贪心算法解决0-1背包问题
贪心算法-01背包问题
贪⼼算法-01背包问题1、问题描述:给定n种物品和⼀背包。
物品i的重量是wi,其价值为vi,背包的容量为C。
问:应如何选择装⼊背包的物品,使得装⼊背包中物品的总价值最⼤?形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找⼀n元向量(x1,x2,…,xn,), xi∈{0,1}, ∋ ∑ wi xi≤c,且∑ vi xi达最⼤.即⼀个特殊的整数规划问题。
2、最优性原理:设(y1,y2,…,yn)是 (3.4.1)的⼀个最优解.则(y2,…,yn)是下⾯相应⼦问题的⼀个最优解:证明:使⽤反证法。
若不然,设(z2,z3,…,zn)是上述⼦问题的⼀个最优解,⽽(y2,y3,…,yn)不是它的最优解。
显然有∑vizi > ∑viyi (i=2,…,n)且 w1y1+ ∑wizi<= c因此 v1y1+ ∑vizi (i=2,…,n) > ∑ viyi, (i=1,…,n)说明(y1,z2, z3,…,zn)是(3.4.1)0-1背包问题的⼀个更优解,导出(y1,y2,…,yn)不是背包问题的最优解,⽭盾。
3、递推关系:设所给0-1背包问题的⼦问题的最优值为m(i,j),即m(i,j)是背包容量为j,可选择物品为i,i+1,…,n时0-1背包问题的最优值。
由0-1背包问题的最优⼦结构性质,可以建⽴计算m(i,j)的递归式:注:(3.4.3)式此时背包容量为j,可选择物品为i。
此时在对xi作出决策之后,问题处于两种状态之⼀:(1)背包剩余容量是j,没产⽣任何效益;(2)剩余容量j-wi,效益值增长了vi ;使⽤递归C++代码如下:#include<iostream>using namespace std;const int N=3;const int W=50;int weights[N+1]={0,10,20,30};int values[N+1]={0,60,100,120};int V[N+1][W+1]={0};int knapsack(int i,int j){int value;if(V[i][j]<0){if(j<weights[i]){value=knapsack(i-1,j);}else{value=max(knapsack(i-1,j),values[i]+knapsack(i-1,j-weights[i]));}V[i][j]=value;}return V[i][j];}int main(){int i,j;for(i=1;i<=N;i++)for(j=1;j<=W;j++)V[i][j]=-1;cout<<knapsack(3,50)<<endl;cout<<endl;}不使⽤递归的C++代码:简单⼀点的修改//3d10-1 动态规划背包问题#include <iostream>using namespace std;const int N = 4;void Knapsack(int v[],int w[],int c,int n,int m[][10]);void Traceback(int m[][10],int w[],int c,int n,int x[]);int main(){int c=8;int v[]={0,2,1,4,3},w[]={0,1,4,2,3};//下标从1开始int x[N+1];int m[10][10];cout<<"待装物品重量分别为:"<<endl;for(int i=1; i<=N; i++){cout<<w[i]<<" ";}cout<<endl;cout<<"待装物品价值分别为:"<<endl;for(int i=1; i<=N; i++){cout<<v[i]<<" ";}cout<<endl;Knapsack(v,w,c,N,m);cout<<"背包能装的最⼤价值为:"<<m[1][c]<<endl;Traceback(m,w,c,N,x);cout<<"背包装下的物品编号为:"<<endl;for(int i=1; i<=N; i++){if(x[i]==1){cout<<i<<" ";}}cout<<endl;return 0;}void Knapsack(int v[],int w[],int c,int n,int m[][10]){int jMax = min(w[n]-1,c);//背包剩余容量上限范围[0~w[n]-1] for(int j=0; j<=jMax;j++){m[n][j]=0;}for(int j=w[n]; j<=c; j++)//限制范围[w[n]~c]{m[n][j] = v[n];}for(int i=n-1; i>1; i--){jMax = min(w[i]-1,c);for(int j=0; j<=jMax; j++)//背包不同剩余容量j<=jMax<c{m[i][j] = m[i+1][j];//没产⽣任何效益}for(int j=w[i]; j<=c; j++) //背包不同剩余容量j-wi >c{m[i][j] = max(m[i+1][j],m[i+1][j-w[i]]+v[i]);//效益值增长vi }}m[1][c] = m[2][c];if(c>=w[1]){m[1][c] = max(m[1][c],m[2][c-w[1]]+v[1]);}}//x[]数组存储对应物品0-1向量,0不装⼊背包,1表⽰装⼊背包void Traceback(int m[][10],int w[],int c,int n,int x[]){for(int i=1; i<n; i++){if(m[i][c] == m[i+1][c]){x[i]=0;}else{x[i]=1;c-=w[i];}}x[n]=(m[n][c])?1:0;}运⾏结果:算法执⾏过程对m[][]填表及Traceback回溯过程如图所⽰:从m(i,j)的递归式容易看出,算法Knapsack需要O(nc)计算时间; Traceback需O(n)计算时间;算法总体需要O(nc)计算时间。
贪心算法背包问题
题目:贪心算法
背包问题
专业:JAVA 技术 09——02 班 学号:540913100201 姓名:柏顺顺 指导老师:宋胜利
实验三:贪心算法
一、实验目的与要求
1、掌握背包问题的算法 2、初步掌握贪心算法
背包问题
二、实验题:
问题描述:与 0-1 背包问题相似,给定 n 种物品和一个背包。物品 i 的重量是 wi,其价 值为 vi,背包的容量为 c。与 0-1 背包问题不同的是,在选择物品 i 装入背包时,背包问题 的解决可以选择物品 i 的一部分,而不一定要全部装入背包,1< i < n。
JOptionPane.showMessageDialog(null, "重量不能为空!"); return; } else{ if (s1.equals("")){ JOptionPane.showMessageDialog(null, "效益值不能为空!"); return; }else { if (s3.equals("")) JOptionPane.showMessageDialog(null, "总重量不能为空!"); return; } } } catch (Exception e3) { // TODO: handle exception }
}
//可以执行贪心算法了 int [] wCopy = new int [w.length]; int [] pCopy = new int [w.length]; float temp2; int temp1; float totalx=0; float [] x = new float [w.length];//效益和重量的比值 float [] n =new float[w.length];//记录个数 float [] nCopy = new float[w.length]; for(int i=0;i<w.length;i++) { wCopy [i] = w[i]; pCopy [i] = p[i]; } for (int i=0;i<w.length;i++) x[i] = (float) ((p[i]*1.0)/w[i]); for(int i= 0;i<w.length;i++) for(int j=i+1;j<w.length;j++)
背包问题的贪心算法20页PPT文档
则用j比i好,∵装入A, V i 2 ;而装入B,Vi=3
对例。4.3的数据使用按效益值的非增次序的选择策略.
