人教版八年级数学下册二次根式单元测试(含答案)

合集下载

人教版八年级数学下册试卷二次根式单元测试题及答案

人教版八年级数学下册试卷二次根式单元测试题及答案

人教版八年级数学下册试卷二次根式单元测试题及答案八年级下册数学目标单元检测题(一)《二次根式》一、选择题:(每小题2分,共26分)1、下列代数式中,属于二次根式的是()A、3√x-2B、-AC、-4BD、a-√21(a≥1)2、在二次根式√x-1中,x的取值范围是()C、x≤13、已知(x-1)²=0,则(x+y)²的算术平方根是()A、14、下列计算中正确的是()C、√(a/3)=√(2/3)5、化简√(2/3)+√(1/3),得()B、√56、下列二次根式:12.5a,a,b,1/a,m+y/√(2anx)中最简二次根式的有()D、4个7、若等式(m-3)/(m+3)=1成立,则m的取值范围是()B、m>38、已知直角三角形有两条边的长分别是3cm,4cm,那么第三条边的长是()A、5cm9、把二次根式√(x^4+x^2y^2)化简,得()A、x^2+xy10、下列各组二次根式中,属于同类二次根式的为()C、a+1/12a^2b和D、a-1/ab^211、如果a≤1,那么化简√(a/(1-a))=()C、1/√(1-a)12、下列各组二次根式中,x的取值范围相同的是()B、x+1与x-1二、填空题:(每小题3分,共36分)13、化简√(42x-3)/(x-4x+1),得()B、4-4x14、用“>”或“<”符号连接:(1)-26<-33;(2)3<5;(3)3/(-5)>-7/(-3)26<-33<3<5<3/(-5)>-7/(-3)15、3(-5)的相反数是-15,绝对值是1516、如果最简二次根式3a-3与7-2a是同类二次根式,那么a的值是a=3/217、计算:8√(24)=8√3;(1/2)²=1/4;(-5)²=2518、当$x\geq -\frac{1}{3}$时,二次根式$3x+1$有意义;当$x>-1$时,代数式$x+1$有意义。

2022-2023学年人教新版八年级下册数学《第16章 二次根式》单元测试卷(有答案)

2022-2023学年人教新版八年级下册数学《第16章 二次根式》单元测试卷(有答案)

2022-2023学年人教新版八年级下册数学《第16章二次根式》单元测试卷一.选择题(共12小题,满分36分)1.化简(﹣)2的结果是()A.﹣5B.5C.±5D.252.下列各式中,一定是二次根式的是()A.B.C.D.3.若二次根式有意义,则x的取值范围是()A.x≥0B.x≥5C.x≥﹣5D.x≤54.二次根式的值等于()A.﹣2B.±2C.2D.45.下列计算正确的是()A.=±3B.C.D.6.若是最简二次根式,则a的值可能是()A.﹣2B.2C.D.87.的有理化因式是()A.B.C.D.8.下列二次根式中能与合并的是()A.B.C.D.9.若是整数,则正整数n的最小值是()A.4B.5C.6D.710.如图,在数轴上所表示的x的取值范围中,有意义的二次根式是()A.B.C.D.11.已知二次根式,则下列各数中能满足条件的a的值是()A.4B.3C.2D.112.如果+有意义,那么代数式|x﹣1|+的值为()A.±8B.8C.与x的值无关D.无法确定二.填空题(共10小题,满分30分)13.化简的值是,把4化成最简二次根式是.14.计算:÷=.15.若是整数,则最小正整数n的值为.16.使得二次根式在实数范围内有意义的x的取值范围是.17.化简=.18.如果最简二次根式与是同类二次根式,那么x的值为.19.若是整数,则正整数n的最小值是.20.已知n是正整数,是整数,则n的最小值是.21.已知+=0,则+=.22.小明做数学题时,发现=;=;=;=;…;按此规律,若=(a,b为正整数),则a+b=.三.解答题(共5小题,满分54分)23.已知二次根式.(1)求x的取值范围;(2)求当x=﹣2时,二次根式的值;(3)若二次根式的值为零,求x的值.24.(1)通过计算下列各式的值探究问题:①=;=;=;=.探究:对于任意非负有理数a,=.②=;=;=;=.探究:对于任意负有理数a,=.综上,对于任意有理数a,=.(2)应用(1)所得的结论解决问题:有理数a,b在数轴上对应的点的位置如图所示,化简:﹣﹣+|a+b|.25.当a取什么值时,代数式取值最小?并求出这个最小值.26.阅读下面解题过程,并回答问题.化简:解:由隐含条件1﹣3x≥0,得x∴1﹣x>0∴原式=(1﹣3x)﹣(1﹣x)=1﹣3x﹣1+x=﹣2x按照上面的解法,试化简:.27.已知+2=b+8.(1)求a的值;(2)求a2﹣b2的平方根.参考答案与试题解析一.选择题(共12小题,满分36分)1.解:(﹣)2=5.故选:B.2.解:A、x<0时,不是二次根式,故此选项错误;B、x<﹣2时,不是二次根式,故此选项错误;C、是二次根式,故此选项正确;D、当x>0时,不是二次根式,故此选项错误;故选:C.3.解:∵x﹣5≥0,∴x≥5.故选:B.4.解:原式=|﹣2|=2.故选:C.5.解:A、=3,故本选项错误;B、=,故本选项错误;C、=5,故本选项错误;D、==,故本选项正确.故选:D.6.解:∵是最简二次根式,∴a≥0,且a为整数,中不含开的尽方的因数因式,故选项中﹣2,,8都不合题意,∴a的值可能是2.故选:B.7.解:的有理数因式是,故选:A.8.解:A、,不能与合并,错误;B、,能与合并,正确;C、,不能与合并,错误;D、,不能与合并,错误;故选:B.9.解:∵=3,∴正整数n的最小值是5;故选:B.10.解:从数轴可知:x≥﹣3,A.当﹣3≤x<3时,无意义,故本选项不符合题意;B.当x≥﹣3时,有意义,故本选项符合题意;C.当﹣3≤x≤3时,无意义,故本选项不符合题意;D.当x=﹣3时,无意义,故本选项不符合题意;故选:B.11.解:由题意可知:1﹣a≥0,解得:a≤1.故选:D.12.解:∵+有意义,∴x﹣1≥0,9﹣x≥0,解得:1≤x≤9,∴|x﹣1|+=x﹣1+9﹣x=8,故选:B.二.填空题(共10小题,满分30分)13.解:=;4=4×=.故答案是;.14.解:原式===4.故答案为:4.15.解:∵是整数,∴最小正整数n的值是:5.故答案为:5.16.解:∵二次根式在实数范围内有意义,∴x﹣2≥0,解得x≥2.故答案为:x≥2.17.解:原式===2,故答案为:2.18.解:∵最简二次根式与是同类二次根式,∴2x﹣1=5,∴x=3.故答案为:3.19.解:原式=5,则正整数n的最小值是3时,原式是整数.故答案为:3.20.解:==3,∵是整数,∴n的最小值是3,故答案为:3.21.解:由题意得,a﹣3=0,2﹣b=0,解得a=3,b=2,所以,+=+=+=.故答案为:.22.解:根据题中的规律得:a=8,b=82+1=65,则a+b=8+65=73.故答案为:73.三.解答题(共5小题,满分54分)23.解:(1)根据题意,得:3﹣x≥0,解得x≤6;(2)当x=﹣2时,===2;(3)∵二次根式的值为零,∴3﹣x=0,解得x=6.24.解:(1)①=4;=16;=0;=.探究:对于任意非负有理数a,=a.故答案为:4,16,0,,a;②=3;=5;=1;=2.探究:对于任意负有理数a,=﹣a.综上,对于任意有理数a,=|a|.故答案为:3,5,1,2,﹣a,|a|;(2)观察数轴可知:﹣2<a<﹣1,0<b<1,a﹣b<0,a+b<0.原式=|a|﹣|b|﹣|a﹣b|+|a+b|=﹣a﹣b+a﹣b﹣a﹣b=﹣a﹣3b.25.解:∵≥0,∴当a=﹣时,有最小值,是0.则+1的最小值是1.26.解:由隐含条件2﹣x≥0,得x≤2,则x﹣3<0,所以原式=|x﹣3|﹣(2﹣x)=﹣(x﹣3)﹣2+x=﹣x+3﹣2+x=1.27.解:(1)由题意知a﹣17≥0,17﹣a≥0,则a﹣17=0,解得:a=17;(2)由(1)可知a=17,则b+8=0,解得:b=﹣8,故a2﹣b2=172﹣(﹣8)2=225,则a2﹣b2的平方根为:±=±15.。

八年级下册数学二次根式单元试卷(含答案)

八年级下册数学二次根式单元试卷(含答案)

, x − 3 ≥ 0
{ 3−x ≥ 0
解得x=3,
将 代入 ,得 x=3
−−−−−
−−−−−
y = √x − 3 + √3 − x + 2
, y = 2 将x=3、y=2代入xy得 9,
所以xy=9.
13.使式子
−−−−− √m − 2
有意义的最小整数m是
.
【参考答案】
答案:2. 解:根据题意得,m-2≥0, 解得m≥2, 所以最小整数m是2.
−−−−−−−
−−−−−−−
已知 < < ,化简 14.
2x5
√(x

2
2)
+
√(x

2
5)
=
.
【参考答案】
答案:3.
−−−−−−−
−−−−−−−
解: , √(x − 2)2 + √(x − 5)2 = | x - 2 | + | x - 5 |
因为2<x<5,所以x-2>0,x-5<0,
所以|x-2|+|x-5|=x-2+5-x=3.
,宽为
2
−− √10
,则下列说法不正确的是().
A.大长方形的长为6
−− √10
B.大长方形的宽为5
−− √10
C.大长方形的周长为11
−− √10
D.大长方形的面积为300
【参考答案】
答案:C.
解:
由题意得大长方形的两边分别为 , , −−
−−
−−
3 √10 + 2 √10 = 5 √10
−−
−−
人教版数学八年级第十六章 二次根式单元卷
一、选择题

人教版八年级数学下册《二次根式的定义及性质》专项练习(附带答案)

人教版八年级数学下册《二次根式的定义及性质》专项练习(附带答案)

