上海交通大学流体力学第三章课件
合集下载
流体力学第三章课件

第三章 流体运动的基本概念和基本方程
的函数。 流体质点的其它物理量也都是 a,b,c,t 的函数。例如流体 质点( 质点(a,b,c)的温度可表为 )的温度可表为T(a,b,c,t) 二、欧拉法(空间点法,流场法) 欧拉法(空间点法,流场法) 欧拉法只着眼于流体经过流场( 欧拉法只着眼于流体经过流场(即充满运动流体质点 的空间)中各空间点时的运动情况, 的空间)中各空间点时的运动情况,而不过问这些运动情 况是由哪些质点表现出来的,也不管那些质点的来龙去脉, 况是由哪些质点表现出来的,也不管那些质点的来龙去脉, 然后通过综合流场中所有被研究空间点上各质点的运动要 即表征流体运动状态的物理量如速度、加速度、压强、 素(即表征流体运动状态的物理量如速度、加速度、压强、 密度等)及其变化规律,来获得整个流场的运动特征。 密度等)及其变化规律,来获得整个流场的运动特征。 在固定空间点看到的是不同流体质点的运动变化, 在固定空间点看到的是不同流体质点的运动变化,无 法像拉格朗日方法那样直接记录同一质点的时间历程。 法像拉格朗日方法那样直接记录同一质点的时间历程。
ρ = ρ ( x, y , z , t , )
T = T ( x, y , z , t ) 加速度应该是速度的全导数。注意上速度表达式中x 加速度应该是速度的全导数。注意上速度表达式中 ,y,z 是流体质点在t时刻的运动坐标 时刻的运动坐标, 是流体质点在 时刻的运动坐标,对同一质点来说它们不是独 立变量,而是时间变量t的函数 因此, 的函数。 立变量,而是时间变量 的函数。因此,根据复合函数求导法 则,并考虑到 dx dy dz =u x , =u y , =u z dt dt dt
一个速度场 8
第三章 流体运动的基本概念和基本方程
一个布满了某种物理量的空间称为场。除速度场之外, 一个布满了某种物理量的空间称为场。除速度场之外, 还有压强场。在高速流动时, 还有压强场。在高速流动时,气流的密度和温度也随流动有 变化,那就还有一个密度场和温度场。 变化,那就还有一个密度场和温度场。这都包括在流场的概 念之内。 念之内。 p = p ( x, y, z , t ),
流体力学第三章流体动力学ppt课件

p p(x, y, z,t) (x, y, z,t)
以固定空 间、固定 断面或固 定点为对 象,应采 用欧拉法
x xt, y yt, z zt
3
a.流体质点的加速度
a
dv
dt
ax
dvx dt
vx t
vx x
dx dt
vx y
dy dt
m/ s2
ax 4m / s2
7
(2)
v
vx
i
v
y
j
(4y 6x)i (6y 9x) j 0
t t t
是非恒定流
(3)v v
vx
vx x
vy
vx y
i vx
vy x
vy
vy y
a bt
即
dx a
dt
0xd
x
t
0
adt
x
a
t
dy bt
dt
y
0
dy
t
0
btdt
y
b
t2 2
y
b 2a2
x2
——迹线方程(抛物线)
y
注意:流线与迹线不重合
o
x
13
例:已知速度vx=x+t,vy=-y+t 求:在t=0时过(-1,-1)点的流线和迹线方程。
解:(1)流线: dx dy
(2)迹线方程及t =0时过(0,0)点的迹线。
解:(1)流线: dx dy
a bt
积分: y bt x c a
以固定空 间、固定 断面或固 定点为对 象,应采 用欧拉法
x xt, y yt, z zt
3
a.流体质点的加速度
a
dv
dt
ax
dvx dt
vx t
vx x
dx dt
vx y
dy dt
m/ s2
ax 4m / s2
7
(2)
v
vx
i
v
y
j
(4y 6x)i (6y 9x) j 0
t t t
是非恒定流
(3)v v
vx
vx x
vy
vx y
i vx
vy x
vy
vy y
a bt
即
dx a
dt
0xd
x
t
0
adt
x
a
t
dy bt
dt
y
0
dy
t
0
btdt
y
b
t2 2
y
b 2a2
x2
——迹线方程(抛物线)
