同济大学桥梁发展趋势读书报告

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题讲座报告

课程名称:桥梁工程的发展趋势

指导老师:_______葛耀军_________ 姓名:史先飞

学号: 1232627

放眼世界、创新技术、科学理念,做一名出色的桥梁工程师

——读葛耀军教授桥梁发展趋势报告

2012年9月14日,葛耀军教授在同济大学给我们上了一堂丰富且生动的桥梁发展趋势课,做了《大跨度桥梁的抗风挑战与跨径极限》和《大型桥梁工程可持续发展理念与技术》两篇报告,比较系统全面的向我们讲述了中国大跨度桥梁的发展历程、现代主要大跨度桥梁的关键问题和极限跨径,以及大型桥梁工程可持续发展理念和评价,让我们对整个世界大跨度桥梁的发展现状和趋势有了全面的认识,并深刻感悟到可持续发展在桥梁工程领域的重要作用,为我们将来的发展提供了非常好的基础和方向。下面我就葛教授的报告内容和我个人心得进行详细阐述。

一、大跨度桥梁的抗风挑战与跨径极限

1. 我国大跨度桥梁的发展

我国桥梁具有五千年的文明历史,悬索桥最早完成于公元400年,赵州石拱桥完成于公元605年,是全世界第一座敞肩石拱桥。进入新世纪,随着区域经济的发展和西部大开发的号召, 改革开放活跃的长江三角洲与发展潜力巨大的西部崇山峻岭、雪域高原、黄土高坡,同时掀起了路桥建设的高潮。一批堪称“桥梁建筑奇迹”的特大桥应运而生。至2008年6月底,我国主跨400 m 以上的桥梁已建成54座,在建18座;主跨1 000 m以上的桥梁建成6座,在建5座。已建的梁桥、拱桥、斜拉桥和悬索桥的最大跨径分别达到了330 m、550 m、1 088 m 和1 490 m。公路桥梁正在朝着美观、大跨、轻型的方向发展。

过去二十年中,我国的桥梁总长度由3,400km增加到21,000km,总数量由124,000座增加到550,000座,而1991年建成通车的南浦大桥则对中国大跨径桥梁的发展具有里程碑的意义。

总的来说,我国桥梁的历史悠久,而现代桥梁虽然起步较晚,但是发展很快,在如火如荼的现代桥梁的建设中,取得了很多成就。

2. 大跨度桥梁发展的关键问题

然后葛耀军教授详细给我们讲解了大跨度桥梁中悬索桥、斜拉桥和拱式桥的抗风挑战和跨径极限问题。下面分别介绍各类桥型的关键问题:

(1)悬索桥

葛教授以江苏的润扬长江大桥和舟山西侯门大桥为例,介绍了大跨度悬索桥的颤振及其控制问题。

2005 年建成的润扬长江大桥是中国第二、世界第四大跨径悬索桥。该桥为典型的三跨简支悬索桥,跨径布置为510m+1490m+510m,如图1所示。加劲梁断面为传统的闭口钢箱梁,高3m,宽36.3m。桥面双向各3车道,每个车道宽3.75m,桥面两侧各留出一道3.5m宽的紧急停车带,如图2所示:

图1 润扬长江大桥立面图

图2 润扬长江大桥主梁横断面

润扬长江大桥的竖弯和侧弯振动频率基本合理,但是扭转频率比其他两座悬索桥相对偏低,为了提高结构的颤振稳定性,需考虑采取气动控制措施。在进一步的节段模型试验中,在主梁断面上增设了中央稳定板(见图2)。对于中央稳定板的高度选择,又做了实验,最终确定了高0.88m的中央稳定板。

舟山西堠门大桥作为浙江舟山连岛工程的主体工程,是跨越西堠门水道、连接金塘岛和册子岛的一座大跨度桥梁。桥址选在册子岛和金塘岛之间水道最窄的地方,约2 200m宽,在靠近册子岛处有一个小岛,称为老虎礁,可以布置一个缆索承重桥梁的主塔。如果将三跨悬索桥的一个主塔建在老虎礁上,那么另一个主塔就要落在金塘岛的斜礁上。大跨要求是避免深水基础,并非通航要求。为了确定主塔在金塘岛上的位置,进行了多种跨径方案的比选,为了避免深水基础施工,西堠门大桥设计方案最终确定为两跨连续悬索桥,主跨1650m(见图3)。