人教版八年级数学下册《二次根式的定义及性质》专项练习(附带答案)
【考点导航】
目录
【典型例题】 (1)
【考点一二次根式的定义】 (1)
【考点二二次根式有意义的条件】 (2)
【考点三求二次根式的值】 (3)
【考点四求二次根式中的参数】 (4)
【考点五利用二次根式的性质化简】 (6)
【考点六复合二次根式的化简】 (7)
【过关检测】 (9)
【典型例题】
【考点一二次根式的定义】
【考点二二次根式有意义的条件】
【考点三求二次根式的值】
【考点四求二次根式中的参数】
【考点五利用二次根式的性质化简】
【考点六复合二次根式的化简】
-=
)解:743
【过关检测】一、选择题
【详解】解:二次根式
a b
-≠a b
+= a b
14
【答案】22+-a b c。

人教版数学八年级下册第十六章二次根式 单元测试卷(含答案解析)

人教版数学八年级下册第十六章二次根式 单元测试卷(含答案解析)

人教版数学八年级下册第十六章二次根式单元测试卷(含答案解析)一、单选题(共12小题,每小题4分,共计48分)1A.4b B.CD2.下列各数中,与的积不含二次根式的是A.B.CD3m为()A.-10B.-40C.-90D.-1604.若a,b-5,则a,b的关系为A.互为相反数B.互为倒数C.积为-1D.绝对值相等5.下列计算正确的是3==6=3=;a b=-.A.1个B.2个C.3个D.4个6合并的是()A B C D7.若6的整数部分为x,小数部分为y,则(2x)y的值是() A.5-B.3C.-5D.-38.如图,a,b,c的结果是()a c+A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b9.估计的值应在( )A .5和6之间B .6和7之间C .7和8之间 D.8和9之间10有意义,那么直角坐标系中点A(a,b)在() A .第一象限 B .第二象限 C .第三象限D .第四象限11.下列计算正确的是AB . CD12.如果,,那么各式:,,,其中正确的是()A .①②③B .①③C .②③D .①②二、填空题(共5小题,每小题4分,共计20分)13.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a﹣的结果是_____.14.已知a 、b满足(a ﹣1)2=0,则a+b=_____.15有意义,则实数x 的取值范围是_____.16.若a ,b 都是实数,b﹣2,则a b 的值为_____. 17.已知实数,互为倒数,其中__________. ()=3=2==0ab > 0a b +<=1=b =-a b a 2=+三、解答题(共4小题,每小题8分,共计32分)18=b+8.(1)求a 的值;(2)求a 2-b 2的平方根.19.已知实数a 满足|300﹣a =a ,求a ﹣3002的值.20.已知点A(5,a)与点B(5,-3)关于x 轴对称,b 为求(1)的值。

【3套试卷】人教版数学八年级下第16章二次根式单元考试题(有答案)

【3套试卷】人教版数学八年级下第16章二次根式单元考试题(有答案)

人教版数学八年级下第16章二次根式单元考试题(有答案)人教版八年级数学下册第十六章二次根式单元检测卷总分:150分,时间:120分钟;姓名:;成绩:;一、选择题(4分×12=48分)1、下列二次根式是最简二次根式的是()C.B.2)A. B.C.3a能够取的值是()A. 0B. 1C. 2D.34有意义的条件是()A.x≥1B.x≤1C.x≠1D.x<15、若135a是整数,则a的最小正整数值是( )A.15 B.45 C.60 D.1356、则实数x的取值范围在数轴上的表示正确的是( )=-)7aA. -B.C. -D.8、已知(5m=n,如果n是整数,则m可能是()A. 5 C. 9、下列计算正确的是( )A. 4B. 1C. 3 210、若a 、b 、c ) A. 2a -2c B. -2c C. 2b D.2a11、已知a ,b a 、b ,则下列表示正确的是( ) A. 0.3ab B. 3ab C. 0.1ab D.0.9ab12、定义:m Δn =(m+n )2,m ※n =mn -2,则[(]Δ)的值是( )C. 5二、填空题(4分×6=24分)13= ;14、已知矩形的长为cm cm ,则矩形的面积为 ;15、当a = 时,16、已知a =,b =,则a 2b+ab 2= ;171x =成立的条件是 ;1822510b b +=,则a+b 的平方根是 ;三、22a 10分×2=20分)19、计算(1)21+( (2)2019+(-1)20、计算:(1)220,0)a a b >>(2)2(0,0)a a b m n ÷>>四、解答题(9分×4=36分)21、用四张一样大小的长方形纸片拼成一个正方形ABCD ,如图所示,它的面积是75,AE=22、化简求值:2(2)(2)(2)(43)a b a b a b b a b +-+--+,其中a 1,b ;23、观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式:121212)12)(12()12(1121-=--=-+-⨯=+ 232323)23)(23()23(1231-=--=-+-⨯=+同理可得:32321-=+从计算结果中找出规律,并利用这一规律计算.......1)的值24、已知a,b,c在数轴上如图所示,化简:+b c五、解答题(10分+12分=22分)25、现有一组有规律的数:1,-1,2,-2,3,-3,1,-1,2,-2,3,-3,…,其中1,-1,2,-2,3,-3这6个数按此规律重复出现.(1)第50个数是什么数?(2)把从第1个数开始的前2018个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方相加,如果和为520,那么一共是多少个数的平方相加?26、小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+()2.善于思考的小明进行了以下探索:设=()2(其中a、b、m、n均为整数),则有=m2+2n2∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若=()2,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若)2,且a 、m 、n 均为正整数,求a 的值?2019年春人教版数学八年级下第16章二次根式单元考试题答案一、选择题CDBDA CABDA AB 二、填空题13、1; 14、2; 15、6; 16、6; 17、x ≥-1; 18、±3三、解答题 19、计算:(1)5; (2)0;20、(1)12a 3b 2;(2)2221a ab a b -+;四、解答题21、22、; 23、2017; 24、-a 五、解答题25、(1)第50个数是-1.(2)从第1个数开始的前2018个数的和是0. (3)一共是261个数的平方相加.26、26、(1)223,2m n mn + (2)16,8,2,2(答案不唯一)(3)7或13.人教版八年级数学下册 第十六章 二次根式 单元测试题(含答案)一、选择题。