V 125,X 11 ,W 118 背包剩:C-18=2;物品2有次大效益值
(V2=24 )但w2=15,背包装不下物品2。使用 x2=2/15,刚好装满背
包
6
,且物品2的24/15 = v2/w2 较物品3的15/10= v3/w3效益值高。按 此选择策略,得②即(1, 2/15, 0),∑vixi=28.2 .此解是一个次优解。 显然,按物品效益值的非增次序装包不能得最优解。
背包问题:
与0-1背包问题类似,所不同的是在选择物品i装入背包时 ,可以选择物品i的一部分,而不一定要全部装入背包, 1≤i≤n。
这2类问题都具有最优子结构性质,极为相似,但背 包问题可以用贪心算法求解,而0-1背包问题却不能用 贪心算法求解。
2
例4.3 贪心算法不能求得0-1背包问题得最优解。
考虑背包问题: n=3,c=50kg,(v1,v2,v3)=(60,100,120), (w1,w2,w3)=(10,20,30). vi/wi=(6,5,4).贪心算法解是(1,1,0), ∑vixi=60+100 , ∑wixi=30;最优解是(0,1,1), ∑vixi=100+120, ∑wixi=50,
实际上,动态规划算法的确可以有效地解0-1背包问题。
3
4.2 背包问题
已知有n种物品和一个可容纳c重量的背包,每种物品i的
重量为wi。假定物品i的一部分放入背包会得到vixi的效益。其
中0≤xi≤1,vi>0 . 采用怎样的装包方法才会使装入背包物品的总
效益最大呢?即求解 n
常见算法设计实验报告(3篇)
第1篇一、实验目的通过本次实验,掌握常见算法的设计原理、实现方法以及性能分析。
通过实际编程,加深对算法的理解,提高编程能力,并学会运用算法解决实际问题。
二、实验内容本次实验选择了以下常见算法进行设计和实现:1. 排序算法:冒泡排序、选择排序、插入排序、快速排序、归并排序、堆排序。
2. 查找算法:顺序查找、二分查找。
3. 图算法:深度优先搜索(DFS)、广度优先搜索(BFS)、最小生成树(Prim算法、Kruskal算法)。
4. 动态规划算法:0-1背包问题。
三、实验原理1. 排序算法:排序算法的主要目的是将一组数据按照一定的顺序排列。
常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序和堆排序等。
2. 查找算法:查找算法用于在数据集中查找特定的元素。
常见的查找算法包括顺序查找和二分查找。
3. 图算法:图算法用于处理图结构的数据。
常见的图算法包括深度优先搜索(DFS)、广度优先搜索(BFS)、最小生成树(Prim算法、Kruskal算法)等。
4. 动态规划算法:动态规划算法是一种将复杂问题分解为子问题,通过求解子问题来求解原问题的算法。
常见的动态规划算法包括0-1背包问题。
四、实验过程1. 排序算法(1)冒泡排序:通过比较相邻元素,如果顺序错误则交换,重复此过程,直到没有需要交换的元素。
(2)选择排序:每次从剩余元素中选取最小(或最大)的元素,放到已排序序列的末尾。
(3)插入排序:将未排序的数据插入到已排序序列中适当的位置。
(4)快速排序:选择一个枢纽元素,将序列分为两部分,使左侧不大于枢纽,右侧不小于枢纽,然后递归地对两部分进行快速排序。
(5)归并排序:将序列分为两半,分别对两半进行归并排序,然后将排序好的两半合并。
(6)堆排序:将序列构建成最大堆,然后重复取出堆顶元素,并调整剩余元素,使剩余元素仍满足最大堆的性质。
2. 查找算法(1)顺序查找:从序列的第一个元素开始,依次比较,直到找到目标元素或遍历完整个序列。
C语言版贪心算法背包问题
C语言版贪心算法背包问题#include#define N 100typedef struct bao{int num;float w;float v;};typedef struct avg{int num;float val;float w;float v;};struct bao b[N];struct avg d[N];int n;float c;void Sort(){int i,j,k;struct avg temp[N];for(i=0;i<n-1;i++)< p="">{k = i;for(j=i+1;j<n;j++)< p="">if(d[k].valif(k != i){temp[i]=d[i];d[i]=d[k];d[k]=temp[i];}}}float knapsack(){int i;float x[N],sum = 0;for(i=0;ifor(i=0;i<n;i++){< p="">if(d[i].w>c) break;x[d[i].num] = 1;sum += d[i].v;c -= d[i].w;}if(i<n){< p="">x[d[i].num] = c/d[i].w;sum += x[d[i].num] * d[i].v;}return sum;}int main(){int i,j,k;float sum;printf("请输入物品总数:");scanf("%d",&n);printf("\n请输入背包容量:");scanf("%f",&c);printf("\n请输入各物品重量及价值(格式:xx,xx):");for(i=0;i<n;i++){< p=""> scanf("%f,%f",&b[i].w,&b[i].v); }for(i=0;i<="" p="">for(i=0;i<n;i++){< p="">d[i].val = b[i].v/b[i].w;d[i].v = b[i].v;d[i].w = b[i].w;}Sort();sum = knapsack();printf("%.2f\n",sum);}</n;i++){<></n;i++){<></n){<></n;i++){<></n;j++)<></n-1;i++)<>。
贪心算法之背包问题
贪⼼算法之背包问题贪⼼算法之背包问题1.与动态规划的区别通过研究解决经典的组合优化问题,来说明⼆者的差别。
即0-1背包问题与背包问题0-1背包问题:给定n中物品和⼀个背包。
物品i的重量为W i,其价值为V i,背包的容量为C。
应如何选择装⼊背包的物品,使得装⼊背包中物品的总价值最⼤?对于每种物品i只有俩种选择,即装⼊背包或不装⼊背包背包问题:与0-1背包问题类似,不同在于选择物品i装⼊背包时,可以选择物品i的⼀部分,⽽不⼀定要全部装⼊背包,1≤i≤n。
这2类问题都具有最优⼦结构性质,极为相似。
背包问题可以⽤贪⼼算法求最优解,0-1背包不能使⽤贪⼼求解。
2.贪⼼解决背包问题步骤贪⼼策略:每次选择单位重量价值最⾼的物品装⼊背包计算每种物品单位重量的价值V iW i,按单位重量的价值从⼤到⼩将n中物品排序。