y
注意:流线与迹线不重合
o
x
13
例:已知速度vx=x+t,vy=-y+t 求:在t=0时过(-1,-1)点的流线和迹线方程。
解:(1)流线: dx dy
(2)迹线方程及t =0时过(0,0)点的迹线。
解:(1)流线: dx dy
a bt
积分: y bt x c a
流体力学第3章

p p(x, y, z)
2019/10/24
6
第二节 流体平衡方程式
一、流体平衡微分方程式
在静止流体中任取一边长为 dx,dy和dz的微元平行六面体
的流体微团,现在来分析作用在这流体微团上外力的平衡条 件。作用在微元平行六面体的表面力只有静压强。设微元平 行六面体中心点处的静压强为p,则作用在六个平面中心点 上的静压强可按泰勒(G.I.Taylor)级数展开,在垂直于X轴 的左、右两个平面中心点上的静压强分别为:
方程几何意义:表示在重力作用下静止流体中各点的静水头 都相等。
在实际工程中,常需计算有自由液面的静止液体中任意一点 的静压强。
2019/10/24
21
静止液体中任一点压强
2019/10/24
22
如图所示,在一密闭容器中盛有密度为ρ的液体,若自由液面上的压
强为p0、位置坐标为z0,则在液体中位置坐标为z的任意一点A的压强p可
绝对压强
真空 绝对压强
绝对压强、计示压强和真空之间的关系
2019/10/24
28
当流体的绝对压强低于当地大气压强时,就说该流体处于真
空状态。例如水泵和风机的吸入管中,凝汽器、锅炉炉膛以
及烟囱的底部等处的绝对压强都低于当地大气压强,这些地
方的计示压强都是负值,称为真空或负压强,用符号pv表示,
则
pv pa p
的总压力分别为:
Hale Waihona Puke p 1 p dxdydz 2 x
和
p 1 p dx dydz 2 x
同理,可得到垂直于y轴的下、上两个微元面上的总压力分别
为:
p
1 2
p y
dy dxdz
2019/10/24
6
第二节 流体平衡方程式
一、流体平衡微分方程式
在静止流体中任取一边长为 dx,dy和dz的微元平行六面体
的流体微团,现在来分析作用在这流体微团上外力的平衡条 件。作用在微元平行六面体的表面力只有静压强。设微元平 行六面体中心点处的静压强为p,则作用在六个平面中心点 上的静压强可按泰勒(G.I.Taylor)级数展开,在垂直于X轴 的左、右两个平面中心点上的静压强分别为:
方程几何意义:表示在重力作用下静止流体中各点的静水头 都相等。
在实际工程中,常需计算有自由液面的静止液体中任意一点 的静压强。
2019/10/24
21
静止液体中任一点压强
2019/10/24
22
如图所示,在一密闭容器中盛有密度为ρ的液体,若自由液面上的压
强为p0、位置坐标为z0,则在液体中位置坐标为z的任意一点A的压强p可
绝对压强
真空 绝对压强
绝对压强、计示压强和真空之间的关系
2019/10/24
28
当流体的绝对压强低于当地大气压强时,就说该流体处于真
空状态。例如水泵和风机的吸入管中,凝汽器、锅炉炉膛以
及烟囱的底部等处的绝对压强都低于当地大气压强,这些地
方的计示压强都是负值,称为真空或负压强,用符号pv表示,
则
pv pa p
的总压力分别为:
Hale Waihona Puke p 1 p dxdydz 2 x
和
p 1 p dx dydz 2 x
同理,可得到垂直于y轴的下、上两个微元面上的总压力分别
为:
p
1 2
p y
dy dxdz
最新上海交通大学流体力学第三章只是分享精品课件

润滑油的粘度系数为μ= 0.12 Pa·s 求: 空载运转(yùnzhuǎn)时作用在轴上的 (1) 轴矩Ts ;
(2) 轴功率。 解: (1)由于b << d 可将轴承间隙内的周向流动简化为
无限大平行平板间的流动。
轴承固定, 而轴以线速度U=ωd /2运动, 带动润滑油作纯剪切流动, 即简单库埃特
u 1 dpy2
2dx
C1yC2
边界条件:
y = 0,u = 0,C2= 0
y
=
b,u
=
0,C1
1
2
dp dx
b
1.速度(sùdù)
分布
u 1 dp(y2 by)
2 dx
最大速度
(sùdù)
