The numerical computation of turbulent flows

合集下载

可压缩机翼绕流的数值模拟及其稳定性分析

可压缩机翼绕流的数值模拟及其稳定性分析

可压缩机翼绕流的数值模拟及其稳定性分析贲安庆;窦华书【摘要】运用数值模拟的方法分别模拟了马赫数为0.5、攻角为3和8的可压缩的机翼绕流流动,同时研究了马赫数为0.75、攻角为1.5,5和8的具有激波的可压缩流动机翼绕流,模拟结果与实验数据符合良好.采用能量梯度方法分析了流体流动的稳定性,研究发现:Spalart-Allmaras湍流模型能够准确反映出可压缩机翼绕流流动的流场特性;对于未产生激波的可压缩机翼绕流,背风的一侧首先发生失稳,且在机翼前端的上缘首先发生失稳;对于具有激波的机翼绕流,激波处的能量梯度最大,首先发生失稳.【期刊名称】《浙江理工大学学报》【年(卷),期】2015(033)005【总页数】7页(P675-681)【关键词】可压缩;数值模拟;机翼绕流;能量梯度法;稳定性【作者】贲安庆;窦华书【作者单位】浙江理工大学机械与自动控制学院,310018杭州;浙江理工大学机械与自动控制学院,310018杭州【正文语种】中文【中图分类】O355绕流流动现象是流体力学的经典研究课题之一[1],也是众多理论分析、数值模拟以及实验研究的对象[2-3]。

它广泛存在于自然界中,如河水绕过桥墩、风吹过建筑物和空气绕过飞机等;还大量出现在实际问题中,如水流对渡槽槽墩、桥梁、海洋钻井平台支柱、海底输运管线、桩基码头等[1,4-5]。

尽管对这一现象的研究已经有一个多世纪,但是直到现在仍是流体力学中的一项艰巨挑战[6]。

众所周知,层流绕流时,流体产生的摩擦阻力相对于湍流绕流要小的多。

在机翼绕流中,层流绕流极大地减少了能源消耗,因而机翼绕流现象一直受到国内外研究学者的广泛关注。

由此产生的层流控制技术(LFC),其主要目的是通过各种手段调控机翼周围的流体使其处于或者保持为层流状态[7]。

而实现流体控制技术的前提,是首先判断出流体所处的状态,并找出流场中最容易首先发生失稳的位置或者流体失稳后最不稳定的位置,从而加以调控。

OpenFOAM中的几种边界条件

OpenFOAM中的几种边界条件

OpenFOAM中的⼏种边界条件1.turbulentIntensityKineticEnergyInlet边界名称{type turbulentIntensityKineticEnergyInlet;intensity 数值;value uniform 数值/$internalField;}说明:intensity指的是湍流强度,如果不知道怎么计算,便可以指定为0.05。

关于为什么指定为5%,可以参考⽂献《The numerical computation of turbulent flows》。

可通过湍流强度来k的值,value关键字下可填写任意数值或$internalField(仅是将字符串拷贝到本地,等于内部场的值),仅起到占位的作⽤,并不对计算造成影响。

OpenFOAM⾃带tutorial中,基本上都⽤在了k的进⼝边界上。

很显然在壁⾯处,k应该为0。

2.omegaWallFunction/epsilonWallFunction边界名称{type omegaWallFunction;//或者是epsilonWallFunctionvalue uniform 数值;}说明:该边界条件仅对壁⾯设置壁⾯函数,应⽤在k-e或者k-w湍流模型中,从⽽对⽅程进⾏求解。

value关键字下可填写任意数值或$internalField(仅是将字符串拷贝到本地,等于内部场的值),仅起到占位的作⽤,并不对计算造成影响。

3.turbulentMixingLengthFrequencyInlet/turbulentMixingLengthDissipationRateInlet边界名称{type turbulentMixingLengthFrequencyInlet;//或者turbulentMixingLengthDissipationRateInletmixingLength 数值;value uniform 数值;}说明:可通过混合长度来计算omega或者epsilon的值,value关键字下可填写任意数值或$internalField(仅是将字符串拷贝到本地,等于内部场的值),仅起到占位的作⽤,并不对计算造成影响。

介绍图灵的英语作文

介绍图灵的英语作文

介绍图灵的英语作文Alan Turing, a brilliant mathematician and computer scientist, is widely regarded as one of the most influential figures in the history of computing. Born on June 23, 1912, in Maida Vale, London, Turing's groundbreaking work laid the foundation for modern computer science and artificial intelligence. His contributions to the field have had a profound impact on the way we live and work today.Turing's most famous achievement is his role in breaking the German Enigmacode during World War II. Working at Bletchley Park, he and his team developed a machine known as the Bombe, which successfully deciphered the complex code used by the Germans to encrypt their communications. This breakthrough is estimated tohave shortened the war by two to four years, saving countless lives in the process. Turing's work at Bletchley Park not only helped the Allies win the war but also paved the way for the development of modern computers.In addition to his code-breaking efforts, Turing is also known for his work in the field of artificial intelligence. In 1950, he published a paper titled'Computing Machinery and Intelligence,' in which he proposed the concept of the Turing Test. This test is designed to evaluate a machine's ability to exhibit intelligent behavior equivalent to, or indistinguishable from, that of a human. The Turing Test has since become a benchmark for measuring the progress ofartificial intelligence and has sparked ongoing debates about the nature of consciousness and the potential for machines to exhibit human-like intelligence.Despite his significant contributions to the war effort and the field of computer science, Turing's life was marred by tragedy. In 1952, he was prosecuted for homosexuality, which was then considered a criminal offense in the UK. As a result, he was subjected to chemical castration through hormone treatment. In 1954, at the age of 41, Turing tragically took his own life. It wasn't until 2009 that the British government officially apologized for the way Turing had been treated, and in 2013, Queen Elizabeth II granted him a posthumous pardon.Turing's legacy continues to inspire and influence the field of computer science. In 2014, he was posthumously awarded the Royal Pardon for his contributions to code-breaking during the war. His work at Bletchley Park has been credited with revolutionizing the field of cryptography and laying the groundwork for modern information technology. In 2019, the Bank of England announced that Turing would be featured on the new £50 note, recognizing his immense impact on the field of computer science.In conclusion, Alan Turing's contributions to the field of computer science and his pivotal role in breaking the Enigma code have had a lasting impact on the world. His work not only helped end World War II but also laid the foundation for modern computing and artificial intelligence. Despite the adversity he faced in his personal life, Turing's legacy continues to be celebrated and honored, ensuring that his remarkable achievements will never be forgotten.。

flunt文献

flunt文献

[1] G. K. Batchelor.An Introduction to Fluid Dynamics.Cambridge Univ. Press, Cambridge, England, 1967.[2] D. Cokljat, V. A. Ivanov, and S. A. Vasquez.A Non-Equilibrium Two-Phase Model for Cavitating Flows.In Third International Conference on Multiphase Flow, Lyon, France, 1998. Available on ICMF98 CD-ROM, paper 224.[3] J. L. Ferzieger and M. Peric.Computational Methods for Fluid Dynamics.Springer-Verlag, Heidelberg, 1996.[4] J. Janicka and W. Kollmann.A Numerical Study of Oscillating Flow Around a Circular Cylinder.Combustion and Flame, 44:319--336, 1982.[5] W. P. Jones and J. H. Whitelaw.Calculation Methods for Reacting Turbulent Flows: A Review.Combust. Flame, 48:1--26, 1982.[6] W. M. Kays.Turbulent Prandtl Number - Where Are We?J. Heat Transfer, 116:284--295, 1994.[7] B. E. Launder.Second-Moment Closure and Its Use in Modeling Turbulent Industrial Flows. International Journal for Numerical Methods in Fluids, 9:963--985, 1989.[8] B. E. Launder.Second-Moment Closure: Present... and Future?Inter. J. Heat Fluid Flow, 10(4):282--300, 1989.[9] B. E. Launder, G. J. Reece, and W. Rodi.Progress in the Development of a Reynolds-Stress Turbulence Closure.J. Fluid Mech., 68(3):537--566, April 1975.[10] B. E. Launder and N. Shima.Second-Moment Closure for the Near-Wall Sublayer: Development and Application. AIAA Journal, 27(10):1319--1325, 1989.[11] B. E. Launder and D. B. Spalding.Lectures in Mathematical Models of Turbulence.Academic Press, London, England, 1972.[12] B. E. Launder and D. B. Spalding.The Numerical Computation of Turbulent Flows.Computer Methods in Applied Mechanics and Engineering, 3:269--289, 1974.[13] J. P. Vandoormaal and G. D. Raithby.Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows. Numer. Heat Transfer, 7:147--163, 1984.[14] L. D. Smoot and P. J. Smith.NOx Pollutant Formation in a Turbulent Coal System.In Coal Combustion and Gasification, page 373, Plenum, Plenum, NY, 1985.[15] F. C. Lockwood and C. A. Romo-Millanes.Mathematical Modelling of Fuel - NO Emissions From PF Burners.J. Int. Energy, 65:144--152, September 1992.[16] R. K. Boyd and J. H. Kent.Three-dimensional furnace computer modeling.In 21stSymp. (Int'l.) on Combustion, pages 265--274. The Combustion Institute, 1986.[17] M. Manninen, V. Taivassalo, and S. Kallio.On the Mixture Model for Multiphase Flow.VIT Publications, Technical Research Centre of Finland, 1996.。

河道水流三维流速场的数值模拟研究

河道水流三维流速场的数值模拟研究
( 1)
式中 ,ρ 和μ 分别为体积分数平均的密度和分子粘性 系数 ; P 为修正压力 ;μt 为紊流粘性系数 , 它可由紊 动能 k 和紊动耗散率 ε求出 :
k μt = ρ C μ ε
2
( 7)
其中 , Cμ 为经验常数 ;σk 和 σ 的紊流 ε 分别为 k 和 ε 普朗特数 ; G 为由平均速度梯度引起的紊动能产生 项 , 由下式定义 :
第 39 卷 第 1 期
2007 年 1 月
四 川 大 学 学 报 (工 程 科 学 版 )
JOURNAL OF SI CHUAN UN I V ERSITY ( ENGI N EER I N G SC IENCE ED ITI ON )
Vol . 39 No. 1 Jan. 2007
文章编号 : 1009 2 3087 (2007) 01 2 0058 2 05
河道水流三维流速场的数值模拟研究
张光碧 , 邓 军 , 刘 超 ,朱迪生
1 2 1 1 ( 1. 四川大学 水利水电学院 ,四川 成都 610065; 2. 四川大学 水力学与山区河流开发保护国家重点实验室 ,四川 成都 610065)
摘 要 : 为了寻求一种先进的数值模拟方法来研究河段水流的流场特性 ,采用 VOF 紊流数学模型对大渡河安顺场 堤防工程兴建河段建堤前后的水流流速场进行了三维数值模拟研究 ,模拟计算了该河段堤防兴建前后流速场内流 速大小 、 方向 、 水位等的变化情况 。计算表明 , VOF紊流数学模型是一种处理复杂自由表面的有效方法 。该法不仅 具有稳定性好 ,灵活性强和精度高的优点 ,而且网格划分灵活 ,因此能较好地模拟不规则河道边界 ,很适合于天然 河道三维水流流速场问题的数值模拟研究 。 关键词 : 三维 ; 流速场 ; VOF法 ; 数值模拟 中图分类号 : TV135 文献标识码 : A

水下航行体热尾流浮升特性研究

水下航行体热尾流浮升特性研究

水下航行体热尾流浮升特性研究张昊春;吉宇;马锐;李垚;严利明;秦江【摘要】水下航行体排放的热尾流的浮升规律及其水面温度分布特征是红外探测的基础.本文从热尾流形成过程出发,建立水下射流的二维计算模型.基于Fluent软件的湍流数学模型,对温度分层和均匀环境介质中的热尾流的浮升特性及水面温度分布进行数值计算,并以VOF方法追踪了温度分层环境中的尾流界面,得到热尾流的轨迹与温度的衰减规律,对比分析温度分层环境与均匀介质环境中的异同.【期刊名称】《舰船科学技术》【年(卷),期】2015(037)007【总页数】5页(P24-28)【关键词】水下航行体;热尾流;浮升规律;温度分布;数值模拟【作者】张昊春;吉宇;马锐;李垚;严利明;秦江【作者单位】哈尔滨工业大学能源科学与工程学院,黑龙江哈尔滨150001;哈尔滨工业大学能源科学与工程学院,黑龙江哈尔滨150001;中国舰船研究设计中心,湖北武汉430064;哈尔滨工业大学复合材料研究所,黑龙江哈尔滨150001;哈尔滨工业大学能源科学与工程学院,黑龙江哈尔滨150001;哈尔滨工业大学能源科学与工程学院,黑龙江哈尔滨150001【正文语种】中文【中图分类】U661.1水下航行体(如潜艇)由于其极强的隐蔽性与突袭性,成为现代海战中的重要作战手段。

在发展潜艇技术的同时,对反潜技术的研究同样受到各国的高度重视。

由于潜艇在水下航行时需要冷却动力装置,尤其是核潜艇,因此会向海洋中排放大量的温热海水而形成热尾流,热尾流浮升至海面会使海面水温发生异常。

国外有专家估测,1台反应堆功率为190 MW的核潜艇每秒钟释放入海洋的热能多达1.89×108J,在速度为5 kn时,它排出的热能使其身后的水温升高0.2 K[1]。

随着遥感技术的发展,利用装载在飞机或卫星上的红外探测装置和高速摄像机等设备仪器可以发现水面上的热尾流,从而进行判断分析是否有潜艇。

为了解热尾流的形成机理与浮升规律,从而为红外探潜提供理论依据。

湍流知识简介1

湍流知识简介1

湍流turbulent flow理论形成对湍流现象进行实验和理论研究由O.雷诺首开其端,至今已有100多年。

关于层流向湍流状态的转变,雷诺认为这是层流稳定性问题。

20世纪30年代,由德国L.普朗特学派的W.托尔明通过计算得到平板边界层中层流失去稳定性时的临界雷诺数。

对湍流运动规律的研究,遵循两条基本途径:①研究时均运动规律,形成了湍流半经验理论;②研究脉动运动规律,形成了湍流统计理论。

在湍流半经验理论方面,法国科学家J.布森涅斯克最先于1877年提出涡流粘度理论,其后1925年普朗特提出混合长理论(亦称动量传递理论),还有1930年T.卡门提出的相似理论和1932年G.I.泰勒提出的涡量传递理论等。

在湍流统计理论方面,首先是泰勒(1935),后来有卡门(1938)和..科尔莫戈罗夫(1941)等著名科学家,用统计方法考察湍流,为湍流统计理论奠定了基础。

1941年,柯尔莫戈罗夫提出局部各向同性概念他认为实际流动总有边界的影响,因此受边界影响较大的大尺度涡旋的运动不可能是各向同性的,而受边界影响较少的小尺度涡旋则可能是各向同性的。

湍流数值计算numerical computation of turbulent flow用合适的湍流模式和数值方法并运用高速电子计算机算出湍流参量的方法。

它主要有两种:平均方法和数值实验。

近年来,在这两种方法的基础上发展出大旋涡模拟。

平均方法这是工程中常用的方法,其基本原理是:将湍流瞬时速度表示为平均速度与脉动速度之和,并将描述湍流的基本方程纳维-斯托克斯方程对时间取平均,得到描述流体平均运动的控制方程──雷诺方程。

