex -y -e =0D.ex +y +e =0【题型6】切线斜率取值范围问题利用导数的几何意义,求出导函数的值域,从而求出切线斜率的取值范围问题.一般地,直线的斜率与倾斜角的关系是:直线都有倾斜角,但不一定都有斜率32.点P 在曲线y =x 3-x +23上移动,设点P 处切线的倾斜角为α,则角α的范围是()A.0,π2B.π2,3π4C.3π4,π D.0,π2∪3π4,π33.(2021·河南洛阳·二模)已知点P 在曲线y =x 3-x 上移动,设点P 处切线的倾斜角为α,则角α的取值范围是.34.过函数f (x )=12e 2x-x 图像上一个动点作函数的切线,则切线倾斜角范围为()A.0,3π4B.0,π2 ∪3π4,π C.3π4,πD.π2,3π435.(22-23高三·江苏镇江·阶段练习)点P 在曲线y =x 3-33x +14上移动,设点P 处切线的倾斜角为α,则角α的范围是()A.5π6,π B.2π3,π C.0,π2 ∪5π6,π D.-π6,π2【题型7】公切线问题公切线问题应根据两个函数在切点处的斜率相等,并且切点不但在切线上而且在曲线上,罗列出有关切点横坐标的方程组,通过解方程组进行求解.公切线问题主要有以下3类题型(1)求2个函数的公切线解题方法:设2个切点坐标,利用切线斜率相同得到3个相等的式子,联立求解(2)2个函数存在公切线,求参数范围解题方法:设2个切点坐标,列出斜率方程,再转化为方程有解问题(3)已知两个函数之间公切线条数,求参数范围解题方法:设2个切点坐标,列出斜率方程,再转化为方程解的个数问题36.(浙江绍兴二模T 15)与曲线y =e x和y =-x 24都相切的直线方程为.37.(2024·广东茂名·一模)曲线y =ln x 与曲线y =x 2+2ax 有公切线,则实数a 的取值范围是()A.-∞,-12B.-12,+∞ C.-∞,12D.12,+∞ 38.(2024·福建泉州·模拟预测)若曲线y =x 2与y =te x t ≠0 恰有两条公切线,则t 的取值范围为()A.0,4e 2B.4e 2,+∞C.-∞,0 ∪4e2,+∞D.-∞,0 ∪4e 239.(23-24高三·江西吉安·期末)函数f(x)=2+ln x与函数g(x)=e x公切线的斜率为()A.1B.±eC.1或eD.1或e240.已知直线y=ax+b(a∈R,b>0)是曲线f x =e x与曲线g x =ln x+2的公切线,则a+b的值为.41.已知直线l与曲线C1:y=x2和C2:y=-1x均相切,则该直线与两坐标轴围成的三角形的面积为.42.已知函数f x =mx+ln x,g x =x2-mx,若曲线y=f x 与曲线y=g x 存在公切线,则实数m的最大值为.43.(2024·湖南长沙·三模)斜率为1的直线l与曲线y=ln x+a和圆x2+y2=12都相切,则实数a的值为()A.0或2B.-2或2C.-1或0D.0或144.(长沙雅礼中学月考(六))已知函数f x =2ln x,g x =ax2-x-12a>0,若直线y=2x-b与函数y=f x ,y=g x 的图象均相切,则a的值为;若总存在直线与函数y=f x ,y=g x 图象均相切,则a的取值范围是【题型8】由切线条数求参数范围设切点为P(x0 , y0),则斜率k=f (x0),过切点的切线方程为:y-y0=f (x0)(x-x0),又因为切线方程过点A(a,b),所以b-y0=f (x0)(a-x0)然后解出x0的值,有多少个解对应有多少条切线.45.(2022年新高考全国I卷数学真题)若曲线y=(x+a)e x有两条过坐标原点的切线,则a的取值范围是.46.(2024·河南信阳·模拟预测)若过点1,a仅可作曲线y=xe x的两条切线,则a的取值范围是. 47.(2024届广东省六校高三第一次联考T8)已知函数f(x)=-x3+2x2-x,若过点P1,t可作曲线y=f x 的三条切线,则t的取值范围是48.(23-24高三·湖北武汉·阶段练习)已知过点A a,0可以作曲线y=x-1e x的两条切线,则实数a的取值范围是()A.1,+∞B.-∞,-e ∪2,+∞C.-∞,-2 ∪2,+∞D.-∞,-3 ∪1,+∞49.(2024届·广州中山大学附属中学校考)过点3,0 作曲线f x =xe x 的两条切线,切点分别为x 1,f x 1 ,x 2,f x 2 ,则x 1+x 2=()A.-3B.-3C.3D.350.(2024·宁夏银川·二模)已知点P 1,m 不在函数f (x )=x 3-3mx 的图象上,且过点P 仅有一条直线与f (x )的图象相切,则实数m 的取值范围为()A.0,14 ∪14,12B.(-∞,0)∪14,+∞ C.0,14 ∪14,+∞ D.-∞,14 ∪12,+∞ 51.(2024·内蒙古·三模)若过点a ,2 可以作曲线y =ln x 的两条切线,则a 的取值范围为()A.-∞,e 2B.-∞,ln2C.0,e 2D.0,ln252.已知点A 在直线x =2上运动,若过点A 恰有三条不同的直线与曲线y =x 3-x 相切,则点A 的轨迹长度为()A.2B.4C.6D.853.若曲线f x =xe x有三条过点0,a 的切线,则实数a 的取值范围为()A.0,1e 2B.0,4e 2C.0,1eD.0,4e54.若过点a ,b 可以作曲线y =ln x 的两条切线,则()A.e b >0>aB.ln a >0>bC.e b >a >0D.ln a >b >055.(2024高三·辽宁本溪·期中)若过点1,b 可以作曲线y =ln x +1 的两条切线,则()A.ln2<b <2B.b >ln2C.0<b <ln2D.b >1【题型9】两条切线平行、垂直、重合问题利用导数的几何意义进行转化,再利用两直线平行或重合则斜率相等,两直线垂直则斜率之积为-1.56.(2024·河北邢台·二模)已知函数f x =x 2+2ln x 的图像在A x 1,f x 1 ,B x 2,f x 2 两个不同点处的切线相互平行,则下面等式可能成立的是()A.x1+x2=2B.x1+x2=103C.x1x2=2 D.x1x2=10357.已知函数f x =a-3x3+a-2x2+a-1x+a若对任意x0∈R,曲线y=f x 在点x0,f x0和-x0,f-x0处的切线互相平行或重合,则实数a=()A.0B.1C.2D.358.(2024·辽宁·二模)已知函数y1=x12的图象与函数y2=a x(a>0且a≠1)的图象在公共点处有相同的切线,则a=,切线方程为.59.(2024·全国·模拟预测)已知函数f x =x+a2+ln x的图象上存在不同的两点A,B,使得曲线y=f x 在点A,B处的切线都与直线x+2y=0垂直,则实数a的取值范围是()A.-∞,1-2B.1-2,0C.-∞,1+2D.0,1+260.(23-24高三·辽宁·阶段练习)已知函数f x =x m-e x,曲线y=f x 上存在不同的两点,使得曲线在这两点处的切线都与直线y=x平行,则实数m的取值范围是()A.1-e-2,1B.-1-e-2,-1C.-e-2,0D.1-e-2,+∞61.(2024·河南·三模)已知函数f(x)=x+12e x,x>0,x3,x<0,点A,B在曲线y=f(x)上(A在第一象限),过A,B的切线相互平行,且分别交y轴于P,Q两点,则BQAP的最小值为.62.(2024·北京朝阳·一模)已知函数f x =12sin2x.若曲线y=f x 在点A x1,f x1处的切线与其在点B x2,f x2处的切线相互垂直,则x1-x2的一个取值为.【题型10】与切线有关的参数范围或最值问题利用导数的几何意义以及利用导数研究函数单调性,从而求出相关式子的取值范围.63.(2024·全国·模拟预测)若直线y=2x-b与曲线f(x)=e2x-2ax(a>-1)相切,则b的最小值为()A.-eB.-2C.