um
b2 8
dp dx
第三页,共49页。
C3.3.1 平板(píngbǎn)泊肃叶流动(4-4)
2. 切应力(yìnglì) 分布
流
2. 平均速度
V Q
R2
GR2
8
12umax
速度分布
u
2V
1
r2 R2
3. 沿程损失
hf pgGgl8glR 2V
第十四页,共49页。
C3.4.2 泊肃叶定律(dìnglǜ)(2-2)
4. 泊肃叶定律(dìnglǜ) 的意义
Q GR4 8
(1) 泊肃叶定律(dìnglǜ)解析式由哈根巴赫和纽曼(1859)分别用N-S 方程推出。哈根(1839)和泊肃叶(1840)分别用实验测得 Q 与 G、R4成正比关系;
T
0
udt
u=u+ u
基本方程
雷诺方程 包含雷诺应力
第十七页,共49页。
(2) 轴功率。 解: (1)由于b << d 可将轴承间隙内的周向流动简化为
无限大平行平板间的流动。
轴承固定, 而轴以线速度U=ωd /2运动, 带动润滑油作纯剪切流动, 即简单库埃特
u 1 dpy2
2dx
C1yC2
边界条件:
y = 0,u = 0,C2= 0
y
=
b,u
=
0,C1
1
2
dp dx
b
1.速度(sùdù)
分布
u 1 dp(y2 by)
2 dx
最大速度
(sùdù)
um
b2 8
dp dx
第三页,共49页。
C3.3.1 平板(píngbǎn)泊肃叶流动(4-4)
2. 切应力(yìnglì) 分布
流
2. 平均速度
V Q
R2
GR2
8
12umax
速度分布
u
2V
1
r2 R2
3. 沿程损失
hf pgGgl8glR 2V
第十四页,共49页。
C3.4.2 泊肃叶定律(dìnglǜ)(2-2)
4. 泊肃叶定律(dìnglǜ) 的意义
Q GR4 8
(1) 泊肃叶定律(dìnglǜ)解析式由哈根巴赫和纽曼(1859)分别用N-S 方程推出。哈根(1839)和泊肃叶(1840)分别用实验测得 Q 与 G、R4成正比关系;
T
0
udt
u=u+ u
基本方程
雷诺方程 包含雷诺应力
第十七页,共49页。
流体力学第3章中文版课件

说明:
V V V V a u v w t x y z
前述的加速度表达式给出的是在观察者所处的参考系中,相对于 流体质点相对 观察者来说的流体加速度。 科里奥利加 流体质点相对于 法向加速度
流体质点的位 于加速参考系 速度 观察者所处参 流体质点的速 固定参考系的加 然而在一定的条件下,观察者所处的参考系可能做加速运动,那 臵矢量 的加速度。 考系的角速度 度矢量 速度。
2013-11-25
Chapter 3: Introduction to fluids in motion
12
3.2 流体运动的描述 (3) 流线
流线:
流动中的流线是流场中一条假想线,它具有以下性质: 流线上每一质点的速度矢量与流线相切。
流线的数学表达式为: V dr 0
2013-11-25
•
2013-11-25
Chapter 3: Introduction to fluids in motion
5
3.2 流体运动的描述 1. 运动的拉格朗日描述和欧拉描述 (1) 流体质点
流体质点:
流体质点定义为包含有大量的流体分子而又具有很 小体积的随流体流动的小质量的流体。
如果流体是不可压缩的,则流体质点的体积不变, 但可以变形。而如果流体是可压缩的,则流体质点 的体积不仅可以变形,体积大小也会发生变化。 在可压缩和不可压缩情况下,流体质点都可以认为 作为一个实体通过流场。
第三章:
流体流动
2013-11-25
Chapter 3: Introduction to fluids in motion
1
本章主要内容
3.1 引言 3.2 流体运动的描述
3.3 流体流动的分类
流体力学水利学第三章水动力学复习资料课件PPT

t = t0 = 给定时刻, (x,y,z)= 变数
(x,y,z)= 给定 点,t = 变数
同一时刻,不同空间 点上液体质点的流速 分布,即流场。
不同液体质点通过给 定空间点的流速变化
2.液体质点运动描述 1)质点运动速度
u=ux+uy+uz
z
