微积分应用论文
微积分论文
△y A△X△y dy dy=A△X= (x)·△x
函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫微商
(二)微分的运算法则:
若函数U(x)与v(x)可微,则:
(1)d[cu(x)]=cdu(x)(2)d[u(x)±v(x)]=du(x)±dv(x)
∫sinudu=- cosu+c - cos(5x+8)+c
(3)求∫ e dx
解:∫ e dx=-∫e d( ) -∫e du
=- e +c -e +c
③ 常用的凑微分形式:
(1)∫f(ax+b)dx= __d(ax+b)
(2)∫f(x )x dx= __d x
(3)∫f(e )e dx=__d e
班级:11级数学一班姓名:杨利芳学号:*******
【摘要】微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微积分、积分学及其应用。微分学包括求导学的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定积分的运算,为定义和计算面积、体积等提供一套通用的方法。
(2)三角代换法:如果被积函数中,含有因式 , , 时,我们由根号下式子的特点,能够联想到三角公式的平方关系式,sin x+cos x=1以及1+tan x=sec x由此来选择x= (t),以此来去掉根号。当遇到 时,先将ax +bx+c进行配方成 , , 三种形式中的一种,再用公式或利用三角代换积分。若果遇到 ,我们对它先进行分母有理化,在对其分子进行配方就可化简为 , , 三种形式中的一种,可根 据上述方法进行求解。
★微积分(论文)
为了证明我不是抄袭,复制黏贴过来。
或者抄袭别人的论文。
本人都用了句号。
数学论文作者:李珍珍微积分请问什么是微积分?你还不懂吗?那就拿着本本和笔笔去学习吧。
啦~数学是研究“数”与“形”的一门学科。
数学也是一种工具。
近代数学的伟大变革是从引进变量开始的,而微积分学的发明正式变量数学的第一个伟大成就,微积分学的出现不仅颠覆了整个数学领域,而且显著地促进了近代科学技术的发展,没有微积分这一项强大的数学工具。
物理学。
天文学。
等领域的近代理论的形成是几乎不可能的。
微积分是由牛顿和莱布尼兹发明的。
微积分学为研究变量提供了一个方法系统。
气基本内容是微分与几分这两种互相关联的运算。
在求物体瞬时速度和曲线切线时。
我们就会运用到微积分。
且都建立在极限概念的基础上。
微分学研究变量的局部性质。
而积分学就处理变量在一定范围内的“求和”∑。
因而是一整体问题。
自然。
局部与整体和对立与联系。
充分体现出微分与几分的相互关系中。
微积分学已经成为经典数学的重要分支。
有一系列的重要学科在他身上萌芽。
如微分方程。
复变函数。
实变函数。
便疯法等。
微积分学的李云与方法。
已经广泛的运用与自然科学。
工程技术和社会学科等多个领域部门。
对微积分学的一定程度的掌握,不仅是对科技工作者的数学训练中的必备要素。
而且也越来越为对经济学家。
工程师和许多社会工作者的基本要求。
要想学好微积分。
必须把基础打好。
极限与连续性函数N维空间1,空间R+ n个实数的有续租(x1,x2,……xn)之全体成为n维欧几里德空间。
记作R+。
R+的元素(x1,x2^xn)称为点。
记作x或大写字母A,B,C等。
R1(上标)就是实直线,也写作R或者(-躺倒的8,+躺倒的8)。
【哎呀。
什么奇葩的坑爹。
那个无穷符号打不出来。
】。
R²就是实平面。
R³就可以解释为通常的空间。
这就好比。
一维是线。
二维是面。
三维是空间。
(2.线性运算。
任意给定的x,y属于Rn(上标),α,β属于R,不妨设x=(x1,x2,x3……,xn),y=(y1,y2,y3……yn),定义αx+βy=(ax1+βy1。
曲线积分和曲面积分论文 (2)
曲线积分和曲面积分论文引言曲线积分和曲面积分是微积分中重要的概念,具有广泛的应用领域。
本论文旨在介绍曲线积分和曲面积分的概念和计算方法,并讨论在实际应用中的一些应用情况。
曲线积分在微积分中,曲线积分用于计算沿一条曲线的函数的积分。
曲线积分有两种类型:第一类是沿曲线的弧长对函数进行积分,称为第一类曲线积分,第二类是对曲线上的函数在曲线元素上积分,称为第二类曲线积分。
第一类曲线积分第一类曲线积分表示为:$$ \\int_C f(x, y) ds $$其中,f(f,f)是曲线上的函数,ff表示沿曲线元素的弧长。
计算第一类曲线积分的方法通常包括参数化曲线和坐标变换两种。
例如,计算函数f(f,f)=f2+f2在曲线 $C: x = \\cos(t), y = \\sin(t), 0 \\leq t \\leq 2\\pi$ 上的第一类曲线积分。
首先,通过参数化得到曲线的弧长元素:$$ ds = \\sqrt{\\left(\\frac{dx}{dt}\\right)^2 +\\left(\\frac{dy}{dt}\\right)^2} dt $$代入曲线方程得到:$$ ds = \\sqrt{\\left(-\\sin(t)\\right)^2 +\\left(\\cos(t)\\right)^2} dt = dt $$然后,将函数和弧长元素代入积分得到:$$ \\int_C f(x, y) ds = \\int_0^{2\\pi} (1) dt = 2\\pi $$第二类曲线积分第二类曲线积分表示为:$$ \\int_C \\mathbf{F} \\cdot d\\mathbf{r} $$其中,$\\mathbf{F}$ 是曲线上的向量函数,$d\\mathbf{r}$ 表示曲线元素。
计算第二类曲线积分的方法通常包括参数化曲线和曲线方程两种。
例如,计算向量函数 $\\mathbf{F}(x, y) = (x, y)$ 沿曲线 $C: x = \\cos(t), y = \\sin(t), 0 \\leq t \\leq 2\\pi$ 的第二类曲线积分。
数学微积分论文范文
数学微积分论文范文微积分是高等数学的一部分知识,关于微积分的论文有哪些?接下来店铺为你整理了数学微积分论文的范文,一起来看看吧。
数学微积分论文范文篇一:初等微积分与中学数学摘要:初等微积分作为高等数学的一部分,属于大学数学内容。