此方程同一般流体运动方程基本一致,但它除了具有通常的流体粘性应力以外,还出现湍流特有的雷诺应力。

这种应力实质上是由脉动速度分量形成的。

因此,雷诺方程不仅包含流体平均速度,而且包含脉动速度。

这样,基本方程中未知量的数目超过了方程本身的数目,湍流平均运动问题无法求解。

室内火灾数值模拟方法的探讨

室内火灾数值模拟方法的探讨

第9卷第2期2003年4月燃 烧 科 学 与 技 术Journal of Combustion Science and T echnolo gy Vol.9No.2Apr.2003室内火灾数值模拟方法的探讨Ξ陈大宏1,袁国杰2,GUAN Heng 2yeoh 3,杨小亭1,方 正1(1.武汉大学水利水电学院,武汉430072;2.香港城市大学建筑学系,香港九龙;3.澳大利亚原子能科学技术委员会原子能技术部,莫朗,澳大利亚2234)摘 要:通过场模拟方法与Steckler 的单室火灾实验资料比较,验证了作者开发的火灾场模拟模型Fire3D ,同时讨论了不同燃烧模型和热辐射对计算结果的影响.定量比较显示,如果考虑燃烧和热辐射的模拟,则Fire3D 能够提供与实验相吻合的速度和温度.CO 含量是建筑火灾预报中的重要指标,以Flamelet 为基础的燃烧模型能计算出CO 浓度.Flamelet 模型和模拟热辐射的DOM 方法联合运用会比较适合于建筑火灾的预报,值得进一步探讨.关键词:建筑火灾;燃烧模型;场模拟中图分类号:T K12,TU972 文献标识码:A 文章编号:100628740(2003)022*******Numerical Study on Compartment Fires by Using CFD T echniqueCHEN Da 2hong 1,YUAN Guo 2jie 2,GUAN Heng 2yeoh 3,YAN G Xiao 2ting 1,FAN G Zheng 1(1.College of Water Resources and Hydropower ,Wuhan University ,Wuhan 430072,China ;2.Department of Building and construction ,City University of Hong K ong ,K owloon ,Hong K ong ,China ;3.Australian Nuclear Science Technology Organisation ,Nuclear Technology Division ,Menai ,Australia 2234)Abstract :Field modelling that incorporates increasingly complex representations of the physical and chemical processes for compartment fires warrants a detailed evaluation.The influence of different combustion models and the introduction of ra 2diation model were assessed by comparisons against Steckler experimental data of a single compartment fire in order to check the current predictions made by Fire3D.Detailed quantitative comparisons demonstrate that our predicted velocity and temperature fields show good agreement against the above data when the combustion and radiation models are intro 2duced.The encouraging prospect on the use of Flamelet 2based combustion model where the incor poration of more detailed chemistry can be realized ,es pecially to predict CO concentrations ,together with the discrete ordinates radiation method (DOM )offers potential in building fire prediction.K eyw ords :building fire ;combustion model ;field modelling 为了能够定量地运用CFD (computational fluiddynamics )或场模拟方法来研究建筑火灾安全问题,火灾模拟模型的建立非常重要.在燃烧模型方面,越来越复杂的模型被人们研究和使用,以期能更好地描述受限空间中火灾的物理和化学过程.CFD 方法虽然需要较多的计算机资源,但它并不像较简单的区域模型那样对许多火灾问题存在比较大的局限性,因而日益受到重视.一种简化的场方法,即在场模拟中用热源来描述火灾的方法[1,2],描述火灾中的流动和温度特性,但是未考虑燃烧过程和热辐射的模拟. 最近,Lewis 等人[3]的火灾数值研究表明,在分析全比尺室内火灾的发展时,考虑燃烧和热辐射过程具有重要意义.本文主要是探讨适用于模拟室内火灾并能够同时模拟燃烧和热辐射特性的场方法.Ξ收稿日期:2002211206. 基金项目:中国香港研究局(RGC )资助项目(7001090,9040494). 作者简介:陈大宏(1962— ),男,博士,副教授,dhchen @1 数值模拟方法 利用作者开发的工作程序Fire3D 进行数值计算.Fire3D 建立在求解三维的连续性方程、运动方程、能量方程和气体组分浓度方程的基础上.偏微分方程组的离散使用有限体积法(FVM ).Fire3D 提供多种对流项的处理方法,包括迎风格式、中心差分格式和混合差分格式等.压力修正算法有SIMPL E 、SIMPL EC 或PISO 可供选择.程序采用非交错的速度和压力场.湍流模型包括标准κ2ε模型、RN G 模型和扩展的κ2ε模型等[4]. 在Fire3D 中,燃烧过程的模拟利用了文献[5,6]所提出的两种方法,即破碎涡模型(eddy break 2up model ,简记为EBU 模型)和Laminar Flamelet 模型(简记为Flamelet 模型).热辐射则采用DOM 方法来模拟[7]. EBU 模型假定化学过程很快完成,因而湍流混合在燃烧中起控制作用.燃料的质量消耗率为 R fu =C r ρεκmin [m fu ,m ox /s ](1)式中:ρ为时间平均密度;m fu 和m ox 分别为时间平均的燃料质量分数和氧化剂质量分数;s 为燃料与氧化剂的化学当量比;C r 是经验系数,通常可取4.0[5]. Flamelet 模拟方法基于这样的一个假设:这些“Flamelet ”为反应2扩散层,在准恒定状态下,它们在湍流媒介中被继续替换.这些反应2扩散层被假设为比湍流尺度还要薄,因而其内部结构具有层流火焰的结构.对于各个组分,质量浓度可表达成以混合分数ξ为自变量的函数,即 m α=m α(ξ)(2) 在计算中,方程(2)的具体表达式是根据文献[6]的层流火焰实验结果通过曲线拟合获得的.平均混合分数ξ以及变量ξ″2的求解,通常可以将概率密度函数(probability density function ,PDF )P ~(ξ)作为一个β函数来计算,于是平均值可由下式确定. m α=∫1P ~(ξ)m α(ξ)d ξ(3) 建筑火灾除了燃烧过程之外,通常尚需考虑热辐射.本文采用有效并且精度较好的计算方法,即DOM 方法,在忽略任何散射作用下,热辐射传导方程可写为 ξj9I j 9x +ηj 9I j 9y +ζj 9I j9z=-k a I j +k a E b (4)式中:E b =σT 4;σ和T 分别为Stefan 2Boltzmann 常数和时间平均的温度.方向余弦ξj 、ηj 和ζj 代表相对于每个热辐射强度I j 的方向,I j 跨越绕空间任何一点的所有角度,同时对全部角度的积分可用数值积分来近似[7]. 有许多有效的方法可以用于计算燃烧产品的热辐射特性,其中之一是灰色气体的加权求和[8].计算中采用了不变的吸收系数k a =0.2[9].2 计算结果和讨论 Steckler [10]曾进行过全尺寸房间的燃烧试验.Steckler 用于火灾实验的房间尺寸为2.8m ×2.8m ×2.8m.房间安装有隔热材料(陶瓷纤维板)和圆形燃烧器.燃烧器直径为0.3m ,使用甲烷作为燃料.房间的示意图见图1.燃烧器位于房间地面的中心,房间设有一个门,其尺寸为0.74m ×1.83m ,实验时门全开.燃烧是非预混的,燃烧过程所需的氧气来源于房间内的空气.实验时燃料供给调节到使热量的释放为62.9kW.实验测量了门中线上的温度和水平速度分量.图1 火灾房间测量布置 在使用Fire3D 进行单室房间火灾模拟时,使用SIMPL E 压力修正算法,同时对流项采用混合差分格式(hybrid differencing scheme ),紊流则用标准的κ2ε模型封闭.燃烧过程模拟使用破碎涡(EBU )模型和Flamelet 模型.模拟过程中,将根据需要考虑或忽略热辐射交换的模拟.火灾房间被离散成83160个网格. 由于房间相对于门和燃烧器的中心垂直面是对称的,所以在生成网格时仅采用一半的求解区域,这样可以提高流场和温度场的解析度(图2). 表1为本文计算的中性层高度h 1(门底部到速度为零处的垂直高度)与门高h 2之比、相应的流入和流出的质量流量、上层温度以及Lewis 的计算结果和Steckler 实验值的对照.中性层高度和质量通量等的计算方法可以参考文献[3].・101・2003年4月 陈大宏等:室内火灾数值模拟方法的探讨 Lewis 等人在计算中应用离散传播法(discretetransfer radiation model ,D TRM ).其h 1/h 2、m in 、m out 和T u 相对于实验值的误差分别为3%、6%、9%和1%.本文计算值与实验值的误差,在考虑热辐射交换的情况下,采用EBU 模型时分别为1%、2%、2%和1%,而应用Flamelet 模型时则分别为1%、2%、2%和4%.上层温度计算结果的差别可能是由于这两种燃烧模型的基本假设不同所引起的.图2 计算网格表1 本文计算结果与Lewis 的计算值和Steckler 实验值的比较项 目网格数燃烧模型热辐射模型h 1/h 2流入质量m in /(kg ・s -1)流出质量m out /(kg ・s -1)上层温度T u /℃实验值0.5610.5540.571129Lewis 计算值[3]70432EBU DTRM 0.5460.5210.523128本文计算值83160EBU DOM 0.5570.5670.558130本文计算值83160FlameletDOM0.5560.5650.558134 注:m in 为以门中线速度分布计算得到的进入房间的冷空气质量;m out 为以门中线速度分布计算得到的离开房间的热空气质量;T u 为门中线上高度大于中性层高度部分的温度平均值. 图3表示在门口处温度的计算结果与实验值的对比.图3a 是使用EBU 模型(包括考虑和未考虑热辐射)的结果.相应地,图3b 则是使用Flamelet模型的计算结果.显然,如果在燃烧计算中考虑热辐射则计算结果与实验值更加吻合.在门的顶端附近,无论是采用EBU 或Flamelet 模型,本文计算的温度比实验值均大3.5%左右.计算结果与实验值的这种差别可以归结于所用的热辐射模型的不同.D TRM 是射线跟踪方法,随着所用射线数量的增加,该法可以获得比DOM 更准确的结果.而后者是通量方法,如果与D TRM 比较,通量方法计算量小,而速度快,仅仅占用少量的计算机资源.在场模拟中,3.5%的误差是可以接受的.从图3可知,计算结果与实验值相比偏大,这应该与计算过程中没有考虑烟灰(soot )等因素有关. 除了温度外,这里还比较了门中心垂直线上的水平速度分量的计算结果和实验值.速度剖面清楚地显示了二层结构,冷空气从门的底部进入房间,而燃烧产品则从门的上部离开房间并进入到外部环境.显然,速度剖面对采用的燃烧模型和是否采用热辐射模型不太敏感(见图4).速度计算结果与实验值均吻合较好. 另外一个有意义的比较是观察由于吸入流动引起的火灾羽流的后倾斜度.温度等值线图见图5.在考虑热辐射的情况下,两种燃烧模型造成的羽流后倾斜度相对于水平面大约是45°.这一结果与Quintiere 等人的观察是一致的,他们观察到的火焰后倾斜度为33°~43°[11].(a )应用EBU 模型的结果(b )应用Flamelet 模型的结果图3 热辐射对门中心线上温度的影响・201・燃 烧 科 学 与 技 术 第9卷第2期(a )应用EBU模型的结果(b )应用Flamelet 模型的结果图4 热辐射对门中心线上水平速度的影响(a )EBU模型(b )Flamelet 模型图5 过火源和门中心垂直面的温度等值线图 应用Flamelet 模型还可以计算出CO 等组分浓度值,而在建筑火灾的预报中CO 含量是火灾安全评估的一个重要指标.由此可见,Flamelet 模型是一个比较适用的模型,值得做更深入的探索.由于缺乏实验值,这里不进行详细讨论.3 结 论 Fire3D 模型可以比较准确和详细地预报房间火灾的速度和温度场.计算结果与Steckler 的实验值进行了全面的比较.EBU 燃烧模型与DOM 热辐射模型的联合应用可以获得更好的计算准确性.对于速度而言,计算的结果与Steckler 的实验值吻合较好.对于温度场来说,计算值与实验值在局部位置差别较大,但是计算结果也是可以接受的.因此,可以认为所建立的模型是成功的.参考文献:[1] Markatos N C ,Malin M R ,Cox G.Mathematical modelling of buo 2yancy 2induced smoke flow in enclosures[J ].Int J Heat M ass Trans 2f er ,1982,25:63—75.[2] Chow K W ,Wong W K.A study of the fire aspect of atria in HongK ong[A ].Fi re S af ety Science 2Proceedi ngs of 3rd InternationalSy m posi um [C].1991.335—344.[3] Lewis M J ,Moss M B ,Rubini P A.CFD modelling of combustionand heat transfer in compartment fires[A ].Fi re S af ety Science 2Pro 2ceedi ngs of 5th International S y m posi um [C].1997.463—474.[4] Chen Y S ,K im S putation of turbulent flows using an ex 2tended κ2εturbulence closure model [R ].NASA 2CR 2179204,NASA ,1987.[5] Magnussen B F ,Hjertager B H.On mathematical modelling of tur 2bulent combustion with special emphasis on soot formation and com 2bustion[A ].16th S y m posi um (International )on Combustion [C].Combustion Institute ,1976.719—729.[6] Sivathanu Y R ,Faeth G M.G eneralized state relationships for scalarproperties in nonpremixed hydrocarbon/air flames [J ].Combustionand Flame ,1990,82:211—230.[7] Jamaluddin A S ,Smith P J.Predicting radiative transfer in rectangu 2lar enclosures using the discrete ordinates method [J ].CombustionScience and Technology ,1988,59:321—340.[8] Smith T F ,Shen Z F ,Friedman J N.Evaluation of coefficients forthe weighted sum of gray gases model [J ].Trans A S M E J HeatTransf er ,1982,104:602—608.[9] Modest M F.Radiative Heat Transf er [M ].Mc Graw 2Hill ,1987.[10]Steckler K D ,Quintiere J G ,Rinkinen W J.Flow induced by fire ina compartment [S].NBSIR 8222520,National Bureau of Standards ,Washington D C ,1984.[11]Quintiere J G ,Rinkinen W J ,Jones W W.The effect of room open 2ings on fire plume entrainment [J ].Combustion ,Science and Tech 2nology ,1981,26:193—201.・301・2003年4月 陈大宏等:室内火灾数值模拟方法的探讨。