初二数学人教版八年级下册第十六章二次根式单元测试题答案解析

初二数学人教版八年级下册第十六章二次根式单元测试题答案解析

初二数学人教版八年级下册第十六章二次根式单元测试题一.选择题1.下列根式中是最简二次根式的是()A. B. C.D.【答案】A【解析】根据最简二次根式的定义即可求出答案.解:B.原式=B不是最简二次根式;C.原式=,故C不是最简二次根式;D.原式=,故D不是最简二次根式;2故选A.【点评】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.2.是同类二次根式的是()【答案】D【解析】如果几个二次根式化为最简二次根式后被开方的数相同,则这几个二次根式是同类二次根式.解:A=.故A项不符合题意.B==.故B项不符合题意.C4==.故C项不符合题意.D==.故D项符合题意.故本题正确答案为D.【点评】本题主要考查二次根式的化简.3.下列计算正确的是()A. ﹣|﹣3|=3B. ﹣32=9C. 3= D. 3=±【答案】C【解析】根据绝对值定义,有理数的乘方,二次根式性质计算可得.解:选项A,根据绝对值定义可得-∣-3∣=-3,该选项错误.选项B,根据有理数的乘方得 -32=-9,该选项错误.选项C,根据二次根式的性质可得23=,该选项正确.选项D,根据二次根式的化简可得3=,该选项错误.故选C.【点评】本题主要考查了绝对值定义,有理数的乘方,二次根式性质,熟悉掌握是关键.4.x≥3是下列哪个二次根式有意义的条件()【答案】D【解析】根据二次根式有意义的条件逐项求解即可得答案.解:A、x+3≥0,解得:x≥-3,故此选项错误;B、x-3>0,解得:x>3,故此选项错误;C、x+3>0,解得:x>-3,故此选项错误;D、x-3≥0,解得:x≥3,故此选项正确,故选D.【点评】本题考查了二次根式和分式有意义的条件,二次根式的被开方数是非负数.分式的分母不能等于0.5.=a﹣2,则a与2的大小关系是()A. a=2B. a>2C. a≤2D. a≥2【答案】D【解析】=∣a-2∣=a-2,可知a-2≥0,即a≥2.=∣a-2∣=a-2,可知a-2≥0,即a≥2,故选D.【点评】此题主要考察去绝对值的运算.6.下列运算:-0;×==2;+2)2=7,其中错误的有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】根据二次根式加减法法则、二次根式乘除法法则、完全平方公式逐一进行计算即可.0,正确,不符合题意;=12,错误,符合题意;=2,正确,不符合题意;+2)2,错误,符合题意,所以错误的有2个,故选B.【点评】本题考查了二次根式混合运算,熟练掌握二次根式的运算法则是解题的关键.7.=x的取值范围是()A. 1≤x≤3B. 1<x≤3C. x≥3D. x>3【答案】D【解析】根据商的算术平方根的性质可得关于x的不等式组,解不等式组即可求得答案.解:由题意得:1030 xx-≥⎧⎨->⎩,解得:x>3,故选D.【点评】本题考查了商的算术平方根的性质,熟练掌握是解题的关键.8.如图,在矩形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为( )cm2.A. 16-B. -12+C. 8-D. 4-【答案】B【解析】根据正方形的面积求出两个正方形的边长,从而求出AB、BC,再根据空白部分的面积等于长方形的面积减去两个正方形的面积列式计算即可得解.解:∵两张正方形纸片的面积分别为16cm2和12cm2,4=cm,=cm,∴AB=4cm,BC=4)cm,∴空白部分的面积=4)×4−12−16=(12-+ cm 2.故选B.【点评】此题考查二次根式的应用,解题关键在于将正方形面积直接开根即是正方形的边长.二.填空题9.=_____. 【答案】3【解析】直接利用二次根式乘法法则进行计算即可.= 故答案为3.【点评】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解本题的关键.10.计算:))201820192的结果是_____.2【解析】逆用积的乘方运算法则以及平方差公式即可求得答案.解:))201820192=)))2018201822⨯⨯=)))201822⎡⎤⎣⎦⨯⨯=(5-4)2018×)2,【点评】本题考查了积的乘方的逆用,平方差公式,熟练掌握相关的运算法则是解题的关键.11.是同类二次根式,则a•b的值是_____.【答案】18【解析】由同类二次根式的被开方数相同即可解题.解:解:∵,∴a=2,2b+5=3b-4,解得:a=2,b=9,∴ab=18.【点评】本题考查了同类根式的应用,属于简单题,熟悉同类根式的概念是解题关键.12.在实数范围内有意义,则x的取值范围是_____.x≥-【答案】8【解析】根据被开方式大于且等于零列式求解即可.解:由题意得x+8≥0,∴x≥-8.故答案为x≥-8.【点评】本题考查了二次根式有意义的条件,熟练掌握被开方式大于且等于零时二次根式有意义是解答本题的关键.13.如果实数a、b+_____.【答案】2b-a【解析】由数轴知a.0.b 且|a|.|b|,据此得a -b.0,再根据二次根式的性质和绝对值的性质化简可得.解:由数轴知a.0.b ,且|a|.|b|.则a -b.0.-b|+|b|=b -a+b=2b -a.故答案为2b -a.【点评】本题主要考查二次根式的性质与化简,解题的关键是熟练掌握二次根式的性质、绝对值的性质.14.若a 、b 为实数,且b =7a ++4,则a+b =_____. 【答案】5或3【解析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.解:由被开方数是非负数,得221010a a ⎧-≥⎨-≥⎩, 解得a =1,或a =﹣1,b =4,当a =1时,a +b =1+4=5,当a =﹣1时,a +b =﹣1+4=3,故答案为5或3.【点评】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.15.观察下列等式:1+11﹣111+=112,1+12﹣121+=116,1+13﹣131+=1112, …请你根据以上规律,写出第n 个等式_____.()()211111n n n n n n ++=+=++ 【解析】根据已知算式得出规律,根据规律求出即可. 解:解:∵观察下列等式:111111112=+-=+111112216=++=+1111133112=+-=+ …∴第n 1n -11n +=1+()11n n +.1n -11n +=1+()11n n +. 【点评】本题考查了二次根式的性质的应用,关键是能根据题意得出规律.16.已知y 2016,则2(x+y)的平方根是_____.【答案】±2【解析】先根据二次根式有意义的条件得到关于x的不等式组,解不等式求得x的值后,代入可求得y的值,继而可求得答案.解:由题意得:20180 20180 xx-≥⎧⎨-≥⎩,解得:x=2018,所以y=-2016,所以2(x+y)=4,所以2(x+y)的平方根是±2,故答案为±2.【点评】本题考查了二次根式有意义的条件,平方根,求出x、y的值是解题的关键.17.如果最简二次根式a=_____,b=_____.【答案】(1). 0(2). 1【解析】根据同类二次根式的定义:被开方数相同的二次根式,列方程,即可解答.解:依题意得:12{233bba a+=+=+,解得0 {1ab==.故答案为0;1.【点评】此题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.18.,那么x的最小正整数是________【答案】11.【解析】根据题意,它们化简后的被开方数相同,列出方程求解即可.解:∴2x+5=3,解得x=−1(舍去),2x+5=12,解得x=3.5(舍去),2x+5=27,解得x=11.即:当x 取最小正整数11是同类根式.故答案是:11.【点评】此题考查同类二次根式,解题关键在于掌握运算法则.三.解答题19.计算+2﹣+).【答案】(1;(2)【解析】.1)先把各二次根式化为最简二次根式.然后合并即可..2)先根据完全平方公式和平方差公式计算.然后合并即可.解:(1)原式=.2)原式=8(53)+-=82+=6+.【点评】本题考查了二次根式的混合运算.先把各二次根式化为最简二次根式.再进行二次根式的乘除运算.然后合并同类二次根式.20.已知长方形长a ,宽b .求长方形的周长;.求与长方形等面积的正方形的周长,并比较长方形周长与正方形周长大小关系.【答案】①,长方形的周长大于正方形的周长.【解析】①根据长方形的周长公式列出算式,然后根据二次根式混合运算的运算法则进行计算即可;②先求出正方形的边长,然后利用周长公式进行求解即可.解:①长方形的周长为;,∴此正方形的周长为,.6.6,则长方形的周长大于正方形的周长.【点评】本题考查了二次根式的混合运算,实数大小比较等,熟练掌握相关知识和运算法则以及求解方法是解题的关键.21.阅读材料,然后作答:在化简二次根式时,这一类式子,==;211==,这种把分母中的根号化去叫做分母有理化.还有一种方法也可以将进行分母有理化:221111-===;请仿照上述方法解决下面问题:(1)(2).【答案】(1(2【解析】根据题意即可求出答案.解:解:(122-(2【点评】..........................22.是同类二次根式.(1)求出a的值;(2)若a≤x≤2a,化简:|x﹣.【答案】.1.a=3.(2)4【解析】解:(1)利用同类二次根式定义,列式.(1)4a-5=13-2a,解得a=3.(2)a≤x≤2a,3<x<6,2x-2x-=∣x-2∣+∣x-6∣=x-2-x+6=4.,0,0a aaa a≥⎧==⎨-<⎩,推广此时a可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小于0,把绝对值变为括号,前面再加负号.最后去括号,化简.23.已知非零实数a,bb﹣=a,求a b﹣1的值.【答案】a b-1=25.【解析】先根据二次根式的意义确定:(a-5..b2+1.≥0.a≥5.再化简.由绝对值和二次根式的非负性列等式可得结论.解:由题意得(a-5)(b2+1)≥0.∴a≥5.+|b--a-4+|b-3|+∴|b-又因为|b-故|b-则b=3.a=5.故a b-1=52=25.【点评】考查了二次根式的性质和化简及非负数的性质,解题的关键是将所给的式子化为非负数的和为0的等式,然后利用非负性求出a.b的值,本题属于中等题型.24.(1) 观察下列各式的特点:1>>2>,222>,…填“>”“<”或“=”).(2)观察下列式子的化简过程:==,1====…n≥2)的化简过程.(3)根据上面(1)(2)得出的规律计算下面的算式:++L.【答案】(1)>;9.【解析】(1)根据题目所给的例题大小关系可直接得到答案;(2==(3)根据(21计算即可.解:(1)故答案为>.==;(3)原式=)﹣)﹣﹣=﹣)+(﹣﹣)=)【点评】本题主要考查了分母有理化,关键是认真观察题目所给的例题,找出其中的规律,然后应用规律进行计算.。

人教版八年级数学下册第十六章二次根式单元测试卷(含答案)

人教版八年级数学下册第十六章二次根式单元测试卷(含答案)

⼈教版⼋年级数学下册第⼗六章⼆次根式单元测试卷(含答案)第⼗六章⼆次根式单元测试卷题号⼀⼆三总分得分⼀、选择题(每题3分,共30分)1.要使⼆次根式错误!未找到引⽤源。

有意义,x必须满⾜()A.x≤2B.x≥2C.x>2D.x<22.下列⼆次根式中,不能与错误!未找到引⽤源。

合并的是()A.错误!未找到引⽤源。

B.错误!未找到引⽤源。

C.错误!未找到引⽤源。

D.错误!未找到引⽤源。

3.下列⼆次根式中,最简⼆次根式是()A.错误!未找到引⽤源。

B.错误!未找到引⽤源。

C.错误!未找到引⽤源。

D.错误!未找到引⽤源。

4.下列各式计算正确的是()A.错误!未找到引⽤源。

+错误!未找到引⽤源。

=错误!未找到引⽤源。

B.4错误!未找到引⽤源。

-3错误!未找到引⽤源。

=1C.2错误!未找到引⽤源。

×3错误!未找到引⽤源。

=6错误!未找到引⽤源。

D.错误!未找到引⽤源。

÷错误!未找到引⽤源。

=35.下列各式中,⼀定成⽴的是()A.错误!未找到引⽤源。

=(错误!未找到引⽤源。

)2B.错误!未找到引⽤源。

=(错误!未找到引⽤源。

)2C.错误!未找到引⽤源。

=x-1D.错误!未找到引⽤源。

=错误!未找到引⽤源。

·错误!未找到引⽤源。

6.已知a=错误!未找到引⽤源。

+1,b=错误!未找到引⽤源。

,则a与b的关系为()A.a=bB.ab=1C.a=-bD.ab=-17.计算错误!未找到引⽤源。

÷错误!未找到引⽤源。

×错误!未找到引⽤源。

的结果为()A.错误!未找到引⽤源。

B.错误!未找到引⽤源。

C.错误!未找到引⽤源。

D.错误!未找到引⽤源。

8.已知a,b,c为△ABC的三边长,且错误!未找到引⽤源。

+|b-c|=0,则△ABC的形状是()A.等腰三⾓形B.等边三⾓形C.直⾓三⾓形D.等腰直⾓三⾓形9.已知a-b=2错误!未找到引⽤源。

-1,ab=错误!未找到引⽤源。

人教版八年级下册第16章二次根式单元测试试题(含答案解析)

人教版八年级下册第16章二次根式单元测试试题(含答案解析)
先把原式化为(a-2)2-6,再把a=2- 代入求值即可.
【详解】
原式=a2-4a+4-4-2=(a-2)2-6,
把a=2- 代入原式=(a-2)2-6
=(2- -2)2-6
=5-6
=-1,
故答案为-1.
【点睛】
本题考查了二次根式的化简求值,以及完全平方式的应用,是基础知识要熟练掌握.
7.5
【分析】
A. B.
C. D.
25..若ab≠0则等式 成立的条件是( ).
A.a>0,b>0B.a>0,b<0C.a<0,b>0D.a<0,b<0
参考答案
1.21
【分析】
因为 是整数,且 = ,则21n是完全平方数,满足条件的最小正整数n为21.
【详解】
∵ = ,且 是整数;
∴3 是整数,即21n是完全平方数;
13.
【分析】
分别将每项计算出来,再化简.
【详解】
思路:
解:原式
【点睛】
此题考查学生的计算能力,此题属于低档试题,计算要小心.
∴n的最小正整数值为21.
故答案为21
【点睛】
主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则 ;除法法则 .解题关键是分解成一个完全平方数和一个代数式的积的形式.
2.2(x+ )(x- ).
【分析】
先提取公因式2后,再把剩下的式子写成x2-( )2,符合平方差公式的特点,可以继续分解.
人教版八年级下册第16章二次根式单元测试试题
学校:___________姓名:___________班级:___________考号:___________

人教版初中数学八年级数学下册第一单元《二次根式》测试(包含答案解析)

人教版初中数学八年级数学下册第一单元《二次根式》测试(包含答案解析)
(2)计算 ;
(3)设 , , ,比较a,b,c的大小关系.
24.计算: .
25.先化简,再求值: ,其中 .
26.(1)计算: .
(2)先化简,再求值: ,其中 .
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【分析】
根据分母有理化将 进行整理即可求解.
【详解】
解: ,
又 ,

【分析】
根据二次根式的运算法则一一判断即可.
【详解】
A、错误. 和 不是同类二次根式,不能合并;
B、错误, ;
C、错误.
D、正确. ;
故选:D.
【点睛】
本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型.
7.C
解析:C
【分析】
分别根据二次根式的性质进行化简与计算即可得出答案
∴∠FAC=∠FCA= ∠CFE=15°,
∴∠ACE=∠ACF+∠ECF=15°+60°=75°,
∴∠ACB=105°,
故选C.
【点睛】
本题主要考查了含30°角的直角三角形的性质以及等腰直角三角形的性质,在直角三角形中,30°角所对的直角边等于斜边的一半.
5.B
解析:B
【分析】
是整数,则27n一定是一个完全平方数,把27分解因数即可确定.
3.B
解析:B
【分析】
根据分数的性质,在分子分母同乘以2,再根据二次根式的性质化简即可.
【详解】

故选:B.
【点睛】
此题考查化简二次根式,掌握分数的性质确定分子分母同乘以最小的数值,使分母化为一个数的平方,由此化简二次根式是解题的关键.