-1D.064.(2024·重庆·模拟预测)已知直线y=ax+b与曲线y=e x相切于点x0,e x0,若x0∈-∞,3,则a+b的取值范围为()A.-∞,eB.-e 3,eC.0,eD.0,e 365.(2024·广东广州·模拟预测)已知直线y =kx +b 恒在曲线y =ln x +2 的上方,则bk的取值范围是()A.1,+∞B.34,+∞C.0,+∞D.45,+∞66.已知直线y =kx +b 与函数f x =12x 2+ln x 的图象相切,则k -b 的最小值为.67.对给定的实数b ,总存在两个实数a ,使直线y =ax -b 与曲线y =ln x -b 相切,则b 的取值范围为.【题型11】牛顿迭代法数形结合处理68.(23-24高三·河南郑州·期中)“以直代曲”是微积分中的重要思想方法,牛顿曾用这种思想方法求高次方程的根.如图,r 是函数f x 的零点,牛顿用“作切线”的方法找到了一串逐步逼近r 的实数x 0,x 1,x 2,⋯,x n ,其中x 1是f x 在x =x 0处的切线与x 轴交点的横坐标,x 2是f x 在x =x 1处的切线与x 轴交点的横坐标,⋯,依次类推.当x n -r 足够小时,就可以把x n 的值作为方程f x =0的近似解.若f x =115x 3-35x 2+2x -125,x 0=4,则方程f x =0的近似解x 1=.69.(2024·山东潍坊·三模)牛顿迭代法是求方程近似解的一种方法.如图,方程f x =0的根就是函数f x 的零点r ,取初始值x 0,f x 的图象在点x 0,f x 0 处的切线与x 轴的交点的横坐标为x 1,f x 的图象在点x 1,f x 1 处的切线与x 轴的交点的横坐标为x 2,一直继续下去,得到x 1,x 2,⋯,x n ,它们越来越接近r .设函数f x =x 2+bx ,x 0=2,用牛顿迭代法得到x 1=1619,则实数b =()11A.1B.12C.23D.3470.牛顿迭代法是求方程近似解的另一种方法.如图,方程f x =0的根就是函数f x 的零点r ,取初始值x 0,f x 的图象在横坐标为x 0的点处的切线与x 轴的交点的横坐标为x 1,f x 的图象在横坐标为x 1的点处的切线与x 轴的交点的横坐标为x 2,一直继续下去,得到x 1,x 2,⋯,x n ,它们越来越接近r .若f x =x 2-2x >0 ,x 0=2,则用牛顿法得到的r 的近似值x 2约为()A.1.438B.1.417C.1.416D.1.37571.(2023·湖北咸宁·模拟预测)英国数学家牛顿在17世纪给出一种求方程近似根的方法一Newton -Raphson method 译为牛顿-拉夫森法.做法如下:设r 是f x =0的根,选取x 0作为r 的初始近似值,过点x 0,f x 0 作曲线y =f x 的切线l :y -f x 0 =f x 0 x -x 0 ,则l 与x 轴交点的横坐标为x 1=x 0-f x 0 f x 0f x 0 ≠0 ,称x 1是r 的一次近似值;重复以上过程,得r 的近似值序列,其中x n +1=x n -f x n f x nf x n ≠0 ,称x n +1是r 的n +1次近似值.运用上述方法,并规定初始近似值不得超过零点大小,则函数f x =ln x +x -3的零点一次近似值为( )(精确到小数点后3位,参考数据:ln2=0.693)A.2.207B.2.208C.2.205D.2.20472.(多选)牛顿在《流数法》一书中,给出了高次代数方程的一种数值解法--牛顿法.具体做法如下:如图,设r 是f x =0的根,首先选取x 0作为r 的初始近似值,在x =x 0处作f x 图象的切线,切线与x 轴的交点横坐标记作x 1,称x 1是r 的一次近似值,然后用x 1替代x 0重复上面的过程可得x 2,称x 2是r 的二次近似值;一直继续下去,可得到一系列的数x 0,x 1,x 2,⋯,x n ,⋯在一定精确度下,用四舍五入法取值,当x n-1,x n n∈N∗近似值相等时,该值即作为函数f x 的一个零点r,若使用牛顿法求方程x2=3的近似解,可构造函数f(x)=x2-3,则下列说法正确的是()A.若初始近似值为1,则一次近似值为3B.x4=x0-f x0f x0-f x1f x1-f x2f x2-f x3f x3C.对任意n∈N∗,x n<x n+1D.任意n∈N∗,x n+1=12x n+32x nx n≠012。
专题16 决策问题-2021年新高考数学题型全归纳之概率统计(解析版)
专题16 决策问题例1. 某公司准备上市一款新型轿车零配件,上市之前拟在其一个下属4S 店进行连续30天的试销,定价为1000元/件.(1)设日销售40个零件的概率为(01)p p <<,记5天中恰有2天销售40个零件的概率为z ,写出z 关于p 的函数关系式.(2)试销结束后统计得到该4S 店这30内的日销售量(单位:件)的数据如下表:其中,有两个数据未给出.试销结束后,这款零件正式上市,每件的定价仍为1000元,但生产公司对该款零件不零售,只提供零件的整箱批发,大箱每箱有55件,批发价为550元/件;小箱每箱有40件,批发价为600元/件,以这30天统计的各日销售量的频率作为试销后各日销售量发生的概率.该4S 店决定每天批发两箱,若同时批发大箱和小箱,则先销售小箱内的零件,同时根据公司规定,当天没销售出的零件按批发价的9折转给该公司的另一下属4S 店,假设日销售量为80件的概率为15.(i )设该4S 店批发两大箱,当天这款零件的利润为随机变量X ;批发两小箱,当天这款零件的利润为随机变量Y ,求EX 和EY ;(ii )以日利润的数学期望作为决策依据,该4S 店每天应该按什么方案批发零件?【解析】(1)由题意可得223235(1)10(1)z C p p p p =-=-,01p <<,(2)由题意日销售量为80件的概率为15,日销售量为100的概率为32111105510---=,(i )批发两大箱,则批发成本为60500元,当日销售量为40件时,利润为:401000605007055090% 1.415⨯-+⨯⨯=(万元), 当日销售量为60件时,利润为:601000605005055090% 2.425⨯-+⨯⨯=(万元),当日销售量为80件时,利润为:801000605003055090% 3.435⨯-+⨯⨯=(万元), 当日销售量为100件时,利润为:1001000605001055090% 4.445⨯-+⨯⨯=(万元), 32111.415 2.425 3.435 4.445 2.526105510EX ∴=⨯+⨯+⨯+⨯=(万元).若批发两小箱,则批发成本为48000元,当日销售量为40件时,利润为:401000480004060090% 1.36⨯-+⨯⨯=(万元), 当日销售量为60件时,利润为:601000480002060090% 2.28⨯-+⨯⨯=(万元), 当日销售量为80件或100件时,利润为:80100048000 3.2⨯-=(万元), 3231.36 2.28 3.2 2.2810510EY ∴=⨯+⨯+⨯=(万元). (ii )当4S 店批发一大箱和一小箱时,成本为54250万元,当天这款零件的利润为随机变量ξ, 当日销售量为40件时,利润为:401000542505555090% 1.2975⨯-+⨯⨯=(万元), 当日销售量为60件时,利润为:601000542503555090% 2.3075⨯-+⨯⨯=(万元), 当日销售量为80件时,利润为:801000542501555090% 3.3175⨯-+⨯⨯=(万元), 当日销售量为100件时,利润为:95100054250 4.075⨯-=(万元), 32111.2975 2.3075 3.3175 4.075 2.38325105510E ∴=⨯+⨯+⨯+⨯=ξ(万元). EY E EX ∴<<ξ,∴以日利润的数学期望作为决策依据,该4S 店每天应该按批发两大箱.