1-s2.0-S014111871100054X-main

1-s2.0-S014111871100054X-main

Applied Ocean Research 33 (2011) 321–331Contents lists available at ScienceDirectApplied OceanResearchjournal homepage:/locate/aporNumerical investigation on the performance of Wells turbine with non-uniform tip clearance for wave energy conversionZahari Taha a ,Sugiyono b ,c ,∗,T.M.Y.S.Tuan Ya b ,Tatsuo Sawada daDepartment of Manufacturing Engineering,University of Malaysia Pahang,Lebuhraya Tun Razak,26300Gambang Kuantan,Pahang,Malaysia bCentre for Product Design and Manufacturing,University of Malaya,Lembah Pantai,50603Kuala Lumpur,Malaysia cDepartment of Mechanical and Industrial Engineering,Gadjah Mada University,Jl.Grafika No.2,Yogyakarta 55281,Indonesia dDepartment of Mechanical Engineering,Keio University,3-14-1Hiyoshi,Kohoku-ku,Yokohama 223-8522,Japana r t i c l ei n f oArticle history:Received 27December 2010Received in revised form 24May 2011Accepted 2July 2011Available online 30 July 2011Keywords:Wells turbineNACA0020blade profile Tip clearance CFDa b s t r a c tThe performance of a Wells turbine with various non-uniform tip clearances was investigated using com-putational fluid dynamics (CFD).The investigation was performed on numerical models of a NACA0020blade profile under steady flow conditions.The performance of turbines with uniform and non-uniform tip clearances was compared.The results were also compared with experimental results in literature.It was shown that the performance of turbine with non-uniform tip clearance is similar with that of turbine with uniform one in terms of torque coefficient,input power coefficient,and efficiency.However,the turbine with non-uniform tip clearance seems to have a preferable overall performance.An investigation on the flow-field around the turbine blade was performed in order to explain the phenomena.© 2011 Elsevier Ltd. All rights reserved.1.IntroductionIn nature,ocean has provided many potential resources of renewable energy which can be exploited to reduce the world’s dependence upon conventional fuels such as coal,oil,and natural gas,or exhaustible sources of energy.One of the potential resources is wave energy.In its development,this energy has received much attention due to its potency which is relatively abundant,sustain-able,and pollutant free.By converting into more usable forms of energy,the ocean wave energy can give a significant contribution to cover the energy requirements,particularly for coastal nations with island communities and correspondingly high energy costs [1].Among the wide variety of possible technologies for the purpose of wave energy conversion,the oscillating water column (OWC)system is relatively mature and promising.The system is said to be one of the most successful devices in harnessing wave energy [2,3].The schematic view of an OWC system is depicted in Fig.1,which substantially consists of a capture pneumatic chamber that opens at the bottom front to the incident wave,an air turbine,and an electrical generator [4].In its energy conversion chain,the system∗Corresponding author at:Centre for Product Design and Manufacturing,Univer-sity of Malaya,Lembah Pantai,50603Kuala Lumpur,Malaysia.Tel.:+60379675200;fax:+60379675330.E-mail address:sugiyono ugm@ (Sugiyono).converts the wave energy into pneumatic energy in the form of a bi-directional airflow.A Wells turbine which constitutes one of self-rectifying turbines is commonly used in order to extract mechanical energy from the bi-directional airflow,which is then converted into electricity by means of the generator.As described above,there are three main stages of energy con-version process in the OWC system.Nevertheless,the performance of turbine plays the most important role,which will give a crucial impact on the overall efficiency.Hence,various parameters which induce the performance of turbine have to be considered properly.One of the parameters is tip clearance.As revealed in Raghunathan [5],the Wells turbine is very sensitive to tip clearance when com-pared to a conventional turbine.Fig.2shows the schematic view of tip clearance of a Wells tur-bine,which in general has a uniform shape.This shape has the size of the gap between the tip of turbine blade and the turbine casing which is constant from the leading to trailing edges of the turbine blade.Takao et al.[6]has modified the shape of the tip clearance to be non-uniform and has investigated it experimentally.He found that the non-uniform tip clearance is preferable to the uniform one.However,it is necessary to clarify this further.Along with the developments in computer hardware and soft-ware,computational fluid dynamics (CFD)has become an efficient means of investigating the performance of a Wells turbine.This is because of its modeling capabilities on a wide range of fluid flow problems and highly accurate predictions.It also provides detailed descriptions of flow which is impossible to be obtained through0141-1187/$–see front matter © 2011 Elsevier Ltd. All rights reserved.doi:10.1016/j.apor.2011.07.002322Z.Taha et al./Applied Ocean Research 33 (2011) 321–331Fig.1.Oscillating water column system.experimental work.It is also helpful in interpreting experimental results and significantly reducing the amount of experimentation.There are several reports of investigations on Wells turbines using CFD.Watterson and Raghunathan [7]studied the effect of solidity on the performance of a Wells turbine with NACA0015blade profile.The effect of blade geometry with several hub-to-tip ratios and aspect ratios on the performance of a Wells turbine with NACA0020blade profile was studied by Kim et al.[8].Kim et al.[9]investigated the effect of blade sweep on the performance of a Wells turbine,and made a comparison of the performance between NACA0020and CA9blade profiles.Hysteretic phenomena of a Wells turbine has been investigated under unsteady flow condi-tions [10–12].Dhanasekaran and Govardhan [13]investigated the performance and aerodynamics of a Wells turbine with NACA0021constant chord blade,while performance improvement using a variable chord blade was studied by Govardhan and Chauhan [14].Takao et al.[3]used CFD to clarify the performance improvement of a Wells turbine due to the effect of end plates.Zahari Taha et al.[15]studied the effect of uniform tip clearance on the performance of a Wells turbine with NACA0020blade profile,and compared the computational results with the experimental ones of Takao et al.[6].Fig.2.Schematic view of tip clearance.This paper describes the use of CFD to investigate the perfor-mance of a Wells turbine with various non-uniform tip clearances.The investigation was performed on numerical models of a NACA0020blade profile under steady flow conditions.The com-putational results of this study were compared with the values obtained experimentally by Takao et al.[6].Moreover,they were also compared with the computational results of the turbine with uniform tip clearance from the previous study of Zahari Taha et al.[15].Furthermore,a flow-field investigation around the turbine blade was performed in order to explain the turbine performance.2.Numerical methodThe present study was carried out using a CFD code called FLUENT.The method solves the three-dimensional,steady,incompressible,Reynolds-averaged Navier–Stokes equations.The Reynolds stress in the mentioned equations is related to the mean velocity gradients by employing the Boussinesq approach [16]which has an advantage associated with the relatively low cost in computation of the turbulent viscosity.Meanwhile,the turbu-lence model adopts the Realizable k –εmodel [17]which is likely to provide superior performance for flows involving rotation,bound-ary layer under strong adverse pressure gradients,separation,and recirculation.The non-equilibrium wall functions [18]are applied for the near-wall region modeling to produce accurate predictions due to the wall-bounded turbulent flows.Furthermore,the govern-ing equations are solved in the absolute frame and discretized by the finite volume technique while imposing several discretization schemes.The standard scheme is used for pressure by means of momentum equation coefficients [19]as it is acceptable for most cases.Because of steady state calculations conditions,the SIM-PLE algorithm [20]is used for pressure–velocity coupling.In order to improve the accuracy of the solution,the second-order accu-rate upwind scheme is adopted for momentum,turbulence kinetic energy (k ),and turbulence dissipation rate (ε)by applying a multi-dimensional linear reconstruction approach [21].The specification of the turbine model for this study is summa-rized in Table 1.Note that the adopted turbine rotor is the most promising one in previous studies [22,23].The configuration of the non-uniform tip clearance of the turbine model is described in later section.By considering the symmetry of the turbine geometry,and in order to make the computation practical,the computational domain of the turbine model is restricted to one blade-to-blade passage with periodic boundaries.The computational domain isZ.Taha et al./Applied Ocean Research 33 (2011) 321–331323Table 1Specification of the turbine model.Blade profileNACA0020Number of planes 1Number of blades 6Blade chord length90mm Solidity at mean radius 0.67Casing diameter 300mm Hub diameter 210mm Mean radius127.5mm Blade sweep ratio0.35Width of flow passage45mmFig.3.Perspective view of computational domain (l :blade chord length).also limited to four and eight blade chord lengths upstream and downstream from the blade row,respectively.Fig.3shows the per-spective view of the computational domain for the turbine model.For the boundary conditions,the inlet velocity and static pressure are imposed on the inflow and outflow boundaries,respectively,which are normal to the axis of turbine.Rotational periodic boundaries are applied on the pairs of surfaces which con-stitute the circumferential sides of the domain.A moving reference frame is employed on the fluid zone which has the rotational speed equivalent to that of the rotor.No-slip conditions are used for the blade and the hub surfaces.Fig.4depicts the mesh employed on the computational domain.The mesh consists of structured,hexahedral grids.This has been achieved by performing decomposition of the model geometry into meshable pieces for mapping and sub-mapping grid algorithms.As shown in the figure,O-type mapping grids are applied surround-ing the turbine blade.Further,there are five grids in the span-wise direction which are imposed in the tip clearance region,andthenputational grid.the sub-mapping grids are only used in this region.The total num-ber of grids is approximately 295,500.The computations on each case of non-uniform tip clearance are carried out under steady flow conditions for various values of the flow coefficient ( ),which is defined as the ratio of the axial velocity of inlet airflow (v )to the circumferential velocity of the blade at mean radius (U ),=v(1)Meanwhile,this study was conducted regardless of the sig-nificant Reynolds number effects.The various values of the flow coefficient were achieved by varying the rotational speed of the rotor at a constant value of the axial velocity,which are similar with those performed by Kim et al.[8,9],Takao et al.[3]and Zahari et al.[15].Reynolds number is based on the blade chord length and relative velocity at mean radius,which is about 0.68×105to 4.41×105.Further,for the solution initialization,the computations are per-formed under the absolute reference frame and the axial velocity is set to zero.During the solution process,the default under-relaxation factors are selected to control the update of computed variables,which are found to be near optimal for a large number of cases.The convergence of solution is monitored by checking the residuals of the numerically solved governing equations.Moreover,in order to judge the convergence,the behaviour of other quanti-ties,such as the total pressure at the inflow and outflow boundaries,and torque coefficient generated by the rotor,are also monitored.Here,the default convergence criterion of each residual is reduced to reasonable values in order to allow the monitored quantities to stagnate at consistent values.Finally,the convergence of the solu-tion is checked for mass balance.In this study,the computations on each case of non-uniform tip clearance result in the net mass imbalance of less than 0.006%.3.Results and discussionThe performance of turbine is expressed in the form of dimen-sionless parameters which are torque coefficient (C T ),input power coefficient (C A ),and efficiency (Á).These parameters are defined as follows [6]:C T =T{ [v 2+U 2]hlzr/2}(2)C A = pQ{ [v 2+U 2]hlz v /2}(3)Á=Tω pQ =C T C A(4)where T ,Q , p ,ω, ,l ,h ,r ,and z denote the turbine output torque,flow rate,total pressure drop across the turbine,turbine angular velocity,density of air,chord length,width of flow passage,mean radius,and number of rotor blades,respectively.In addition,as stated above,the computations are carried out for various values of the flow coefficient.However,this study is confined to flow coef-ficients up to when stall occurs.As presented in Kim et al.[9],the stall point is decided by a decrease in the turbine torque coefficient.3.1.Preliminary investigationThe effect of non-uniform tip clearance configuration on the performance of Wells turbine is not known exactly yet.Therefore,computations are firstly performed on the turbine model with two types of the non-uniform tip clearance configuration.Each type has the smallest and largest sizes of the gap which are 0.5mm and 1mm,respectively.The two types of configuration are as follows:324Z.Taha et al./Applied Ocean Research33 (2011) 321–331putational results of turbine efficiency for the cases of TC0.5G1mm andputational results of turbine efficiency for the cases of TC0.5G0.75mmand TC0.5UMG1mm.parison of turbine performance between computational and experimental results for TC0.5G1mm or TC**=0.0083.Z.Taha et al./Applied Ocean Research 33 (2011) 321–331325in the first type (TC 0.5G1mm ),the size of the gap increases gradually from 0.5mm at the leading edge to 1mm at the trailing edge;and in the second type (TC 0.5UMG1mm ),the size of the gap is kept constant at 0.5mm from the leading edge to the mid chord and then increases gradually to 1mm at the trailing edge.The aim of these preliminary computa-tions is solely to interpolate a near optimal configuration of the non-uniform tip clearance regardless of the average size of the gaps of the two.The computational results of the performance of both turbines are then presented in terms of the turbine efficiency.Fig.5illustrates the computational results of the turbine effi-ciency for the cases of TC 0.5G1mm and TC 0.5UMG1mm .As shown in the figure,the efficiency of TC 0.5UMG1mm is slightly higher than that of TC 0.5G1mm at low values of the flow coefficient,but lower at values of the flow coefficient greater than 0.29.How-ever,the peak efficiency of TC 0.5UMG1mm is higher than that of TC 0.5G1mm ,and occurs at a lower value of the flow coefficient.TC 0.5UMG1mm stalls earlier as well.These tendencies might be reasonable when associated with those pointed out by Zahari Taha et al.[15]in which the peak efficiency of turbine is higher and occurs at a lower value of the flow coefficient,and the turbine stalls earlier,as the uniform tip clearance becomes smaller.In this case,itshouldputational results of turbine efficiency for the cases of TC 0.5G1.25mm and TC 0.75G1mm.putational results of turbine performance with non-uniform tip clearance for various values of the tip clearance to the chord length ratio.326Z.Taha et al./Applied Ocean Research33 (2011) 321–331be noted that the average size of the gap for TC0.5UMG1mm(i.e.0.63mm)is smaller than that for TC0.5G1mm(i.e.0.75mm).Furthermore,in terms of operational range and overall effi-ciency,it is shown in Fig.5that the performance of TC0.5G1mm is better than that of TC0.5UMG1mm.Immediately,it can be con-cluded that a configuration of non-uniform tip clearance which is similar with that of TC0.5G1mm is preferable and more suitable to be considered further in the study.However,this needs to be clarified because of the difference of the average gaps between TC0.5G1mm and TC0.5UMG1mm.Therefore,TC0.5UMG1mm is then compared with TC0.5G0.75mm which has a configuration similar to that of TC0.5G1mm(i.e.the size of the gap increases gradually from0.5mm at the leading edge to0.75mm at the trail-ing edge),but has the same average gap with TC0.5UMG1mm(i.e.0.63mm).A comparison of the turbine efficiency between both tur-bines is depicted in Fig.6.As shown in thefigure,the performance of TC0.5G0.75mm is better than that of TC0.5UMG1mm.Thus,the figure confirms the aforementioned conclusion.In order to show that the numerical method used for the study is reliable,the computational results are compared with the experimental values of Takao et al.[6],particularly for the case of TC0.5G1mm,or in terms of the average tip clearance to the chord length ratio,TC**=0.0083.Fig.7depicts the mentioned com-parison of the turbine performance between the computational and experimental results.In general,it is shown in thefigure that within the range of theflow coefficients given,good agree-ment exists between the computational and experimental results. Meanwhile,it can be observed that the torque coefficients of both computational and experimental results is almost the same,except for theflow coefficient values near the stall point in which the torque coefficient is predicted slightly lower.On the other hand, the input power coefficients are predicted slightly lower within almost the whole range of theflow coefficients given.As a con-sequence,the predicted turbine efficiency is slightly higher than the experimental one,except for theflow coefficient values near the stall point in which the turbine efficiency of both computa-tional and experimental results is almost the same.Further,the value of peak efficiency is predicted higher by approximately1%, and occurs at the value of theflow coefficient which is very close to the experimental one as well as that where the stall point is predicted.3.2.Performance of Wells turbine with non-uniform tip clearanceAs a follow up to the preliminary investigation,a study is performed on the turbine model with various configurations of non-uniform tip clearance which are similar with the configuration of TC0.5G1mm as shown in Table2.However,there are two turbine models with the same average size gap,which are TC0.5G1.25mm and TC0.75G1mm.Therefore,it is necessary to compare the per-formances of both turbines in order to determine which turbine model would be better and more proper to be considered further.Fig.8presents the computational results of the turbine per-formance for TC0.5G1.25mm and TC0.75G1mm in terms of the turbine efficiency.From thefigure,it can be observed that for the range of theflow coefficients without stalling,the performances of both turbines are relatively almost the same.However,the stall margin of TC0.75G1mm is wider than that of TC0.5G1.25mm. Therefore,it can be then concluded that the performance of TC0.75G1mm is better than that of TC0.5G1.25mm.The computational results of the turbine performance for the cases of TC0.5G0.75mm,TC0.5G1mm,TC0.75G1mm, TC0.75G1.25mm,and TC1G1.25mm,or in term of the aver-age tip clearance to the chord length ratio,TC**=0.0070,0.0083, 0.0098,0.0111,and0.0126,are presented in Fig.9.In general, it can be seen that the three parameters of torquecoefficient,Fig.10.Variation of mean turbine efficiency and stall incidence angle with ratio of the tip clearance to the blade span:(a)computational results of the Wells turbine with non-uniform tip clearance;(b)experimental results quoted in Raghunathan [5].input power coefficient,and efficiency have the same tendencies with those explained in Zahari Taha et al.[15]with regard to the turbine performance for various cases of uniform tip clearance. The most conspicuous feature is that a turbine with a larger tip clearance would have a wider operational range offlow without stalling.The peak efficiency of the turbine decreases and shifts towards a higher value of theflow coefficient as the tip clearance increases.Furthermore,based on Fig.9(c),the mean turbine efficiency(¯Á) in the wide range offlow coefficients for each case of TC**can be estimated,which is the average value of an integration value of turbine efficiency with the variation in theflow coefficient[9]. Fig.10(a)illustrates the variation of the mean turbine efficiency and stall incidence angle(˛s)with the ratio of the tip clearance to the blade span( c).Here,the incidence angle is defined as the arctangent of t in degrees,while the term of t is the ratio of the axial velocity of inlet airflow to the circumferential velocity of the blade at tip.Further,it can be seen in Fig.10(a)that an increase in c improves the stall incidence angle,or delays the stall occurrence. However,this reduces the mean turbine efficiency.Meanwhile, Fig.10(b)illustrates a set of experimental results due to the vari-ation of the mean turbine efficiency and stall incidence angle of the Wells turbine with uniform tip clearance for blade profiles of NACA18and NACA0021[24–26]which is quoted in Raghunathan [5].It can be observed that the same tendency of the respective parameters is shown between Fig.10(a)and(b).Z.Taha et al./Applied Ocean Research33 (2011) 321–331327Fig.11.Flow patterns for TC**=0.0070:(a)contours of circumferential velocity on a plane of constant radius through95%h;(b)contours of circumferential velocity on a plane perpendicular to blade chord line through95%l;(c)relative velocity vector on suction surface.Fig.12.Contours of circumferential velocity on a plane of constant radius through95%h,at =0.39:(a)TC**=0.0070;(b)TC**=0.0083;(c)TC**=0.0111;(d)TC**=0.0139;(e)TC**=0.0126.328Z.Taha et al./Applied Ocean Research 33 (2011) 321–331Fig.13.Relative velocity vector on suction surface,at =0.39:(a)TC **=0.0070;(b)TC **=0.0083;(c)TC **=0.0111;(d)TC **=0.0139;(e)TC **=0.0126.A study is then performed on the flow-field around the turbine blade to explain the performance of turbine with non-uniform tip clearance.Fig.11(a)–(c)depict the flow patterns for TC **=0.0070,which consist of the circumferential velocity contours on the plane of constant radius through 95%width of flow passage (h ),the cir-cumferential velocity contours on the plane perpendicular to the blade chord line through 95%blade chord length (l ),and the rela-tive velocity vector on the suction surface,respectively,at =0.09,0.20,0.32,and 0.39.It is shown obviously in Fig.11(a)that a bound-ary layer separation occurs considerable on the plane of constant radius through 95%h which is just beneath the tip.This separation increases on the mentioned plane as the flow coefficient increases.Besides,it also can be seen that dense contour lines emerge near the suction surface,which then dissipate gradually as the flow coefficient increases.The emergence of the dense contour lines is attributed to counter-acting of vortex [15],which might have an effect on the turbine operating without stalling at =0.09,0.20,and 0.32.On the other hand at =0.39,the contour lines disappears,and the turbine stalls.Further,as described in Zahari Taha et al.[15],there is a strong relationship between the velocity contours such as those shown in Fig.11(a)and the effect of tip leakage flow.This can be observed clearly in Fig.11(b)of which the tip leakage flow strongly coerces the boundary layer near the tip to separate from the suction surface,in particular around the trailing edge region.Moreover,the tip leakage flow also has an effect in the span-wise direction from the tip.These occurrences take place increasingly as the flow coefficient increases.It can then be seen in Fig.11(c)that the effect of tip leakage flow seems physically powerful to force the turbine to be in a stall condition at =0.39,which is indicated by a reversed flow region with swirl occupying a large portion of the suction surface.On the other hand at =0.09,0.20,and 0.32,most of the suction surface is relatively occupied by the main flow velocity,which is associated with the counter-acting effect of the vortex,therefore the turbine holds out to operate without stalling.Table 2Configurations of non-uniform tip clearance.Turbine modelConfiguration of tip clearanceAverage size of the gap (mm)TC 0.5G0.75mm The size of the gap increases gradually from 0.5mm at the leading edge to 0.75mm at the trailing edge 0.63TC 0.5G1mm The size of the gap increases gradually from 0.5mm at the leading edge to 1mm at the trailing edge 0.75TC 0.5G1.25mm The size of the gap increases gradually from 0.5mm at the leading edge to 1.25mm at the trailing edge 0.88TC 0.75G1mm The size of the gap increases gradually from 0.75mm at the leading edge to 1mm at the trailing edge 0.88TC 0.75G1.25mm The size of the gap increases gradually from 0.75mm at the leading edge to 1.25mm at the trailing edge 1TC1G1.25mmThe size of the gap increases gradually from 1mm at the leading edge to 1.25mm at the trailing edge1.13Z.Taha et al./Applied Ocean Research33 (2011) 321–331329Fig.12(a)–(e)present the circumferential velocity contours on the plane of constant radius through95%h for TC**=0.0070,0.0083, 0.0098,0.0111,and0.0126,respectively,at =0.39.From thefig-ures,it can be seen that dense contour lines near the suction surface are still encountered for the cases of TC**=0.0083,0.0098,0.0111, and0.0126,whereas not for the case of TC**=0.0070(stall con-dition).Furthermore,it is interesting to observe TC**=0.0083,in which the dense contour lines are shown vaguely around35%chord length.A possible reason may be that the turbine of TC**=0.0083is imminent to be in a stall condition(predicted at =0.41).Besides, it also can be seen that the velocity contours for the cases of TC**=0.0098,0.0111,and0.0126are almost the same when the performances of the three cases are very close(see Fig.9).How-ever,in general it can be revealed that at =0.39,the dense contour lines near the suction surface tend to emerge more explicit as TC** increases.Hence,it is understood that the stall for TC**=0.0126is more delayed than that for the others(see Fig.9).Fig.13(a)–(e)depict the relative velocity vector on the suc-tion surface of the turbine blade for TC**=0.0070,0.0083,0.0098, 0.0111,and0.0126,respectively,at =0.39.It can be observed that the portion of the suction surface which is occupied by the mainflow velocity tends to become larger as TC**increases.Nev-ertheless,theflow patterns on the suction surface for the cases of TC**=0.0098,0.0111,and0.0126seem almost the same when the performances of the three cases are very close.Furthermore,it is also shown that the turbine of TC**=0.0083has a strong tendency to create a reversedflow near the tip when the mentioned turbine is imminent to be in a stall condition as described above.parison of performance between the turbines withuniform and non-uniform tip clearancesIn order to make a performance comparison between the tur-bines with uniform and non-uniform tip clearances,computational results of Zahari Taha et al.[15]are adopted.The comparison is firstly presented in terms of the turbine efficiency which is based on the same value of the tip clearance to the chord length ratio. In this sense,there are two cases of ratio which could be consid-ered,i.e.,0.0083and0.0111.Additionally comparison is presented in terms of the mean turbine efficiency and stall incidence angle.Figs.14and15show the efficiencies of turbines with uniform (TC*)and non-uniform(TC**)tip clearances,with the tip clearance to the chord length ratios of0.0083and0.0111,respectively.As shown in thefigures,the efficiency of the turbine with non-uniform tip clearance is higher than that of the turbine with uniform one for both ratios.The peak efficiency value differs by approximately 0.76%and0.83%for the ratios of0.0083and0.0111,respectively.It is interesting that the peak efficiencies of each case of ratio occur at the same value of theflow coefficient of both tip clearance shapes, which are =0.24and0.25for the ratios of0.0083and0.0111, respectively.However,the stall margin of the turbine with uni-form tip clearance is predicted narrower for both ratios.Further, for the range of theflow coefficients without stalling,the turbines with non-uniform tip clearances have the values of mean efficiency which are higher by around0.95%and1.07%for the ratios of0.0083 and0.0111,respectively.Finally,it can be concluded that the over-all performance of the turbine with non-uniform tip clearance is superior to that of the turbine with uniform one.The superiority in performance of the turbine with non-uniform tip clearance also can be observed in Fig.16.Thefigure presents a comparison of the mean turbine efficiency and stall incidence angle between the turbines with uniform and non-uniform tip clearances. It can be seen that the variation of the mean turbine efficiency with the ratio of the tip clearance to the blade span for the case of the turbine with non-uniform tip clearance is higher than that forthe parison of efficiency between the turbines with uniform(TC*)and non-uniform(TC**)tip clearances for the tip clearance to the chord length ratio of0.0083.parison of efficiency between the turbines with uniform(TC*)and non-uniform(TC**)tip clearances for the tip clearance to the chord length ratio of0.0111.parison of mean turbine efficiency and stall incidence angle between the turbines with uniform and non-uniform tip clearances.。