ux= ux( x,y,z,t )
uy= uy( x,y,z,t ) uz
F pdA p dpdA gdAdz
2、 微分流段质量与加速度的乘积 Ma dAds du
dt
F Ma 即pdA p dpdA gdAdz dAds du dt
对于恒定元流,u us
du dt
du ds ds dt
u du ds
d u2
ds
2
pdA p dpdA gdAdz dAds du
3、流动稳定性演示
恒定流—运动要素不随时间变化
v=v(x,y,z,), p=p(x,y,z)
3、流动稳定性演示
非恒定流—运动要素随时间变化
v=v(x,y,z,t), p=p(x,y,z,t)
三、均匀流与非均匀流
1、均匀流(Uniform flow)
(1)定义:流线为相互平行直线的水流 或流线上的速度矢量都相同。
二、恒定流与非恒定流
1、恒定流(Steady flow)
所有运动要素≠f(t)-----不随时间变化 u=u(x,y,z), p=p(x,y,z)
ux/t= uy/t= uz/t=p/t=0
2、非恒定流(Unsteady flow)
任一运动要素=f(t)-----随时间变化 u=u(x,y,z,t)或 p=p(x,y,z,t)
因此,该方法在工程上很少采用, 但这个 方法在波浪运动中、PIV水流量测等问题研究中 多用这个方法。
上海交通大流体力学课件

常用粘度表示方法有三种:
<1>动力粘度 µ 单位 : Pa s (帕 • 秒) 1 Pa s = 1 N/m2 s
<2>运动粘度:
单位:m2 / s
工程上常用:10 – 6 m2 / s (厘斯) mm2 / s 油液的牌号:摄氏 40ºC 时油液运动粘度的 平均厘斯( mm2 /s )值。
平衡流体内不显示粘性,所以不存在切应力 。
§2-1 平衡流体上的作用力
一、质量力
质量力 —— 与流体的质量有关,作用在某一体积 流体的所有质点上的力。(如重力、惯性力)
单位质量力
——
单位质 量流体所受到的质量力。
Fm mam m fx i fy j fz k
am —— 单位质量力(数值等于流体加速度)。
内摩擦力: F A dv
dy
以切应力表示: F dv
A dy
牛顿内摩擦定律
式中:µ—— 与流体的种类及其温度有关的比例
常数;
dv —— 速度梯度(流体流速在其法线方
dy
向上的变化率)。
2、粘度及其表示方法
粘度
dv dy
代表了粘性的大小
µ 的物理意义:产生单位速度梯度,相邻流 层在单位面积上所作用的内摩擦力(切应力)的 大小。
§1-3 流体的主要物理性质
z
一、密度
P
= lim
V0
M V
kg/m3
• 流体密度是空间位置
x
和时间的函数。
V. M
• P ( x,y, z )
y
• 对于均质流体: M
V
kg/m3
二、压缩性
可压缩性—— 流体随其所受压强的变化而发生
《流体力学第三章》PPT课件

第三章 流体动力学基础
本章是流体力学在工程上应用的基础。它主要利 用欧拉法的基本概念,引入了总流分析方法及 总流运动的三个基本方程式:连续性方程、能 量方程和动量方程,并且阐明了三个基本方程 在工程应用上的分析计算方法。
第一节 描述流体运动的两种方法
1.拉格朗日法 拉格朗日方法(lagrangian method)是以流场 中每一流体质点作为描述流体运动的方法,它 以流体个别质点随时间的运动为基础,通过综 合足够多的质点(即质点系)运动求得整个流 动。——质点系法
ux=x+t; uy= -y+t;uz=0,试求t =
dx xt dt
dy y t dt
求解
0 时过 M(-1,-1) 点的迹线。
解:
由迹线的微分方程:
dx dy dz dt ux uy uz
ux=x+t;uy=-y+t;uz=0 t = 0 时过
M(-1,-1):
x C1 e t t 1 y C2 e t t 1
运动的轨迹,是与 拉格朗日观点相对 应的概念。
r r(a, b, c, t )
即为迹线的参数方程。
t 是变数,a,b,c 是参
数。
18
(2)迹线的微分方程
式中,ux,uy,uz 均为时空t,x,y,z的函数, 且t是自变量。 注意:恒定流时流线和迹线重合; 非恒定流时流线和迹线不重合;