在新课程背景下,几进几出中学课本。
可见初等微积分进入中学是利是弊已见分晓,其重要性不言而喻。
但对很多在岗教师而言,还很陌生,或是理解不透彻。
这样不利于这方面的教学。
我将对初等微积分进入中学数学背景,作用及教学作简单研究.关键词:微积分;背景;作用;函数一、微积分进入高中课本的背景及必要性在数学发展史上,自从牛顿和莱布尼茨创建微积分以来,数学中的很多问题都得以解决。
微积分已成为我们学习数学不可或缺的知识。
其在经济、物理等领域的大量运用也使之成为解决生活实际问题的重要工具。
但牛顿和莱布尼茨创建的微积分为“说不清”的微积分,也就是连他们自己也说不清微积分的理论依据,只是会应用。
这使得很多人学不懂微积分,更不用说让中学生来学习微积分。
柯西和维尔斯特拉斯等建立了严谨的极限理论,巩固了微积分基础,这是第二代微积分,但概念和推理繁琐迂回,对高中生更是听不明白。
近十年来,在大量的数学家如:张景中,陈文立,林群等的不懈努力下,第三代微积分出现了相比前两代说得清楚,对高中生而言,也更容易理解。
这为其完全进入高中课本奠定了基础。
从内容来看,新一轮的课改数学教材在微积分部分增加了定积分的概念及应用(求曲边梯形面积,旋转体体积,以及在物理中的应用),可能考虑到中学生的认知能力,人教版新教材与北师大版在这方面有所不同。
即利用定积分求简单旋转体体积在北师大版教材中出现了,但人教版没有。
从课标和考试大纲(参考2011年高考考试大纲)上看,初等微积分所占比重也是越来越重。
回顾历届高考,微积分相关题型分值越来越高。
但就我个人观点,初等微积分在中学数学中的作用还没有真正全面发挥。
我认为,它是学生中学数学和教师教学的一条线索,它是我们研究中学函数问题的统一方法,也是联系中学与大学数学知识的纽带!二、微积分在中学数学中的作用1.衔接性与后继作用。
微积分在普通物理学中的应用
微积分在普通物理学中的应用1引言从牛顿那个时代到今天,每个时代都在为一种事物惊叹不已,它不仅推动了物理学和数学的发展,也更新了人类的观念,是人类史上的里程碑,它就是微积分.微积分可以称为是人类智慧最伟大的成就之一,在各个领域内都有重要应用.如果将整个人类科学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分.微积分在物理学、天文学等自然科学及应用科学等多个分支中,有越来越广泛的应用.可以说,微积分推动了现代人类社会的发展,所以我们很有必要对它进行了解和掌握.微积分是微分和积分的总称,它是一种数学思想,其中‘无限细分’就是微分,‘无限求和’就是积分.极限的思想是微积分的基础,它是用变化的思想来看待问题的.微积分在物理学中的应用相当普遍,本篇论文从导数、微分、积分三方面研究了微积分在其中的应用.2导数在力学中的应用导数在力学中有很重要的作用,通常可求得最小的力,最省的距离等极值问题,在实际生活中应用性很强.下面简单举出两个例子说明其应用(画图略).例1 设有质量为5kg 的物体,置于水平面上,受力F 的作用开始移动,设摩擦系数0.25,μ=问力F 与水平线的交角α为多少时,才可以使力F 的大小为最小?解 由题意得cos (sin )F P F ααμ=-,其中α0,2π⎡⎫∈⎪⎢⎣⎭,P 表示重力cos sin PF μαμα=+由于P μ为常数,欲求F 最小,只须 求分母U cos sin αμα=+的最大值. 记 U αcos sin αμα=+令U α'=sin cos 0αμα-+=tan αμ=,(0.25)arctan arctan αμ==.故当0.25arctan α=时,可使力F 最小.例2 有一支杠杆,支点在它的一端,在距支点0.1m 处挂一质量为49kg 的物体,加力于杠杆另一端使杠杆保持水平,如果杠杆每m 的质量为5kg ,求最省力的杆长.解 设杆长为x ,则杆重5x ,由力矩平衡得 490.152x xF x =⨯+⨯即 4.952F x x =+ (0x >) 两边同时对x求导得24.952F x '=-+ F '0=得唯一的驻点1.4()x m == 由于F 只有最小值,所以由实际意义知,杠杆长为1.4()m 时最省力.通过上面两个例子,读者可以看到,导数的性质及意义在力学中有重要应用,尤其在求一些极值问题上应用性极强,不过导数只是微积分的基础,下面我们再通过具体例子说明微分在物理学中的应用.3 微分在运动学中的应用微分在求一些变化率方面作用很大,最简单像位移微分是速度,速度微分是加速度,下面我再举两个求速度例子,说明微分的应用.例1 落在平静水面上的石头,产生同心波纹.若最外一圈波半径的增大率总是6/m s ,问在2秒末扰动水面面积的增大率是多少?分析 由于在这里面积的增大不与半径平方的增大成正比,所以中学方法根本解不出来,用微积分就简单多了,试看下面解法:解 设波半径为()r m ,时间为()t s ,则波动面积2S x π= ,从而 2dS drr dt dtπ= 当2()t s =时,由6r t =得6212()r m =⨯=,因为6(/)drm s dt=所以 22126144(/)dSm s dtππ=⨯⨯= 即在2秒末扰动水面面积的增大率是2144(/)m s π .例2 注入水深为8m 且上顶直径为8m 的正圆锥形容器中,其速率为34/min m .当水深为5m 时,其表面上升的速率是多少?分析 这道题与上题一样,水表面上升速率不与水注入的速度成比例,所以是动态问题,需要用微积分知识来解,请看解法: 解 设水面高为()h t 米此时,水面圆的半径为r 米,上顶半径4R =, 由相似三角形比例性质得:48r h=, 得 12r h =所以 231()312V t r h h ππ== 两边同时对t 求导得'2231124t dh dhV h hdt dtππ==, (1) 即 24dV dh dt dt h π=, 由题设可得:'34(/min)t V m =,5h m =,代入(1)式得16(/min)25dh m dt π= 所以,当水深为5m 时,其表面上升的速率是16(/min)25m π. 