以排序后的次序依次将物品装⼊背包。
直⾄全部物品都装⼊或者因背包容量不⾜不能装⼊为⽌如果背包尚有容量,将最后不能完全装⼊物品切割⼀部分装满背包算法结束3.代码实现/*** n 物品数* M 背包容量* v[] 物品价值数组* w[] 物品重量数组* x[] 保存最优解路径数组,为1则表⽰该物品完全装⼊,否则装⼊该物品的⼀部分**/void Knapsack(int n, float M, float v[], float w[], float x[]) {// 按照物品单位重量的价值递减排序Sort(n, v, w);int i;for (i = 1; i <= n; i++)x[i] = 0;float c = M;for (i = 1; i <= n; i++) {if (w[i] > c)break;x[i] = 1;c -= w[i];}if (i <= n)x[i] = c / w[i];}Processing math: 100%。
0-1背包问题-贪心法和动态规划法求解
实验四“0-1”背包问题一、实验目的与要求熟悉C/C++语言的集成开发环境;通过本实验加深对贪心算法、动态规划算法的理解。
二、实验内容:掌握贪心算法、动态规划算法的概念和基本思想,分析并掌握“0-1”背包问题的求解方法,并分析其优缺点。
三、实验题1.“0-1”背包问题的贪心算法2.“0-1”背包问题的动态规划算法说明:背包实例采用教材P132习题六的6-1中的描述。
要求每种的算法都给出最大收益和最优解。
设有背包问题实例n=7,M=15,,(w0,w1,。
w6)=(2,3,5,7,1,4,1),物品装入背包的收益为:(p0,p1,。
,p6)=(10,5,15,7,6,18,3)。
求这一实例的最优解和最大收益。
四、实验步骤理解算法思想和问题要求;编程实现题目要求;上机输入和调试自己所编的程序;验证分析实验结果;整理出实验报告。
五、实验程序// 贪心法求解#include<iostream>#include"iomanip"using namespace std;//按照单位物品收益排序,传入参数单位物品收益,物品收益和物品重量的数组,运用冒泡排序void AvgBenefitsSort(float *arry_avgp,float *arry_p,float *arry_w ); //获取最优解方法,传入参数为物品收益数组,物品重量数组,最后装载物品最优解的数组和还可以装载物品的重量float GetBestBenifit(float*arry_p,float*arry_w,float*arry_x,float u);int main(){float w[7]={2,3,5,7,1,4,1}; //物品重量数组float p[7]={10,5,15,7,6,18,3}; //物品收益数组float avgp[7]={0}; //单位毒品的收益数组float x[7]={0}; //最后装载物品的最优解数组const float M=15; //背包所能的载重float ben=0; //最后的收益AvgBenefitsSort(avgp,p,w);ben=GetBestBenifit(p,w,x,M);cout<<endl<<ben<<endl; //输出最后的收益system("pause");return 0;}//按照单位物品收益排序,传入参数单位物品收益,物品收益和物品重量的数组,运用冒泡排序void AvgBenefitsSort(float *arry_avgp,float *arry_p,float *arry_w ) {//求出物品的单位收益for(int i=0;i<7;i++){arry_avgp[i]=arry_p[i]/arry_w[i];}cout<<endl;//把求出的单位收益排序,冒泡排序法int exchange=7;int bound=0;float temp=0;while(exchange){bound=exchange;exchange=0;for(int i=0;i<bound;i++){if(arry_avgp[i]<arry_avgp[i+1]){//交换单位收益数组temp=arry_avgp[i];arry_avgp[i]=arry_avgp[i+1];arry_avgp[i+1]=temp;//交换收益数组temp=arry_p[i];arry_p[i]=arry_p[i+1];arry_p[i+1]=temp;//交换重量数组temp=arry_w[i];arry_w[i]=arry_w[i+1];arry_w[i+1]=temp;exchange=i;}}}}//获取最优解方法,传入参数为物品收益数组,物品重量数组,最后装载物品最优解的数组和还可以装载物品的重量float GetBestBenifit(float*arry_p,float*arry_w,float*arry_x,float u) {int i=0; //循环变量ifloat benifit=0; //最后收益while(i<7){if(u-arry_w[i]>0){arry_x[i]=arry_w[i]; //把当前物品重量缴入最优解数组benifit+=arry_p[i]; //收益增加当前物品收益u-=arry_w[i]; //背包还能载重量减去当前物品重量cout<<arry_x[i]<<" "; //输出最优解}i++;}return benifit; //返回最后收益}//动态规划法求解#include<stdio.h>#include<math.h>#define n 6void DKNAP(int p[],int w[],int M,const int m); void main(){int p[n+1],w[n+1];int M,i,j;int m=1;for(i=1;i<=n;i++){m=m*2;printf("\nin put the weight and the p:");scanf("%d %d",&w[i],&p[i]);}printf("%d",m);printf("\n in put the max weight M:");scanf("%d",&M);DKNAP(p,w,M,m);}void DKNAP(int p[],int w[],int M,const int m) {int p2[m],w2[m],pp,ww,px;int