人教版八年级数学下册第十六章《二次根式》单元测试卷附答案

人教版八年级数学下册第十六章《二次根式》单元测试卷附答案

第十六章《二次根式》单元测试卷(共23题,满分120分,考试用时90分钟)一、选择题(共10小题,每小题3分,共30分)1.下列式子是二次根式的是()A.2B.√2C.√23D.√−22.二次根式√x−2有意义的条件是()A.x>2B.x<2C.x≥2D.x≤23.下列式子中,属于最简二次根式的是()A.√12B.√23C.√0.3D.√74.化简√(−2)2得()A.2B.-2C.±2D.45.下列二次根式中,不能与√2合并的是()A.√12B.√8C.√12D.√186.下列计算正确的是()A.√2+√3=√5B.2+√2=2√2C.3√2−√2=3D.3√2−√2=2√27.下列计算错误的是()A.√5×√6=√30B.√18÷√2=9C.3√3÷3√3=1D.3√2×2=6√28.计算(2+√5)(2-√5)的结果是()A.-1B.-3C.9-4 √5D.9+4 √59.若二次根式√1+a与√4−a的被开方数相同,则a的值为()A.1B.2C.23D.3210.(创新题)如图,数轴上表示1,√2的对应点分别为A,B,则以点A为圆心,以AB为半径的圆交数轴于点C,则点C表示的数是()A.√2-1B.1-√2C.2-√2D.√2-2二、填空题(共5小题,每小题3分,共15分)11.计算√8−√2的结果等于.12.计算:3√5×2√5=.13.若√12n是正整数,则最小的整数n是.14.已知实数x,y满足|x-4|+√y−8=0,则分别以x,y的值为两边长的等腰三角形的周长是.15.(跨学科融合)某小区要在面积为128平方米的正方形空地上建造一个休闲园地,并进行规划(如图1),在休闲园地内建一个面积为72平方米的正方形儿童游乐场,游乐场两边铺设健身道,剩下的区域作为休息区.现计划在休息区摆放占地面积为3×1.5平方米的“背靠背”休闲椅(如图2),并要求休闲椅摆放在东西方向或南北方向上,请通过计算说明休息区内最多能摆放张这样的休闲椅.三、解答题(一)(共3小题,每小题8分,共24分)16.计算:3√5+2√12−√20.17.计算:√24÷√3−√6×2√3.18.求代数式2xx2−2x+1÷(1+1x−1)的值,其中x=√2+1.四、解答题(二)(共3小题,每小题9分,共27分)19.已知x=2+√3,求代数式x2-2√3x+3的值.20.若x,y都是实数,且y=√x−3+√3−x+8,求x+y的值.21.如图,已知实数a,b,c在数轴上的位置,化简:√a2-|a-b|+√(b+c)2.五、解答题(三)(共2小题,每小题12分,共24分)22.(跨学科融合)高空抛物严重威胁着人们的“头顶安全”,即便是常见小物件,一旦高空落下,也威力惊人,而且用时很短,常常避让不及.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=√2ℎg(不考虑风速的影响,g≈10 m/s2).(1)求从40 m高空抛物到落地的时间(结果保留根号);(2)小明说从80 m高空抛物到落地的时间是(1)中所求时间的2倍,他的说法正确吗?请说明理由;(3)已知高空坠物动能(单位:J)=10×物体质量(单位:kg)×高度(单位:m).某质量为0.05 kg的鸡蛋经过6 s后落在地上,这个鸡蛋产生的动能是多少(单位:J)?这个鸡蛋会伤害到楼下的行人吗?(注:杀伤无防护的人体只需要65 J的动能)23.阅读下列材料,然后解答问题:√5=√5√5×√5=3√55.(一)√2 3=√2×3√3×3=√63.(二)√3+1=√3−1)(√3+1)(√3−1)=√3−1)(√3)2−1=√3-1.(三)以上这种化简的步骤叫做分母有理化.。

人教版数学八年级下册:第16章《二次根式》单元测试(附答案)

人教版数学八年级下册:第16章《二次根式》单元测试(附答案)