除了导数和微分,积分更是物理学研究者需要掌握的,尤其是在求变力的功时只有用积分知识,在这里我通过三个例题具体来展示积分在解变力做功问题时的应用.4 积分在变力做功问题中的应用从物理学知道,如果物体在作直线运动的过程中有一个不变的力F 作用在这物体上,且力的方向与物体运动方向一致,那么,在物体移动了距离s 时间,力F 对物体所作的功为W F s =⋅如果物体在运动过程中所受的力是变化的,这就是变力对物体作功的问题.而 积分是与求变力做功紧密联系在一起的,下面请大家看几个这方面的例子例1 直径为20 cm ,高为80cm 的圆柱体内充满压强为10N/2cm 的蒸汽,设温度保持不变,要使蒸汽体积缩小一半,问需做多少功?解 由玻意耳——马略特定律,温度不变时,变化前后压强和体积的乘积不变, 而 210(1080)80000k pv ππ==⋅⋅=当底面积不变而高减少()x cm 时,设压强为2()(/)p x N cm ,则有 2()10(80)80000p x x ππ⋅⋅-=所以 800()80p x x=- 功微元 210()dW p x dx π=⋅ 所以功 4040240800108108080dx W dx dx xx ππ==⨯--⎰⎰=440810ln(80)800ln 2()0x J ππ-⨯-=例 2 一物体按规律3x ct =作直线运动,媒质的阻力与速度的平方成正比,计算物体由0x =移至x a =时,克服媒质阻力所做的功.解 媒质阻力2F kv =-(0k >,k 为阻力系数,阻力与运动方向相反),而'23t v x ct ==,所以249F kc t =-而13()x t c=,代入得2433()9F x kc x =-⋅,243300()9aaW F x dx kcx dx =-=⎰⎰272733333279077a kc x k c a =⋅=⋅⋅.例3 用铁锤将铁钉击入木板,设木板对铁钉的阻力与铁钉击入木板的深度成正比,在击第一次时,将铁钉击入木板1cm .如果铁锤每次打击铁钉所做的功相等,问锤击第二次时,铁钉又击入多少?解 设第二次又击入hcm (h 为待定系数),由于木板对铁钉的阻力F ky = 其中,k 为阻力系数, y 轴正向与打击方向相同) ,故功微元dW Fdy kydy == 击第一次时,铁锤所做的功121011022k W kydy y k ===⎰ 击第二次时,铁锤所做的功1221(1)12hk W kydy h +⎡⎤==+-⎣⎦⎰21(2)2k h h =+ 由于1W = 2W ,所以21(2)2k h h +=12k ,2210h h +-=解之得11h =-=()cm .以上三个求变力做功问题为力学中的问题,事实上,在电磁学中也常用积分知识求变力所做的功,下面我们举一例.例4 把一个带电量0q +的点电荷放在r 轴上坐标原点O处,它产生一个电场.这个电场对周围的电荷有作用力.由物理学知道,如果另一个点电荷q +放在这个电场中距离原点o 为r 的地方,那么电场对它的作用力的大小为02kq qF k =(k 是常数) 当这个点电荷q +在电场中从r a =处沿r 轴移动到()r b a b =<处时,计算电场力F 对它所作的功.解 在移动过程中,电场对这点电荷q +的作用力是变的.取r 为积分变量,它的变化区间为[],a b .设[],r r dr +为[],a b 上的任一小区间.当点电荷q +从r 移动到r dr +时,电场力对它所做的功近似于02kq q dr r ,即功微元为02kq qdW dr r=. 在闭区间[],a b 上作定积分,便得所求的功为0002111[]bb a akq q W dr kq q kq q r r a b ⎛⎫==-=- ⎪⎝⎭⎰如果将点电荷q +从该点处r a =移到无穷远处,电场力所作的功W 就是广义积分00002211lim lim b aa b b kq q kq q kq q W dr dr kq q r r a b a +∞→+∞→+∞⎛⎫===-= ⎪⎝⎭⎰⎰ 例4为积分在电磁学中的应用.除此之外,微分和导数在电磁学中的应用也有很多,这里不再一一细述.以上一些例题表明了微积分在物理学中有很强的应用.因此,要想学好物理,必须学好微积分.综上所述,在普通物理学中,尤其是在力学和电磁学中时时刻刻都在利用微积分处理问题.因此,掌握微积分的使用方法,学会用微积分的思维来解决力学和电磁学中的问题是十分必要的,希望这些工作能起到抛砖引玉的作用,引起同仁的共鸣,好能共同为微积分在各学科中的推广做出贡献.。
毕业论文完整论文【范本模板】
新疆财经大学本科毕业论文题目 : 微分和积分在不等式中的应用学号: 2005101412 学生姓名:阿卜杜瓦哈普·阿卜杜热西提院部:应用数学学院专业:应用数学年级:数学06-2班指导教师姓名职称:阿孜古丽·伊克木(讲师)完成日期:年月日摘要微积分和不等式都是数学中极为重要的内容,本文在回顾了几种常用的证明不等式的初等方法后,利用微分中值定理、泰勒公式、函数的单调性、极(最)值的判定法、定积分的性质等一些微积分知识探讨不等式的证明方法,最后指出了微积分在不等式证明中的具体应用.微积分是数学中的重要组成部分,是研究函数的性质,证明不等式,探求函数的极值、最值,求曲线的斜率和解决一些物理问题的有力工具.微积分的应用为解决数学问题提供了新的思路,新的方法和新的途径,可以说微积分是打开数学知识大门的一把钥匙.微积分在实际生活中的应用非常广泛,在不等式证明中也发挥着巨大的作用。
不等式的证明方法很多,灵活地运用微积分的性质及相关定理是解决许多不等式证明问题的关键.本篇论文归纳和总结了一些证明不等式的方法与技巧,利用微积分证明不等式的基本思想和基本方法,提出了运用这些方法和技巧能够使不等式的求解过程更为简单的思路..关键词:微积分;不等式;微分中值定理;泰勒公式;函数的单调性;极(最)值的判定法;目录前言 (1)第一章微积分 (2)§1微积分的发展 (2)§2微积分的概念 (3)第二章不等式 (7)§1不等式的定义和性质 (7)§2常用的证明不等式的方法 (8)第三章微积分在不等式中的应用 (12)§1利用微分证明不等式 (12)§2利用积分证明不等式 (19)结论 (23)参考文献 (24)致谢 (25)前言在高等数学中常常要证明一些不等式.而不等式的证明方法很多,在以往多采用代数或几何方法,现在可借助于微积分的知识,这是普遍应用的一种方法。
微积分在不等式中的应用论文
摘要微积分和不等式都是数学学科中极为重要的内容,其证明通常不太客易。