F[n+1],pk,q,k,l,h,u,i,j,next,max,s[n+1];F[0]=1;p2[1]=w2[1]=0;l=h=1;F[1]=next=2;for(i=1;i<n;i++){k=l;max=0;u=l;for(q=l;q<=h;q++)if((w2[q]+w[i]<=M)&&max<=w2[q]+w[i]){u=q;max=w2[q]+w[i];}for(j=l;j<=u;j++){pp=p2[j]+p[i];ww=w2[j]+w[i];while(k<=h&&w2[k]<ww){p2[next]=p2[k];w2[next]=w2[k];next++;k++;}if(k<=h&&w2[k]==ww){if(pp<=p2[k])pp=p2[k];k++;}else if(pp>p2[next-1]){p2[next]=pp;w2[next]=ww;next++;}while(k<=h&&p2[k]<=p2[next-1])k++;}while(k<=h){p2[next]=p2[k];w2[next]=w2[k];next=next+1;k++;}l=h+1;h=next-1;F[i+1]=next;}for(i=1;i<next;i++)printf("%2d%2d ",p2[i],w2[i]);for(i=n;i>0;i--){next=F[i];next--;pp=pk=p2[next];ww=w2[next];while(ww+w[i]>M&&next>F[i-1]){next=next-1;pp=p2[next];ww=w2[next];}if(ww+w[i]<=M&&next>F[i-1])px=pp+p[i];if(px>pk&&ww+w[i]<=M){s[i]=1;M=M-w[i];printf("M=%d ",M);}else s[i]=0;}for(i=1;i<=n;i++)printf("%2d ",s[i]);}六、实验结果1、贪心法截图:七、实验分析。
背包问题
(0-1)背包问题的解法小结1.动态规划法递推关系:– 考虑一个由前i 个物品(1≤i ≤n )定义的实例,物品的重量分别为w 1,…,w i ,价值分别为v 1,…,v i ,背包的承重量为j (1≤j ≤W )。
设V [I,j]为该实例的最优解的物品总价值– 分成两类子集:• 根据定义,在不包括第i 个物品的子集中,最优子集的价值是V [i -1,j ]• 在包括第i 个物品的子集中(因此,j -w ≥0),最优子集是由该物品和前i -1个物品中能够放进承重量为i -w j 的背包的最优子集组成。
这种最忧子集的总价值等于v i +V [i -1,j -w i ].0]0,[时,0 当0;][0,时,0初始条件:当],1[}],1[],,1[max{],[=≥=≥<≥⎩⎨⎧-+---=i V i j V j w j w j j i V v w j i V j i V j i V i i i i以记忆功能为基础的算法:用自顶向下的方式对给定的问题求解,另外维护一个类似自底向上动态规划算法使用的表格。
一开始的时候,用一种“null”符号创始化表中所有的单元,用来表明它们还没有被计算过。
然后,一旦需要计算一个新的值,该方法先检查表中相应的单元:如果该单元不是“null ”,它就简单地从表中取值;否则,就使用递归调用进行计算,然后把返回的结果记录在表中。
算法 MFKnapsack(I,j)//对背包问题实现记忆功能方法//输入:一个非负整数i 指出先考虑的物品数量,一个非负整数j 指出了背包的承重量 //输出:前i 个物品的最伏可行子集的价值//注意:我们把输入数组Weights[1..n],Values[1..n]和表格V[0..n,0..W]作为全局变量,除了行0和列0用0初始化以外,V 的所有单元都用-1做初始化。
if V[I,j]<01if j<Weights[i]value ←MFKnapsack(i-1,j)elsevalue ←max(MFKnapsack(i-1),j), Value[i]+MFKnapsack(i-1,j-eights[i]))V[I,j]←valuereturn V[I,j]2.贪心算法1) 背包问题基本步骤:首先计算每种物品单位重量的价值Vi/Wi ,然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包。
动态规划算法0-1背包问题课件PPT
回溯法
要点一
总结词
通过递归和剪枝来减少搜索空间,但仍然时间复杂度高。
要点二
详细描述
回溯法是一种基于递归的搜索算法,通过深度优先搜索来 找出所有可能的解。在0-1背包问题中,回溯法会尝试将物 品放入背包中,并递归地考虑下一个物品。如果当前物品 无法放入背包或放入背包的总价值不增加,则剪枝该分支 。回溯法能够避免搜索一些无效的组合,但仍然需要遍历 所有可能的组合,时间复杂度较高。
缺点
需要存储所有子问题的解,因此空间 复杂度较高。对于状态转移方程的确 定和状态空间的填充需要仔细考虑, 否则可能导致错误的结果。
04
0-1背包问题的动态规划解法
状态定义
状态定义
dp[i][ j]表示在前i个物品中选,总 重量不超过j的情况下,能够获得 的最大价值。
状态转移方程
dp[i][ j] = max(dp[i-1][ j], dp[i1][ j-w[i]] + v[i]),其中w[i]和v[i] 分别表示第i个物品的重量和价值。
02
计算时间复杂度:时间复杂度是指求解问题所需的时间与问题规模之间的关系。对 于0-1背包问题,时间复杂度主要取决于状态总数。由于每个状态都需要被遍历, 因此时间复杂度为O(2^n),其中n是物品的数量。
03
空间复杂度:空间复杂度是指求解问题所需的空间与问题规模之间的关系。在0-1 背包问题中,空间复杂度主要取决于状态总数。由于每个状态都需要被存储,因此 空间复杂度也为O(2^n),其中n是物品的数量。
06
0-1背包问题的扩展和实际应用
多多个物品和多个 背包,每个物品有各自的重量和价值, 每个背包有各自的容量,目标是选择物 品,使得在不超过背包容量限制的情况 下,所选物品的总价值最大。
背包问题的贪心算法
Wi Xi
16.5 20 20 20
Vi X i
24.25 28.2 31 31.5
先检验这四个为可行解*,即满足约束条件(4.2.2),(4.2.3).再比 较目标函数值,∑vixi .知④组解效益值最大.该组解是背包问题的最 优解。(见定理4.2)
6
例4.4 n=3,c=20, (V1,V2,V3) (25, 24,15) (W1,W2,W3) (18,15,10)
7
,且物品2的24/15 = v2/w2 较物品3的15/10= v3/w3效益值高。按 此选择策略,得②即(1, 2/15, 0),∑vixi=28.2 .此解是一个次优解。 显然,按物品效益值的非增次序装包不能得最优解。
原因:背包可用容量消耗过快。
(2)以容量作为量度。即按物品重量的非降次序将物
—选取最优的量度标准实为用贪心方法求解问题的核心.