介绍图灵的英语作文

介绍图灵的英语作文

介绍图灵的英语作文英文回答:Turing was a renowned mathematician, logician, and computer scientist who made significant contributions to the fields of artificial intelligence and computer science. One of his most famous achievements was the development of the Turing machine, a theoretical device that laid the foundation for modern computing.Turing's work during World War II was also crucial, as he played a key role in breaking the German Enigma code, which helped the Allies win the war. His groundbreaking work in cryptography and code-breaking paved the way for modern cybersecurity and encryption techniques.In addition to his technical contributions, Turing was also known for his unique personality and sense of humor. He was often described as eccentric and had a dry wit that endeared him to his colleagues and friends. Despite facingdiscrimination for his homosexuality, Turing remained resilient and continued to pursue his passion for mathematics and science.Overall, Turing's legacy continues to inspire generations of scientists and researchers to push the boundaries of what is possible in the fields of artificial intelligence and computer science.中文回答:图灵是一位著名的数学家、逻辑学家和计算机科学家,他对人工智能和计算机科学领域做出了重要贡献。

建筑物风环境CFD模拟方法综述

建筑物风环境CFD模拟方法综述

建筑物风环境CFD模拟方法综述于凤全【摘要】结合通用CFD软件包的特点,介绍了计算机流体力学(CFD)的模拟方法,探讨了各类公式以及参数设置的基本模式,为建筑物环境风数值模拟总结出理论依据.【期刊名称】《广东石油化工学院学报》【年(卷),期】2010(020)001【总页数】4页(P72-75)【关键词】风环境;CFD;数值模拟【作者】于凤全【作者单位】徐州师范大学,江苏徐州221116【正文语种】中文【中图分类】TU834计算流体力学是20世纪60年代起伴随计算机技术迅速崛起的学科。

经过半个世纪的迅猛发展,这门学科己相当成熟。

由于CFD软件是专业性很强的高科技产品,很多用户对其性能特点和技术背景了解很少,对CFD软件的认识也比较模糊。

随着CFD通用软件的推广,其用户与潜在用户在迅速增加,不少人迫切希望对CFD软件有个较全面的了解,本文将根据作者了解的情况从理论方法上做一综述[1-7]。

1 风流动特性1.1 大气边界层图1 大气边界层风吹过地面时,受到地面上的各种粗糙元(森林、山峰、建筑物等)产生的摩擦阻力作用而使得风速减小,这一层受地球表面摩擦阻力影响的大气层称为大气边界层(如图1所示)。

大气边界层的厚度依风力、地形粗糙度及维度而定。

大气边界层内的风速随高度而增大,边界层顶的风速称为梯度风速。

建筑物通常建在大气边界层内,所以大气边界层内的气体流动问题是建筑设计人员最关心的问题。

不同地面条件产生的大气边界层特征主要包括平均风速剖面、湍流结构等方面。

平均风速沿高度变化的规律称为平均风速梯度或风剖面。

平均风沿高度变化规律有两种表达形式,即按实测结果推得的指数风剖面和按边界层理论得到的对数风剖面。

1.2 指数风剖面G.Hellman在1916年提出指数规律,后来由A.GDavenport根据多次实测结果分析并提出平均风沿高度变化的规律可用指数函数来描述,即:式中为标准参考高度和标准参考高度处的平均风速,我国标准高度取为10m,z为任一高度和任一高度处的平均风速;α为地面粗糙度指数,地形越粗糙,地表为气流的阻滞作用越强,α也越大。

双切环流气体分布器内流场FLUENT数值模拟_丰存礼

双切环流气体分布器内流场FLUENT数值模拟_丰存礼

收稿日期:2003-10-29作者简介:丰存礼(1978-),男,山西朔州人,硕士研究生,主要从事化工设备和多相流体的研究工作。

文章编号:1000-7466(2004)02-0025-03双切环流气体分布器内流场FLUENT 数值模拟丰存礼,刘 成,李永辉,张敏华(天津大学石油化工技术开发中心,天津 300072)摘要:在FLUE NT 软件平台上,采用k -ε湍流模型模拟某实际应用的双切环流气体分布器内流体的流动状态。

对计算结果的分析以及与实际性能的对比表明,FLUE NT 可为双切环流气体分布器及其同类设备的新品研发、工业放大或优化改造提供方便快捷、功能强大的数值计算和理论分析。

关 键 词:气体分布器;数值模拟;计算流体力学;流场中图分类号:TQ 053 文献标识码:ANumerical simulation of the flow field in a twin -tangential annular flow gas distributor with F LUENTFE NG Cun -li ,LIU Cheng ,LI Yong -hui ,ZHANG Min -hua(Tianjin University R &D Center for Peterochem .Tech .,Tianjing Un iversity ,Tianjin 300072,China )A bstract :Three -dimensional flow field of a working twin -tangential annular flow gas distributor is simulated based on standardk -εturbulent model with FLUENT .The close agreement with the working data of the model predictions shows that FLUENT can provide a numerical description of fluid flow in the twin -tangential annular flow gas distributor within a considerable degree of accu -racy ,and FLUENT can also provide a convenient and powerful numeric calculation tool for exploitation ,research ,scale -up optimi -zation of gas distributor and congeners .Key words :gas distributor ;numerical simulation ;computational fluid dynamics ;flow field 塔器是炼油、化工等领域中广泛应用的设备,在塔器底部常设有促使气体均匀分布的进气装置———气体分布器。

基于Fluent的毛细管磨粒流加工三维数值模拟

基于Fluent的毛细管磨粒流加工三维数值模拟

0引言在军事、医学及民用领域,许多关键零部件存在着特殊的通道,如毛细管,其表面质量和直线度对装备的整体使用性能有着极其重大的影响。

目前,磨粒流加工可为其提供有效的解决方法,该工艺利用磨粒流与加工表面接触时的壁面效应,形成磨粒对表面的微切削实现表面光整加工,由于液体介质可形成良好的仿形接触,因此这种方法具有一定的优势[1]。

对于管道等结构中的复杂流体问题,可利用Fluent 软件求解,该软件提供了湍流方程,可模拟湍流的流动状态[2]。

1磨粒流加工机理磨粒流加工技术是以磨料介质在压力作用下流过工件所需加工的表面,进行内表面加工,以减少工件表面的波纹度和粗糙度,达到精密加工,能有效去除放电加工或激光加工后的脱层和先前工序加工后的残余应力[3]。

2流道内磨粒流湍流数学模型假设流道内固相均匀分布在液相中,固相颗粒与液相之间没有相对滑移速度。

由Launder 等[4]提出的标准k-ε模型是典型的两方程模型,也是较为广泛的湍流模型,为使流动符合湍流的物理定律,需要对正应力进行某种数学约束,即将湍动粘度计算式中的模型系数C p 作为变量处理,湍动能k 和耗散率ε由如下公式求得:式中,t ———时间;ρ———流体密度;(x 1,x 2,x 3)———张量坐标(与直角坐标系标记的对应关系为x 1=x ,x 2=y ,x 3=z );u i ———速度矢量在三个坐标轴方向的分量;G k ———平均速度梯度引起的湍动能的产生项;μt ———湍流粘性系数(湍流粘度);μ———流体动力粘度;E ———应变率;v ———流体运动粘度;σk σε———湍流普朗特数,分别为1.0、1.2;C 1———模型系数;C 2———取1.9。