例2. 某工厂预购买软件服务,有如下两种方案:方案一:软件服务公司每日收取工厂60元,对于提供的软件服务每次10元;方案二:软件服务公司每日收取工厂200元,若每日软件服务不超过15次,不另外收费,若超过15次,超过部分的软件服务每次收费标准为20元.(1)设日收费为y 元,每天软件服务的次数为x ,试写出两种方案中y 与x 的函数关系式;(2)该工厂对过去100天的软件服务的次数进行了统计,得到如图所示的条形图,依据该统计数据,把频率视为概率,从节约成本的角度考虑,从两个方案中选择一个,哪个方案更合适?请说明理由.【解析】解:(1)由题可知,方案一中的日收费y 与x 的函数关系式为1060=+y x ,∈x N . 方案二中的日收费y 与x 的函数关系式为200152010015⎧≤∈⎪=⎨->∈⎪⎩,,,,x x N y x x x N .(2)设方案一中的日收费为X ,由条形图可得X 的分布列为).所以从节约成本的角度考虑,选择方案一.例3. 某厂有4台大型机器,在一个月中,一台机器至多出现1次故障,出现故障时需1名工人进行维修,且每台机器是否出现故障是相互独立的,每台机器出现故障的概率为13.(1)若出现故障的机器台数为X ,求X 的分布列;(2)该厂到多少名工人才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不小于90%? (3)已知一名工人每月只有维修1台机器的能力,每月需支付给每位工人1万元的工资,每台机器不出现故障或出现故障能及时维修,就产生5万元的利润,否则将不产生利润,若该厂现有2名工人,求该厂每月获利的数学期望.【解析】解:(1)一台机器运行是否出现故障看作一次实验,在一次试验中,机器出现故障的概率为13,4台机器相当于4次独立试验,设出现故障的机器台数为X ,则143~(,)X B ,0442160381===()()P X C , 134123213381==⋅⋅=()()P X C , 2224122423381===()()()P X C , 33412833381===()()()P X C , 则的分布列为:(2)设该厂有n 名工人,则“每台机器在任何时刻同时出现故障能及时进行维修”为X n ,则,,,,,这个互斥事件的和事件,则:7280908181≤≤%, ∴至少要3名工人,才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不小于90%.(3)设该厂获利为Y 万元,则Y 的所有可能取值为18,13,8, 721801281===+=+==()()()()P Y P X P X P X , 813381====()()P Y P X , 18481====()()P Y P X ,728114081813881818181∴=⨯+⨯+⨯=()E Y . ∴该厂获利的均值为140881. 例4. 某精密仪器生产车间每天生产n 个零件,质检员小张每天都会随机地从中抽取50个零件进行检查是否合格,若较多零件不合格,则需对其余所有零件进行检查.根据多年的生产数据和经验,这些零件的长度服从正态分布10(N ,201.)(单位:微米μ)m ,且相互独立.若零件的长度d 满足97103μμ<<..m d m ,则认为该零件是合格的,否则该零件不合格.(1)假设某一天小张抽查出不合格的零件数为X ,求2≥()P X 及X 的数学期望EX ;(2)小张某天恰好从50个零件中检查出2个不合格的零件,若以此频率作为当天生产零件的不合格率.已知检查一个零件的成本为10元,而每个不合格零件流入市场带来的损失为260元.假设n 充分大,为了使损失尽量小,小张是否需要检查其余所有零件,试说明理由.附:若随机变量ξ服从正态分布2μσ(,)N ,则3309987μσξμσ-<<+=().P ,500998709370=..,49099870001300012⨯=....【解析】解:(1)1495050211010998700013099870003≥=-=-==-⋅⋅-=()()()....P X P X P X C , 由于X 满足二项分布,故00013500065=⨯=..EX . (2)由题意可知不合格率为250, 若不检查,损失的期望为2522602020505=⨯⨯-=-()E Y n n , 若检查,成本为10n ,由于5221020102055-=--=-()E Y n n n n , 当n 充分大时,2102005-=->()E Y n n 所以为了使损失尽量小,小张需要检查其余所有零件.例5. 某企业质量检验员为了检测生产线上零件的质量情况,从生产线上随机抽取了80个零件进行测量,根据所测量的零件尺寸(单位:)mm ,得到如图的频率分布直方图:(1)根据频率分布直方图,求这80个零件尺寸的中位数(结果精确到001.);(2)若从这80个零件中尺寸位于625[.,645.)之外的零件中随机抽取4个,设X 表示尺寸在645[.,65]上的零件个数,求X 的分布列及数学期望EX ;(3)已知尺寸在630[.,645.)上的零件为一等品,否则为二等品,将这80个零件尺寸的样本频率视为概率.现对生产线上生产的零件进行成箱包装出售,每箱100个.企业在交付买家之前需要决策是否对每箱的所有零件进行检验,已知每个零件的检验费用为99元.若检验,则将检验出的二等品更换为一等品;若不检验,如果有二等品进入买家手中,企业要向买家对每个二等品支付500元的赔偿费用.现对一箱零件随机抽检了11个,结果有1个二等品,以整箱检验费用与赔偿费用之和的期望值作为决策依据,该企业是否对该箱余下的所有零件进行检验?请说明理由.【解析】解:(1)由于620[.,630.)内的频率为0075022505015+⨯=(..)..,630[.,635.)内的频率为075050375⨯=..., 设中位数为630∈[.x ,635.),由0156307505+-⨯=.()..x ,得6347≈.x ,故中位数为63.47;(2)这80个零件中尺寸位于625[.,645.)之外的零件共有7个,其中尺寸位于620[.,625.)内的有3个, 位于645[.,65)共有4个,随机抽取4个, 则1=X ,2,3,4,3134474135===()C C P X C , 22344718235===()C C P X C ,133********===()C C P X C , 44471435===()C P X C ,418121161234353535357=⋅+⋅+⋅+⋅=EX ; (3)根据图象,每个零件是二等品的概率为0075022501000502=++⨯=(...)..P , 设余下的89个零件中二等品的个数为8902~(,.)Y B , 由二项分布公式,8902178=⨯=..EY ,若不对余下的零件作检验,设检验费用与赔偿费用的和为S ,11995001089500=⨯+=+S Y Y ,若对余下的零件作检验,则这一箱检验费用为9900元, 以整箱检验费用与赔偿费用之和的期望值作为决策依据, 则11995009989=⨯+=ES EY ,因为9900>ES ,所以应该对余下的零件作检验.(或者9989=ES 与9900相差不大,可以不做检验都行.)例6. 某单位准备购买三台设备,型号分别为A ,B ,C 已知这三台设备均使用同一种易耗品,提供设备的商家规定:可以在购买设备的同时购买该易耗品,每件易耗品的价格为100元,也可以在设备使用过程中,随时单独购买易耗品,每件易耗品的价格为200元.为了决策在购买设备时应同时购买的易耗品的件数.