16
4.3 贪心算法的基本要素
1.贪心选择性质
所谓贪心选择性质是指所求问题的整体最优解可以 通过一系列局部最优的选择,即贪心选择来达到。这 是贪心算法可行的第一个基本要素,也是贪心算法与 动态规划算法的主要区别。
动态规划算法通常以自底向上的方式解各子问 题,而贪心算法则通常以自顶向下的方式进行,以迭 代的方式作出相继的贪心选择,每作一次贪心选择就 将所求问题简化为规模更小的子问题。
品装包。如例4.4中的解③(让背包尽可能慢被消耗)
排序 : (w3,w2,w1)= (10,15,18)
(V3,V2,V1) (15, 24, 25)
V3=15,x3=1,w3=10,背包剩余C-10=10;物品2有次大重量(w2=15), 但包装不下。使用x2=2/3,刚好装满背包且物品2装入2/3与物品1 装入5/9的容量均为10个单位。但前者的效益值24×2/3=16 >后者
0-1背包问题的算法决策分析
0-1背包问题的算法决策分析【摘要】0-1背包问题是一个经典的组合优化问题,在计算机领域有着广泛的应用。
本文将对0-1背包问题的算法决策进行深入分析。
首先介绍了背包问题的概述和算法决策的重要性,接着分别探讨了贪心算法、动态规划算法和回溯算法在0-1背包问题中的应用。
随后对比了不同算法在解决该问题时的表现,并讨论了影响算法选择的决策因素。
提出了最优算法选择的建议,并探讨了未来研究方向。
通过这篇文章的分析,读者可以更好地理解不同算法在0-1背包问题中的应用和选择合适算法的决策因素。
【关键词】0-1背包问题、算法决策、贪心算法、动态规划、回溯算法、算法表现对比、算法选择、最优算法、未来研究、决策因素、引言、正文、结论、总结1. 引言1.1 背包问题概述背包问题,即0-1背包问题,是一种经典的组合优化问题,通常用于描述在有限的容量下如何选择物品以获得最大的价值。
具体而言,给定一个背包的容量C和n个物品,每个物品有一个重量wi和一个价值vi,每个物品可以选择装入或不装入背包,但不能分割。
背包问题的目标是在不超过背包容量的前提下,选择物品使得背包中物品的总价值最大。
背包问题是一个NP难题,即没有多项式时间内的确定性算法可以解决。
研究者们为了寻找高效的解决方案,提出了各种算法并进行了比较和分析。
常见的解决背包问题的算法主要有贪心算法、动态规划算法和回溯算法。
每种算法都有其特点和适用情况,因此在选择算法时需要考虑问题的规模、性质和具体要求。
1.2 算法决策的重要性算法决策在解决0-1背包问题中扮演着至关重要的角色。
在面对限定容量下的物品选择时,选择适用的算法决策可以直接影响到问题的解决效率和解的质量。
不同的算法在解决背包问题时所需要的时间复杂度和空间复杂度各不相同,因此在选择算法时需要综合考虑问题的规模、约束条件和性能要求。
正确选择算法决策能够高效地解决问题,提高计算效率,降低计算成本。
贪心算法适用于一些简单情况下的背包问题,可以获得较快的解决速度;动态规划算法适用于大规模、复杂的背包问题,可以获得较优的解;回溯算法在一些特殊情况下也能发挥作用。
部分背包问题的贪心算法正确性证明
部分背包问题的贪⼼算法正确性证明⼀,部分背包问题介绍⾸先介绍下0-1背包问题。
假设⼀共有N件物品,第 i 件物品的价值为 V i,重量为W i,⼀个⼩偷有⼀个最多只能装下重量为W的背包,他希望带⾛的物品越有价值越好,请问:他应该选择哪些物品?0-1背包问题的特点是:对于某件(更适合的说法是:某类)物品,要么被带⾛(选择了它),要么不被带⾛(没有选择它),不存在只带⾛⼀部分的情况。
⽽部分背包问题则是:可以带⾛⼀部分。
即,部分背包问题可带⾛的物品是可以⽆限细分的。
(连续与离散的区别)可以把0-1背包问题中的物品想象的⼀个⾦⼦,你要么把它带⾛,要么不带⾛它;⽽部分背包问题中的物品则是⼀堆⾦粉末,可以取任意部分的⾦粉末⼆,部分背包问题的贪⼼算法部分背包问题可以⽤贪⼼算法求解,且能够得到最优解。
贪⼼策略是什么呢?将物品按单位重量所具有的价值排序。
总是优先选择单位重量下价值最⼤的物品。
单位重量所具有的价值:V i / W i举个例⼦:假设背包可容纳50Kg的重量,物品信息如下:物品 i 重量(Kg) 价值单位重量的价值1 10 60 62 20 100 53 30 120 4按照我们的贪⼼策略,单位重量的价值排序:物品1 > 物品2 > 物品3因此,我们尽可能地多拿物品1,直到将物品1拿完之后,才去拿物品2.....最终贪⼼选择的结果是这样的:物品1全部拿完,物品2也全部拿完,物品3拿⾛10Kg(只拿⾛了物品3的⼀部分)这种选择获得的价值是最⼤的。
在(三)会给出证明。
⽽对于0-1背包问题,如果也按“优先选择单位重量下价值最⼤的物品”这个贪⼼策略,那么,在拿了物品1和物品2之后,就不能在拿物品3了。
因为,在拿了物品1和物品2之后,背包中已经装了10+20=30Kg的物品了,已经装不下物品3了(50-30 < 30)(0-1背包:⼀件物品要么拿,要么不拿,否能只拿⼀部分),此时得到的总价值是 160。
0-1背包问题求解方法综述
0-1背包问题求解方法综述算法分析与设计大作业实验题目:0-1背包问题求解方法综述组员:班级:指导老师:0-1背包问题求解方法综述【摘要】:0-1背包问题是一个经典的NP-hard组合优化问题,现实生活中的很多问题都可以以它为模型。
本文首先对背包问题做了阐述,然后用蛮力解法、动态规划算法、贪心算法和回溯解法对背包问题进行求解,分析了0-1背包问题的数学模型,刻划了最优解的结构特征,建立了求最优值的递归关系式。
最后对四种算法从不同角度进行了对比和总结。
【关键词】:0-1背包问题;蛮力解法;动态规划算法;贪心算法;回溯解法。
0.引言0-1背包问题是指给定n个物品,每个物品均有自己的价值vi和重量wi(i=1,2,…,n),再给定一个背包,其容量为W。