举例
已知直角坐标系中的速度场
(3)流线的方程
根据流线的定义,可以求得流线的微分方程, 设ds为流线上A处的一微元弧长:
u为流体质点在A点的流速:
因为
所以
——流线方程
【例】
有一流场,其流速分布规律为:ux= -ky, uy = kx, uz=0, 试求其流线方程。 解: uz =0,所以是二维流动,二维流动的流线方程微分为
本章是流体力学在工程上应用的基础。它主要利 用欧拉法的基本概念,引入了总流分析方法及 总流运动的三个基本方程式:连续性方程、能 量方程和动量方程,并且阐明了三个基本方程 在工程应用上的分析计算方法。
第一节 描述流体运动的两种方法
1.拉格朗日法 拉格朗日方法(lagrangian method)是以流场 中每一流体质点作为描述流体运动的方法,它 以流体个别质点随时间的运动为基础,通过综 合足够多的质点(即质点系)运动求得整个流 动。——质点系法
ux=x+t; uy= -y+t;uz=0,试求t =
dx xt dt
dy y t dt
求解
0 时过 M(-1,-1) 点的迹线。
解:
由迹线的微分方程:
dx dy dz dt ux uy uz
ux=x+t;uy=-y+t;uz=0 t = 0 时过
M(-1,-1):
x C1 e t t 1 y C2 e t t 1
运动的轨迹,是与 拉格朗日观点相对 应的概念。
r r(a, b, c, t )
即为迹线的参数方程。
t 是变数,a,b,c 是参
数。
18
(2)迹线的微分方程
式中,ux,uy,uz 均为时空t,x,y,z的函数, 且t是自变量。 注意:恒定流时流线和迹线重合; 非恒定流时流线和迹线不重合;
举例
已知直角坐标系中的速度场
(3)流线的方程
根据流线的定义,可以求得流线的微分方程, 设ds为流线上A处的一微元弧长:
u为流体质点在A点的流速:
因为
所以
——流线方程
【例】
有一流场,其流速分布规律为:ux= -ky, uy = kx, uz=0, 试求其流线方程。 解: uz =0,所以是二维流动,二维流动的流线方程微分为
流体力学第三章流体动力学(1)PPT课件

的分布情况。
其它各运动参量也可用类似的方法来表示。如: pp(x,y,z,t)
欧拉加速度
ad uuud xud yudz dtt xdtydtzdt
a x
ux t
ux
ux x
uy
ux y
uz
ux z
a y
u y t
ux
u y x
uy
uy y
uz
uy z
az
uz t
ux
uz x
uy
uz y
§3.1 描述液体运动的两种方法
液体和固体不同,液体运动是由无数质点构成的连续介质的流动,液体运 动的各物理量在空间和时间上都是连续分布和连续变化的。怎样用数学物 理的方法来描述液体的运动?这是从理论上研究液体运动规律首先要解决 的问题。
液体质点:物理点。是构成连续介质的液体的基本单位,宏观上无 穷小(体积非常微小,其几何尺寸可忽略),微观上无穷大(包含 许许多多的液体分子,体现了许多液体分子的统计学特性)。
(3)流线的性质
(1)流线是一条条光滑连续的曲线(含直线);
(2)流线的作法
流线的作法如下:在流速场中任取一点1(如下图),绘出
在某时刻通过该点的质点的流速矢量u1,再在该矢量上取距
点1很近的点2处,标出同一时刻通过该处的另一质点的流速
矢量u2……如此继续下去,得一折线1 2 3 4 5 6……,若
折线上相邻各点的间距无限接近,其极限就是某时刻流速场 中经过点1的流线。
第七讲
第三章 流体运动学
§3.1描述液体运动的两种方法 一、拉格朗日法(质点法) 二、欧拉法(流场法)
§3.2液体运动的一些基本概念 一、描述流体运动的基本概念 二、流体运动的类型 三、系统、控制体
其它各运动参量也可用类似的方法来表示。如: pp(x,y,z,t)
欧拉加速度
ad uuud xud yudz dtt xdtydtzdt
a x
ux t
ux
ux x
uy
ux y
uz
ux z
a y
u y t
ux
u y x
uy
uy y
uz
uy z
az
uz t
ux