第十六章 二次根式16.1 二次根式第1课时 二次根式的概念01 基础题知识点1 二次根式的定义1.下列式子不是二次根式的是( B )A . 5B .3-π C.0.5 D.132.下列各式中,一定是二次根式的是( C ) A .-7 B .3m C .1+x 2 D .2x3.已知a 是二次根式,则a 的值可以是( C )A .-2B .-1C .2D .-54.若-3x 是二次根式,则x 的值可以为答案不唯一,如:-1(写出一个即可).知识点2 二次根式有意义的条件5.x 取下列各数中的哪个数时,二次根式x -3有意义(D )A .-2B .0C .2D .46.(2017·广安)要使二次根式2x -4在实数范围内有意义,则x 的取值范围是(B)A .x >2B .x ≥2C .x <2D .x =27.当x 是怎样的实数时,下列各式在实数范围内有意义? (1)-x ;解:由-x ≥0,得x ≤0.(2)2x +6;解:由2x +6≥0,得x ≥-3.(3)x 2;解:由x 2≥0,得x 为全体实数.(4)14-3x; 解:由4-3x>0,得x<43.(5) x -4x -3. 解:由⎩⎪⎨⎪⎧x -4≥0,x -3≠0 得x ≥4.知识点3 二次根式的实际应用8.已知一个表面积为12 dm 2的正方体,则这个正方体的棱长为(B)A .1 dm B. 2 dmC. 6 dm D .3 dm9.若一个长方形的面积为10 cm 2,它的长与宽的比为5∶1,则它的长为,02 中档题10.下列各式中:①12;②2x ;③x 3;④-5.其中,二次根式的个数有(A ) A .1个B .2个C .3个D .4个11.(2017·济宁)若2x -1+1-2x +1在实数范围内有意义,则x 满足的条件是(C)A .x ≥12B .x ≤12C .x =12D .x ≠12 12.使式子1x +3+4-3x 在实数范围内有意义的整数x 有(C ) A .5个B .3个C .4个D .2个13.如果式子a +1ab有意义,那么在平面直角坐标系中点A(a ,b)的位置在(A) A .第一象限B .第二象限C .第三象限D .第四象限 14.使式子-(x -5)2有意义的未知数x 的值有1个.15.若整数x 满足|x|≤3,则使7-x 为整数的x 的值是3或-2.16.要使二次根式2-3x 有意义,则x 的最大值是23. 17.当x 是怎样的实数时,下列各式在实数范围内有意义?(1)32x -1; 解:x>12.(2)21-x;解:x≥0且x≠1.(3)1-|x|;解:-1≤x≤1.(4)x-3+4-x.解:3≤x≤4.03综合题18.已知a,b分别为等腰三角形的两条边长,且a,b满足b=4+3a-6+32-a,求此三角形的周长.解:∵3a-6≥0,2-a≥0,∴a=2,b=4.当边长为4,2,2时,不符合实际情况,舍去;当边长为4,4,2时,符合实际情况,4×2+2=10.∴此三角形的周长为10.第2课时 二次根式的性质01 基础题知识点1 a ≥0(a ≥0)1.(2017·荆门)已知实数m ,n 满足|n -2|+m +1=0,则m +2n 的值为3.2.当x =2__017时,式子2 018-x -2 017有最大值,且最大值为2__018.知识点2 (a )2=a (a ≥0)3.把下列非负数写成一个非负数的平方的形式:(1)5 (2)3.4(3)16= (4)x ≥0). 4.计算:( 2 018)2=2__018.5.计算: (1)(0.8)2;解:原式=0.8.(2)(-34)2; 解:原式=34.(3)(52)2;解:原式=25×2=50.(4)(-26)2.解:原式=4×6=24.知识点3 a 2=a (a ≥0)6.计算(-5)2的结果是(B )A .-5B .5C .-25D .257.已知二次根式x 2的值为3,那么x 的值是(D)A .3B .9C .-3D .3或-38.当a ≥0时,化简:9a 2=3a .9.计算:(1)49;解:原式=7.(2)(-5)2;解:原式=5.(3)(-13)2; 解:原式=13.(4)6-2.解:原式=16.知识点4 代数式10.下列式子不是代数式的是(C )A .3xB .3xC .x>3D .x -311.下列式子中属于代数式的有(A )①0;②x ;③x +2;④2x ;⑤x =2;⑥x>2;⑦x 2+1;⑧x ≠2.A .5个B .6个C .7个D .8个02 中档题12.下列运算正确的是(A ) A .-(-6)2=-6B .(-3)2=9C .(-16)2=±16D .-(-5)2=-2513.若a <1,化简(a -1)2-1的结果是(D )A .a -2B .2-aC .aD .-a14.(2017·枣庄)实数a ,b 在数轴上对应点的位置如图所示,化简|a|+(a -b )2的结果是(A )A .-2a +bB .2a -bC .-bD .b15.已知实数x ,y ,m 满足x +2+|3x +y +m|=0,且y 为负数,则m 的取值范围是(A)A .m >6B .m <6C .m >-6D .m <-616.化简:(2-5)217.在实数范围内分解因式:x 2-518.若等式(x -2)2=(x -2)2成立,则x 的取值范围是x ≥2.19.若a 2=3,b =2,且ab <0,则a -b =-7.20.计算:(1)-2(-18)2; 解:原式=-2×18=-14.(2)4×10-4;解:原式=2×10-2.(3)(23)2-(42)2; 解:原式=12-32=-20.(4)(213)2+(-213)2.解:原式=213+213=423.21.比较211与35的大小.解:∵(211)2=22×(11)2=44, (35)2=32×(5)2=45,又∵44<45,且211>0,35>0,∴211<3 5.22.先化简a +1+2a +a 2,然后分别求出当a =-2和a =3时,原代数式的值.解:a +1+2a +a 2=a +(a +1)2=a +|a +1|,当a =-2时,原式=-2+|-2+1|=-2+1=-1;当a =3时,原式=3+|3+1|=3+4=7.03 综合题23.有如下一串二次根式: ①52-42;②172-82;③372-122;④652-162…(1)求①,②,③,④的值;(2)仿照①,②,③,④,写出第⑤个二次根式; (3)仿照①,②,③,④,⑤,写出第个二次根式,并化简.解:(1)①原式=9=3.②原式=225=15.③原式= 1 225=35.(3)第个二次根式为(4n2+1)2-(4n)2.化简:(4n2+1)2-(4n)2=(4n2-4n+1)(4n2+4n+1)=(2n-1)2(2n+1)2=(2n-1)(2n+1).16.2 二次根式的乘除第1课时 二次根式的乘法01 基础题知识点1 a·b =ab (a ≥0,b ≥0)1.计算2×3的结果是(B )A . 5B . 6C .2 3D .3 22.下列各等式成立的是(D ) A .45×25=8 5 B .53×42=20 5C .43×32=7 5D .53×42=20 63.下列二次根式中,与2的积为无理数的是(B )A .12B .12C .18D .32 4.计算:8×12=2. 5.计算:26×(-36)=-36.6.一个直角三角形的两条直角边分别为a =2 3 cm ,b =3 6 cm ,那么这个直角三角形的面积为2.7.计算下列各题:(1)3×5; (2)125×15; 解:原式=15. 解:原式=25=5.(3)(-32)×27; (4)3xy·1y. 解:原式=-62×7 解:原式=3x. =-614.知识点2 ab =a·b (a ≥0,b ≥0)8.下列各式正确的是( D )A .(-4)×(-9)=-4×-9B .16+94=16×94C .449=4×49D .4×9=4×9 9.(2017·益阳)下列各式化简后的结果是32的结果是( C ) A . 6 B .12 C .18 D .3610.化简(-2)2×8×3的结果是(D )A .224B .-224C .-4 6D .4 611.化简:(1)100×36=60;(2)2y312.化简:(1)4×225;解:原式=4×225=2×15=30.(2)300;解:原式=10 3.(3)16y;解:原式=4y.(4)9x2y5z.解:原式=3xy2yz.13.计算:(1)36×212;解:原式=662×2=36 2.(2)15ab2·10ab.解:原式=2a2b=a2b.02中档题14.50·a的值是一个整数,则正整数a的最小值是(B)A.1 B.2 C.3 D.515.已知m=(-33)×(-221),则有(A)A.5<m<6 B.4<m<5C.-5<m<-4 D.-6<m<-5 16.若点P(a,b)在第三象限内,化简a2b2的结果是ab.17.计算:(1) 75×20×12;解:原式=25×3×4×5×3×4=60 5.(2)(-14)×(-112);=2×72×42=28 2.(3) -32×45×2;解:原式=-3×16×2 2=-96 2.(4)200a 5b 4c 3(a >0,c >0). 解:原式=2×102·(a 2)2·a ·(b 2)2·c 2·c=10a 2b 2c 2ac.18.交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所用的经验公式是v =16df ,其中v 表示车速(单位:km /h ),d 表示刹车后车轮滑过的距离(单位:m ),f 表示摩擦因数,在某次交通事故调查中,测得d =20 m ,f =1.2,肇事汽车的车速大约是多少?(结果精确到0.01 km /h ) 解:当d =20 m ,f =1.2时,v =16df =16×20×1.2=1624=326≈78.38.答:肇事汽车的车速大约是78.38 km /h .19.一个底面为30 cm ×30 cm 的长方体玻璃容器中装满水,现将一部分水倒入一个底面为正方形、高为10 cm 的长方体铁桶中,当铁桶装满水时,容器中的水面下降了20 cm ,铁桶的底面边长是多少厘米?解:设铁桶的底面边长为x cm ,则x 2×10=30×30×20,x 2=30×30×2,x =30×30×2=30 2.答:铁桶的底面边长是30 2 cm.03 综合题 20. (教材P 16“阅读与思考”变式)阅读:古希腊的几何家海伦,在数学史上以解决几何测量问题而闻名,在他的著作《度量》一书中,给出了一个公式:如果一个三角形的三边长分别为a 、b 、c.记:p =a +b +c 2,则三角形的面积S =p (p -a )(p -b )(p -c ),此公式称为“海伦公式”.思考运用:已知李大爷有一块三角形的菜地,如图,测得AB =7 m ,AC =5 m ,BC =8 m ,你能求出李大爷这块菜地的面积吗?试试看.解:∵AB =7 m ,AC =5 m ,BC =8 m ,∴p =a +b +c 2=7+5+82=10. ∴S =p (p -a )(p -b )(p -c )=10×(10-7)×(10-5)×(10-8)=10×3×5×2=10 3.∴李大爷这块菜地的面积为10 3 m 2.第2课时 二次根式的除法01 基础题知识点1 a b =a b (a ≥0,b >0)1.计算:10÷2=(A ) A . 5B .5C .52D .102 2.计算23÷32的结果是(B ) A .1B .23C .32D .以上答案都不对 3.下列运算正确的是(D )A .50÷5=10B .10÷25=2 2C .32+42=3+4=7D .27÷3=3 4.计算:123=2. 5.计算:(1)40÷5; (2)322; 解:原式=8=2 2. 解:原式=4.(3)45÷215; (4)2a 3b ab(a>0). 解:原式= 6. 解:原式=2a.知识点2a b =a b(a ≥0,b >0) 6.下列各式成立的是(A ) A .-3-5=35=35 B .-7-6=-7-6C .2-9=2-9D .9+14=9+14=3127.实数0.5的算术平方根等于(C ) A .2B . 2C .22D .12 8.如果(x -1x -2)2=x -1x -2,那么x 的取值范围是(D )A .1≤x ≤2B .1<x ≤2C .x ≥2D .x >2或x ≤19.化简: (1)7100; 解:原式=7100=710.(2)11549; 解:原式=6449=6449=87.(3)25a 49b 2(b>0). 解:原式=25a 49b 2=5a 23b.知识点3 最简二次根式10.(2017·荆州)下列根式是最简二次根式的是(C )A .13B .0.3C . 3D .2011.把下列二次根式化为最简二次根式:(1) 2.5;解:原式=52=102.(2)85; 解:原式=2510.(3)122; 解:原式=232= 3.(4)2340. 解:原式=232×20=13×20=13×25 =530.02 中档题12.下列各式计算正确的是(C ) A .483=16B .311÷323=1C .3663=22D .54a 2b 6a =9ab 13.计算113÷213÷125的结果是(A ) A .27 5B .27C . 2D .27 14.在①14;②a 2+b 2;③27;④m 2+1中,最简二次根式有3个.15.如果一个三角形的面积为15,一边长为3,那么这边上的高为16.不等式22x -6>0的解集是x >2 17.化简或计算:(1)0.9×121100×0.36; 解:原式=9×12136×10=32×11262×10=336110 =336×1010=111020.(2) 12÷27×(-18);解:原式=-12×1827 =-4×3×2×93×9=-2 2.(3)27×123; 解:原式=3×9×123 =3×2 3=6 3.(4)12x÷25y. 解:原式=(1÷25)12x÷y =5212xy y 2 =53xy y.18.如图,在Rt △ABC 中,∠C =90°,S △ABC =18 cm 2,BC = 3 cm ,AB =3 3 cm ,CD ⊥AB 于点D.求AC ,CD 的长.解:∵S △ABC =12AC·BC =12AB·CD ,∴AC =2S △ABC BC =2183=26(cm ),CD =2S △ABCAB =21833=236(cm ).03 综合题19.