本文回顾了几种常用的证明不等式的初等方法,利用微分中值定理、函数的单调性、极值(最值)的判定法、函数凸凹性质、泰勒公式、定积分的性质等一些微积分知识探究了不等式的证明方法,本文探讨了如何巧妙利用徽积分中的知识和方法来解决一些不等式的问题。
用微积分证明不等式成立, 基本思路是构造一个辅助函数, 然后利用微积分求出该函数的性质来证明不等式.关键词微积分不等式中值定理函数性质泰勒公式定积分性质1AbstractCalculus mathematics and inequality are extremely important, the proof is not usually easily. This paper reviews several commonly used to prove inequality elementary methods, using the differential mean value theorem, monotone of function, extreme value ( maximum ) decision method, function, convex and concave nature of Taylor formula, the nature of definite integral and some knowledge of calculus of the inequality proof method, this paper discusses how clever use of emblem integral knowledge and the method to solve some of the problems of inequality.Using calculus to prove inequality is established, the basic idea is the construction of an auxiliary function, then make use of infinitesimal calculus to derive the properties of function to prove inequality.Key words calculus inequality theorem function Taylor formulaof definite integral character目录摘要 (I)1 Abstract (II)2 前言 (1)3 微积分 (2)2.1微积分的定义 (2)2.2微积分的发展历史 (3)2.3微积分学的创立的意义 (4)2.4微积分不断深化 (5)4 微积分在不等式中的应用 (6)5 利用微分中值定理证明不等式 (7)6 利用函数的单调性证明不等式 (8)7 利用函数的最值(极值)证明不等式 (9)8 利用函数的凹凸性质证明不等式 (10)9 利用泰勒公式证明不等式 (11)10 利用定积分的性质证明不等式 (12)结论 (13)参考文献 (16)附录 (17)致谢......................................................................................................... 错误!未定义书签。
微积分在生活中的应用论文(1)
微积分在生活中的应用论文(1)微积分在生活中的应用微积分是数学的一门重要分支,是研究函数与变化规律的工具。
它具有广泛的应用价值,在生活中也有许多实际的应用,比如理解化学反应、计算机生成图像等都需要微积分的知识。
一、物理学微积分在物理学中的应用最为广泛。
它可以描述物体的运动和变化,预测物体的运动轨迹和速度等。
例如,在机械物理学中,我们需要通过微积分来描述物体的运动和力学变化,比如速度、加速度和力等。
在电磁学和热力学中,微积分的应用也非常重要,它可以让我们理解物体在电磁场中的行为以及温度的变化等。
二、经济学微积分在经济学中的应用也非常重要。
它可以被用来描述供求关系、市场价格、消费者需求等经济现象,还可以用于优化决策和预测市场趋势。
例如,在产品优化上,微积分可以帮助企业计算最大化利润的需求函数和成本函数,进而制定出最优化的决策方案。
在金融领域中,微积分也被广泛运用于计算复合利息和风险收益等指标,支持投资决策。
三、医学微积分在医学中的应用也十分重要。
它可以用于描述和预测生物和人体的生理特征、疾病和药物的效果等。
例如,对于药物代谢的描述,微积分可以被用来计算血中药物浓度与时间的关系,最终帮助医生进行药物治疗的优化。
另外,微积分还可以用于模拟计算人体器官的生理特性与物理特征,支持医学研究和实验。
四、工程领域在工程领域中,微积分也具有广泛的应用价值。
它可以被用于优化设计和工程建模,以及支持科学研究和实验。
例如,在建筑设计和结构力学中,微积分可以被用来优化建筑物和桥梁的设计和建造,以支持工程安全和建筑的稳定性。
在计算机科学中,微积分可以被用来支持人工智能和机器学习等领域的发展,其深度学习算法使用了微积分的技术。
总结综上所述,微积分是一门功能强大的学科,它的应用范围极为广泛,几乎在所有领域都有其重要的作用。
在我们的生活中,微积分所带来的应用价值和社会益处是不可估量的,值得每一个有兴趣的人去学习和了解。
微积分论文 高等数学论文
微积分论文高等数学论文微积分论文一、引言微积分是研究变化率和累积效应的一种数学分支。
它广泛应用于物理学、工程学、经济学等领域,在科学和工程问题的模型建立及求解中扮演着重要的角色。
本论文旨在深入探讨微积分的基本概念、原理与应用,并通过实例说明微积分在实际问题中的运用。
二、微积分的基本概念1.导数导数是微积分的核心概念之一。
它描述了函数在某一点的变化率。
导数的定义及求导法则是学习微积分的基础,为后续的应用打下了坚实的基础。
2.积分积分是导数的逆运算,可以用于求解曲线下的面积、求解定积分、解决变速运动问题等。
对于不可积函数,可以采用数值积分的方法进行近似计算。
积分的定义及求解方法是微积分的重要内容。
三、微积分的原理1.极限理论极限理论是微积分的基石。
通过极限的概念,可以描述函数在一点的趋近性质,进而定义导数和积分。