uz x
uy
uz y
§3.1 描述液体运动的两种方法
液体和固体不同,液体运动是由无数质点构成的连续介质的流动,液体运 动的各物理量在空间和时间上都是连续分布和连续变化的。怎样用数学物 理的方法来描述液体的运动?这是从理论上研究液体运动规律首先要解决 的问题。
液体质点:物理点。是构成连续介质的液体的基本单位,宏观上无 穷小(体积非常微小,其几何尺寸可忽略),微观上无穷大(包含 许许多多的液体分子,体现了许多液体分子的统计学特性)。
(3)流线的性质
(1)流线是一条条光滑连续的曲线(含直线);
(2)流线的作法
流线的作法如下:在流速场中任取一点1(如下图),绘出
在某时刻通过该点的质点的流速矢量u1,再在该矢量上取距
点1很近的点2处,标出同一时刻通过该处的另一质点的流速
矢量u2……如此继续下去,得一折线1 2 3 4 5 6……,若
折线上相邻各点的间距无限接近,其极限就是某时刻流速场 中经过点1的流线。
第七讲
第三章 流体运动学
§3.1描述液体运动的两种方法 一、拉格朗日法(质点法) 二、欧拉法(流场法)
§3.2液体运动的一些基本概念 一、描述流体运动的基本概念 二、流体运动的类型 三、系统、控制体
上海交通大学精品课程流体力学课件 共325页

归纳两点:
1、平衡流体内不存在切向应力,表面力即为 法向应力(即静压强);
2、绝对平衡流体所受质量力只有重力,相对 平衡流体可能受各种质量力的作用。
三、 流体静压强的两个重要特性。 1、流体静压强的方向总是沿着作用面的内法线 方向。
2、平衡流体内任一点处的静压强的数值与其作 用面的方向无关,它只是该点空间坐标的函数。
温度内聚力 粘度 温度变化时对流体粘度的影响必须给于重视。
4、理想流体的概念 理想流体——假想的没有粘性的流体。
µ= 0 = 0
实际流体——事实上具有粘性的流体。
小
结
1、流体力学的任务是研究流体的平衡与宏观机械运动规律。
2、引入流体质点和流体的连续介质模型假设,把流体看成没有间隙 的连续介质,则流体的一切物理量都可看作时空的连续函数,可 采用连续函数理论作为分析工具。
质量 dxdydz
得:
fx
1
p x
0
同理:f y
1
p y
0
1 p
fz z 0
静止流体的平衡微分方程 (欧拉平衡微分方程)
方程的物理意义 : 在静止流体中,作用在单位质
量流体上的质量力与作用在该流体表面上的压力 相平衡。
四、综合表达式 将平衡微分方程的三个表达式分别乘以dx、dy、dz 然后相加
第一章 绪论 第二章 流体静力学 第三章 流体动力学 第四章 相似和量纲分析 第五章 管 中 流 动 第六章 孔口和缝隙流动 第七章 气体的一元流动
第一章 绪论
§1-1 流体力学研究的内容和方法 §1-2 流体的概念及其模型化 §1-3 流体的主要物理性质
第二章 流体静力学
上海交通大学流体力学第三章

,得
C
G
4
R2
速度分布式为
u G (R2 r2)
4
轴线最大速度为
um
G
4
R2
[例C3.4.1] 圆管定常层流:N-S方程精确解(3-1) 已知: 粘度为μ的不可压缩流体在半径为R的水平直圆管中作定常流动。 求: 用柱坐标形式的N-S方程推导速度分布式。
C3.3.1 平板泊肃叶流动(4-3)
可得
d2u dy 2
1
dp dx
常数
积分得 边界条件: 1.速度分布
u
1
2
dp dx
y2
C1 y
C2
•
y = 0,u = 0,C2= 0
y
=
b,u
=
0,C1
1
2
dp dxbBiblioteka u 1 dp ( y2 by)
2 dx
最大速度
um
b2
du dy
U b
2 n d 60 2
1 b
nd 60b
0.12 3600 0.08 60 0.03103
6 104
(N/m2 )
•
(2) 转动轴所化的功率为
Ts
wA
d 2
w
dl
d 2
6 104
0.082
0.03
/
2
18.1 (N
dx
b 2 dx
沿y 方向线性分布
[例C3.3.2] 圆柱环形缝隙中的流动:库埃特流(2-1)
上海交通大学精品课程流体力学课件 325页PPT文档

§1-2 流体的概念及其模型化