阅读下面的解题过程,根据要求回答下列问题. 化简:a b -a b 3-2ab 2+a 2ba (b<a<0).解:原式=ab -a b (b -a )2a ①=a (b -a )b -a ba ②=a·1a ab ③=ab.④(1)上述解答过程从哪一步开始出现错误?请写出代号②;(2)错误的原因是什么?(3)请你写出正确的解法.解:(2)∵b<a ,∴b -a<0.∴(b -a)2的算术平方根为a -b.(3)原式=a b -ab (b -a )2a =a b -a ·(a -b)b a=-a·(-1aab) =ab.16.3 二次根式的加减第1课时 二次根式的加减01 基础题知识点1 可以合并的二次根式1.(2016·巴中)下列二次根式中,与3可以合并的是(B )A .18B .13C .24D .0.32.下列各个运算中,能合并成一个根式的是(B ) A .12- 2B .18-8C .8a 2+2aD .x 2y +xy 23.若最简二次根式2x +1和4x -3能合并,则x 的值为(C )A .-12B .34C .2D .54.若m 与18可以合并,则m 的最小正整数值是(D )A .18B .8C .4D .2知识点2 二次根式的加减5.(2016·桂林)计算35-25的结果是(A )A . 5B .2 5C .3 5D .6 6.下列计算正确的是(A )A .12-3= 3B .2+3= 5C .43-33=1D .3+22=5 27.计算27-1318-48的结果是(C ) A .1 B .-1 C .-3- 2 D .2- 38.计算2+(2-1)的结果是(A)A .22-1B .2- 2C .1- 2D .2+ 29.长方形的一边长为8,另一边长为50,则长方形的周长为10.三角形的三边长分别为20 cm ,40 cm ,45 cm ,. 11.计算:(1)23-32; 解:原式=(2-12) 3 =332.(2)16x +64x ;=(4+8)x=12x.(3) 125-25+45;解:原式=55-25+3 5 =6 5.(4)(2017·黄冈)27-6-1 3.解:原式=33-6-3 3=833- 6.02中档题12.若x与2可以合并,则x可以是(A) A.0.5 B.0.4C.0.2 D.0.1 13.计算|2-5|+|4-5|的值是(B) A.-2 B.2C.25-6 D.6-2 514.计算412+313-8的结果是(B)A.3+ 2B. 3C.33 D.3- 2习题解析15.若a ,b 均为有理数,且8+18+18=a +b 2,则a =0,b =214.16.已知等腰三角形的两边长分别为27和55,则此等腰三角形的周长为 17.在如图所示的方格中,横向、纵向及对角线方向上的实数相乘都得出同样的结果,则两个空格中的实数之和为18.计算: (1)18+12-8-27;解:原式=32+23-22-3 3=(32-22)+(23-33) =2- 3.(2) b 12b 3+b 248b ;解:原式=2b 23b +4b 23b=6b 23b.(3)(45+27)-(43+125); 解:原式=35+33-233-5 5 =733-2 5.(4) 34(2-27)-12(3-2). 解:原式=342-943-123+122 =(34+12)2-(94+12) 3 =542-114 3.19.已知3≈1.732,求(1327-413)-2(34-12)的近似值(结果保留小数点后两位). 解:原式=3-433-3+4 3 =833≈83×1.732≈4.62.03综合题20.若a,b都是正整数,且a<b,a与b是可以合并的二次根式,是否存在a,b,使a+b=75?若存在,请求出a,b的值;若不存在,请说明理由.解:∵a与b是可以合并的二次根式,a+b=75,∴a+b=75=5 3.∵a<b,∴当a=3,则b=48;当a=12,则b=27.第2课时 二次根式的混合运算01 基础题知识点1 二次根式的混合运算1.化简2(2+2)的结果是(A )A .2+2 2B .2+ 2C .4D .3 22.计算(12-3)÷3的结果是(D )A .-1B .- 3C . 3D .13.(2017·南京)计算:12+8×6 4.(2017·青岛)计算:(24+16)×6=13.5.计算:40+55 6.计算:(1)3(5-2);解:原式=15- 6.(2)(24+18)÷2;解:原式=23+3.(3)(2+3)(2+2);解:原式=8+5 2.(4)(m +2n)(m -3n).解:原式=m -mn -6n.知识点2 二次根式与乘法公式7.(2017·天津)计算:(4+7)(4-7)的结果等于9. 8.(2016·包头)计算:613-(3+1)2=-4. 9.计算:解:原式=12.(2)(2+3)(2-3);解:原式=-1.(3)(5+32)2.解:原式=23+610.10.(2016·盐城)计算:(3-7)(3+7)+2(2-2).解:原式=9-7+22-2=2 2.02 中档题11.已知a =5+2,b =2-5,则a 2 018b 2 017的值为(B )A .5+2B .-5-2C .1D .-112.按如图所示的程序计算,若开始输入的n 值为2,则最后输出的结果是(C )A .14B .16C .8+5 2D .14+ 2 13.计算:(1)(1-22)(22+1);(2)12÷(34+233); 解:原式=12÷(3312+8312) =12÷11312=23×12113 =2411. (3)(46-412+38)÷22; 解:原式=(46-22+62)÷2 2=(46+42)÷2 2=23+2.(4)24×13-4×18×(1-2)0. 解:原式=26×33-4×24×1 =22- 2= 2.14.计算: (1)(1-5)(5+1)+(5-1)2;解:原式=1-5+5+1-2 5=2-2 5.(2)(3+2-1)(3-2+1).解:原式=(3)2-(2-1)2=3-(2+1-22)=3-2-1+2 2=2 2.15. 已知a =7+2,b =7-2,求下列代数式的值:(1)ab 2+ba 2;(2)a 2-2ab +b 2;(3)a 2-b 2. 解:由题意得a +b =(7+2)+(7-2)=27,a -b =(7+2)-(7-2)=4,ab =(7+2)(7-2)=(7)2-22=7-4=3.(1)原式=ab(b +a)=3×27=67.(2)原式=(a —b)2=42=16.(3)原式=(a +b)(a —b)=27×4=87.03综合题16.观察下列运算:①由(2+1)(2-1)=1,得12+1=2-1;②由(3+2)(3-2)=1,得13+2=3-2;③由(4+3)(4-3)=1,得14+3=4-3;…(1)通过观察你得出什么规律?用含n的式子表示出来;(2)利用(1)中你发现的规律计算:(12+1+13+2+14+3+…+12 017+ 2 016+12 018+ 2 017)×( 2 018+1).解:(1)1n+1+n=n+1-n(n≥0).(2)原式=(2-1+3-2+4-3+…+ 2 017- 2 016+ 2 018- 2 017)×( 2 018+1) =(-1+ 2 018)( 2 018+1)=2 017.小专题(一) 二次根式的运算类型1 与二次根式有关的计算1.计算: (1)62×136; 解:原式=(6×13)2×6 =212=4 3.(2)(-45)÷5145; 解:原式=-45÷(5×355) =-45÷3 5=-43.(3)72-322+218; 解:原式=62-322+6 2 =122-32 2 =212 2. (4)(25+3)×(25-3).解:原式=(25)2-(3)2=20-3=17.2.计算:(1)334÷(-12123); 解:原式=[3÷(-12)]34÷53 =-6920 =-69×520×5=-95 5.=32+15 2=18 2.(3)354×(-89)÷7115; 解:原式=3×(-1)×54×89÷7115 =-348÷765=-3748×56 =-6710.(4)(12-418)-(313-40.5); 解:原式=23-2-3+2 2 =3+ 2.(5)(32-6)2-(-32-6)2.解:原式=(32-6)2-(32+6)2=18+6-123-(18+6+123)=-24 3.3.计算:(1)(2 018-3)0+|3-12|-63; 解:原式=1+23-3-2 3=-2.(2)(2017·呼和浩特)|2-5|-2×(18-102)+32. 解:原式=5-2-12+5+32 =25-1.类型2 与二次根式有关的化简求值4.已知a =3+22,b =3-22,求a 2b -ab 2的值.解:原式=a 2b -ab 2=ab(a -b).当a =3+22,b =3-22时,原式=(3+22)(3-22)(3+22-3+22) =4 2.5.已知实数a ,b ,定义“★”运算规则如下:a ★b =⎩⎨⎧b (a ≤b ),a 2-b 2(a>b ),求7★(2★3)的值. 解:由题意,得2★3= 3. ∴7★(2★3)=7★3=7-3=2.6.已知x =2+3,求代数式(7-43)x 2+(2-3)x +3的值.解:当x =2+3时, 原式=(7-43)×(2+3)2+(2-3)×(2+3)+ 3=(7-43)×(7+43)+4-3+ 3=49-48+1+ 3=2+ 3.7.(2017·襄阳)先化简,再求值:(1x +y +1x -y )÷1xy +y 2,其中x =5+2,y =5-2. 解:原式=2x (x +y )(x -y )·y(x +y) =2xy x -y . 当x =5+2,y =5-2时, 原式=2(5+2)(5-2)5+2-5+2=12.8.小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=(1+2)2,善于思考(1)当a ,b ,m ,n 均为正整数时,若a +b 3=(m +n 3)2,用含m ,n 的式子分别表示a ,b ,得a =m 2+3n 2,b =2mn ;(2)利用所探索的结论,找一组正整数a ,b ,m ,n 填空:4+(1+2;(答案不唯一)(3)若a +43=(m +n 3)2,且a ,m ,n 均为正整数,求a 的值.解:根据题意,得⎩⎪⎨⎪⎧a =m 2+3n 2,4=2mn. ∵2mn =4,且m ,n 为正整数,∴m =2,n =1或m =1,n =2.∴a =7或13.章末复习(一) 二次根式01 基础题知识点1 二次根式的概念及性质1.(2016·黄冈)在函数y =x +4x中,自变量x 的取值范围是(C) A .x >0 B .x ≥-4C .x ≥-4且x ≠0D .x >0且x ≠-42.(2016·自贡)下列根式中,不是最简二次根式的是(B) A.10 B.8C. 6D. 23.若xy <0,则x 2y 化简后的结果是(D )A .x yB .x -yC .-x -yD .-x y知识点2 二次根式的运算4.与-5可以合并的二次根式的是(C )A .10B .15C .20D .255.(2017·十堰)下列运算正确的是(C )A .2+3= 5B .22×32=6 2C .8÷2=2D .32-2=3 6.计算5÷5×15所得的结果是1. 7.计算:(1)(2017·湖州)2×(1-2)+8; 解:原式=2-22+2 2=2.(2)(43+36)÷23;解:原式=43÷23+36÷2 3=2+322.(3)1232-275+0.5-3127; 解:原式=22-103+22-33=(2+12)×2+(-10-13)× 3 =52-31 3.=9×2-4×3=6.知识点3 二次根式的实际应用8.两个圆的圆心相同,它们的面积分别是25.12和50.24.求圆环的宽度d.(π取3.14,结果保留小数点后两位)解:d =50.243.14-25.123.14=16-8=4-2 2≈1.17.答:圆环的宽度d 约为1.17.02 中档题9.把-a -1a中根号外面的因式移到根号内的结果是(A ) A .-a B .- a C .--aD . a 10.已知x +1x =7,则x -1x的值为(C) A. 3B .±2C .± 3 D.711.在数轴上表示实数a 的点如图所示,化简(a -5)2+|a -2|的结果为3.12.(2016·青岛)计算:32-82=2. 13.计算:(3+2)3×(3-2)3=-1. 14.已知x =5-12,则x 2+x +1=2. 15.已知16-n 是整数,则自然数n 所有可能的值为0,7,12,15,16.16.计算:(1)(3+1)(3-1)-16+(12)-1; 解:原式=3-1-4+2=0.(2)(3+2-6)2-(2-3+6)2.解:原式=(3+2-6+2-3+6)×(3+2-6-2+3-6)=22×(23-26)=46-8 3.17.已知x =3+7,y =3-7,试求代数式3x 2-5xy +3y 2的值.解:当x =3+7,y =3-7时,3x 2-5xy +3y 2=3(x 2-2xy +y 2)+xy=3(x -y)2+xy=3(3+7-3+7)2+(3+7)×(3-7)=3×28-4=80.18.教师节要到了,为了表示对老师的敬意,小明做了两张大小不同的正方形壁画准备送给老师,其中一张面积为800 cm 2,另一张面积为450 cm 2,他想如果再用金彩带把壁画的边镶上会更漂亮,他现在有1.2 m 长的金彩带,请你帮助算一算,他的金彩带够用吗?如果不够,还需买多长的金彩带?(2≈1.414,结果保留整数)解:正方形壁画的边长分别为800 cm ,450 cm . 镶壁画所用的金彩带长为4×(800+450)=4×(202+152)=1402≈197.96(cm).因为1.2 m=120 cm<197.96 cm,所以小明的金彩带不够用,197.96-120=77.96≈78(cm).故还需买约78 cm长的金彩带.03综合题19.已知a,b,c满足|a-8|+b-5+(c-18)2=0.(1)求a,b,c的值;(2)试问以a,b,c为边能否构成三角形?若能构成三角形,请求出三角形的周长;若不能,请说明理由.解:(1)由题意,得a-8=0,b-5=0,c-18=0,即a=22,b=5,c=3 2.(2)∵22+32=52>5,∴以a,b,c为边能构成三角形.三角形的周长为22+32+5=52+5.。