该单位调查了这三种型号的设备各60台,调査每台设备在一个月中使用的易耗品的件数,并得到统计将调查的每种型号的设备的频率视为概率,各台设备在易耗品的使用上相互独立. (1)求该单位一个月中A ,B ,C 三台设备使用的易耗品总数超过21件的概率;(2)以该单位一个月购买易耗品所需总费用的期望值为决策依据,该单位在购买设备时应同时购买20件还是21件易耗品?【解析】解:(1)由题中的表格可知A 型号的设备一个月使用易耗品的件数为6和7的频率均为301602=, B 型号的设备一个月使用易耗品的件数为6,7,8的频率均为301301101602602606===,,, C 型号的设备一个月使用易耗品的件数为7和8的频率均为453151604604==,, 设该单位一个月中A ,B ,C 三台设备使用易耗品的件数分别为x ,y ,z ,则1672====()()P x P x ,116732====(),()P x P x , 131878644======(),(),()P y P z P z ,设该单位三台设备一个月中使用易耗品的件数总数为X , 则212223>==+=()()()P X P X P X ,而22688778787=====+===+===()(,,)(,,)(,,)P X P x y z P x y z P x y z 111111113726422426448=⨯⨯+⨯⨯+⨯⨯=11112378826448======⨯⨯=()(,,)P X P x y z , 故7112148486>=+=()P X ,即该单位一个月中A ,B ,C 三台设备使用的易耗品总数超过21件的概率为16; (2)以题意知,X 所有可能的取值为19,20,21,22,23, 1131196672348======⨯⨯=()(,,)P X P x y z , 20668677767=====+===+===,,()(,,)(,,)()P X P x y z P x y z P x y z 1111131131723422423448=⨯⨯+⨯⨯+⨯⨯=21678687768777=====+===+===+===()(,,)(,,)(,,)(,,)P X P x y z P x y z P x y z P x y z 1111131111131722426423422448=⨯⨯+⨯⨯+⨯⨯+⨯⨯=由(1)知,7122234848====(),()P X P X , 若该单位在购买设备的同时购买了20件易耗品,设该单位一个月中购买易耗品所需的总费用为1Y 元,则1Y 的所有可能取值为2000,2200,2400,2600, 1117232000192084848===+==+=()()()P Y P X P X , 11722002148====()()P Y P X , 1724002248====()()P Y P X , 1126002348====()()P Y P X , 12317712000220024002600214248484848=⨯+⨯+⨯+⨯≈EY , 若该单位在购买设备的同时购买了21件易耗品,设该单位一个月中购买易耗品所需的总费用为2Y 元,则2Y 的所有可能取值为2100,2300,2500,21171752100192021848486===+=+==++=()()()()P Y P X P X P X , 2723002248====()()P Y P X , 2125002348====()()P Y P X , 2571210023002500213864848=⨯+⨯+⨯≈EY , 故21<EY EY ,所以该单位在购买设备时应该购买21件易耗品.例7. 自2013年10月习近平主席提出建设“一带一路”的合作倡议以来,我国积极建立与沿线国家的经济合作伙伴关系.某公司为了扩大生产规模,欲在海上丝绸之路经济带(南线):泉州-福州-广州-海口-北海(广西)-河内-吉隆坡-雅加达-科伦坡-加尔各答-内罗毕-雅典-威尼斯的13个城市中选择3个城市建设自己的工业厂房,根据这13个城市的需求量生产某产品,并将其销往这13个城市. (1)求所选的3个城市中至少有1个在国内的概率;(2)已知每间工业厂房的月产量为10万件,若一间厂房正常生产,则每月或获得利润100万;若一间厂房闲置,则该厂房每月亏损50万,该公司为了确定建设工业厂房的数目()*1013,n n n N ≤≤∈,统计了近5年来这13个城市中该产品的月需求量数据,得如下频数分布表:若以每月需求量的频率代替每月需求量的概率,欲使该产品的每月总利润的数学期望达到最大,应建设工业厂房多少间?【解析】(1)记事件A 为“该公司所选的3个城市中至少有1个在国内”,则()()3831328115111143143C P A P A C =-=-=-=, 所以该公司所选的3个城市中至少有1个在国内的概率为115143. (2)设该产品每月的总利润为Y ,①当10n =时,1000Y =万元. ②当11n =时,Y 的分布列为所以()9500.111000.91085E Y =⨯+⨯=万元. ③当12n =时,Y 的分布列为所以()9000.110500.412000.51110E Y =⨯+⨯+⨯=万元. ④当13n =时,Y 的分布列为所以()8500.110000.411500.313000.21090E Y =⨯+⨯+⨯+⨯=万元. 综上可知,当12n =时()1110E Y =万元最大,故建设厂房12间.例8. 某钢铁加工厂新生产一批钢管,为了了解这批产品的质量状况,检验员随机抽取了100件钢管作为样本进行检测,将它们的内径尺寸作为质量指标值,由检测结果得如下频率分布表和频率分布直方图:(1)求a,b;(2)根据质量标准规定:钢管内径尺寸大于等于25.75或小于25.15为不合格,钢管内径尺寸在[25.15,25.35]或[25.45,25.75]为合格,钢管内径尺寸在[25.35,25.45]为优等.钢管的检测费用为2元/根,把样本的频率分布作为这批钢管的概率分布.(i)若从这批钢管中随机抽取3根,求内径尺寸为优等钢管根数X的分布列和数学期望;m m 根,若有两种销售方案:(ii)已知这批钢管共有(100)第一种方案:不再对该批剩余钢管进行检测,扣除100根样品中的不合格钢管后,其余所有钢管均以50元/根售出;第二种方案:对该批钢管进行一一检测,不合格钢管不销售,并且每根不合格钢管损失20元,合格等级的钢管50元/根,优等钢管60元/根. 请你为该企业选择最好的销售方案,并说明理由.【解析】(1)由题意知:1810 1.8100b =⨯=, 所以( 2.3 1.8 1.41a ++++ 0.30.2)0.11++⨯=, 所以3a =.(2)(i )由(1)知,钢管内径尺寸为优等的概率为0.3,X 所有可能的取值为0,1,2,3,()03300.70.343P X C ==⨯=, ()12310.70.30.441P X C ==⨯⨯=, ()22320.70.3=0.189P X C ==⨯⨯, ()33330.30.027P X C ==⨯=,故X 的分布列为()30.30.9E X =⨯=(ii )按第一种方案:()1502200y m =--= 50300m -,按第二种方案:20.6850y m =⨯⨯+ 0.36020.022049.6m m m m ⨯⨯--⨯⨯=,()125030049.6y y m m -=-- 0.4300m =-,若750m >时,12y y >,则按第一种方案, 若750m =时,12y y =,则第一、第二方案均可, 若100750m <<时,12y y <,则按第二种方案, 故当750m >时,按第一种方案,750m=时,第一、二种方案均可,<<时,按第二种方案.m100750例9.某商家每年都参加为期5天的商品展销会,在该展销会上商品的日销售量与是否下雨有关.经统计,2015年该商家的商品日销售情况如下表:以2015年雨天和非雨天的日平均销售量估计相应天气的销售量.