一、流体的物质属性
1、流体与固体 流体:可承受压力,几乎不可承受拉力,承受剪 切力的能力极弱。
易流性 —— 在极小剪切力的作用下,流体就将产 生无休止的(连续的)剪切变形(流动),直到 剪切力消失为止。
流体没有一定的形状。固体具有一定的形状。
固体:既可承受压力,又可承受拉力和剪切力,在 一定范围内变形将随外力的消失而消失。
温度内聚力 粘度 温度变化时对流体粘度的影响必须给于重视。
4、理想流体的概念 理想流体——假想的没有粘性的流体。
µ= 0 = 0
实际流体——事实上具有粘性的流体。
小
结
1、流体力学的任务是研究流体的平衡与宏观机械运动规律。
2、引入流体质点和流体的连续介质模型假设,把流体看成没有间隙 的连续介质,则流体的一切物理量都可看作时空的连续函数,可 采用连续函数理论作为分析工具。
dv dy
代表了粘性的大小
µ 的物理意义:产生单位速度梯度,相邻流 层在单位面积上所作用的内摩擦力(切应力)的 大小。
常用粘度表示方法有三种:
<1>动力粘度 µ 单位 : Pa s (帕 • 秒) 1 Pa s = 1 N/m2 s
<2>运动粘度:
单位:m2 / s
工程上常用:10 – 6 m2 / s (厘斯) mm2 / s 油液的牌号:摄氏 40ºC 时油液运动粘度的 平均厘斯( mm2 /s )值。
体积: dVdxdydz
分析微小正平行六面体微团受力:
一、质量力
dFmx = dxdydz fx dFmy = dxdydz fy dFmz = dxdydz fz
二、表面力
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(f)
讨论: (1)速度分布式(f)与用动量方程求得的(C3.4.6a)式相同;
(2)若考虑更一般的情况,沿斜直管(水平夹角为α)的流动, 并仍取管轴为z 轴,重力在z 方向也有分量:ρg sinα=常数, 重力在z 方向的分量的作用与压强梯度的作用相似。
C3.4.2 泊肃叶定律(2-1)
C3.4.2 泊肃叶流动
x
u
u x
v
u y
w
u z
p x
2u
( u 'u
x
')
( u 'v ')
y
( u ' w')
z
上式称为不可压缩流体湍流时均值运动方程或雷诺方程。与层流
N-S方程相比多了三项 。湍流中的应力矩阵为
p
P
p
(b)
z:
0
p z
[1r
r
(r
vz r
)]
(c)
[例C3.4.1] 圆管定常层流:N-S方程精确解(3-2)
由(a)式积分得
p g rsin f ( ,z)
上式中f 为任意函数,将上式代入(b)式得
0
g
cos
gcos
1 r
f
,
f
已知: 中轴的直径为d = 80 mm,b = 0.06 mm,l = 30 mm,n = 3600转/分
润滑油的粘度系数为μ= 0.12 Pa·s 求: 空载运转时作用在轴上的 (1) 轴矩Ts ;
(2) 轴功率。 解: (1)由于b << d 可将轴承间隙内的周向流 动简化为无限大平行平板间的流动。
在轴线上τ=0 ,在壁面上最大值
w
G 2
R
2. 速度分布
由牛顿粘性定律和斯托克斯公式
du G r dr 2
u G r2 C
4
由边界条件r=R时,u=0 ,得 C G R2
4
速度分布式为
u G (R2 r2)
4
轴线最大速度为
um
G
4
R2
[例C3.4.1] 圆管定常层流:N-S方程精确解(3-1) 已知: 粘度为μ的不可压缩流体在半径为R的水平直圆管中作定常流动。 求: 用柱坐标形式的N-S方程推导速度分布式。
0
0
( u t
u
u x
v
u y
)
f
x
p x
(
2u x2
2u y 2
)
0 00
0
00
( v
t
u
v x
v
v y
)
fy
p y
( 2v
x2
2v y2
)
简化得:
p x
d2u dy2
,
p 0 y
第二式表明压强与y无关(截面上均布),仅是x的函数。 第一式左边与y无关,右边与x无关,只能均为常数。
0.12 36000.08 60 0.03103
6 104
(N/m2 )
(2) 转动轴所化的功率为
Ts
wA
d 2
w
dl