极限的计算方法包括极限的四则运算法则、夹逼定理等。
2.微分中值定理微分中值定理是微积分中的重要定理之一。
它描述了函数在某一区间内存在某点,该点的导数等于该区间两端点斜率的平均值。
微分中值定理的应用范围广泛,包括证明函数的性质、求解方程的根等。
3.积分中值定理积分中值定理是微积分中的另一个重要定理。
它描述了函数在某一区间上的平均值等于某个点上的函数值。
积分中值定理在求解定积分、估计误差等方面具有重要作用。
四、微积分的应用1.物理学中的微积分应用微积分在物理学中有广泛的应用。
以牛顿运动定律为例,可以利用微积分的概念、原理和方法,对物体的运动进行建模和分析,预测物体的位置、速度和加速度等。
2.经济学中的微积分应用微积分在经济学中也具有重要的应用价值。
例如,在经济学中,利用微积分可以对供求关系进行分析,求解最优化问题,研究市场均衡等。
3.工程学中的微积分应用工程学是应用微积分最广泛的领域之一。
从电路分析到机械力学,从信号处理到控制系统,微积分都发挥着关键的作用。
例如,在电路分析中,可以通过微积分求解电流、电压和功率等问题。
微积分应用论文
上海大学2013~2014学年秋季学期课程论文课程名称:信息化时代的数学探索与发现课程编号:0100L602 论文题目: 论微积分在我们生活中的应用作者姓名: 方舟学号: ******** 成绩:论文评语:评阅人:评阅日期:注:后附课程论文的正文浅谈微积分在生活中的应用作者姓名:方舟 学 号: 13121376摘要:主要关于微积分在几何,经济,物理以及我们生活方面的运用。
关键词:微积分,几何,经济学,物理学,极限,求导,微分方程(3-5个数学名词)(5号宋体)正文 (小4号宋体, 段首空两格)前言作为一个刚刚上大学的新生,高等数学是大学学习中十分重要的一部分,但在学习的过程中,我不禁慢慢产生了一个问题,老师都说微积分就是高等数学的精髓,那么微积分的意义又是什么呢?它对人类的生活造成的影响又是什么呢?存在必合理,微积分的应用一定很广,带着这个思想,我查找了一点资料,我想从几何,经济,物理三个角度来阐述关于微积分在我们生活中的应用,下面可能有些我在网上查找的题目,基本上都是直接摘录的,在此特向老师说明。
我了解到微积分是从生产技术和理论科学的需要中产生,又反过来广泛影响着生产技术和科学的发展。
如今,微积分已是广大科学工作者以及技术人员不可缺少的工具。
如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。
微积分堪称是人类智慧最伟大的成就之一。
从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。
通过研究微积分能够在几何,物理,经济等方面的具体应用,得到微积分在现实生活中的重要意义,从而能够利用微积分这一数学工具科学地解决问题。
希望通过本文的介绍能使人们意识到微积分与其他各学科的密切关系,让大家能意识到理论与实际结合的重要性。
1.微积分在几何中的应用微积分在我看来在几何中主要是为了研究函数的图像,面积,体积,近似值等问题,对工程制图以及设计有不可替代的作用。
大学生微积分论文范文大全
大学生微积分论文范文大全微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。
它是数学的一个基础学科。
以下是搜集并整理的微积分论文有关内容,希望在阅读之余对大家能有所帮助!大学生微积分论文范文大全微积分是研究客观世界运动现象的一门学科,我们引入极限概念对客观世界运动过程加以描述,用极限方法建立其数量关系并研究其运动结果[1]。
极限理论是微积分学的基础理论,贯穿整个微积分学。
要学好微积分,必须认识和理解极限理论,而把握极限理论的前提,首先要认识极限思想。
极限思想蕴涵着丰富的辩证思想,是变与不变、过程与结果、有限与无限、近似与精确、量变与质变以及否定与肯定的对立统一。
1、极限思想与辩证哲学的联系。
1.1极限思想是变与不变的对立统一。
“变”与“不变”反映了客观事物运动变化与相对静止两种不同状态,不变是相对的,变是绝对的,但它们在一定条件下又可相互转化。
例如,平面内一条曲线C上某一点P的切线斜率为kp。
除P点外曲线上点的斜率k是变量,kp是不变量,曲线上不同的点对应不同的斜率K,斜率k不可能等于kp,k与kp是变与不变的对立关系;同时,它们之间也体现了一种相互联系相互依赖的关系。
当曲线上的点无限接近P点过程中,斜率k无限接近kp,变化的量向不变的量逐渐接近。
当无限接近的结果产生质的飞跃时,变量转化为不变量,即“变”而“不变”,这体现了变与不变的统一关系。
1.2极限思想是过程与结果的对立统一。
过程和结果在哲学上是辩证统一的关系,在极限思想中也充分体现了结果与过程的对立统一。
在上例中,当曲线上的点无限接近点P 的变化过程中,k是变化过程,kp是变化结果。
一方面,无论曲线上点多么接近点P,都不能与点P重合,同样曲线上变化点的斜率k 也不等于kp,这体现了过程与结果的对立性;另一方面,随着无限接近过程的进行,斜率k越来越接近kp,二者之间有紧密的联系,无限接近的变化结果使得斜率k转化为kp,这体现了过程与结果的统一性。
微积分论文
微积分微积分的产生是数学上的伟大创造;它从生产技术和理论科学的需要中产生,又反过来广泛影响着生产技术和科学的发展;如今,微积分已是广大科学工作者以及技术人员不可缺少的工具;什么是它是一种,‘无限细分’就是,‘无限求和’就是积分;无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题;比如,子弹飞出的瞬间速度就是微分的概念,子弹每个瞬间所飞行的路程之和就是积分的概念如果将整个数学比作一棵大树,那么是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分;微积分堪称是人类智慧最伟大的成就之一;从17世纪开始,随着社会的进步和生产力的发展,以及如航海、、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科;整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分支的还是和;从微积分成为一门学科来说,是在17世纪,但是,