图3 舟山西侯门大桥立面图

西堠门大桥地处我国东南沿海台风频发地区,其颤振检验风速更为严格,故对4种比选箱梁断面进行节段模型风洞试验,这4种比选箱梁断面包括:传统的单箱主梁、附加中央稳定板的单箱梁、中央开槽宽6m的双箱梁和中央开槽宽10.6m的双箱梁。结果表明:单箱梁以及单箱梁附加1.2m或1.7m高度中央稳定板的颤振临界风速无法达到颤振检验风速的要求,附加2.2m高稳定板的单箱梁和两种分体双箱梁均能满足颤振稳定性的要求。最终选用了中央开槽宽6m的分体箱梁断面。

葛教授以这两个实例,生动地给我们讲解了实际大跨度悬索桥设计的关键问题,从桥位选择到跨径比选择,以及截面的选取和颤振的控制措施,让我们深刻了解了大跨度悬索桥所遇到的实际问题,以及用桥面开槽和组合气动措施等解决办法。我印象最深刻的就是实验的设计,比如箱梁截面的选择,以及中央稳定板高度的选取,所进行的实验要不仅能够从多种可能性里验证最合适的方案,还应

该找出规律给设计者足够的选择范围进行设计。所以我觉得一个科学的成功的设计一定有着科学的成功的实验,它能够为设计提供最优的方案,反应出问题的规律。

接着葛教授以理论推导的形式向我们阐明了悬索桥的跨径极限,提出了悬索桥的跨径可到5000m的结论。但是我有一个疑问,如果设计跨径大于4000m的悬索桥,由于超长的跨径,则需要非常高的桥塔,整个桥的自重和斜拉索的自重也将大大增加,势必会提高斜拉索中的应力,那么斜拉索能不能提供那么大的拉力,超高桥墩能不能满足抗震和抗风的要求,以及这种设计会比2000m左右的悬索桥经济吗?

(2)斜拉桥

斜拉桥遇到的最普遍的问题是长拉索在风和雨的环境下的振动,世界跨径排名前十的斜拉桥基本都遇到了拉索振动问题,而且采用了一到两种振动控制措施,包括在拉索表面刻凹坑或加螺旋线,以及在拉索下端部安装机械式阻尼器。在拉索表面缠绕螺旋线和刻制凹坑,是为了防止拉索表面形成水线,因为水线是导致拉索风雨振动的直接原因。

斜拉桥的主梁断面选取也很重要,江苏苏通大桥,主梁断面为流线型正交异性钢箱梁;香港昂船洲大桥,钢主梁横断面为双流线型正交异性钢箱;湖北鄂东大桥,通过与传统闭口箱梁在动力特性和气动性能方面的比较,钢主梁的横断面设计为分离双箱梁。

斜拉桥的扭转频率对跨径不敏感,以及足够高的颤振临界风速,都支持跨径的增大,也就是说,现在的斜拉桥最大跨径仍没有达到斜拉桥的极限跨径,仍可以进一步增加。

(3)拱式桥

世界跨度排名前十的拱桥中只有上海卢浦大桥存在风致振动问题,即涡激共振,该桥涡激共振主要是由于拱肋的钝体横断面所造成的。然后葛教授以上海卢浦大桥为例,详细给我们介绍了上海卢浦大桥的设计和怎么解决涡激振动问题。

上海卢浦大桥是一座中承式拱桥,跨径100m+550 m+100 m,是当时世界上跨径最大的拱桥。桥面6车道,两侧各设一条观光人行道。主梁为正交异性钢梁,由拱肋连同吊杆和立柱共同支撑。在端横梁之间的主梁两侧各设有43根水平后张系杆,以平衡中跨拱肋内恒载引起的水平推力。整个钢拱——梁组合结构由拱肋、正交异性主梁、空间吊杆和立柱、拱肋间的横撑、以及水平后张系杆组成。

作为卢浦大桥的涡振控制措施,建议采用建筑薄膜结构作为涡振启动控制措施A或B的阻挡气流结构。主要有三方面的原因:一是薄膜材料质量轻、刚度小,不会改变原有结构力学性能;二是彩色建筑膜结构色彩丰富、造型优美.能增添拱粱组合体系的建筑美观:三是薄膜结构具有降低噪音、改善环境的作用。

由于拱式桥在建造过程中需要架设临时桥塔,在施工完成后再进行拆除,相当于把一座斜拉桥再改成一座拱桥,因此成品增大,非常不经济。所以较大跨径的拱桥经济性不强,不如其他类型的大跨径桥梁的经济性高。

通过近二十年的发展,中国已建成了多座世界排名前列的大型桥梁,丰富了世界桥梁的多样性,提供了宝贵的经验和技术。而现代桥梁技术的发展,我认为有两个因素:一是客观的需要,复杂地形需要不断提高跨径,不断要求新的技术

相关文档
最新文档