人教版八年级下册 第16章《二次根式》单元培优测试卷(解析版)

人教版八年级下册 第16章《二次根式》单元培优测试卷(解析版)

第16章《二次根式》单元培优测试卷、选择题工.下列各式成立的是正=a D J(-3)〜=3A.7H F=-2【1题答案】【答案】D【解析】【分析】根据二次根式的性质化简即可.【详解】A.J(_2)2 =2,故本选项错误;B.(") =4,故本选项错误;C.J后=同,故本选项错误;D.J(-3『=3,故本选项正确.故选D.【点睛】本题考查了二次根式的基本性质:①〃K); V^>()(双重非负性).②(&)2%(生0)(任何一个非负数都可以写成一个数的平方的形式).③日=a(。

加)(算术平方根的意义).2.下列二次根式中,是最简二次根式的是()2B.耳【2题答案】【答案】A【解析】【分析】直接利用最简二次根式的定义分析得出答案.【详解】A.且是最简二次根式,故此选项正确;2D ・ 阮二xH ,故此选项错误•故选A.【点睛】本题考查了最简二次根式,正确把握最简二次根式的定义是解题的关键.3 .若二次根式:7有意义,则x 的取值范围是()A. x> —B. —C. —D. xW5 5 5 5【3题答案】【答案】B【解析】【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【详解】解:由题意得,5x- 1>0,解得,[,故选人【点睛】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键. 4.如图,从一个大正方形中裁去面积为30cm2和48 cm2的两个小正方形,则余下部分的面积为()A. 78 cm 2B. + \/30) cm 2C. 12M cm 2 【4题答案】【答案】P【解析】 【分析】根据两小正方形的面积求出大正方形的边长及面积,然后减去两个小正方形的面积,即可求出阴影 c.D. 24M cm 2故此选项错误;部分的面积进而得出答案.【详解】解:从一个大正方形中裁去面积为300层和48cm2的两个小正方形,大正方形的边长是同+ A =同+ ,留下部分(即阴影部分)的面积是:2(46 +而)-30-48 = 24V10(c/722)故选:D.【点睛】此题主要考查了二次根式的应用,正确求出大正方形的面积是关键.5.已知百砺是正整数,则满足条件的最大负整数m为()A. -10B. -40C. -90D. -160 【5题答案】【答案】A【解析】【详解】依题意可得,T0m>0且是完全平方数,因此可求得mVO,所以满足条件的m的值为TO.故选A.6.已知X=g + 1, —则/+个+)2的值为( )A 4 B. 6 C. 8 D. 1() 【6题答案】【答案】P【解析】【分析】根据f +盯+),2=(工2+2个,+,2)_孙=。

人教版八年级数学 下册 第十六章 二次根式 单元综合与测试题(含答案)

人教版八年级数学 下册 第十六章 二次根式 单元综合与测试题(含答案)

1 / 5第十六章 二次根式 单元复习与检测题(含答案)一、选择题1、已知3+x =0,则x 为( )A.x>3B.x<-3C. x=-3D. x 的值不能确定 2、关于的下列说法中错误的是( ) A.是无理数 B.3<<4 C.是12的算术平方根 D.不能化简3、下列二次根式中,是最简二次根式的是( )A .B .C .D .4、估计√32×√12+√20的运算结果应在( )A .6到7之间B .7到8之间C .8到9之间D .9到10之间5、计算+75(12313)48-的结果是( ) A .6B .43C .23+6D .126、下列各式中3 , , , ,,二次根式有( )个.A. 1B. 2C. 3D. 47)2018–2)2019的结果是( )–2 C. 28、能使式子√2−x +√x −1成立的x 的取值范围是 () A.x ≥1B.x ≥2C.1≤x ≤2D.x ≤29、下列四个算式中正确的是( ) A 2=B 2-C ..=10( )A B C D二、填空题 11、若x y =-=xy 的值是 .12、长方形的宽为,面积为,则长方形的长约为 (精确到0.01).13、若最简二次根式是同类二次根式,则.14、设22121111++=S ,22211+=S 231+,22341311++=S , (211)S n += 2)1(1++n .设++=21S S S …n S +,则S = (用含n 的代数式表示,其中n 为正整数).15、使式子有意义的x 的取值范围是________ .三、解答题 16、已知1x x+=1x x -的值.____,____a b ==2 / 517、求使下列各式有意义的x 的取值范围?(1) (2) (3) (4)18、化简: (1);(2);(3)(4);(5);(6);(7)÷.19、已知a=2+√3,求262a a a --++2a a -的值.20、我们知道,若两个有理数的积是1,则称这两个有理数互为倒数.同样的当两个实数)(b a +与)(b a -的积是1时,我们仍然称这两个实数互为倒数.(1)判断)24(+与)24(-是否互为倒数,并说明理由;(2)若实数)(y x +是)(y x -的倒数,求x 和y 之间的关系.21、已知y=+9,求代数式 的值.22、已知长方形的长ab(1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.23、阅读下面的解题过程: 化简√10√8+√5+√13=√10+5−13√8+√5+√13=√8)2√40+(√5)2√8+√5+√13=√8+√5)2√8+√5+√13=√8+√5+√13)(√8+√5−√13)√8+√5+√13=√8+√5-√13.请解答下列问题: (1)利用上述方法化简√62+3+5.(2)认真分析化简过程,然后找出规律,将此类题型尽可能推广.3 / 5参考答案:一、1、C 2、D 3、B 4、C 5、D 6、B 7、B 8、C 9、A 10、A 二、 11. 11、m-n 12、2.83 13、1 114、 221n nn ++15、x 是实数 三、 16、22222211()8,1128,2 4.11()4,21122x x x xx x x xx x x x x x x x+=∴+=++=∴-+=∴-=-=±∴-=-=-即或17、解:(1)由题意得220,3320,2x x x x ≥-⎧+≥⎧⎪⎨⎨-≥≤⎩⎪⎩解得故x 的取值范围为-2≤x ≤32.(2)00.10,1x x x x -≥≤⎧⎧⎨⎨+≠≠-⎩⎩解得故x 的取值范围为x ≤0且x ≠-1. (3)11000x x x ≠±⎧≠⎨≥≥⎪⎩⎩解得故x 的取值范围为x ≥0且x ≠1. (4)1210.2202x x x x ⎧-≥⎧≥⎪⎨⎨-≠⎩⎪≠±⎩解得 故x 的取值范围为x ≥12且x ≠2.18、19、解:2a==1211a-=-=-<0原式=()()23213a aaaa+-++=--把2a=-=23=123----=-原式20、解:(1)不互为倒数.21、解:由题意可得,x﹣4≥0,4﹣x≥0,解得x=4,则y=9,则==2﹣3=﹣1.22、解: (1)()11222223a b⎛+=⨯=⨯⨯⨯=⨯=⎝∴长方形的周长为(2)长方形的面积为114.23=⨯⨯=正方形的面积也为4,其边长为,周长为428.⨯=∵8.>∴长方形的周长大于正方形的周长.4 / 55 / 523、【解析】(1)√6√2+√3+√5=√6+3−5√2+√3+√5=√2+√3)2√2+√3+√5=√2+√3+√5)(√2+√3−√5)√2+√3+√5=√2+√3-√5.(2)由已知的计算过程和(1)的解题过程,可以发现如下规律:2√ab√a+√b+√a+b=√a +√b -√a +b (其中a,b 是正整数).。