要求从n个物品中选出一部分物品装入背包,这部分物品的重量之和不超过背包的容量,且价值之和最大。
单个物品要么装入,要么不装入。
很多问题都可以抽象成该问题模型,如配载问题、物资调运[1]问题等,因此研究该问题具有较高的实际应用价值。
目前,解决0-1背包问题的方法有很多,主要有动态规划法、回溯法、分支限界法、遗传算法、粒子群算法、人工鱼群算法、蚁群算法、模拟退火算法、蜂群算法、禁忌搜索算法等。
其中动态规划、回溯法、分支限界法时间复杂性比较高,计算智能算法可能出现局部收敛,不一定能找出问题的最优解。
文中在动态规划法的基础上进行了改进,提出一种求解0-1背包问题的算法,该算法每一次执行总能得到问题的最优解,是确定性算法,算法的时间复杂性最坏可能为O(2n)。
1.0-1背包问题描述0-1背包问题(KP01)是一个著名的组合优化问题。
它应用在许多实际领域,如项目选择、资源分布、投资决策等。
背包问题得名于如何选择最合适的物品放置于给定背包中。
本文主要研究背包问题中最基础的0/1背包问题的一些解决方法。
为解决背包问题,大量学者在过去的几十年中提出了很多解决方法。
解决背包问题的算法有最优算法和启发式算法[2],最优算法包括穷举法、动态规划法、分支定界法、图论法等,启发式算法包括贪心算法、遗传算法、蚁群算法、粒子算法等一些智能算法。
【精选】贪心算法的应用
贪心算法的应用课程名称:算法设计与分析院系:计算机科学与信息工程学院学生姓名:****学号:**********专业班级:********************************** 指导教师:******201312-27贪心算法的应用摘要:顾名思义,贪心算法总是作出在当前看来最好的选择。
也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。
当然,希望贪心算法得到的最终结果也是整体最优的。
虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。
如单源最短路经问题,最小生成树问题等。
在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。
贪心算法求问题一般具有两个重要性质:贪心选择性质和最优子结构性质。
所谓贪心选择性是指所求问题的整体最优解可以通过一系列局部最优解的选择,即贪心选择达到。
这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法主要区别。
当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。
问题的最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。
背包问题是一个经典的问题,我们可以采用多种算法去求解0/1背包问题,比如动态规划法、分支限界法、贪心算法、回溯法。
在这里我们采用贪心法解决这个问题。
关键词:贪心法背包问题最优化目录第1章绪论 (3)1.1 贪心算法的背景知识 (3)1.2 贪心算法的前景意义 (3)第2章贪心算法的理论知识 (4)2.1 问题的模式 (4)2.2 贪心算法的一般性描述 (4)第3章背包问题 (5)3.1 问题描述 (5)3.2 问题分析 (5)3.3算法设计 (5)3.4 测试结果与分析 (10)第4章结论 (12)参考文献 (13)附件 (13)第1章绪论1.1 贪心算法的背景知识贪心算法又叫登山法,它的根本思想是逐步到达山顶,即逐步得最优解,是解决最优化问题时的一种简单但适用范围有限的策略。
0-1背包问题的算法决策分析
0-1背包问题的算法决策分析1. 引言1.1 背包问题简介背包问题是一个经典的组合优化问题,通常用于描述在给定一定容量的背包和一组物品的情况下,如何选择装入背包中的物品,使得背包内物品的总价值最大或总重量最小。
这种问题在实际生活中有着广泛的应用,比如在物流配送、资源分配等领域都能见到类似的问题。
背包问题通常包括01背包、完全背包、多重背包等不同变种,其中最为经典和常见的是01背包问题。
在01背包问题中,每种物品只能选择装入或不装入背包,不能将物品进行切割。
为了解决背包问题,通常采用动态规划算法或贪心算法。
动态规划算法通过递推的方式计算出最优解,具有较高的时间复杂度但能够保证全局最优解;贪心算法则通过选择局部最优解的方式逐步构建全局最优解,具有较低的时间复杂度但不能保证一定得到最优解。
在实际应用中,对于不同规模和要求的背包问题,需要根据具体情况选择适用的算法来求解。
背包问题的解决思路可以帮助我们更好地理解和应用算法解决实际问题。
1.2 算法决策的重要性在解决0-1背包问题时,算法决策的重要性不可忽视。
背包问题是一个经典的组合优化问题,其在实际生活中有着广泛的应用。
在面对不同的背包问题时,选择合适的算法决策可以大大提高问题的解决效率和准确性。
通过精心选择算法,可以避免不必要的计算和浪费,节省时间和资源。
在动态规划和贪心算法两种经典算法中,不同的问题可能更适合不同的解决方案。
算法决策的重要性体现在如何根据问题的性质和约束条件选择最合适的算法,以达到最优的解决方案。
在实际应用中,算法决策的重要性更加凸显。
对于大规模背包问题,合理选择算法可以极大地提高问题的求解效率,节约资源和时间成本。
而对于特定场景下的背包问题,例如物流配送、资源分配等,算法决策的准确性直接影响到问题的实际应用效果和经济效益。
因此,对于0-1背包问题的解决来说,算法决策的重要性不言而喻。
只有通过深入理解不同算法的特点和适用条件,才能更好地选择合适的解决方案,从而达到最优解并取得较好的求解效果。
运筹学背包问题例题
运筹学背包问题例题
运筹学中的背包问题是一个经典的组合优化问题,通常分为0-1背包问题和分数背包问题。