若2016年5天的展销会中每天下雨的概率均为60%,且每天下雨与否相互独立.(Ⅰ)估计2016年展会期间能够售出的该商品的件数;(Ⅱ)该商品成本价为90元/件,销售价为110元/件.(ⅰ)将销售利润X(单位:元)表示为2016年5天的展销会中下雨天数t的函数;(ⅱ)由于2016年参展总费用上涨到2500元,商家决定若最终获利大于8000元的概率超过0.6才继续参展,请你为商家是否参展作出决策,并说明理由.【解析】(Ⅰ)由2015年该商家的商品日销售情况表可知:2015年雨天的日平均销售量为100件,非雨天的日平均销售量为125件,设2016年5天的展销会中下雨的天数为t ,则⎛⎫ ⎪⎝⎭3~5,5t B ,所以=⨯=3()535E t ,所以估计2016年5天的展销会有3天下雨,2天不下雨, 所以估计2016年展会期间能够售出的该商品的件数为⨯+⨯=10031252550(件).(Ⅱ)(ⅰ)依题意得,销售利润=+-⨯-=-∈[100125(5)](11090)12500500,X t t t t N(ⅱ)设商家最终获利为Y ,则=-=-250010000500Y X t , 若最终获利大于8000元,则->100005008000t ,解得<4t ,所以=0,1,2,3t ,又因为⎛⎫⎪⎝⎭3~5,5t B ,所以最终获利大于8000元的概率为:==+=+=+=(0)(1)(2)(3)P P t P t P t P t⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭5142332012355553232323255555555C C C C =+++=>32240720108020720.631253125312531253125 所以商家应决定参加2016年的展销会. 注:本小题也可用对立事件的概率计算.=-=-=1(4)(5)P P t P t⎛⎫⎛⎫⎛⎫=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭41545553231555C C=>20720.63125所以商家应决定参加2016年的展销会.例10.某公司准备将1000万元资金投入到市环保工程建设中,现有甲、乙两个建设项目供选择,若投资甲项目一年后可获得的利润为1ξ(万元)的概率分布列如表所示:且1ξ的期望()1120E ξ=;若投资乙项目一年后可获得的利润2ξ(万元)与该项目建设材料的成本有关,在生产的过程中,公司将根据成本情况决定是否受第二和第三季度进行产品的价格调整,两次调整相互独立,且调整的概率分别为(01)p p <<和1p -,乙项目产品价格一年内调整次数X (次)与2ξ的关系如表所示:(1)求,m n 的值; (2)求2ξ的分布列;(3)根据投资回报率的大小请你为公司决策:当p 在什么范围时选择投资乙项目,并预测投资乙项目的最大投资回报率是多少?(投资回报率=年均利润/投资总额×100%)【解析】(1)由题意得:0.411101200.4170120m n m n ++=⎧⎨+⨯+=⎩,得:0.5m =,0.1n =.(2)2ξ的可能取值为41.2,117.6,204.0,()241.2(1)[1(1)](1)P p p p p ξ==---=-()222117.6[1(1)](1)(1)(1)P p p p p p p ξ==--+--=+- ()2204.0(1)P p p ξ==-所以2ξ的分布列为(3)由(2)可得:()22241.2(1)117.6(1)204.0(1)E p p p p p p ξ⎡⎤=⨯-+⨯+-+⨯-⎣⎦21010117.6p p =-++根据投资回报率的计算办法,如果选择投资乙项目,只需()()12E E ξξ<,即21201010117.6p p <-++,得0.40.6p <<.因为()221010117.6E p p ξ=-++,所以当12P =时,()2E ξ取到最大值为120.1,所以预测投资回报率的最大值为12.01%.例11.某地政府拟在该地一水库上建造一座水电站,用泄流水量发电.下图是根据该水库历年的日泄流量的水文资料画成的日泄流量X (单位:万立方米)的频率分布直方图(不完整),已知[)0,120X ∈,历年中日泄流量在区间[30,60)的年平均天数为156,一年按364天计.(Ⅰ)请把频率分布直方图补充完整;(Ⅱ)该水电站希望安装的发电机尽可能运行,但每30万立方米的日泄流量才够运行一台发电机,如6090X ≤<时才够运行两台发电机,若运行一台发电机,每天可获利润为4000元,若不运行,则该台发电机每天亏损500元,以各段的频率作为相应段的概率,以水电站日利润的期望值为决策依据,问:为使水电站日利润的期望值最大,该水电站应安装多少台发电机?【解析】(Ⅰ)在区间[30,60)的频率为15633647= 31==73070⨯频率组距, 设在区间[0,30)上, a =频率组距,则11130170105210a ⎛⎫+++⨯= ⎪⎝⎭,解得1210a =, 补充频率分布直方图如图;(Ⅱ)记水电站日利润为Y元.由(Ⅰ)知:不能运行发电机的概率为17,恰好运行一台发电机的概率为37,恰好运行二台发电机的概率为27,恰好运行三台发电机的概率为17,①若安装1台发电机,则Y的值为-500,4000,其分布列为E(Y)=5004000777-⨯+⨯=;②若安装2台发电机,则Y的值为-1000,3500,8000,其分布列为E(Y)=1000350080007777-⨯+⨯+⨯=;③若安装3台发电机,则Y的值为-1500,3000,7500,12000,其分布列为E(Y)=1500300075001200077777-⨯+⨯+⨯+⨯=;∵345003350023500 777>>∴要使水电站日利润的期望值最大,该水电站应安装3台发电机.。
高考数学必考大题题型归纳及例题解析
精品基础教育教学资料,仅供参考,需要可下载使用!高考数学必考大题题型归纳及例题解析高考数学常考的大题分别是三角函数,概率,立体几何,解析几何,函数与导数,数列。
下面就这些题型做出具体分析,并对大题给以典型题型,希望大家仔细研究总结。
1数学高考大题题型有哪些必做题:1.三角函数或数列(必修4,必修5)2.立体几何(必修2)3.统计与概率(必修3和选修2-3)4.解析几何(选修2-1)5.函数与导数(必修1和选修2-2)选做题:1.平面几何证明(选修4-1)2.坐标系与参数方程(选修4-4)3.不等式(选修4-5)1数学高考大题题型归纳一、三角函数或数列数列是高中数学的重要内容,又是学习高等数学的基础。
高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。
有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。
本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
(3)数列的应用问题,其中主要是以增长率问题为主。
试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
二、立体几何高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。
选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。
高考常见数学题型及答题技巧
2021高考常见数学题型及答题技巧高考复习面广量大,不少学生感到既畏惧,又无从下手。
同学们如何才能提高复习的针对性和实效性呢?下面来看看高考常见数学题型,相信对你的复习有很大帮助~1.选择题——“不择手段”题型特点:(1)概念性强:数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出来的就是试题的概念性强,试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,决不标新立异。