式中,模型经验系数A 0=4.0,A s 和U *的计算公式如下:式中,Ωij 为转动速率。

3仿真参数设置根据磨粒流加工特点,选择Mixture 多相流模型,采用标准k-ε湍流模型,设置入口边界条件、出口边界条件及壁面边界,考虑重力加速度的影响。

蒸汽喷射器三维流场的数值模拟计算与分析

蒸汽喷射器三维流场的数值模拟计算与分析

大连理工大学硕士学位论文蒸汽喷射器三维流场的数值模拟计算与分析姓名:***申请学位级别:硕士专业:热能工程指导教师:李素芬;沈胜强20000601摘要r气体喷射器作为一种节能装置,可回收大量余热,起到了节能和环保的双重作用,在工业部门中得到广泛应用。

其内部经历着复杂的多维湍流流动过程,而其中喷嘴更是决定喷射器是否正常工作的关键部件。

j本文在详细分析喷射器内部流动的基础上,建立了三维湍流流动的数值模拟计算模型,并主要对喷嘴的流场进行了详细的计算分析。

本文主要内容有:1、深入分析了KIVA系列程序与相关的CFD理论方法,结合气体喷射器喷嘴的流动特点,建立了喷射器喷嘴复杂流场结构的三维数值模拟计算模型和计算方法,并应用于喷射器喷嘴稳态流场的数值模拟计算中。

2、根据气体喷射器结构和特点建立了喷射器整体及喷嘴通用计算网格的生成方法,并编制了相应的计算网格生成程序。

其网格生成方法及程序适用于各种结构及尺寸的喷嘴和喷射器,充分体现了其灵活性和实用性。

3、运用本文开发的通用计算网格生成程序结合三维流场数值模拟计算程序,针对不同的边界条件和结构尺寸的喷嘴流场,进行了数值模拟计算,考察了以上各特性参数对喷射器内部流动的影响,并根据计算结构的分析提出了喷射器喷嘴设计的建议。

4、比较全面地考虑了各种不可逆因素(如摩擦、散热等)对流场各参数的影响,进一步完善了喷射器的研究■一一关键词:喷嘴、数值模拟、流场ABSTRACTAsakindofdevice,thesteamejectorcarlrecycleagreatdealofenergy,andatthesametime,itplayagreatroleofenvironmentprotection,SOitisappliedinmanyindustrydepartments.Itsflowfieldismulti—dimensions,transient,turbulent,subsonicandsupersonicflows.Andthenozzleisthekeyoftheejector.Onthebaseofexpatiatingontheflowsinsidethesteamejector,athree—dimensional,turbulent,numericalsimulationcomputationalmode】.andthemethodiSutilizedemphaticallyonanalysisandcalculationtheflowfieldofthenozzle.Themainworksaresummarizedasfollows:1.AnalyzetheprincipleofnumericalcomputationoftheKIVA一3codeandCFDmeans.combiningtheflowingcharacteristicofnozzle,aprogramsuitabletocomputethiskindofflowfieldbynumericalsimulationmethodiscompiled.2.Applythemethodofbody·fittedmeshgenerationandtheblock—structuredmethod,acommonprogramiscompiled.Itcanbenotonlyutilizedontheejector,butmanycomplicatestructureflowfields.3.Mobilizingthecurrentgriddingprogramandthenumericalsimulationcomputationalmodel,analyzeandcalculatetheflOWfieldOfthenozzle,discnsstheeffeCtsontheflOW0fvarj0USboundarYCOnditions,structureSize.Theresultspresentparticularsuggestionfortheoptimizingdesignofthenozzle.4.GenerallycOnsidertheinfeCtiOnSofmanYkindSOfunreversiblefactors(friction,heatdispersion),andmaketheresearchofnozzleorejectormoreperfect.Keywords:nozzle,numericalsimulation,flowfield第一章绪论第一章绪论本章在查阅大-¥-文献的基础上.xea-喷射器及:g-数值-}-I-算等研究领域的发展和概况进行了详细的综述,并概括出本文的主要内容。

搅拌生物反应器的CFD模拟研究

搅拌生物反应器的CFD模拟研究
39.Hiby J W Definition and measurement of the degree of mixing in liquid mixture 1981
40.Thoma S.Ranade V V.Bourne J R Interaction between micro-and Macro-mixing during reactions in agitated tanks 1991
27.Kalischewski K.Schugerl K Determination of the mass transfer coefficients of absorption of oxygen and carbon dioxide in different culture media 1978(01)
8.Hixson A W.Gaden E L Challenging for scale up from flask to 5-1 stirred bioreactor 1950
9.Junker B H.Hatton T A.Wang D I C Oxygen transfer enhancement in aqueouslperfluorocarbon fermentation
7.Markx GH.ten Hoopen H J G.Meijer J J Dielectric spectroscopy as a novel and convenient tool for the study of the shear sensitivity of plant cells in suspension culture 1991
35.Vrabel P.Van der Lans R G J M.Cui Y Q Compartment model approach:Mixing in large scale aerated reactors with

毕业论文参考文献分析解析

毕业论文参考文献分析解析

毕业论⽂参考⽂献分析解析[1]严国敏.现代斜拉桥[M].成都:西南交通⼤学出版社,1996:2-3.[2]李鑫.⼤跨度斜拉桥施⼯过程中⼏何⾮线性⾏为分析[D],硕⼠论⽂2013,成都西南交通⼤学.[3]葛耀君.⼤跨度悬索桥抗风[M]北京.⼈民交通出版社,2011:17-53.[4]项海帆.结构风⼯程研究的现状和展望[J].振动⼯程学报,1997,l0(3)259-263.[5]胡俊.⼤跨度悬索桥现场实测数据、风⾬激励响应及风振疲劳研究[D].⼤连理⼯⼤学博⼠论⽂,2012.6[6] JamieE.Padgett, AprilSpiller,Candase Aronold. Statistical analysis of coastal bridgevulnerability based on empirical evidence from Hurricane Katrina[J].Structure and Infrastructure Engineering. 2012 ,8(6):596-605.[7]项海帆.进⼊21世纪的桥梁风⼯程研究[J].同济⼤学学报.2002,30(5):529-532.[8]李国豪.桥梁结构稳定与振动[M].北京:中国铁道出版社,2002.400-441.[9] Boonyapinyo V, Yamada H, Miyata T. Wind-induced nonlinear lateral-torsional buckling of cable-stayed bridges [J]. Journal of Structural Engineering ,ASCE, 1994,120(2):486-506. [10] A.Hirai,I.Okauchi, M.Ito,T.Miyata. Studies on the critical wind velocity for suspensionbridge[C]/Proc. Int, Res. Seminar on wind effects on buildings and structures. University of Toronto Press. Ontario, Canada, 1967:81-103.[11]⽅明⼭.超⼤跨径缆索承重桥梁⾮线性空⽓静⼒稳定理论研究[D],上海:同济⼤学桥梁⼯程系, 1997.[12]程进,江见鲸,肖汝诚,项海帆.⼤跨度桥梁空⽓静⼒失稳机理研究[J].⼟⽊⼯程学报,2002,35(1)35-39.13陈政清桥梁风⼯程[M].北京.⼈名交通出版社,2005:43-58;139-141.14 H.W.Rieleman,D.Surry,K.C.Mehta, Full/mofrl-dvalr comparison of surface pressures on the Texas Tech experimental building[J],J. Wind Eng Ind. Aerodyn.,1996.61(1):1-23.15 D.Surry, Pressure measurements on the Texas Tech building: Wind tunnel measurements andcomparisons with full scale[J],J. Wind Eng Ind.Aerodyn.,1991.38(2-3):227-234.16 J.L.Walmsley, P.A.Taylor, Boundary-layer flow over topography: impacts of the Askerveinstudy, Boundary-Layer Meteorol.78(1996):291-320.17 Gunter Schewe, Allan Larsen. Reynolds number effects in the flow around a bluff bridge deckacross section. Journal of Wind Engineering and Industrial Aerodynamics.1998,74-76:829-838 18同济⼤学⼟⽊⼯程防灾国家重点实验室.“风的湍流特性观测与分析”苏通⼤桥桥位⽓象观测、风参数研究(四期报告)[R].上海:同济⼤学,2004.19 张玥西部⼭区⾕⼝处桥位风特性观测与风环境数值模拟研究[D].长安⼤学博⼠论⽂.2009.12.20 Gunter Schewe, Allan Larsen. Reynolds number effects in the flow around a bluff bridge deck across section. Journal of Wind Engineering and Industrial Aerodynamic.1998,74-76:829-838.21罗云.CFD⽅法在边界层风洞流场模拟中的应⽤研究[D].上海:同济⼤学硕⼠学位论⽂,2000.6[22]刘明,沿海地区特性实测分析与⼤跨度桥梁抖振响应研究[D].成都:西南交通⼤学博⼠论⽂,2013.6.23 Rathbun, J.C. Wind forces on a tall building. Transactions of ASCE, 1940, 105:1-41.24 A.G Davenport. The Relationship of Wind Structure to Wind Loading. Paper No.2 Proc Confon Wind Effects on Buildings and Structures:N.P.L.1963.25 A.G Davenport. The Spectrum of Horizontal Gustiness Near the Ground in High Winds.Quarterly of the Roya1 Met soclety.1987,194-211.26 Harstveit K. Full scale measurements of gust factors and turbulence intensity, and theirrelations in hilly terrain[J].Journal of Wind Engineering and Industrial Aerodynamics, 1996,61(2) : 195-205.[27] T. Amano, H. Fukushima, T. Ohkuma et al. The observation of typhoon winds in Okinawa byDoppler sodar [J]. Journal of Wind Engineering and Industrial Aerodynamics.1999, 83(1):11-20.28 Shiau B S, Chen Y B. In situ measurement of strong wind velocity spectra and windcharacteristics at Keelung coastal area of Taiwan [J]. Atmospheric Research,2001,57(3) : 171-185.29 Cao S, Tamura Y, Kikuchi N, et al. Wind characteristics of a strong typhoon[J].Journal of WindEngineering and Industrial Aerodynamics,2009,97(1) :11-21.30李宏海,欧进萍.基于实测数据的台风风场特性分析[C].第⼆届结构⼯程新进展国际论坛论⽂集.2008:299-307.31顾明,匡军,韦晓等.上海环球⾦融中⼼⼤楼顶部良态风风速实测[J].同济⼤学学报(⾃然科学版)2011,39(11):1592-1597.32王浩,邓稳平,焦常科等.苏通⼤桥凤凰台风现场实测分析[J].振动⼯程学报2011,24(1):36-4033喻梅,倪燕平,廖海黎等, 西堠门⼤桥桥位处风场特性实测分析[J].空⽓动⼒学报.2013,31(2):219-224.34李正农,吴卫祥,王志峰.北京郊外近地⾯风场特性实测研究.建筑结构学报2013.34(9):82-90 35黄鹏,戴银桃,王旭等.上海沿海地区近地风脉动风速谱及相⼲性研究[J].⼯程⼒学学报2014,31(4):126-133.36 J. Bietry, D. Delaunay, E. Coti. Comparison of full-scale measurement and computation ofwind effects on a cable-stayed bridge [J]. Journal of Wind Engineering and Industrial Aerodynamics. 1995(57):225-235.37 J. B. Fr and son. Simultaneous pressures and accelerations measured full-scale on the Great Belt East suspension bridge [J]. Journal of Wind Engineering and Industrial Aerodynamics. 2001 (89) :95-129.38 T. Miyata, H. Yamada, H. Katsuchi et al. Full-scale measurement of Akashi-Kaikyo Bridgeduring typhoon [J]. Journal of Wind Engineering and Industrial Aerodynamics. 2002 (90): 1517-1527.39 John. H.G Macdonald. Evaluation of buffeting predictions of a cable-stayed bridge fromfull-scale measurements [J]. Journal of Wind Engineering and Industrial Aerodynamics.2003(91):1465-1483.40 Y. L. Xu, L. D.Zhu. Buffeting response of long-span cable-supported bridges under skew winds.Part 2: case study [J]. Journal of Sound and Vibration.2005(281):675-697.[41]陈政清,柳成荫,倪⼀清等.洞庭湖⼤桥拉索风⾬振中的风场参数[J].铁道科学与⼯程学报.2004, 1 (1) :52-57..[42]王修勇,陈政清,倪⼀清等.环境激励下斜拉桥拉索的振动观测研究[J].振动与冲击.2006, 25(2) :138-144.43王浩,李爱群,谢以顺.台风"麦莎"作⽤下润扬悬索桥抖振响应实测研究[J].空⽓动⼒学报.2008, 26 (3) :706-712.44王浩,李爱群,黄瑞新等.润扬悬索桥桥址区韦帕台风特性现场实测研究[J].⼯程⼒学.2009,26 (4) :128-133.45 李杏平,李g群,王浩等.基于长期监测数据的苏通⼤桥桥址区风特性研究[J].振动与冲击.2010, 29 (10) :82-85.46 Selvam R P. Computation of flow around Texas Tech building using k- t and Kato-Launder k-e turbulence model. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 18:856-860.47 Kim H.G, Patel V.C. Test of Turbulence Models For and Flow over Terrain With SeparationAnd Recirculation [J]. BoundaryLayer Meteorology, 2000, 94(l): 5-21(17).48 Senthooran S, Lee D D, Parameswaran S. A computational model to calculate the flow inducedpressure fluctuations on buildings. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92: 1131-1145.49 Nozu T, Tamura T, Okuda Y, Sanada S. LES of the flow and building wall pressures in thecenter of Tokyo. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96: 1762-1773.50 谭红霞,陈政清.CFD 在桥梁断⾯静⼒三分⼒系数计算中的应⽤[J].⼯程⼒学学报,2009,26(11):68-72.[51]顾明,黄强,黄鹏等.低层双坡房屋屋⾯平均风压影响因素的数值模拟研究[J].建筑结构学报,2009,30(5):205-211.52卢春玲,李秋胜, 黄⽣洪等. ⼤跨度屋盖风荷载的⼤涡模拟研究[J].湖南⼤学学报( ⾃然科学版),2010,37(10):7-12.53张玥、胡兆同、刘健新.西部⼭区斜拉桥风特性观测及数值仿真[J].长安⼤学学报(⾃然科学版),2011,31(5):44-49.54 陈成, 基于实际⼭地地形的建筑风荷载数值模拟研究[D].重庆⼤学硕⼠论⽂.2012,4.55⾼亮.内陆强风特性的现场实测与模拟[D].长安⼤学博⼠论⽂,2012.1256⽅平治,史军,王强,等.上海陆家嘴区域建筑群风环境数值模拟研究[J].建筑结构学报,2013,34(9):104-111.57左春阳,梁峰.复杂⾼耸结构表⾯风压分布数值风洞研究[J].特种结构,2013,30(2):21-25.58徐枫,陈⽂礼,肖仪清等.超⾼层建筑风致振动的现场实测与数值模拟[J].防灾减灾⼯程学报,2014,34(1):51-57.59 王福军.CFD软件原理与应⽤[M].北京: 清华⼤学出版社,2004:7-12.60 江帆.Fluent⾼级应⽤与实例分析.北京:清华⼤学出版社,2008:8-12.61李明⾼,李明ANSYS13.0流场分析技术及应⽤实例.北京:机械出版社2012:4-17.62 Xu F Y, Ying X Y, Zhang Z. Prediction of unsteady flow around a square cylinder using RANS[C]. Applied Mechanics and Materials, 2011, 52-54: 1165-1170.63 Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J].AIAA J., 1994, 32(8): 1598-1605.[64] Davenport A.G. Buffeting of suspension bridge by storm winds. J. Struct. Div.,ASCE. 1962,88(6): 233-264.[65] D avenport A.G. The dependence of wind load upon meteorological parameters. Proc. Int. Res.Seminar on Wind Effects on Build and Struct. University of Toronto Press,Toronto, 1968: 19-82.[66]庞加斌.沿海和⼭区强风特性的观测分析与风洞模拟研究[D].上海:同济⼤学博⼠学位论⽂,2006.[67] 公路桥梁抗风设计规范(JTG/T D60-01-2004)[S].北京:中华⼈民共和国交通部发布,2004.[68] J.O. Paulo, A.Y ., Bassam. On the prediction of turbulent flows around a full-scale buildings.Journal of Wind Engineering and Industrial Aerodynamics, 2000, (86): 203-212.[69]顾明,黄鹏,群体⾼层建筑风荷载⼲扰的研究现状及展望[J],同济⼈学学报,2003.31(7): 762-766.[70] 戴天帅. 基于CFD 桥梁典型断⾯三分⼒系数差异分析[D].重庆:重庆交通⼤学硕⼠学位论⽂,2012.静⼒三分⼒静⼒三分⼒系数是表征桥梁结构静风荷载的⼀组⽆量纲参数。