微分和积分的思想早在古代就已经产生了;公元前3世纪,古希腊的、家公元前287—前212的着作圆的测量和论球与圆柱中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和面积、下的面积和旋转的体积的问题中就隐含着近代积分的思想;作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述,比如庄周所着的一书中的“天下篇”中,着有“一尺之棰,日取其半,万世不竭”;三国时期的在他的中提出“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”;他在1615年测量酒桶体积的一书中,就把曲线看成边数无限增大的直线形;圆的面积就是无穷多个三角形面积之和,这些都可视为典型极限思想的佳作;意大利数学家卡瓦列利在1635年出版的连续不可分几何,就把曲线看成无限多条线段不可分量拼成的;这些都为后来的微积分的诞生作了思想准备;17世纪生产力的发展推动了和技术的发展,不但已有的数学成果得到进一步巩固、充实和扩大,而且由于实践的需要,开始研究运动着的物体和变化的量,这样就获得了变量的概念,研究变化着的量的一般性和它们之间的依赖关系;许多着名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费尔玛、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论;为微积分的创立做出了贡献;到了17世纪下半叶,在前人创造性研究的基础上,英国、家1642-1727是从物理学的角度研究微积分的,他为了解决运动问题,创立了一种和物理概念直接联系的,即牛顿称之为“流”的理论,这实际上就是微积分理论;牛顿的有关“流数术”的主要着作是求曲边形面积、运用无穷多项方程的计算法和流数术和无穷极数;这些概念是力学概念的数学反映;牛顿认为任何运动存在于空间,依赖于时间,因而他把时间作为自变量,把和时间有关的固变量作为流量,不仅这样,他还把——线、角、体,都看作力学位移的结果;因而,一切变量都是流量;牛顿指出,“流数术”基本上包括三类问题;l“已知流量之间的关系,求它们的流数的关系”,这相当于;2已知表示流数之间的关系的方程,求相应的流量间的关系;这相当于积分学,牛顿意义下的不仅包括求原函数,还包括解;3“流数术”应用范围包括计算曲线的极大值、极小值、求曲线的切线和,求曲线长度及计算曲边形面积等;牛顿已完全清楚上述l与2两类问题中运算是互逆的运算,于是建立起微分学和积分学之间的联系;牛顿在1665年5月20目的一份手稿中提到“流数术”,因而有人把这一天作为诞生微积分的标志;牛顿关于微积分的着作很多写于1665-1676年间,但这些着作发表很迟;他完整地提出微积分是一对互逆运算,并且给出换算的公式,就是后来着名的牛顿-莱布尼茨公式;牛顿是那个时代的科学巨人;在他之前,已有了许多积累:哥伦布发现新大陆,哥白尼创立日心说,伽利略出版力学对话,开普勒发现行星运动规律--航海的需要,矿山的开发,火松制造提出了一系列的力学和数学的问题,微积分在这样的条件下诞生是必然的;莱布尼茨使微积分更加简洁和准确而德国数学家莱布尼茨G.W.Leibniz 1646-1716则是从几何方面独立发现了微积分,在牛顿和莱布尼茨之前至少有数十位数学家研究过,他们为微积分的诞生作了开创性贡献;但是池们这些工作是零碎的,不连贯的,缺乏统一性;莱布尼茨创立微积分的途径与方法与牛顿是不同的;莱布尼茨是经过研究曲线的切线和曲线包围的面积,运用分析学方法引进微积分概念、得出运算法则的;牛顿在微积分的应用上更多地结合了,造诣较莱布尼茨高一筹,但莱布尼茨的表达形式采用却又远远优于牛顿一筹,既简洁又准确地揭示出微积分的实质,强有力地促进了的发展;莱布尼茨创造的,正像印度——促进了算术与发展一样,促进了的发展,莱布尼茨是数学史上最杰出的符号创造者之一;如果说牛顿从力学导致“流数术”,那莱布尼茨则是从几何学上考察切线问题得出微分法;牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源;牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的;牛顿当时采用的微分和积分符号现在不用了,而莱布尼茨所采用的符号现今仍在使用;莱布尼茨比别人更早更明确地认识到,好的符号能大大节省思维劳动,运用符号的技巧是数学成功的关键之一;从始创微积分的时间说牛顿比莱布尼茨大约早10年,但从正式公开发表的时间说牛顿却比莱布尼茨要晚;牛顿系统论述“流数术”的重要着作流数术和无穷极数是1671年写成的,但因1676年伦敦大火殃及印刷厂,致使该书1736年才发表,这比莱布尼茨的论文要晚半个世纪;另外也有书中记载:牛顿于1687年7月,用拉丁文发表了他的巨着自然哲学的数学原理,在此文中提出了微积分的思想;他用“0”表示无限小增量,求出瞬时变化率,后来他把变量X称为流量,X的瞬时变化率称为流数,整个微积分学称为“流数学”,事实上,他们二人是各自独立地建立了微积分;最后还应当指出的是,牛顿的“流数术”,在概念上是不够清晰的,理论上也不够严密,在运算步骤中具有神秘的色彩,还没有形成无穷小及极限概念;牛顿和莱布尼茨的特殊功绩在于,他们站在更高的角度,分析和综合了前人的工作,将前人解决各种具体问题的特殊技巧,统一为两类普通的算法――微分与积分,并发现了微分和积分互为逆运算,建立了所谓的微积分基本定理现今称为牛顿――莱布尼茨公式,从而完成了微积分发明中最关键的一步,并为其深入发展和广泛应用铺平了道路;由于受当时历史条件的限制,牛顿和莱布尼茨建立的微积分的理论基础还不十分牢靠,有些概念比较模糊,因此引发了长期关于微积分的逻辑基础的争论和探讨;经过18、19世纪一大批数学家的努力,特别是在法国数学家柯西首先成功地建立了极限理论之后,以极限的观点定义了微积分的基本概念,并简洁而严格地证定理即牛顿―莱布尼茨公式,才给微积分建立了一个基本严格的完整体系;微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力;前面已经提到,一门科学的创立决不是某一个人的业绩,他必定是