这个问题可以用来描述一个背包有限的容量,以及一系列物品,每个物品都有自己的重量和价值。
问题的目标是找到一个组合,使得放入背包的物品总重量不超过背包容量,同时使得这些物品的总价值最大化。
举一个例子来说明背包问题:假设有一个背包容量为10kg,现有以下物品:
物品A,重量3kg,价值150元。
物品B,重量4kg,价值300元。
物品C,重量5kg,价值200元。
针对这个例子,我们可以用动态规划或者贪心算法来解决背包问题。
在0-1背包问题中,每个物品只能选择放或者不放,不能进行分割。
而在分数背包问题中,物品可以进行分割放入背包。
解决背包问题的关键是建立递推关系和状态转移方程,以确定
如何选择物品放入背包以达到最优解。
动态规划是解决背包问题的
常用方法,通过填写一个二维的状态转移表格来逐步求解最优解。
贪心算法则是通过每一步选择当前最优的策略,不断迭代直至达到
最优解。
除了动态规划和贪心算法,还有其他方法可以解决背包问题,
比如分支限界法、回溯法等。
每种方法都有其适用的场景和局限性。
总的来说,背包问题是运筹学中的一个经典问题,有着广泛的
应用。
通过合适的算法和方法,我们可以有效地解决背包问题,找
到最优的放置方案,这对于资源分配、生产调度等实际问题有着重
要的意义。
基于朴素贪心算法的背包问题解决方案
基于朴素贪心算法的背包问题解决方案背包问题是一类经典的组合优化问题,它的一般形式描述为:有一个固定大小的背包,和一些物品,每个物品都有自己的价值和大小,需要选出一些物品装入背包中,使得装进去的物品价值最大化,同时又不能超出背包容量的限制。
这个问题在实际生活中有很多应用,比如在货物的装载和运输、在零售商的库存管理、在网页推荐系统等等。
解决背包问题的方法有很多,其中比较经典的是基于动态规划的解法,但是这种解法需要使用大量的存储空间,如果物品数量很大的话,计算复杂度也会很高。
因此本文将介绍一种基于朴素贪心算法的背包问题解决方案。
一、背包问题的数学模型在介绍具体的解决方案之前,我们需要先来看一下背包问题的数学模型。
假设我们有n个物品,第i个物品的重量为wi,价值为vi,背包的容量为W。
那么背包问题可以用下面的数学模型来描述:$$\begin{aligned}&\max\sum_{i=1}^{n}v_ix_i\\&s.t.\sum_{i=1}^ {n}w_ix_i\leq W\\&x_i\in \{0,1\}\end{aligned}$$其中,$x_i$表示第$i$个物品是否被选中,$v_i$和$w_i$分别表示第$i$个物品的价值和重量。
第一个约束条件表示所有选中的物品的总重量不能超过背包的容量$W$,第二个约束条件表示每个物品最多只能选一次。
二、基于朴素贪心算法的解法朴素贪心算法的思路很简单:每次选择可行的物品中价值最大的那一个,直到不能再选为止。
对于背包问题来说,我们可以按照物品的单位价值(即价值与重量比值)从大到小排序,然后依次选择可行的物品加入背包中。
具体步骤如下:1. 计算每个物品的单位价值,按照单位价值从大到小排序。
2. 依次加入可行的物品,直到不能再加入为止。
3. 最后得到的物品组合就是背包问题的最优解。
该算法的时间复杂度为$O(nlogn)$,其中$n$为物品的数量。
贪心算法实现背包问题算法设计与分析实验报告
算法设计与分析实验报告实验名称 贪心算法实现背包问题 评分 实验日期 年 月 日 指导教师 姓名 专业班级 学号一.实验要求1. 优化问题有n个输入,而它的解就由这n个输入满足某些事先给定的约束条件的某个子集组 成,而把满足约束条件的子集称为该问题的可行解。
可行解一般来说是不唯一的。
那些使目标函数取极值(极大或极小)的可行解,称为最优解。
2.贪心法求优化问题算法思想:在贪心算法中采用逐步构造最优解的方法。
在每个阶段,都作出一个看上去最优的决策(在一定的标准下)。
决策一旦作出,就不可再更改。
作出贪心决策的依据称为贪心准则(greedy criterion)。
3.一般方法1)根据题意,选取一种量度标准。
2)按这种量度标准对这n个输入排序3)依次选择输入量加入部分解中。
如果当前这个输入量的加入,不满足约束条件,则不把此输入加到这部分解中。
procedure GREEDY(A,n) /*贪心法一般控制流程*///A(1:n)包含n个输入//solutions←φ //将解向量solution初始化为空/for i←1 to n dox←SELECT(A)if FEASIBLE(solution,x)then solutions←UNION(solution,x)endifrepeatreturn(solution)end GREEDY4. 实现典型的贪心算法的编程与上机实验,验证算法的时间复杂性函数。
二.实验内容1. 编程实现背包问题贪心算法。
通过具体算法理解如何通过局部最优实现全局最优,并验证算法的时间复杂性。
2.输入5个的图的邻接矩阵,程序加入统计prim算法访问图的节点数和边数的语句。
3.将统计数与复杂性函数所计算比较次数比较,用表格列出比较结果,给出文字分析。
三.程序算法1. 背包问题的贪心算法procedure KNAPSACK(P,W,M,X,n)//P(1:n)和W(1;n)分别含有按P(i)/W(i)≥P(i+1)/W(i+1)排序的n件物品的效益值和重量。
贪心算法适用于哪些问题场景
贪心算法适用于哪些问题场景贪心算法是一种在求解问题时总是做出在当前看来是最好选择的算法。
虽然它不一定能得到全局最优解,但在许多特定的问题场景中,却能高效地给出一个较为满意的结果。
以下就来探讨一下贪心算法适用于哪些问题场景。
首先,贪心算法常用于活动安排问题。
假设有一系列活动,每个活动都有开始时间和结束时间。
我们需要在有限的时间内选择尽可能多的活动来参加。
此时,贪心算法的策略可以是每次都选择结束时间最早的活动。
因为这样能为后续可能的活动留出更多的时间,从而有可能安排更多的活动。