Floating point error invalid number,fluent典型错误

Floating point error invalid number,fluent典型错误

turbulent viscosity limited to viscosity ratio of1.000 000e+005in2cellsError:Floating point error: invalid number 1 这个应该是湍流模型的选取与第一层网格高度之间不满足近壁处理关系而产生的问题,如果你没有使用壁面函数的话,第一层网格高度尽可能地小点儿,比如取为弦长的百万分之一左右;另外,边界条件中关于湍流量的设置不合理也会导致这个警告。

2 (不推荐)solve-controls-limits Maximum Turb. Viscosity Ratio 加多两个0,估计是一些单元的最大Turb. Viscosity Ratio超出了限定值()恕我直言,你的这个方法只是治标不治本,他这个问题多数是由于网格尺度太大引起的。

也可能是边界条件上的湍流相关参数不合理导致的。

[br][br][以下内容由larky 在2007年06月23日00:00am 时添加] [br]调大限制值可能导致发散3 这是一个办法,能够解决一部分问题,有一些问题无论你怎么调整都没有用,如果出现这种情况可以通过调整初始流场,找到合适的初始值大部分能够解决,其实如果只是一开始初现这个问题,可以不作调整,除非影响到收敛性4 在别的论坛上看到的:为了尽快收敛对异值进行的限制,对最后收敛结果无影响1)如果边界条件设置合理,一般来说会在收敛后自动消除。

2)为了加快收敛对异常的数值进行的限制(以引用2楼),是加快收敛的一种措施。

3)但是如果你的问题中流场变化很大,有可能在最后还会有。

4)如果网格不好会经常出现这种现象。

5)如果不想看见它总是报告而影响计算速度(写屏会降低计算速度),可以在下面把它关闭:solve->control->flow limit....具体记不住了,自己看看就知道了。

5 我也遇到这种情况,不过是在叠代求解的前一百多步,后面就没有了.因此我想是否是因为前面计算的误差大引起?而随着计算误差的减少,就消失了.如果是这样,就可以放心啦.6 一般是边界上或是网格质量差的地方出现了奇点.由于是数值耗散,随着迭代次数越多,影响整个流场的范围越大,最终可能导致这个流场发散.如果是网格质量差的地方出现,就只能重划网格了如果是在边界上,一般是湍流相关参数设置不合理造成的,改成固定湍流比可能能解决7 Why don't you try as follows (If you still have the same warning, please go to the next step. Usually, the initial flow condition used for the RSM run is obtained from the RNG k-e model result);First step:Solve - Controls - Solution -Default => iterationSecond Step:Dicrase "Under-relaxation factors" => iterationThird Step:Adaptation of cells : I usaually use y+ and velocity gradient conditions => iterationFourth Step:Regenerate mesh, goto step 1If your solution stats to converge, you can increase under-relaxation factors.If you have converged solutions, you can increase the order of the discretizatio n parameters (for ex. 1st -> 2nd -> QUICK etc.)8. Once I posted a big message on this issue, I am pasting that message again, you can read this:{well this is one common problem lot of people have asked about it before. i will try to summarize the approach i take to solve this problem.first of allthe very basic cause of this warning is the wrong set up of boundary conditio ns.So if you are sure that nothing is wrong with the set up of the problem, you can follow the following things.The origin of the problem lies in the fact that if the solver calculates the valu e of k and e or omega (in two equation models) wrongly, it’s very likely it will calculate turbulent viscosity wrongly and thus we get the warning. In the ideal condition, as the solution converges the warning should go away and we all live happily ever after. But generally this does not have so happy ending. The reason is mainly we have a case which is very large and convergence is already difficult and which is exacerbated by the wrong calculations of turbul ent quantities. So what are the remedies for it.The usual remedy is to switch to coupled solver,and work with it, and this u sually solves the problem. But my personal thinking is that if the case is inco mpressible the coupled solver may not work well there. But yes this is one so lution. The second solution which is far more stable is, and if you fail to get the solution from coupled solver too, switch to FAS,increase the number of p re post iterations, make the coarsening levels to 4, (4 is more than enough). A nd this converges almost every problem, but there are case where you might f ail to get convergence.Anyway if you are stuck with segregated solver (like me), what are the option s.First of all if we consider that the divergence is because of turbulence quantiti es, we may want to force the convergence on these quantities before we move to next iteration.The way I do is this, I change the multigrid options for k, e to V cycle, mak e the pres sweeps to 1 post sweeps to 2, and chose Bicgstab as smoother. An d let it run.盲目,默认值一般是最佳值。