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的;微积分也是这样;不幸的是,由于人们在欣赏微积分的宏伟功效之余,在提出谁是这门学科的创立者的时候,竟然引起了一场悍然大波,造成了欧洲大陆的数学家和英国数学家的长期对立;英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年;其实,牛顿和莱布尼茨分别是自己独立研究,在大体上相近的时间里先后完成的;比较特殊的是牛顿创立微积分要比莱布尼词早10年左右,但是整是公开发表微积分这一理论,莱布尼茨却要比牛顿发表早三年;他们的研究各有长处,也都各有短处;那时候,由于民族偏见,关于发明优先权的争论竟从1699年始延续了一百多年;应该指出,这是和历史上任何一项重大理论的完成都要经历一段时间一样,牛顿和莱布尼茨的工作也都是很不完善的;他们在无穷和无穷小量这个问题上,其说不一,十分含糊;牛顿的无穷小量,有时候是零,有时候不是零而是有限的小量;莱布尼茨的也不能自圆其说;这些基础方面的缺陷,最终导致了第二次数学危机的产生;直到19世纪初,法国科学学院的科学家以柯西为首,对微积分的理论进行了认真研究,建立了极限理论,后来又经过德国数学家维尔斯特拉斯进一步的严格化,使极限理论成为了微积分的坚定基础;才使微积分进一步的发展开来;任何新兴的、具有无量前途的科学成就都吸引着广大的科学工作者;在微积分的历史上也闪烁着这样的一些明星:瑞士的雅科布·贝努利和他的兄弟约翰·贝努利、欧拉、法国的拉格朗日、……欧氏几何也好,上古和中世纪的代数学也好,都是一种常量数学,微积分才是真正的变量数学,是数学中的大革命;微积分是高等数学的主要分支,不只是局限在解决力学中的变速问题,它驰骋在近代和现代科学技术园地里,建立了数不清的丰功伟绩;不幸的是牛顿和莱布尼茨各自创立了微积分之后,历史上发生了优先权的争论,从而使数学家分为两派,欧洲大陆数学家两派,欧洲大陆的数学家,尤其是瑞士数学家雅科布贝努利1654~1705和约翰贝努利1667~1748兄弟支持莱布尼茨,而英国数学家扞卫牛顿,两派争吵激烈,甚至尖锐到互相敌对、嘲笑;牛顿死后,经过调查核实,事实上,他们各自独立地创立了微积分;这件事的结果致使英国和欧洲大陆的数学家停止了思想交流,使英国人在数学上落后了一百多年,因为牛顿在自然哲学的数学原理中使用的是几何方法,英国人差不多在一百多年中照旧使用几何工具,而大陆的数学家继续使用莱布尼茨的分析方法,并使微积分更加完善,在这100年中英国甚至连大陆通用的微积分都不认识;实际上,牛顿在微积分方面的研究虽早于莱布尼兹,但莱布尼兹成果的发表则早于牛顿;虽然如此,科学家对待科学谨慎和刻苦的精神还是值得我们学习的啊;莱布尼兹在1684年10月发表的教师学报上的论文,“一种求极大极小的奇妙类型的计算”,在数学史上被认为是最早发表的微积分文献;牛顿在1687年出版的自然哲学的数学原理的第一版和第二版也写道:“十年前在我和最杰出的几何学家G、W莱布尼兹的通信中,我表明我已经知道确定极大值和极小值的方法、作切线的方法以及类似的方法,但我在交换的信件中隐瞒了这方法,……这位最卓越的科学家在回信中写道,他也发现了一种同样的方法;他并诉述了他的方法,它与我的方法几乎没有什么不同,除了他的措词和符号而外;”因此,后来人们公认牛顿和莱布尼兹是各自独立地创建微积分的;牛顿从物理学出发,运用集合方法研究微积分,其应用上更多地结合了运动学,造诣高于莱布尼兹;莱布尼兹则从几何问题出发,运用分析学方法引进微积分概念、得出运算法则,其数学的严密性与系统性是牛顿所不及的;莱布尼兹认识到好的数学符号能节省思维劳动,运用符号的技巧是数学成功的关键之一;因此,他发明了一套适用的符号系统,如,引入dx表示x的微分,∫表示积分,dnx表示n 阶微分等等;这些符号进一步促进了微积分学的发展;1713年,莱布尼兹发表了微积分的历史和起源一文,总结了自己创立微积分学的思路,说明了自己成就的独立性;莱布尼兹在数学方面的成就是巨大的,他的研究及成果渗透到高等数学的许多领域;他的一系列重要数学理论的提出,为后来的数学理论奠定了基础; 莱布尼兹曾讨论过负数和复数的性质,得出复数的对数并不存在,共扼复数的和是实数的结论;在后来的研究中,莱布尼兹证明了自己结论是正确的;他还对线性方程组进行研究,对消元法从理论上进行了探讨,并首先引入了行列式的概念,提出行列式的某些理论;此外,莱布尼兹还创立了符号逻辑学的基本概念,发明了能够进行加、减、乘、除及开方运算的计算机和二进制,为计算机的现代发展奠定了坚实的基础;。
大学数学微积分论文(专业推荐范文10篇)7700字
大学数学微积分论文(专业推荐范文10篇)7700字大学数学微积分包括极限、微分学、积分学及其应用,也包括求导数的运算,是一套关于变化率的理论。
本篇文章就向大家介绍几篇大学数学微积分论文,希望大家通过以下论文,跟大家一起探讨这个课题。
大学数学微积分论文专业推荐10篇之第一篇:浅析微积分在大学数学学习和生活中的应用摘要:经济社会的发展和科技的进步,计算机应用领域的扩大,也不断拓展了微积分的应用范围。
微积在大学数学学习和生活中很常见,应用广泛。
本文主要针对微积分在大学数学学习和生活中的应用进行了分析。
关键词:微积分;大学数学;学习生活;应用;数学作为一项重要的工具,在社会长期发展中发挥着重要的作用,尤其是在其他学科知识的学习、日常生活的应用等方面,数学工具不可或缺。
在大学中,微积分属于大学数学的一个分支,其研究对象是函数的微分、积分及其他内容。
微积分是很多在校大学生的必修课程,同时,在生活中也有广泛的应用空间。
研究微积分,具有重要的现实意义。
1. 大学教学中微积分的应用大学教育的过程中,很多专业知识的学习中都需要运用到微积分,可以说,大学教学中微积分的应用十分广泛,尤其是数学教学和学习,微积分是高等数学研究的一个分支,且在具体的学习中有重要的指导意义。
具体应用分析如下。
1.1 数学建模。
数学建模主要用于把一个抽象的生活问题用具体的数学模型做简化和假设,在此基础上,运算得出一个相对合理的对应方案。
数学建模在现实生活中具有较强的实际意义。
在传统的数学应用中,人们运用微积分建构了多个数学模型,并且为科学研究做出了很大的贡献。
历史上将数学模型运用到科学研究的典型例子,牛顿借助自己研究的微积分,提出万有引力定律,这些典型的现实性案例,都证明了微积分在数学建模中的重要作用。