(2)量化突出:数量关系的研究是数学的一个重要的组成部分,也是数学考试中一项主要的内容,在高考的数学选择题中,定量型的试题所占的比重很大,而且许多从形式上看为计算定量型选择题,其实不是简单或机械的计算问题,其中往往蕴含了对概念、原理、性质和法则的考查,把这种考查与定量计算紧密地结合在一起,形成了量化突出的试题特点。
(3)充满思辨性:这个特点源于数学的高度抽象性、系统性和逻辑性。
作为数学选择题,尤其是用于选择性考试的高考数学试题,只凭简单计算或直观感知便能正确作答的试题不多,几乎可以说并不存在,绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的观察、分析和逻辑推断能力。
思辨性的要求充满题目的字里行间。
(4)形数兼备:数学的研究对象不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤立开来分割进行,而是有分有合,将它们辩证统一起来。
这个特色在高中数学中已经得到充分的显露。
因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题。
因此,数形结合与形数分离的解题方法是高考数学选择题的一种重要且有效的思想方法与解题方法。
(5)解法多样化:以其他学科比较,“一题多解”的现象在数学中表现突出,尤其是数学选择题由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。
2021高考数学专题复习圆的题型分类汇总
高考数学专题复习圆的题型分类汇总(1)圆的定义:动点到定点距离等于定长的点的集合或轨迹,叫做圆点集{M ||OM |=r },其中定点O 为圆心,定长r 为半径.(2)圆的方程:(1)标准方程:圆心在c(a,b),半径为r 的圆方程是(x-a)2+(y-b)2=r 2 圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 2(2)一般方程:①当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为)2,2(E D --半径是2422F E D -+。
配方,将方程x 2+y 2+Dx+Ey+F=0化为(x+2D )2+(y+2E )2=44F -E D 22+ ②当D 2+E 2-4F=0时,方程表示一个点(-2D ,-2E ); ③当D 2+E 2-4F <0时,方程不表示任何图形.(3).直线与圆锥曲线的位置关系设直线l :Ax +By +C =0,圆锥曲线C :F (x ,y )=0,由⎩⎪⎨⎪⎧Ax +By +C =0,F x ,y =0消去y 得到关于x 的方程ax 2+bx +c =0. (1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0⇔直线l 与圆锥曲线C 有两个公共点;Δ=0⇔直线l 与圆锥曲线C 有一个公共点;Δ<0⇔直线l 与圆锥曲线C 有零个公共点.(2)当a =0,b ≠0时,圆锥曲线C 为抛物线或双曲线.当C 为双曲线时,l 与双曲线的渐近线平行或重合,它们的公共点有1个或0个. 当C 为抛物线时,l 与抛物线的对称轴平行或重合,它们的公共点有1个.(4).圆锥曲线的弦长公式设斜率为k 的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则|AB |=x 1-x 22+y 1-y 22=1+k 2·|x 1-x 2|=1+k 2·x 1+x 22-4x 1x 2=1+k 2·Δ|a |.一、圆的一般或标准方程1、已知R a ∈,方程222(2)4850a x a y x y a +++++=表示圆,则圆心坐标是________,半径是________.2、若方程220x y x y m -++=+表示一个圆,则m 的取值范围是( )A .12m <B .2m <C .12m ≤D .2m ≤3、已知圆的方程22290x y ax +++=圆心坐标为()5,0,则它的半径为( )A. 3?B.C. 5D. 44、圆()222224121600x y ax ay a a +-++=<的周长等于( )A. aB. a -C. 22a πD. a二、圆上点到直线的距离1、已知点(2,0),(0,2)A B ,点M 是圆22220x y x y +++=上的动点,则点M 到直线AB 的距离的最小值为( )A .2BC .2D . 2、已知点()()5,0,1,3A B ---,若圆()222:0C x y r r +=>上恰有两点,M N ,使得MAB ∆和NAB ∆的面积均为5,则r 的取值范围是( )A. (B. (1,5)C. ()2,5D. (3.已知点M (1,0)是圆C :x 2+y 2-4x -2y =0内的一点,那么过点M 的最短弦所在直线的方程是______;最长弦所在直线的方程为______.三、直线与圆的位置关系1、若直线:1l ax by +=与圆22:1C x y +=有两个不同交点,则点(),P a b 与圆C 的位置关系是__________(点在圆内、圆上或圆外)2、过点)引直线l 与曲线y =,A B 两点, O 为坐标原点,当AOB △的面积取最大值时,直线l 的斜率等于__________.3、已知直线0x y a -+=与圆心为C 的圆222440x y x y ++--=相交于,A B 两点,且AC BC ⊥,则实数a 的值为__________.4.圆x 2+2x +y 2+4y -3=0上到直线x +y +1=0的距离为2的点共有 ( )A.1个B.2个C.3个D.4个5.直线y =-33x +m 与圆x 2+y 2=1在第一象限内有两个不同的交点,则m 的取值范围是( )A.(3,2)B.(3,3)C.⎝ ⎛⎭⎪⎫33,233D.⎝⎛⎭⎪⎫1,233 6.直线y =-33x +m 与圆x 2+y 2=1在第一象限内有两个不同的交点,则m 的取值范围是( )A.(3,2)B.(3,3)C.⎝ ⎛⎭⎪⎫33,233D.⎝⎛⎭⎪⎫1,233 7.已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是 ( ) A.相切 B.相交 C.相离D.不确定 8.若直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,则1a +2b 的最小值为( )A.1B.5C.4 2D.3+2 2四、求圆或与圆有关直线的方程1、已知直线240x y +-=和坐标轴交于A 、B 两点, O 为原点,则经过,,O A B 三点的圆的方程为__________.2、若(2,1)P -为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( )A. 03=--y xB. 032=-+y xC. 01=-+y xD. 052=--y x 结论:1、线段AB 为直径的圆的方程,A (x 1,y 1)B(x 2,y 2),(x-x 1)(x-x 2)+(y-y 1)(y-y 2)=02、过圆上任一点(x 0,y 0)的切线方程:xx 0+yy 0=r 2五、圆的切线方程1、以点(2,1)-为圆心且与直线3450x y -+=相切的圆的方程是( )A .22(2)(1)3x y -++=B .22(2)(1)3x y ++-=C .22(2)(1)9x y -++=D .22(2)(1)9x y ++-= 2、以为()1,1A -圆心且与直线20x y +-=相切的圆的方程为( )A. ()()221+1=4x y -+B. ()()221+1=2x y -+C. ()()22+1-1=4x y +D. ()()22+1-1=2x y +。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年高考高频题型集锦命题热点一 集合与常用逻辑用语集合这一知识点是高考每年的必考内容,对集合的考查主要有三个方面:一是集合的运算,二是集合间的关系,三是集合语言的运用. 在试卷中一般以选择题的形式出现,属于容易题.集合知识经常与函数、方程、不等式等知识交汇在一起命题,因此应注意相关知识在解题中的应用.常用逻辑用语也是每年高考的必考内容,重点考查:充分必要条件的推理判断、四种命题及其相互关系、全称命题与特称命题等,在试卷中一般以选择题的形式出现,属于容易题和中档题,这个考点的试题除了考查常用逻辑用语本身的有关概念与方法,还与其他数学知识联系在一起,所以还要注意知识的灵活运用。