biblio

biblio

Bibliography[1]FIELDVIEW Reference Manual,Software Release Version10.Intelligent Light,2004.[2]KINetics for Fluent,Version1.0.Reaction Design,Inc.,San Diego,CA,2004.[3]P.J.O’Rourke A.A.Amsden and T.D.Butler.KIVA-2:A Computer Program forChemically Reactive Flows with Sprays.Technical Report LA-11560-MS,UC-96, Los Alamos National Laboratory,Los Alamos,New Mexico,May1989.[4]A.Perera A.Antifora,M.Sala and L.Vigevano.NO x Emissions in CombustionSystems of Coal Fired Furnaces with a Reducing Environment:Predictions and Measurements.In Fourth International Conference on Technologies and Combus-tion for a Clean Environment,Lisbon,Portugal,1997.[5]T.Ahmad,S.L.Plee,and putation of Nitric Oxide and SootEmissions from Turbulent Diffusion Flames.J.of Engineering for Gas Turbines and Power,107:48–53,1985.[6]B.J.Alder and T.E.Wainright.Studies in Molecular Dynamics.II:Behaviour ofSmall Number of Spheres.J.Chem.Phys.,33:1439,1960.[7]B.J.Alder and T.E.Wainwright.Studies in Molecular Dynamics II:Behaviourof a Small Number of Elastic Spheres.J.Chem.Phys.,33:1439,1990.[8]A.A.Amsden.KIVA-3:A KIVA Program with Block-Structured Mesh for Com-plex Geometries.Technical Report LA-12503-MS,UC-361,Los Alamos National Laboratory,Los Alamos,New Mexico,March1993.[9]T.B.Anderson and R.Jackson.A Fluid Mechanical Description of Fluidized Beds.I&EC Fundam.,6:527–534,1967.[10]S.Armsfield and R.Street.The Fractional-Step Method for the Navier-StokesEquations on Staggered Grids:Accuracy of Three Variations.Journal of Compu-tational Physics,153:660–665,1999.[11]R.H.Augnier.A Fast,Accurate Real Gas Equation of State for Fluid DynamicAnalysis Applications.Journal of Fluids Engineering,117:277–281,1995.[12]F.Backmier,K.H.Eberius,and b.Sci.Tech.,7:77,1973.BIBLIOGRAPHY[13]S.Badzioch and P.G.W.Hawksley.Kinetics of Thermal Decomposition of Pulver-ized Coal Particles.Ind.Eng.Chem.Process Design and Development,9:521–530,1970.[14]R.S.Barlow,G.J.Fiechtner,C.D.Carter,and J.Y.Chen.Experiments onthe Scalar Structure of Turbulent CO/H2/N2Jet bustion and Flame,120:549–569,2000.[15]F.J.Barnes,J.H.Bromly,T.J.Edwards,and R.Madngezewsky.NO x Emissionsfrom Radiant Gas Burners.Journal of the Institute of Energy,155:184–188,1988.[16]R.Barrett,M.Berry,T.F.Chan,J.Demmel,J.Donato,J Dongarra,V.Eijkhout,R.Pozo,C.Romine,and H.Van der Vorst.Templates for the Solution of LinearSystems:Building Blocks for Iterative Methods.SIAM,Philadelphia,Pennsylvania,2nd edition edition,1994.[17]T.J.Barth and D.Jespersen.The design and application of upwind schemeson unstructured meshes.Technical Report AIAA-89-0366,AIAA27th AerospaceSciences Meeting,Reno,Nevada,1989.[18]H.Barths,C.Antoni,and N.Peters.Three-Dimensional Simulation of PollutantFormation in a DI-Diesel Engine Using Multiple Interactive Flamelets.SAE Paper,accepted for publication1998.[19]H.Barths et al.Simulation of Pollutant Formation in a Gas Turbine CombustorUsing Unsteady Flamelets.In27th Symp.(Int’l.)on Combustion.The CombustionInstitute,accepted for publication1998.[20]G.K.Batchelor.An Introduction to Fluid Dynamics.Cambridge Univ.Press,Cambridge,England,1967.[21]D.L.Baulch,D.D.Drysdall,D.G.Horne,and A.C.Lloyd.Evaluated KineticData for High Temperature Reactions,volume1,2,3.Butterworth,1973.[22]D.L.Baulch et al.Evaluated Kinetic Data for Combustion Modelling.J.Physicaland Chemical Reference Data,21(3),1992.[23]M.M.Baum and P.J.Street.Predicting the Combustion Behavior of Coal Parti-bust.Sci.Tech.,3(5):231–243,1971.[24]L.L.Baxter.Turbulent Transport of Particles.PhD thesis,Brigham Young Uni-versity,Provo,Utah,1989.[25]L.L.Baxter and P.J.Smith.Turbulent Dispersion of Particles:The STP Model.Energy&Fuels,7:852–859,1993.[26]W.Bechara,C.Bailly,fon,and S.Candel.Stochastic Approach to NoiseModeling for Free Turbulent Flows.AIAA Journal,32:3,1994.BIBLIOGRAPHY [27]M.Behnia,S.Parneix,Y.Shabany,and P.A.Durbin.Numerical Study of Tur-bulent Heat Transfer in Confined and Unconfined Impinging Jets.International Jounal of Heat and Fluid Flow,20:1–9,1999.[28]A.Bejan.Convection Heat Transfer.John Wiley and Sons,New York,1984.[29]R.W.Bilger and R.E.Beck.In15th Symp.(Int’l.)on Combustion,page541.TheCombustion Institute,1975.[30]R.W.Bilger,M.B.Esler,and S.H.Starner.On Reduced Mechanisms for Methane-Air Combustion.In Lecture Notes in Physics,volume384,page86.Springer-Verlag, 1991.[31]B.Binniger,M.Chan,G.Paczkko,and M.Herrmann.Numerical Simulation ofTurbulent Partially Premixed Hydrogen Flames with the Flamelet Model.Techni-cal report,Advanced Combustion Gmbh,Internal Report,1998.[32]J.Blauvens,B.Smets,and J.Peters.In16th Symp.(Int’l.)on Combustion.TheCombustion Institute,1977.[33]R.M.Bowen.Theory of Mixtures.In A.C.Eringen,editor,Continuum Physics,pages1–127.Academic Press,New York,1976.[34]C.T.Bowman.Chemistry of Gaseous Pollutant Formation and Destruction.InW.Bartok and A.F.Sarofim,editors,Fossil Fuel Combustion.J.Wiley and Sons, Canada,1991.[35]R.K.Boyd and J.H.Kent.Three-dimensional furnace computer modeling.In21stSymp.(Int’l.)on Combustion,pages265–274.The Combustion Institute,1986. [36]J.U.Brackbill,D.B.Kothe,and C.Zemach.A Continuum Method for ModelingSurface put.Phys.,100:335–354,1992.[37]A.Brandt.Multi-level Adaptive Computations in Fluid Dynamics.TechnicalReport AIAA-79-1455,AIAA,Williamsburg,VA,1979.[38]K.N.Bray and minar Flamelets in Turbulent Flames.In P.A.Libbyand F.A.Williams,editors,Turbulent Reacting Flows,pages63–114.Academic Press,1994.[39]K.S.Brentner and F.Farassat.An Analytical Comparison of the Acoustic Analogyand KirchhoffFormulations for Moving Surfaces.AIAA Journal,36(8),1998. [40]J.Brouwer,M.P.Heap,D.W.Pershing,and P.J.Smith.A Model for Predictionof Selective Non-Catalytic Reduction of Nitrogen Oxides by Ammonia,Urea,and Cyanuric Acid with Mixing Limitations in the Presence of CO.In26th Symposium (Int’l)on Combustion,The Combustion Institute,1996.BIBLIOGRAPHY[41]S.Brunauer.The Absorption of Gases and Vapors.Princeton University Press,Princeton,NJ,1943.[42]Trong T.Bui.A Parallel,Finite-Volume Algorithm for Large-Eddy Simulation ofTurbulent Flows.Technical Memorandum NASA/TM-1999-206570,1999.[43]M.Sommerfeld C.Mundo and C.Tropea.Droplet-Wall Collisions:ExperimentalStudies of the Deformation and Breakup Process.International Journal of Multi-phase Flow,21(2):151–173,1995.[44]R.Cao and S.B.Pope.Numerical Integration of Stochastic Differential Equations:Weak Second-Order Mid-Point Scheme for Application in the Composition PDFMethod.Journal of Computational Physics,185(1):194–212,2003.[45]N.F.Carnahan and K.E.Starling.Equations of State for Non-Attracting RigidSpheres.J.Chem.Phys.,51:635–636,1969.[46]M.G.Carvalho,T.Farias,and P.Fontes.Predicting Radiative Heat Transfer inAbsorbing,Emitting,and Scattering Media Using the Discrete Transfer Method.In W.A.Fiveland et al.,editor,Fundamentals of Radiation Heat Transfer,volume160,pages17–26.ASME HTD,1991.[47]J.R.Cash and A.H.Karp.A variable order Runge-Kutta method for initial valueproblems with rapidly varying right-hand sides.ACM Transactions on Mathemat-ical Software,16:201–222,1990.[48]T.Cebeci and P.Bradshaw.Momentum Transfer in Boundary Layers.HemispherePublishing Corporation,New York,1977.[49]S.Chapman and T.G.Cowling.The Mathematical Theory of Non-Uniform Gases.Cambridge University Press,Cambridge,England,3rd edition,1990.[50]S.Charpenay,M.A.Serio,and P.R.Solomon.In24th Symp.(Int’l.)on Combus-tion,pages1189–1197.The Combustion Institute,1992.[51]H.C.Chen and V.C.Patel.Near-Wall Turbulence Models for Complex FlowsIncluding Separation.AIAA Journal,26(6):641–648,1988.[52]P.Cheng.Two-Dimensional Radiating Gas Flow by a Moment Method.AIAAJournal,2:1662–1664,1964.[53]N.P.Cheremisinoff.Fluid Flow Pocket Handbook.Gulf Publishing Co.,Houston,TX.,1984.[54]D.Choudhury.Introduction to the Renormalization Group Method and TurbulenceModeling.Fluent Inc.Technical Memorandum TM-107,1993.BIBLIOGRAPHY [55]E.H.Chui and putation of Radiant Heat Transfer on a Non-Orthogonal Mesh Using the Finite-Volume Method.Numerical Heat Transfer,Part B,23:269–288,1993.[56]Clift,Grace,and Weber.Bubbles,Drops,and Particles.Technical report,AcademicPress,1978.[57]P.J.Coelho and M.G.Carvalho.Modelling of Soot Formation and Oxidation inTurbulent Diffusion Flames.J.of Thermophysics and Heat Transfer,9(4):644–652, 1995.[58]M.F.Cohen and D.P.Greenberg.The Hemi-Cube:A Radiosity Solution forComplex puter Graphics,19(3):31–40,1985.[59]D.Cokljat,V.A.Ivanov,F.J.Sarasola,and S.A.Vasquez.Multiphase k-epsilonModels for Unstructured Meshes.In ASME2000Fluids Engineering Division Sum-mer Meeting,Boston,USA,2000.[60]A.Coppalle and P.Vervisch.The Total Emissivities of High-Temperature Flames.Combust.Flame,49:101–108,1983.[61]S.M.Correa.A Review of NO x Formation Under Gas-Turbine Combustion Con-bustion Science and Technology,87:329–362,1992.[62]C.Crowe,M.Sommerfield,and Yutaka Tsuji.Multiphase Flows with Droplets andParticles.CRC Press,1998.[63]G.T.Csanady.Turbulent Diffusion of Heavy Particles in the Atmosphere.J.Atmos.Science,20:201–208,1963.[64]N.Curle.The Influence of Solid Boundaries upon Aerodynamic Sound.Proceedingsof the Royal Society of London.Series A,Mathematical and Physical Sciences, 231:505–514,1955.[65]E.H.Cuthill and J.McKee.Reducing Bandwidth of Sparse Symmetric Matrices.In Proc.ACM24th National Conf.,pages157–172,New York,1969.[66]M.Slack D.Cokljat and S.A.Vasquez.Reynolds-Stress Model for Eulerian Multi-phase.In Y.Nagano K.Hanjalic and M.J.Tummers,editors,Proceedings of the4th International Symposium on Turbulence Heat and Mass Transfer,pages1047–1054.Begell House,Inc.,2003.[67]J.Dacles-Mariani,G.G.Zilliac,J.S.Chow,and P.Bradshaw.Numeri-cal/Experimental Study of a Wingtip Vortex in the Near Field.AIAA Journal, 33(9):1561–1568,1995.[68]J.M.Dalla Valle.Micromeritics.Pitman,London,1948.BIBLIOGRAPHY[69]B.J.Daly and F.H.Harlow.Transport Equations in Turbulence.Phys.Fluids,13:2634–2649,1970.[70]J.F.Daunenhofer and J.R.Baron.Grid Adaption for the2D Euler Equations.Technical Report AIAA-85-0484,American Institute of Aeronautics and Astronau-tics,1985.[71]J.E.Dec.A Conceptual Model of DI Diesel Combustion Based on Laser SheetImaging.SAE Technical Paper970873,SAE,1997.[72]M.K.Denison and B.W.Webb.A Spectral Line-Based Weighted-Sum-of-Gray-Gases Model for Arbitrary RTE Solvers.J.Heat Transfer,115:1002–1012,1993.[73]J.Ding and D.Gidaspow.A Bubbling Fluidization Model Using Kinetic Theoryof Granular Flow.AIChE J.,36(4):523–538,1990.[74]G.Dixon-Lewis.Structure of Laminar Flames.In23rd Symp.(Int’l.)on Combus-tion,pages305–324.The Combustion Institute,1990.[75]N.Dombrowski and P.C.Hooper.The effect of ambient density or drop formationin sprays.Chemical Engineering Science,17:291–305,1962.[76]N.Dombrowski and W.R.Johns.The aerodynamic Instability and Disintegrationof Viscous Liquid Sheets.Chemical Engineering Science,18:203,1963.[77]C.Dopazo and E.E.O’Brien.Functional formulation of nonisothermal turbulentreactiveflows.Phys.Fluids,17:1968,1975.[78]A.M.Douaud and P.Eyzat.Four-Octane-Number Method for Predicting theAnti-Knock Behavior of Fuels in Engines.SAE Technical Paper,v87780080,SAE,1978.[79]M.C.Drake and R.J.Blint.Relative Importance of Nitrogen Oxide FormationMechanisms in Laminar Opposed-Flow Diffusion bustion and Flame,83:185–203,1991.[80]M.C.Drake,S.M.Correa,R.W.Pitz,W.Shyy,and C.P.Fenimore.Superequi-librium and Thermal Nitric Oxide Formation in Turbulent Diffusion -bustion and Flame,69:347–365,1987.[81]M.C.Drake,R.W.Pitz,pp,C.P.Fenimore,R.P.Lucht,D.W.Sweeney,and urendeau.In20th Symp.(Int’l.)on Combustion,page327.TheCombustion Institute,1984.[82]D.A.Drew and hey.In Particulate Two-Phase Flow,pages509–566.Butterworth-Heinemann,Boston,1993.BIBLIOGRAPHY [83]J.K.Dukowwicz and A.S.Dvinsky.Approximate Factorization as a High-OrderSplitting for the Implicit Incompressible Flow Equations.Journal of Computational Physics,102:336–347,1992.[84]P.A.Durbin.Separated Flow Computations with the k- -v2Model.AIAA Journal,33(4):659–664,1995.[85]V.N.Vatsa E.Turkel.Choice of variables and preconditioning for time depen-dent problems.Technical Report AIAA-2003-3692,American Institute of Aero-nautics and Astronautics,16th AIAA Computational Fluid Dynamics Conference, Orlando,Florida,June2003.[86]E.R.G.Eckert and R.M.Drake.Analysis of Heat and Mass Transfer.McGraw-HillCo.,1972.[87]D.K.Edwards and R.Matavosian.Scaling Rules for Total Absorptivity and Emis-sivity of Gases.J.Heat Transfer,106:684–689,1984.[88]J.K.Edwards,K.Jeremy,B.S.McLaury,S.Brenton,S.A.Shirazi,and A.Sia-mack.Supplementing a CFD Code with Erosion Prediction Capabilities.In Pro-ceedings of ASME FEDSM’98:ASME1998Fluids Engineering Division Summer Meeting,Washington D.C.,June1998.[89]J.K.Edwards,B.S.McLaury,and S.A.Shirazi.Evaluation of Alternative PipeBend Fittings in Erosive Service.In Proceedings of ASME FEDSM’00:ASME 2000Fluids Engineering Division Summer Meeting,Boston,June2000.[90]S.E.Elgobashi and T.W.Abou-Arab.A Two-Equation Turbulence Model forTwo-Phase Flows.Phys.Fluids,26(4):931–938,1983.[91]S.Ergun.Fluid Flow through Packed Columns.Chem.Eng.Prog.,48(2):89–94,1952.[92]G.M.Faeth.Spray Atomization and Combustion.AIAA Journal,(86-0136),1986.[93]R.F.Fedors and ndell.An Empirical Method of Estimating the VoidFraction in Mixtures of Uniform Particles of Different Size.Powder Technology, 23:225–231.[94]C.P.Fenimore.Formation of Nitric Oxide in Premixed Hydrocarbon Flames.In13th Symp.(Int’l.)on Combustion,page373.The Combustion Institute,1971. [95]C.P.Fenimore.Destruction of NO by NH3in Lean Burnt bustion andFlame,37:245,1980.[96]J.L.Ferzieger and putational Methods for Fluid Dynamics.Springer-Verlag,Heidelberg,1996.BIBLIOGRAPHY[97]J.E.Ffowcs-Williams and D.L.Hawkings.Sound Generation by Turbulence andSurfaces in Arbitrary Motion.Proc.Roy.Soc.London,A264:321–342,1969.[98]M.A.Field.Rate of Combustion Of Size-Graded Fractions of Char from a LowRank Coal between1200K–bust.Flame,13:237–252,1969.[99]I.Finnie.Erosion of Surfaces by Solid Particles.Wear,3:87–103,1960.[100]W.A.Fiveland and A.S.Jamaluddin.Three-Dimensional Spectral Radiative Heat Transfer Solutions by the Discrete Ordinates Method.HTD Vol.106,Heat TransferPhenomena in Radiation,Combustion and Fires,pp.43–48,1989.[101]T.H.Fletcher and pilation of Sandia coal devolatilization data:Milestone report.Sandia Report SAND92-8209,1992.[102]T.H.Fletcher and A.R.Kerstein.Chemical percolation model for devolatilization:3.Direct use of13C NMR data to predict effects of coal type.Energy and Fuels,6:414,1992.[103]T.H.Fletcher,A.R.Kerstein,R.J.Pugmire,and D.M.Grant.Chemical percola-tion model for devolatilization:2.Temperature and heating rate effects on productyields.Energy and Fuels,4:54,1990.[104]W.L.Flower,R.K.Hanson,and C.H.Kruger.In15th Symp.(Int’l.)on Com-bustion,page823.The Combustion Institute,1975.[105]S.Fu,under,and M.A.Leschziner.Modeling Strongly Swirling Recircu-lating Jet Flow with Reynolds-Stress Transport Closures.In Sixth Symposium onTurbulent Shear Flows,Toulouse,France,1987.[106]J.Garside and M.R.Al-Dibouni.Velocity-Voidage Relationships for Fluidization and Sedimentation.I&EC Process Des.Dev.,16:206–214,1977.[107]M.Germano,U.Piomelli,P.Moin,and W.H.Cabot.Dynamic Subgrid-Scale Eddy Viscosity Model.In Summer Workshop,Center for Turbulence Research,Stanford,CA,1996.[108]T.Gessner.Dynamic Mesh Adaption for Supersonic Combustion Waves Modeled with Detailed Reaction Mechanisms.PhD thesis,University of Freiburg,Freiburg,Germany,2001.[109]N.E.Gibbs,W.G.Poole,Jr.,and P.K.Stockmeyer.An algorithm for reducing the bandwidth and profile of a sparse matrix.SIAM J.Numer.Anal.,13:236–250,1976.[110]M.M.Gibson and under.Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer.J.Fluid Mech.,86:491–511,1978.BIBLIOGRAPHY[111]D.Gidaspow.Multiphase Flow and Fluidization.Academic Press,Boston,1994. [112]D.Gidaspow,R.Bezburuah,and J.Ding.Hydrodynamics of Circulating Flu-idized Beds,Kinetic Theory Approach.In Fluidization VII,Proceedings of the7th Engineering Foundation Conference on Fluidization,pages75–82,1992.[113]R.G.Gilbert,K.Luther,and J.Troe.Ber.Bunsenges.Phys.Chem.,87,1983. [114]M.Giles.Non-Reflecting Boundary Conditions for the Euler Equations.Technical Report TR88-1-1988,Computational Fluid Dynamics Laboratory,Massachusetts Institute of Technology,Cambridge,MA.[115]P.Glarborg,J.E.Johnsson,and K.Dam-Johansen.Kinetics of Homogeneous Nitrous Oxide bustion and Flame,99:523–532,1994. [116]M.E.Goldstein and B.Rosenbaum.Effect of Anisotropic Turbulence on Aerody-namic Noise.Journal of the Acoustical Society of America,54:630–645,1973.[117]J.Gottgens,F.Mauss,and N.Peters.Analytic Approximations of Burning Ve-locities and Flame Thicknesses of Lean Hydrogen,Methane,Ethylene,Ethane, Acetylene and Propane Flames.In Twenty-Fourth Symposium(Int.)on Combus-tion,pages129–135,Pittsburgh,1992.[118]I.R.Gran and B.F.Magnussen.A numerical study of a bluff-body stabilized diffusionflame.part2.influence of combustion modeling andfinite-rate chemistry.Combustion Science and Technology,119:191,1996.[119]D.M.Grant,R.J.Pugmire,T.H.Fletcher,and A.R.Kerstein.Chemical per-colation model of coal devolatilization using percolation lattice statistics.Energy and Fuels,3:175,1989.[120]P.M.Gresho,R.L.Lee,and R.L.Sani.On the Time-Dependent Solution of the Incompressible Navier-Stokes Equations in Two and Three Dimensions.In Recent Advances in Numerical Methods in Fluids.Pineridge Press,Swansea,U.K.,1980. [121]D.J.Gunn.Transfer of Heat or Mass to Particles in Fixed and Fluidized Beds.Int.J.Heat Mass Transfer,21:467–476,1978.[122]W.W.Hagerty and J.F.Shea.A Study of the Stability of Plane Fluid Sheets.Journal of Applied Mechanics,22:509,1955.[123]A.Haider and O.Levenspiel.Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles.Powder Technology,58:63–70,1989.[124]Z.Han,S.Perrish,P.V.Farrell,and R.D.Reitz.Modeling Atomization Processes of Pressure-Swirl Hollow-Cone Fuel Sprays.Atomization and Sprays,7(6):663–684, Nov.-Dec.1997.BIBLIOGRAPHY[125]G.Hand,M.Missaghi,M.Pourkashanian,and A.Williams.Experimental Studies and Computer Modelling of Nitrogen Oxides in a Cylindrical Furnace.In Pro-ceedings of the Ninth Members Conference,volume2.IFRF Doc No K21/g/30,1989.[126]R.K.Hanson and S.Salimian.Survey of Rate Constants in H/N/O Systems.In W.C.Gardiner,editor,Combustion Chemistry,page361,1984.[127]H.O.Hardenburg and F.W.Hase.An Empirical Formula for Computing the Pressure Rise Delay of a Fuel from its Cetane Number and from the RelevantParameters of Direct Injection Diesel Engines.SAE Technical Paper790493,SAE,1979.[128]R.A.W.M.Henkes and C.J.Hoogendoorn.Scaling of the Turbulent Natural Convection Flow in a Heated Square Cavity.Trans.of the ASME,116:400–408,May1994.[129]R.A.W.M.Henkes,F.F.van der Flugt,and C.J.Hoogendoorn.Natural Convec-tion Flow in a Square Cavity Calculated with Low-Reynolds-Number TurbulenceModels.Int.J.Heat Mass Transfer,34:1543–1557,1991.[130]J.B.Heywood.Internal Combustion Engine Fundamentals.McGraw-Hill,New York,rev.edition,1988.[131]J.O.Hinze.Turbulence.McGraw-Hill Publishing Co.,New York,1975.[132]C.Hirsch.Numerical Computation of Internal and External Flows:Computational Methods for Inviscid and Viscous Flows,volume2.John Wiley&Sons,New York,1984.[133]J.O.Hirschfelder,C.F.Curtiss,and R.B.Bird.Molecular Theory of Gases and Liquids.John Wiley&Sons,New York,1954.[134]C.W.Hirt and B.D.Nichols.Volume of Fluid(VOF)Method for the Dynamics of Free put.Phys.,39:201–225,1981.[135]D.G.Holmes and S.D.Connell.Solution of the2D Navier-Stokes Equations on Unstructured Adaptive Grids.Presented at the AIAA9th Computational FluidDynamics Conference,June,1989.[136]T.J.Houser,M.Hull,R.Alway,and T.Biftu.Int.Journal of Chem.Kinet., 12:579,1980.[137]P.Huang,P.Bradshaw,and T.Coakley.Skin Friction and Velocity Profile Family for Compressible Turbulent Boundary Layers.AIAA Journal,31(9):1600–1604,September1993.[138]B.R.Hutchinson and G.D.Raithby.A Multigrid Method Based on the Additive Correction Strategy.Numerical Heat Transfer,9:511–537,1986.[139]Hadjira Ibdir and Hamid Arastoopour.Modeling of multi-type particleflow using kinetic approach.AICHE Journal,May2005.[140]R.I.Issa.Solution of Implicitly Discretized Fluid Flow Equations by Operator put.Phys.,62:40–65,1986.[141]R.I.Issa.Solution of the Implicitly Discretized Fluid Flow Equations by Operator-Splitting.Journal of Computational Physics,62:40–65,1985.[142]G.W.Jackson and D.F.James.The Permeability of Fibrous Porous Media.Canadian Journal of Chem.Eng.,64(3):364–374,June1986.[143]S.Jain.Three-Dimensional Simulation of Turbulent Particle Dispersion.PhD thesis,University of Utah,Utah,1995.[144]A.Jameson.Solution of the Euler Equations for Two Dimensional Transonic Flow by a Multigrid Method.MAE Report1613,Princeton University,June1983.[145]A.Jameson,W.Schmidt,and E.Turkel.Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes.Technical Report AIAA-81-1259,AIAA14th Fluid and Plasma Dynamics Conference,Palo Alto,California,June1981.[146]J Janicka,W.Kolbe,and W.Kollmann.Closure of the transport equation for the pdf of turbulent scalarfields.Journal Non-Equilibrium Thermodynamics,4:47, 1978.[147]J.Janicka and W.Kollmann.A Two-Variable Formulation for the Treatment of Chemical Reactions in Turbulent H2-Air Diffusion Flames.In17th Symp.(Int’l.) on Combustion.The Combustion Institute,1978.[148]J.Janicka and W.Kollmann.A Numerical Study of Oscillating Flow Around a Circular bustion and Flame,44:319–336,1982.[149]C.Jayatilleke.The Influence of Prandtl Number and Surface Roughness on the Resistance of the Laminar Sublayer to Momentum and Heat Transfer.Prog.Heat Mass Transfer,1:193–321,1969.[150]H.M.Glaz J.B.Bell,P.Colella.Second-Order Projection Method for the Incom-pressible Navier-Stokes Equations.Journal of Computational Physics,85:257,1989. [151]H.M.Glaz J.B.Bell,P.Colella.An Analysis of the Fractional-Step Method.Journal of Computational Physics,108:51–58,1993.[152]P.C.Johnson and R.Jackson.Frictional-Collisional Constitutive Relations for Granular Materials,with Application to Plane Shearing.J.Fluid Mech.,176:67–93,1987.[153]W.P.Jones and J.H.Whitelaw.Calculation Methods for Reacting Turbulent Flows:A bust.Flame,48:1–26,1982.[154]T.Jongen.Simulation and Modeling of Turbulent Incompressible Flows.PhD thesis,EPF Lausanne,Lausanne,Switzerland,1992.[155]T.Just and S.Kelm.Die Industry,38:76,1986.[156]A.Ronald K.Haugen,O.Kvernvold and R.Sandberg.Sand Erosion of Wear-resistant Materials:Erosion in Choke Valves.Wear,186-187:179–188,1995.[157]H.Daiguji K.Ishazaki,T.Ikohagi.A High-Resolution Numerical Method for Tran-sonic Non-equilibrium Condensation Flows Through a Steam Turbine Cascade.In Proceedings of the6th International Symposium on Computational Fluid Dynamics, volume1,pages479–484,1995.[158]B.Kader.Temperature and Concentration Profiles in Fully Turbulent Boundary Layers.Int.J.Heat Mass Transfer,24(9):1541–1544,1981.[159]N.Kandamby,zopoulos,F.C.Lockwood,A.Perera,and L.Vigevano.Math-ematical Modeling of NO x Emission Reduction by the Use of Reburn Technology in Utility Boilers.In ASME Int.Joint Power Generation Conference and Exhibition, Houston,Texas,1996.[160]K.C.Karki and S.V.Patankar.Pressure-Based Calculation Procedure for Viscous Flows at All Speeds in Arbitrary Configurations.AIAA Journal,27:1167–1174, 1989.[161]G.Karypis and V.Kumar.METIS-A Software Package for Partitioning Un-structured Graphs,Partitioning Meshes,and Computing Fill-Reducing Orderings of Sparse Matrices,Version3.0.Manual,University of Minnesota and Army HPC Research Center,1997.[162]W.M.Kays.Loss coefficients for abrupt changes inflow cross section with low reynolds numberflow in single and multiple tube systems.Transactions of the ASME,72:1067–1074,January1950.[163]W.M.Kays.Turbulent Prandtl Number-Where Are We?J.Heat Transfer, 116:284–295,1994.[164]W.M.Kays and pact Heat Exchangers.McGraw-Hill,New York,1964.[165]R.J.Kee,F.M.Rupley,ler,M.E.Coltrin,J.F.Grcar,E.Meeks,H.K.Moffat,A.E.Lutz,G.Dixon-Lewis,M.D.Smooke,J.Warnatz,G.H.Evans, rson,R.E.Mitchell,L.R.Petzold,W.C.Reynolds,M.Caracotsios, W.E.Stewart,P.Glarborg,C.Wang,O.Adigun,W.G.Houf,C.P.Chou,S.F.Miller,P.Ho,and D.J.Young.CHEMKIN v.4.0.Technical Report San Diego, CA,Reaction Design,Inc.,2004.[166]R.J.Kee,F.M.Rupley,and ler.SURFACE CHEMKIN:A Software Pack-age for the Analysis of Heterogeneous Chemical Kinetics at a Solid-Surface-Gas-Phase Interface.Technical Report SAND96-8217,Sandia National Labs,2000.[167]I.M.Khan and G.Greeves.A Method for Calculating the Formation and Com-bustion of Soot in Diesel Engines.In N.H.Afgan and J.M.Beer,editors,Heat Transfer in Flames,chapter25.Scripta,Washington DC,1974.[168]J.S.Kim and F.A.Williams.Extinction of Diffusion Flames with Non-Unity Lewis Number.Eng.Math,31:101–118,1997.[169]rge eddy simulation using unstructured meshes and dynamic subgrid-scale turbulence models.Technical Report AIAA-2004-2548,American Institute of Aeronautics and Astronautics,34th Fluid Dynamics Conference and Exhibit,June 2004.[170]S.-E.Kim and D.Choudhury.A Near-Wall Treatment Using Wall Functions Sensi-tized to Pressure Gradient.In ASME FED Vol.217,Separated and Complex Flows.ASME,1995.[171]S.-E.Kim,D.Choudhury,and putations of Complex Turbulent Flows Using the Commercial Code FLUENT.In Proceedings of the ICASE/LaRC/AFOSR Symposium on Modeling Complex Turbulent Flows,Hampton,Virginia,1997. [172]W.-W.Kim and S.Menon.Application of the localized dynamic subgrid-scale model to turbulent wall-boundedflows.Technical Report AIAA-97-0210,American Institute of Aeronautics and Astronautics,35th Aerospace Sciences Meeting,Reno, NV,January1997.[173]H.Kobayashi,J.B.Howard,and A.F.Sarofim.Coal Devolatilization at High Temperatures.In16th Symp.(Int’l.)on Combustion.The Combustion Institute, 1976.[174]R.Kraichnan.Diffusion by a Random Velocity Field.Physics of Fluids,11:21–31, 1970.[175]K.K.Y.Kuo.Principles of Combustion.John Wiley and Sons,New York,1986.[176]V.R.Kuznetsov and V.A.Sabelnikov.Turbulence and Combustion,1990.[177]mb.Hydrodynamics,Sixth Edition.Dover Publications,New York,1945.[178]rsen and J.R.Howell.Least Squares Smoothing of Direct Exchange Areas in Zonal Analysis.J.Heat Transfer,108:239–242,1986.[179]under.Second-Moment Closure and Its Use in Modeling Turbulent In-dustrial Flows.International Journal for Numerical Methods in Fluids,9:963–985, 1989.[180]under.Second-Moment Closure:Present...and Future?Inter.J.Heat Fluid Flow,10(4):282–300,1989.[181]under,G.J.Reece,and W.Rodi.Progress in the Development of a Reynolds-Stress Turbulence Closure.J.Fluid Mech.,68(3):537–566,April1975.[182]under and N.Shima.Second-Moment Closure for the Near-Wall Sublayer: Development and Application.AIAA Journal,27(10):1319–1325,1989.[183]under and D.B.Spalding.Lectures in Mathematical Models of Turbulence.Academic Press,London,England,1972.[184]under and D.B.Spalding.The Numerical Computation of Turbulent Flows.Computer Methods in Applied Mechanics and Engineering,3:269–289,1974.[185]urendeau.Heterogeneous Kinetics of Coal Char Gasification and Com-bustion.Prog.Energy Comb.Sci.,4:221–270,1978.[186]J.L.Lebowitz.Exact Solution of Generalized Percus-Yevick Equation for a Mixture of Hard Spheres.The Phy.Rev.,133(4A):A895–A899,1964.[187]A.H.Lefebvre.Atomization and Sprays.Hemisphere Publishing Corporation, 1989.[188]B.P.Leonard and S.Mokhtari.ULTRA-SHARP Nonoscillatory Convection Schemes for High-Speed Steady Multidimensional Flow.NASA TM1-2568 (ICOMP-90-12),NASA Lewis Research Center,1990.[189]B.P.Leonard.The ULTIMATE conservative difference scheme applied to unsteady one-dimensional p.Methods Appl.Mech.Eng.,88:17–74,1991. [190]K.M.Leung and R.P.Lindsted.Detailed Kinetic Modeling of C1-C3Alkane Diffusion bustion and Flame,102:129–160,1995.[191]J.M.Levy,L.K.Chen,A.F.Sarofim,and J.M.Beer.NO/Char Reactions at Pulverized Coal Flame Conditions.In18th Symp.(Int’l.)on Combustion.The Combustion Institute,1981.[192]A.Li and G.Ahmadi.Dispersion and Deposition of Spherical Particles from Point Sources in a Turbulent Channel Flow.Aerosol Science and Technology,16:209–226, 1992.。