d 2
6 104
0.082
0.03 /
2
18.1 (N
- m)
作用在轴上的转矩为力Fx
Ws
Ts
Ts
2 n
60
Ts
C3.3.1 平板泊肃叶流动(4-3)
可得
d2u dy2
1
dp dx
常数
积分得
u
1
2
dp dx
y2
C1y
C2
边界条件: 1.速度分布
y = 0,u = 0,C2= 0
y
=
b,u
=
0,C1
1
2
dp dx
b
u 1 dp ( y2 by)
2 dx
最大速度
um
b2
8
求: (1) 被测液体的粘度; (2)设ρ=1055 kg/m3,校核Re数。
解: (1)由泊肃叶公式
GR4
p d4
8Q
8Q l 16
2070 (0.5103)4
128 3.97 109 0.2
4 103
(Pa s)
(2)校核Re数
Re
Vd
4 Q d
41055 3.97 109
0.5103 4103
2.7
2300
C3.5.1 湍流与湍流切应力(5-1)
C3.5 圆管湍流流动 C3.5.1 湍流与湍流切应力
湍流
特性
输运特性
表达法
结构特性 体均法 时均法
随机性 掺混性 涡旋性 小尺度随机运动 大尺度涡旋场 拟序结构
(2)过渡区 l ~ t (3)湍流核心区:u 分布均匀,l ~ 0 ;雷诺应力占主导。
实验证实粘性底层和过渡区占的比例很小,常可忽略不计。 用湍流核心区的速度分布代表圆管流动。
C3.5.1 湍流与湍流切应力(5-4)
4. 计算雷诺应力的混合长度理论:
u v l du dy
2
t
uv
解: 设轴向坐标为z ,建立柱坐标系(r,θ, z )如
图所示。设vr = vθ= 0,由连续性方程可得
vz 0 z
解得vz = vz (r);重力在z轴方向分量为零,N-S方程在柱坐标系中的分量式
为附录中C所列,化简后可得
r:
0
gsin
p r
(a)
θ:
0
gcos
1 r
0
0
0 p 0
0 0
yxx
p zx
xy y zy
xz yz
uu vu
z wu
uv vv wv
uw
vw ww
dp dx
C3.3.1 平板泊肃叶流动(4-4)
2. 切应力分布
du dp ( y b )
dy dx 2
切应力沿y方向为线性分布, 在壁面达最大值
w
b 2
dp dx
3. 流量
Q
b
udy
b
1
dp
y2 by dy
b3
dp
0
0 2 dx
12 dx
0
可见 f 仅是z 的函数,取截面平均压强,其梯度可写成 ddpz。由(c)式
1 r
r
(
r
vz r
)
1
dp dz
(d)
(d)式左边仅是r 的函数,右边仅是z 的函数,只有均等于常数才能相等,
dp/dz保持常数。(d)式积分两次可得
vz
1 4
dp dz
r
2
C1lnr
C2
(e)
轴承固定, 而轴以线速度U=ωd /2运动, 带动润滑油作纯剪切流动, 即简 单库埃特流动。间隙内速度分布为
uU y b
[例C3.3.2] 圆柱环形缝隙中的流动:库埃特流(2-2) (1) 作用在轴表面的粘性切应力为
w
du dy
U b
2 n d 1 60 2 b
nd 60b
F
p x
dx
r2
2
rdx
0
dp 2
dx r
p仅与x 有关, τ与x 无关. 只有均为常数才相等. 令比压降为 G p dp 常数 l dx
1 dp r G r
2 dx 2 上式称为斯托克斯公式,说明切应力沿径向线性分布。
C3.4.1 用动量方程求解速度分布(2-2)
4. 平均速度
V
Q b
b2
12
dp dx
2 3
um
C3.3.2 平板库埃特流(2-1)
C3.3.2 平板库埃特流动
在平板泊肃叶流上再增加上板以U 运动条件,方程不变。
1. 速度分布
u
1
2
dp dx
y2
C1y
C2
y 0,u 0, C2 0
U b dp
yb,
u U
l2
du dy
t
du dy
定义湍流粘度
t
l2
du dy
定义湍流Hale Waihona Puke 动粘度vtt
l2
du dy
C3.5.2 圆管湍流速度分布
C3.5.2 圆管湍流速度分布
1. 湍流对数律 根据量纲分析、普朗特混合长度理论和尼古拉兹的实验结