预测1. 已知集合{}2|20A x x x =->,集合(,)B a b =,且B A ⊆,则a b-的取值范围是A.(2,)-+∞B.[2,)-+∞C.(,2)-∞-D.(,2]-∞-解析:化简A 得{}{}2|20|02A x x x x x =->=<<,由于B A ⊆,所以02a b ≥⎧⎨≤⎩,于是2a b -≥-,即a b -的取值范围是[2,)-+∞,故选B. 动向解读:本题考查集合间的关系,考查子集的概念与应用、不等式的性质等,解答时注意对集合进行合理的化简.预测2. 若集合1|2,A x x R x ⎧⎫=<∈⎨⎬⎩⎭,{}3|log (1)B x y x ==-,则A B 等于A.φB.1(,1)2 C. 1(,0)(,1)2-∞ D. 1(,1]2 解析:依题意{}1|0,|12A x x x B x x ⎧⎫=<>=<⎨⎬⎩⎭或,所以A B =1(,0)(,1)2-∞.故选C. 动向解读:本题考查集合的基本运算、函数的定义域、不等式的解法等问题,是高考的热点题型.在解决与函数定义域、值域、不等式解集相关的集合问题时,要注意充分利用数轴这一重要工具,通过数形结合的方法进行求解.预测3. 已知命题:[0,],cos 2cos 02p x x x m π∃∈+-=为真命题,则实数m的取值范围是 A. 9[,1]8-- B. 9[,2]8- C. [1,2]- D. 9[,)8-+∞解析:依题意,cos 2cos 0x x m +-=在[0,]2x π∈上恒成立,即cos 2cos x x m +=.令2219()cos 2cos 2cos cos 12(cos )48f x x x x x x =+=+-=+-,由于[0,]2x π∈,所以cos [0,1]x ∈,于是()[1,2]f x ∈-,因此实数m 的取值范围是[1,2]-,故选C.动向解读:本题考查全称命题与特称命题及其真假判断,对于一个全称命题,要说明它是真命题,需要经过严格的逻辑推理与证明,要说明它是一个假命题,只要举出一个反例即可;而对于特称命题,要说明它是一个真命题,只要找到一个值使其成立即可,而要说明它是一个假命题,则应进行逻辑推理与证明.预测4. “0a ≤”是“不等式20x ≥对任意实数x 恒成立”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:不等式20x ≥对任意实数x 恒成立,则有20a ∆==≤,又因为0a ≥,所以必有0a =,故“0a ≤”是“不等式20x ≥对任意实数x 恒成立”的必要不充分条件.故选B.动向解读:本题考查充分必要条件的推理判断,这是高考的一个热点题型,因为这类问题不仅能够考查逻辑用语中的有关概念与方法,还能较好地考查其他相关的数学知识,是一个知识交汇的重要载体.解答这类问题时要明确充分条件、必要条件、充要条件的概念,更重要的是要善于列举反例.命题热点二 函数与导数函数是高中数学的主线,是高考考查的重点内容,主要考查:函数的定义域与值域、函数的性质、函数与方程、基本初等函数、函数的应用等,在高考试卷中,一般以选择题和填空题的形式考查函数的性质、函数与方程、基本初等函数等,以解答题的形式与导数交汇在一起考查函数的定义域、单调性以及函数与不等式、函数与方程等知识.其中函数与方程思想、数形结合思想等都是考考查的热点.高考对导数的考查主要有以下几个方面:一是考查导数的运算与导数的几何意义,二是考查导数的简单应用,例如求函数的单调区间、极值与最值等,三是考查导数的综合应用.导数的几何意义以及简单应用通常以客观题的形式出现,属于容易题和中档题;而对于导数的综合应用,则主要是和函数、不等式、方程等联系在一起以解答题的形式进行考查,例如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题.预测 1. 函数a ax x x f +-=2)(2在区间)1,(-∞上有最小值,则函数xx f x g )()(=在区间),1(+∞上一定 A .有最小值 B .有最大值 C .是减函数 D .是增函数解析:函数()f x 图像的对称轴为x a =,依题意有1a <,所以()()2f x a g x x a x x==+-,()g x 在(0,)a 上递减,在(,)a +∞上递增,故()g x 在(1,)+∞上也递增,无最值,选D.动向解读:本题考查二次函数、不等式以及函数的最值问题.对于二次函数,高考有着较高的考查要求,应熟练掌握二次函数及其有关问题的解法.在研究函数的单调性以及最值问题时,要善于运用基本不等式以及函数(0)p y x p x =+>的单调性进行求解.预测2. 如图,当参数λ分别取12,λλ时,函数2()(0)1x f x x xλ=≥+的部分图像分别对应曲线12,C C ,则有A.120λλ<<B. 210λλ<<C. 120λλ<<D. 210λλ<<解析:由于函数2()1x f x xλ=+的图像在[0,)+∞上连续不间断,所以必有120,0λλ>>.又因为当1x =时,由图像可知122211λλ>++,故12λλ<,所以选A.动向解读:本题考查函数的图像问题,这是高考考查的热点题型,其特点是给出函数图象,求函数解析式或确定其中的参数取值范围.解决这类问题时,要善于根据函数图象分析研究函数的性质,从定义域、值域、对称性、单调性、经过的特殊点等方面获取函数的性质,从而确定函数的解析式或其中的参数取值范围.预测3. 已知函数()xf x e mx =-的图像为曲线C ,若曲线C 不存在与直线12y x =垂直的切线,则实数m 的取值范围是 A. 12m ≤- B. 12m >- C. 2m ≤ D. 2m > 解析:'()x f x e m =-,曲线C 不存在与直线12y x =垂直的切线,即曲线C 不存在斜率等于2-的切线,亦即方程2x e m -=-无解,2xe m =-,故20m -≤,因此2m ≤.动向解读:本题考查导数的几何意义,这是高考对导数考查的一个重要内容和热点内容,涉及曲线的切线问题都可考虑利用导数的几何意义解决,求解这类问题时,要始终以“切点”为核心,并注意对问题进行转化.预测4. (理科)已知函数 为R 上的单调函数,则实数a 的取值范围是A .[1,0)-B .(0,)+∞C .[2,0)-D .(,2)-∞- 解析:若()f x 在R 上单调递增,则有02021a a a >⎧⎪+>⎨⎪+≤⎩,a 无解;若()f x 在R 上单调递减,则有02021a a a <⎧⎪+>⎨⎪+≥⎩,解得10a -≤<,综上实数a 的取值范围是[1,0)-.故选A.动向解读:本题考查分段函数、函数的单调性以及分类讨论思想,这些都是高考的重要考点.解决这类问题时,要特别注意:分段函数在R 上单调递增(减),不仅要求函数在每一段上都要单调递增(减),还应满足函数在分段点左侧的函数值不大于(不小于)分段点右侧的函数值.