出国成绩单课程名称中英文对照参考表

出国成绩单课程名称中英文对照参考表

外国文学作选读Selected Reading of Foreign Literature现代企业管理概论Introduction to Modern Enterprise Managerment电力电子技术课设计Power Electronics Technology Design计算机动画设计3D Animation Design中国革命史China’s Revolutionary History中国社会主义建设China Socialist Construction集散控制DCS Distributed Control计算机控制实现技术Computer Control Realization Technology计算机网络与通讯Computer Network and CommunicationERP/WEB应用开发Application & Development of ERP/WEB数据仓库与挖掘Data Warehouse and Data Mining物流及供应链管理Substance and Supply Chain Management成功心理与潜能开发Success Psychology & Potential Development信息安全技术Technology of Information Security图像通信Image Communication金属材料及热加工Engineering Materials & Thermo-processing机械原理课程设计Course Design for Principles of Machine机械设计课程设计Course Design for Mechanical Design机电系统课程设计Course Design for Mechanical and Electrical System。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
K p
&
V
4 P 0, Oti
‘h
7
of turbulence energy von Karman’s constant appearing in (2.1 - 11) Molecular viscosity Turbulent viscosity Kinematic viscosity A generalized dependent variable Density Effective turbulent Prandtl number Effective turbulent Prandtl number for transport Molecular Prandtl number Shear stress
Nomen constant Curte t number defined by (3.1 - 1) Coefficients in approximated turbulent transport equations Specific heat at constant pressure Diffusion coefficient for quantity (p Rate of diffusive transport of Reynolds stress Constant in near-wall description of velocity profile (- 9) Functional defined by (2.2 - 6) Turbulence kinetic energy uiuj/2 Length of energy containing eddies Fluctuating component of static pressure Heat flux Radius Reynolds number in pipe flow based on bulk velocity and pipe diameter Rate of redistribution of Reynolds stress through pressure fluctuations Turbulent Reynolds number k2/ve Temperature Fluctuating component of velocity in direction xi Mean component of velocity in direction Xi Streamwise velocity nondimen~onalized by T,JP Mean streamwise velocity on axis Change in mean velocity across shear flow ‘Vorticity’ fluctuations squared Cartesian space coordinate
B.E. Launder, D.B. &&ding,
Fhe numerical
computation
of ~r~ulent flows
271
A good turbulence model has extensive universality, and is not too complex to develop or use. Universality implies that a single set of empirical constants or functions, inserted into the equations, provides close simulation of a large variety of types of flow. Complexity is measured by the number of differential equations which the model contains, and the number of the empirical constants and functions which are required to complete them; increase in the first complicates the task of using the model, increase in the second that of developing it. Satisfactory calculation procedures and computers are now available for solving differentiai equations, on the scale of the mean motion, for quite large numbers (e.g. 20) of simultaneous equations. The main obstacles to model development are therefore the difficulty of selecting which set of differential equations is most capable of providing universality, and the difficulty of then providing, from experimental knowledge, the required constants and functions.
Superscript +
Denotes
quantity
non-dimensionalized
by means of v, r,,
and p
1. Introduction
1.1. The Problem
Turbulent flows, which are of great practical importance, are threedimensional and time-dependent. Computer methods of solving the differenti~ equations of fluid dynast are well advanced even for three-dimensional time-dependent flows. Then why is it that there are no computer models of turbulent flow which do full justice to the fluid dynamics and which can be applied to practical problems? The answer is that the necessary computer storage exceeds by many orders of magnitude what is currently available, to say nothing of the computer time, for important constituents of the turbulence phenomenon take place in eddies of the order of a millimeter in size, while the whole flow domain may extend over meters or kilometers. A grid fine enough to allow accurate description of a turbulent flow would therefore require an immense and totally impractical number of nodes. Yet the practical need for computation of turbulent flows is pressing; to meet it, “turbulence models” have been invented. These consist of sets of differential equations, and associated algebraic equations and constants, the solutions of which, in conjunction with those of the NavierStokes equations, closely simulate the behaviour of real turbulent fluids.
270
B.E. Launder, D.B. Spaldirrg, The numerical computation
of turbulent flows
Y 3:
Radial width of mixing region Coordinate normal to wall
Greek Symbols E Rate of dissipation
In the present paper, the authors describe recent work on the development of a particular turbulence model, that in which two differential equations are solved, the dependent variables of which are the turbulence energy k and the dissipation rate of turbulence energy E. Emphasis is given to aspects of the model having importance for flows adjacent to solid walls. This is of course not the only available turbulence model. Others have been reviewed in recent works by the authors [ 1,2] and others (Harlow [3] and Mellor and Herring (41). Among such models are :Prandtl’s [ 51 mixing-length model; the one-differential-equation models of Prandtl [6], Bradshaw, Ferriss and Atwell [7 ] and Nee and Kovasznay [8 ] ; the two-differential-equation models of Kolmogorov [ 91, Harlow and Nakayama f 10 1, Spalding [ 111, and Jones and Launder [ 12 I; and the more complex models of Chou [ 131, Rotta [ 141, Davidov [ 15 I, Kolovandin and Vatutin [ 161, HanjaliC [ 17 1 and Hanjalid and Launder [ 18 I. Recently, a conference was devoted to comparison of the predictions of various models, with each other and with experiment, for certain turbulent-flow phenomena remote from walls. The k - E model was there shown, by Launder, Morse, Rodi and Spalding [ 191, to be surpassed only by admittedly more complex “Reynolds-stress” models, which are,still not completely developed. It therefore seems appropriate to present a more detailed description of the k - t: model than has been available hitherto, and to review recent predictions which have been made with its aid. The paper will concentrate attention on the differential equations and auxiliary relations which define the model, and on their solutions. The solution procedures will not be described here, because they are standard ones, published by Patankar and Spalding 1201 and Gosman, Pun, Runchal, Spalding and Wolfshtein [ 2 1 I. 2. The k - f model 2.1. The reason for its choice The authors and their colleagues have had experience with three different kinds of two-equation turbulence model: k - kl, k - W, and k - E. Here k stands for the turbulence energy:
相关文档
最新文档