例如,有活动 A(开始时间 8:00,结束时间10:00)、B(开始时间 9:00,结束时间 11:00)、C(开始时间 10:30,结束时间 12:00)。
按照贪心算法,先选择 A 活动,然后由于 B 活动与 A 活动时间有冲突,不能选择,接着可以选择 C 活动。
这种情况下,通过贪心选择,能够安排两个活动。
其次,在找零钱问题中,贪心算法也能发挥作用。
比如,当我们需要用最少的硬币找给顾客零钱时,假设我们有 1 元、5 角、1 角的硬币,要找给顾客 17 元。
贪心算法会先尽量选择面值大的硬币,即先选择 1个 1 元硬币,然后选择 1 个 5 角硬币,再选择 2 个 1 角硬币,这样就能用最少的硬币数量找零。
再者,贪心算法在背包问题的某些变种中适用。
比如,在部分背包问题中,物品可以分割,每个物品都有一定的价值和重量。
我们要在背包容量有限的情况下,装入物品使得总价值最大。
此时,贪心算法可以按照物品的单位重量价值(价值/重量)从大到小的顺序来选择装入背包的物品。
例如,有物品 A(价值 100,重量 20)、物品 B(价值 60,重量 10)、物品 C(价值 80,重量 15),背包容量为 25。
按照贪心算法,先计算单位重量价值,A 为 5,B 为 6,C 为 533。
所以先选择 B 物品全部装入,然后选择 C 物品部分装入(10 重量),这样就能使背包内物品的总价值最大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
贪心算法--0-1背包问题
1、问题的描述
有编号分别为a,b,c,d,e的五件物品,它们的重量分别是2,4,2,1,3,它们的价值分别是3,5,6,4,6,现在给你个承重为10的背包,如何让背包里装入的物品具有最大的价值总和?
贪心算法的思想:贪心原则为单位价值最大且重量最小,不超过背包最大承重量为约束条件。
也就是说,存在单位重量价值相等的两个包,则选取重量较小的那个背包。
2、代码及注释
#include <stdio.h>
#define M 5
//定义一个node结构体,用来存放物体的重量和价值
struct node
{
float value;//价值
float weight;//重量
int flag; //用来判别这个物体是否装进背包
}Node[M],temp;
float Value,curvalue=0;//总价值和当前价值
float Weight,curweight=0;//背包的最大承受重量和现有重量
//按性价比排序
void sort()
{
int i,j;
//遍历所有物品
for(i=0;i<M-1;i++)
{
//与之后的物品进行比较
for(j=i+1;j<M;j++)
{
//判断性价比较最高性价比
if((Node[i].value/(float)Node[i].weight)<Node[j].value/(float)Node[j].weight) {
//进行交换
temp=Node[i];
Node[i]=Node[j];
Node[j]=temp;
}
}
}
}
//装载主要方法
void load()
{
int i;
//遍历所有物品
for(i=0;i<M;i++)
{
//判断加入物品否是否大于背包所能承载的最大重量 if((Node[i].weight+curweight)<=Weight)
{
curvalue+=Node[i].value;
curweight+=Node[i].weight;
Node[i].flag=1;//进行标记
}
else
{
//进行标记
Node[i].flag=0;
}
}
}
//进行结果的输出
void putout()
{
int i;
printf("选中物品的重量分别为:");
for(i=0;i<M;i++)
{
if(Node[i].flag)
{
printf("%.2f ",Node[i].weight);
}
}
printf("\n总价值为:%.2f",curvalue);
}
int main()
{
int i;
printf("请输入物品的重量和价值:\n");
for(i=0;i<M;i++)
{
printf("请输入第%d个物品的重量和价值",i+1); scanf("%f%f",&Node[i].weight,&Node[i].value);
}
printf("\n请输入背包容积:");
scanf("%f",&Weight);
sort();
load();
putout();
return 0;
}
3、运行结果
(1)在某种情况下可以通过局部最优选择达到整体最优。
(2)贪心算法并不能使所有符合局部最优的选择使得整体达到最优
4、运行结果
贪心算法总是作出在当前看来最好的选择。
也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。
在这个程序中,采用性价比的方式来做出当前最好的选择,然后再不大于背包所能承载的最大重量的时候将他标记成1,否则标记成0.
最后在输出的时候选择标记为1 的输出,用来实现贪心算法。
在上述运行结果中,第二次的运行结果得出的最优选择是重量=6,价值=12,
但是我们可以明显的看出来最优选择应该是重量=10,价值=18.虽然重量为6的是局部最优选择,但他不是整体最优选择。
为什么会造成这种情况呢,原因在于贪心算法没有背包空间利用率的原因。
运行结果得出来的背包利用率只有百分之六十,但是实际上可以增加背包的利用率。
比如我们得出的整体最优选择空间的利用率达到了百分之一百。
由于空间的
浪费,使得它虽然是局部最优,但是却不是整体最优。
所以,贪心算法得到的结果只能说是最接近于整体最优选择。
5、OS及编译环境
Win7 64位操作系统,VC6.0的编译环境。