(文科) 已知函数()()()210(2)0x ax x f x a e x ⎧+≥⎪=⎨-<⎪⎩为R 上的单调函数,则实数a 的取值范围是A. (2,3]B.(2,)+∞C.(,3]-∞D.(2,3)解析:若()f x 在R 上单调递增,则有02021a a a >⎧⎪->⎨⎪-≤⎩,解得23a <≤;若()f x 在R 上单调递减,则有02021a a a <⎧⎪-<⎨⎪-≥⎩,a 无解,综上实数a 的取值范围是(2,3].动向解读:本题考查分段函数、函数的单调性以及分类讨论思想,这些都是高考的重要考点.解决这类问题时,要特别注意:分段函数在R 上单调递增(减),不仅要求函数在每一段上都要单调递增(减),还应满足函数在分段点左侧的函数值不大于(不小于)分段点右侧的函数值.预测5. (理科)设函数)1ln()(2++=x b x x f ,其中0≠b .(1)若12b =-,求)(x f 在[1,3]的最小值;(2)如果()f x 在定义域内既有极大值又有极小值,求实数b 的取值范围;(3)是否存在最小的正整数N ,使得当N n ≥时,不等式311ln n n n n+->恒成立. 解析:(1)由题意知,)(x f 的定义域为),1(+∞-,12b =-时,由2/122212()2011x x f x x x x +-=-==++,得2x =(3x =-舍去), 当[1,2)x ∈时,/()0f x <,当(2,3]x ∈时,/()0f x >,所以当[1,2)x ∈时,()f x 单调递减;当(2,3]x ∈时,()f x 单调递增,所以min ()(2)412ln 3f x f ==-;(2)由题意2/22()2011b x x b f x x x x ++=+==++在),1(+∞-有两个不等实根,即2220x x b ++=在),1(+∞-有两个不等实根,设()g x =222x x b ++,则480(1)0b g ∆=->⎧⎨->⎩,解之得102b <<; (3)对于函数())1ln(2+-=x x x f ,令函数())1ln()(233++-=-=x x x x f x x h , 则()1)1(31123232/+-+=++-=x x x x x x x h ,()0),0[/>+∞∈∴x h x 时,当,所以函数()x h 在),0[+∞上单调递增,又),0(,0)0(+∞∈∴=x h 时,恒有()0)0(=>h x h , 即)1ln(32++<x x x 恒成立.取),0(1+∞∈=n x ,则有23111ln n n n n+>-恒成立. 显然,存在最小的正整数N=1,使得当N n ≥时,不等式23111ln n n n n+>-恒成立.动向解读:函数、导数、不等式的综合问题是近几年高考的一个热点题型,这类问题以“参数处理”为主要特征,以“导数运用”为主要手段,以“函数的单调性、极值、最值”为结合点,往往涉及到函数、导数、不等式、方程等多方面的知识,需要综合运用等价转换、分类讨论、数形结合等重要数学思想方法.(文科)已知函数()3ln a f x ax x x=+-.(1)当2a =时,求函数()f x 的最小值;(2)若()f x 在[2,]e 上单调递增,求实数a 的取值范围.解析:(1)当2a =时,2()23ln f x x x x =+-,定义域为(0,)+∞. 2'2223232()2x x f x x x x--=--=,令'()0f x =,得2x =(12x =-舍去),当x 变化时,()f x ,'()f x 的变化情况如下表:递所以函数()f x 在2x =时取得极小值,同时也是函数在定义域上的最小值(2)53ln 2f =-.(2)由于'23()a f x a x x =--,所以由题意知,'23()0a f x a x x=--≥在[2,]e 上恒成立. 即2230ax x a x --≥,所以230ax x a --≥在[2,]e 上恒成立,即231x a x ≥-. 令23()1x g x x =-,而2'2233()(1)x g x x --=-,当[2,]x e ∈时'()0g x <,所以()g x 在[2,]e 上递减,故()g x 在[2,]e 上得最大值为(2)2g =,因此要使231x a x ≥-恒成立,应有2a ≥. 动向解读:函数、导数、不等式的综合问题是近几年高考的一个热点题型,这类问题以“参数处理”为主要特征,以“导数运用”为主要手段,以“函数的单调性、极值、最值”为结合点,往往涉及到函数、导数、不等式、方程等多方面的知识,需要综合运用等价转换、分类讨论、数形结合等重要数学思想方法. 命题热点三 立体几何与空间向量 (理科)高考对立体几何与空间向量的考查主要有三个方面:一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:例如利用空间向量证明线面平行与垂直、利用空间向量求空间角等.在高考试卷中,一般有1~2个客观题和一个解答题.多为容易题和中档题.(文科)高考对立体几何的考查主要有两个方面:一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系,线面平行、垂直关系的证明等;在高考试卷中,一般有1~2个客观题和一个解答题.多为容易题和中档题.预测1.若一个底面是正三角形的直三棱柱的正视图如图所示,则其侧面积等于A .3B .2C .23D .6解析:由正视图可知该三棱柱的底面边长等于2,高是1,所以其侧面积等于3216S =⨯⨯=,故选D.动向解读:三视图是高考的热点内容,几乎每年必考,除了考查对简单几何体的三视图的判断外,更多地是以三视图为载体考查几何体的体积、表面积的计算,在由三视图中给出的数据得出原几何体的有关数据时,要充分利用三视图“主左一样高、主俯一样长、俯左一样宽”的性质.预测2.平面α与平面β相交,直线m α⊥,则下列命题中正确的是A. β内必存在直线与m 平行,且存在直线与m 垂直B. β内不一定存在直线与m 平行,不一定存在直线与m 垂直C. β内不一定存在直线与m 平行,但必存在直线与m 垂直D. β内必存在直线与m 平行,却不一定存在直线与m 垂直解析:假设l αβ=,由于m α⊥,所以必有m l ⊥,因此在β内必存在直线l 与m 垂直;当αβ⊥时,可存在直线与m 平行,当α与β不垂直时,在β内一定不存在直线与m 平行.故选B.动向解读:本题考查空间中线面、面面的平行与垂直关系的判断,其特点是以符号语言给出,考查对相关定理的理解与运用,解决这类问题时,要熟练掌握相关的定理,善于利用一些常见的几何体作为模型进行判断,还要善于举出反例对命题进行否定.预测3.(理科)正△ABC 的边长为4,CD 是AB 边上的高,,E F 分别是AC和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A DC B --.(1)试判断直线AB 与平面DEF 的位置关系,并说明理由;(2)求二面角E DF C --的余弦值;(3)在线段BC 上是否存在一点P ,使AP DE ⊥?证明你的结论.解:法一:(I )如图:在△ABC 中,由E 、F 分别是AC 、BC 中点,得EF //AB ,又AB⊄平面DEF ,EF ⊂平面DEF ,∴AB ∥平面DEF . (II )∵AD ⊥CD ,BD ⊥CD ,∴∠ADB 是二面角A —CD —B 的平面角,∴AD ⊥BD ,∴AD ⊥平面BCD ,取CD 的中点M ,这时EM ∥AD ,∴EM ⊥平面BCD , 过M 作MN ⊥DF 于点N ,连结EN ,则EN ⊥DF ,∴∠MNE 是二面角E —DF —C 的平面角.在Rt △EMN 中,EM =1,MN =23,∴tan ∠MNE ,cos ∠MNE =721. (Ⅲ)在线段BC 上存在点P ,使AP ⊥DE ,证明如下:在线段BC 上取点P 。