人教版八年级下数学单元测试二次根式练习及答案

人教版八年级下数学单元测试二次根式练习及答案

二次根式(A卷)一、填空题(每题2分,共28分)1.4的平方根是_____________.2.的平方根是_____________.7.在实数范围内分解因式:a4-4 =____________.二、选择题(每题4分,共20分)15.下列说法正确的是( ).(A) x≥1 (B)x>1且x≠-2 (C) x≠-2 (D) x≥1且x≠-2(A)2x-4 (B)-2 (C)4-2x (D)2三、计算题(各小题6分,共30分)四、化简求值(各小题5分,共10分)五、解答题(各小题8分,共24分)29. 有一块面积为(2a+ b)2π的图形木板,挖去一个圆后剩下的木板的面积是(2a - b)2π,问所挖去的圆的半径多少?30.已知正方形纸片的面积是32cm2,如果将这个正方形做成一个圆柱,请问这个圆柱底圆的半径是多少(保留3个有效数字)?二次根式(B卷)一、填空题(每题3分,共54分)2.-27的立方根= .二、选择题(每题4分,共20分)15.下列式子成立的是( ).17.下列计算正确的是( ).三、计算题(各小题6分,共30分)四、化简求值(各小题8分,共16分)五、解答题(各小题8分,共24分)二次根式(A卷)答案1.±22. ±23. –ab4. –25. 0或46. m≥112. -x-y13. x≤414.15. B 16. A 17. D 18. A 19. A 20. D23. 2430. 1.80二次根式(B卷)答案2. -33. -a-66. 07. 18. ≤012. 200315. D 16. C 17. C 18. C 19. B 20. A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【章节测验训练】第16章二次根式一、选择题(共9小题)1.(2014•白银)下列计算错误的是()A.•=B.+=C.÷=2 D.=22.(2014•保定二模)等腰三角形的两条边长分别为2和5,那么这个三角形的周长为()A.4+5B.2+10C.4+5或2+10 D.4+10 3.(2014•张家港市模拟)已知实数x,y满足x+y=﹣2a,xy=a(a≥1),则的值为()A. a B.2a C.a D.24.(2014•济宁)如果ab>0,a+b<0,那么下面各式:①=,②•=1,③÷=﹣b,其中正确的是()A.①②B.②③C.①③D.①②③5.(2013•台湾)k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n 6.(2013•衡阳)计算的结果为()A.B.C.3D.57.(2014•洪山区三模)下列式子中正确的是()A.B.C.D.8.(2013•景德镇二模)计算:=()A.5B.﹣1 C.﹣3 D.39.(2014•丰润区二模)已知a为实数,则代数式的最小值为()A.0B.3C.D.9二、填空题(共4小题)(除非特别说明,请填准确值)10.(2014•丹东)若式子有意义,则实数x的取值范围是_________.11.(2014•凉山州)已知x1=+,x2=﹣,则x12+x22=_________.12.(2014•镇江)读取表格中的信息,解决问题.n=1 a1=+2b1=+2 c1=1+2n=2 a2=b1+2c1b2=c1+2a1c2=a1+2b1n=3 a3=b2+2c2b3=c2+2a2c=a2+2b2…………满足的n可以取得的最小整数是_________.13.(2014•白银)已知x、y为实数,且y=﹣+4,则x﹣y=_________.三、解答题(共7小题)(选答题,不自动判卷)14.(2014•凉山州)计算:()﹣2﹣6sin30°﹣()0++|﹣|15.(2013•甘井子区一模)计算:.16.(2013•嘉定区二模)计算:.17.(2013•沙河口区一模)计算:+.18.(2012•巴中)先化简,再求值:(﹣)•,其中x=.19.(2013•金湾区一模)观察下列各式及证明过程:(1);(2);(3).验证:;.a.按照上述等式及验证过程的基本思想,猜想的变形结果并进行验证;b.针对上述各式反映的规律,写出用n(n≥1的自然数)表示的等式,并验证.20.(2013•湖州模拟)化简求值:,其中.【章节训练】第16章二次根式参考答案与试题解析一、选择题(共9小题)1.(2014•白银)下列计算错误的是()A.•=B.+=C.÷=2 D.=2考点:二次根式的混合运算.分析:利用二次根式的运算方法逐一算出结果,比较得出答案即可.解答:解:A、•=,计算正确;B、+,不能合并,原题计算错误;C、÷==2,计算正确;D、=2,计算正确.故选:B.点评:此题考查二次根式的运算方法和化简,掌握计算和化简的方法是解决问题的关键.2.(2014•保定二模)等腰三角形的两条边长分别为2和5,那么这个三角形的周长为()A.4+5B.2+10C.4+5或2+10 D.4+10考点:二次根式的应用.分析:等腰三角形的边可能是腰,也可能是底边,因而本题应分两种情况讨论:①腰长为2;②腰长为5.进行讨论,看是否满足三角形的三边关系,不满足的舍去,满足的算出三角形的周长即可.解答:解:①若腰长为2,则有2×2<5,故此情况不合题意,舍去;②若腰长为5,则三角形的周长=2×5+2=10+2.故选:B.点评:此题主要考查了实数的运算、三角形的三边关系及等腰三角形的性质,解决本题的关键是注意对等腰三角形的边进行讨论.3.(2014•张家港市模拟)已知实数x,y满足x+y=﹣2a,xy=a(a≥1),则的值为()A. a B.2a C.a D.2考点:二次根式的化简求值.分析:首先根据已知条件可以判断出x,y均为负数,然后根据二次根式的性质化简,再进一步代入求得数值即可.解答:解:∵x+y=﹣2a,xy=a(a≥1),∴x,y均为负数,∵>0,∴=﹣﹣=﹣=﹣=2故选:D.点评:此题考查二次根式的化简求值,注意先化简再求值.4.(2014•济宁)如果ab>0,a+b<0,那么下面各式:①=,②•=1,③÷=﹣b,其中正确的是()A.①②B.②③C.①③D.①②③考点:二次根式的乘除法.专题:计算题.分析:由ab>0,a+b<0先求出a<0,b<0,再进行根号内的运算.解答:解:∵ab>0,a+b<0,∴a<0,b<0①=,被开方数应≥0a,b不能做被开方数,(故①错误),②•=1,•===1,(故②正确),③÷=﹣b,÷=÷=×=﹣b,(故③正确).故选:B.点评:本题是考查二次根式的乘除法,解答本题的关键是明确a<0,b<0.5.(2013•台湾)k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n考点:二次根式的性质与化简.专题:计算题.分析:根据二次根式的化简公式得到k,m及n的值,即可作出判断.解答:解:=3,=15,=6,可得:k=3,m=2,n=5,则m<k<n.故选D点评:此题考查了二次根式的性质与化简,熟练掌握二次根式的化简公式是解本题的关键.6.(2013•衡阳)计算的结果为()A.B.C.3D.5考点:二次根式的乘除法;零指数幂.专题:计算题.分析:原式第一项利用二次根式的乘法法则计算,第二项利用零指数幂法则计算,即可得到结果.解答:解:原式=2+1=3.故选C点评:此题考查了二次根式的乘除法,以及零指数幂,熟练掌握运算法则是解本题的关键.7.(2014•洪山区三模)下列式子中正确的是()A.B.C.D.考点:二次根式的加减法.分析:根据二次根式的运算法则分别计算,再作判断.解答:解:A、不是同类二次根式,不能合并,故错误;B、D、开平方是错误的;C、符合合并同类二次根式的法则,正确.故选C.点评:同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.8.(2013•景德镇二模)计算:=()A.5B.﹣1 C.﹣3 D.3考点:二次根式的加减法;实数的运算.分析:同类二次根式:①根指数是2,②被开数相同.二次根式的加减运算,只有同类二次根式才能合并.注意=3.解答:解:2﹣=2﹣3=﹣1.故选B.点评:考查二次根式的加减运算,先化简,再合并.9.(2014•丰润区二模)已知a为实数,则代数式的最小值为()A.0B.3C.D.9考点:二次根式的性质与化简.专题:压轴题.分析:把被开方数用配方法整理,根据非负数的意义求二次根式的最小值.解答:解:∵原式===∴当(a﹣3)2=0,即a=3时代数式的值最小,为即3故选B.点评:用配方法对多项式变形,根据非负数的意义解题,是常用的方法,需要灵活掌握.二、填空题(共4小题)(除非特别说明,请填准确值)10.(2014•丹东)若式子有意义,则实数x的取值范围是x≤2且x≠0.考点:二次根式有意义的条件;分式有意义的条件.专题:计算题.分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:由题意得,2﹣x≥0且x≠0,解得x≤2且x≠0.故答案为:x≤2且x≠0.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.11.(2014•凉山州)已知x1=+,x2=﹣,则x12+x22=10.考点:二次根式的混合运算.分析:首先把x12+x22=(x1+x2)2﹣2x1x2,再进一步代入求得数值即可.解答:解:∵x1=+,x2=﹣,∴x12+x22=(x1+x2)2﹣2x1x2=(++﹣)2﹣2(+)(﹣)=12﹣2=10.故答案为:10.点评:此题考查二次根式的混合运算,把代数式利用完全平方公式化简是解决问题的关键.12.(2014•镇江)读取表格中的信息,解决问题.n=1 a1=+2b1=+2 c1=1+2n=2 a2=b1+2c1b2=c1+2a1c2=a1+2b1n=3 a3=b2+2c2b3=c2+2a2c=a2+2b2…………满足的n可以取得的最小整数是7.考点:二次根式的应用.专题:新定义.分析:由表格可知当n=1时,a1+b1+c1=+2++2+1+2=3(++1),同理得出a2+b2+c2=9(++1),…由此得出a n+b n+c n=3n(++1),进一步整理,求得n的最小值即可.解答:解:由a1+b1+c1=+2++2+1+2=3(++1),a2+b2+c2=9(++1),…a n+b n+c n=3n(++1),∵∴a n+b n+c n≥2014×(﹣+1)(+)=2014(++1),∴3n≥2014,则36<2014<37,∴n最小整数是7.故答案为:7点评:此题考查二次根式的运用,注意找出运算的规律,进一步利用估算的方法找出解决问题的方法.13.(2014•白银)已知x、y为实数,且y=﹣+4,则x﹣y=﹣1或﹣7.考点:二次根式有意义的条件.专题:计算题.分析:根据一对相反数同时为二次根式的被开方数,那么被开方数为0可得x可能的值,进而得到y的值,相减即可.解答:解:由题意得x2﹣9=0,解得x=±3,∴y=4,∴x﹣y=﹣1或﹣7.故答案为﹣1或﹣7.点评:考查二次根式有意义的相关计算;得到x可能的值是解决本题的关键;用到的知识点为:一对相反数同时为二次根式的被开方数,那么被开方数为0.三、解答题(共7小题)(选答题,不自动判卷)14.(2014•凉山州)计算:()﹣2﹣6sin30°﹣()0++|﹣|考点:二次根式的混合运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:先算负指数幂,特殊角的三角函数值,0指数幂,以及绝对值,再算乘法,最后算加减,由此顺序计算即可.解答:解:原式=4﹣6×﹣1+﹣+=4﹣3﹣1+=.点评:此题考查负指数幂,特殊角的三角函数值,0指数幂,以及绝对值,二次根式的混合运算,按照运算顺序,正确判定符号计算即可.15.(2013•甘井子区一模)计算:.考点:二次根式的混合运算;负整数指数幂.专题:计算题.分析:原式第一项利用平方差公式化简,第二项利用负指数幂法则计算,最后一项利用平方根的定义化简,即可得到结果.解答:解:原式=5﹣4+4﹣5=0.点评:此题考查了二次根式的混合运算,以及负指数幂运算,熟练掌握法则是解本题的关键.16.(2013•嘉定区二模)计算:.考点:二次根式的混合运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项化为最简二次根式,第三、四项利用特殊角的三角函数值化简,即可得到结果.解答:解:原式=1﹣3+4×﹣=1﹣3+2﹣2+,=﹣1.点评:此题考查了二次根式的混合运算,熟练掌握运算法则是解本题的关键.17.(2013•沙河口区一模)计算:+.考点:二次根式的混合运算;负整数指数幂.专题:计算题.分析:原式第一项利用平方差公式化简,第二项化为最简二次根式,最后一项利用负指数幂法则计算,即可得到结果.解答:解:原式=()2﹣1+2﹣3=2﹣1.点评:此题考查了二次根式的混合运算,以及负指数幂运算,熟练掌握法则是解本题的关键.18.(2012•巴中)先化简,再求值:(﹣)•,其中x=.考点:二次根式的化简求值;分式的化简求值.专题:压轴题;分类讨论.分析:先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.解答:解:原式=•,当x=时,x+1>0,可知=x+1,故原式=•===;点评:本题考查的是二次根式及分式的化简求值,解答此题的关键是当x=时得出=x+1,此题难度不大.19.(2013•金湾区一模)观察下列各式及证明过程:(1);(2);(3).验证:;.a.按照上述等式及验证过程的基本思想,猜想的变形结果并进行验证;b.针对上述各式反映的规律,写出用n(n≥1的自然数)表示的等式,并验证.考点:二次根式的性质与化简.专题:规律型.分析:应用二次根式的性质对二次根式变形,首先应注意变形的规律.解答:解:(1)验证:;(2)或验证:.点评:本题主要考查二次根式的变形,二次根式的性质运用:a>0时,=a;a<0时,=﹣a;a=0时,=0.20.(2013•湖州模拟)化简求值:,其中.考点:二次根式的化简求值;分式的化简求值.分析:先把分式化简:把分子、分母能分解因式的分解,能约分的约分,然后先除后减,化简为最简形式,最后把a的值代入计算.解答:解:原式====,当时,原式==.点评:此题考查分式的化简与求值,主要的知识点是因式分解、通分、约分等.。

相关文档
最新文档