1.2 等式证明中的微积分使用。
在变量关系的研究过程中,会涉及到有关等式作证明的问题,可以利用微积分无线分割的思想,在处理数学问题的过程中,以简御繁,其次,微积分中的值订立、函数的增减性、极值的判定等,都在在等式的证明中有重要的作用,在具体的运用中,能简化等式,降低了普通方法证明等式时的技巧性和高难度性,因此,微积分的使用让等式证明更加简化和简单。
微积分的应用论文(微积分在物理化学数学经济方面的应用)原创
微积分的应用论文(微积分在物理化学数学经济方面的应用)原创微积分的应用微积分是研究函数的微分、积分以及有关概念和应用的数学分支。
微积分是建立在实数、函数和极限的基础上的。
微积分学是微分学和积分学的总称。
它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。
无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。
微积分最重要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你不好研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。
微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学等多个分支中,有越来越广泛的应用。
特别是计算机的发明更有助于这些应用的不断发展。
客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。
因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。
牛顿、莱布尼兹发明微积分以后,人们才有能力把握运动和过程。
有了微积分,就有了工业革命,就有了大工业生产,也就有了现代化的社会。
航天飞机、宇宙飞船等现代化交通工具都是在微积分的帮助下制造出来的。
微积分在人类社会从农业文明跨入工业文明的过程中起到了决定性的作用。
微积分是为了解决变量的瞬时变化率而存在的。
从数学的角度讲,是研究变量在函数中的作用。
从物理的角度讲,是为了解决长期困扰人们的关于速度与加速度的定义的问题。
“变”这个字是微积分最大的奥义。
因此,了解微积分在生活中的应用对于我们解决实际问题有很大的帮助。
微积分建立之初的应用:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。
第二类问题是求曲线的切线的问题。
第三类问题是求函数的最大值和最小值问题。
第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。
微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。
数学与应用数学专业毕业论文--微积分在几何上的应用
目录摘要 (I)关键词 (I)Abstract (II)Key words (II)1前言 ....................................................................错误!未定义书签。
2微积分介绍 .. (2)2.1微积分的基本内容 (2)2.1.1微积分的发展 ·········································错误!未定义书签。
3微积分在几何中的应用 ············································错误!未定义书签。
3.1求平面图形的面积·······················································错误!未定义书签。
微积分在经济学中应用论文
微积分在经济学中的应用【摘要】随着数学突飞猛进的发展,数学领域成绩的不断刷新,作为数学的基础的微积分思想也随之发展,其应用范围已超出数学领域,与经济学相结合,被广泛运用于经济的各个领域。
微积分与经济的密切性体现在多个方面,比如,经济的最优化理论、复利计算、数学模型的建立,这些都为经济发展以及掌握经济发展的内在规律提供了现实依据。
【关键词】微积分最优化宏观经济极限理论【中图分类号】 g40-05 【文献标识码】 a【文章编号】 1006-5962(2012)08(b)-0012-011 数学与经济的关系数学是经济学理论研究的理想工具,精确而严密的理论研究离不开数学。
数学与经济学二者紧密联系,相互促进,共同发展。
借助数学模型研究经济学,至少有三个优势:清晰,深入,严密。
具体分析就是:第一,前提假定用数学语言描述既清晰明了又精炼,省去了分析文字所耗费的时间与精力;第二,逻辑推理严密、精确,可以防止漏洞和错误;第三,可利用已有的数学定理或数学模型推导出新的结果或者结论,排除一切干扰,得出更为深入的仅凭直觉不易甚至无法得出的结论,挖掘现象之间更深层次的本质联系。
运用数学模型讨论经济问题,可以不走或少走弯路,将讨论集中到前提假设、论证过程及模型原理问题上来,从而避免了许多无谓的争执,减少在时间与精力上的消耗,也可在深层次上发现似乎不相关的结构之间的关联。
此外,运用数学和统计方法做经济学的实证研究可以把实证分析建立在理论基础上,并从系统的数据中定量地检验理论假说和估计参数的数值。
这就可以减少经验性分析中的表面化和偶然性,从而得出定量性结论,并分别确定它在统计和经济意义下的显著程度、作用的大小。
2 微积分在经济学中的应用2.1 微积分最优化理论在经济学中的应用最优化问题是经济管理活动的重点内容,是各类企业在实现资源最优化配置与盈利的有效手段,各种最优化问题也是微积分最关心的内容之一。
拿企业来说,企业最关心的问题当然是盈利。
高数论文浅谈微积分
高数论文浅谈微积分大学高数论文浅谈微积分摘要:经过一学期的高数学习历程,有欢喜,有悲伤,但我已深深爱上了高数,在此我谈谈微积分。
关键词:大一高数微积分的建立感想引言:微积分学在科学、经济学和工程学领域被广泛的应用,来解决那些仅依靠代数学不能有效解决的问题。
微积分学在代数学、三角学和解析几何学的基础上建立起来,并包括微分学、积分学两大分支。
微分学包括求导数的运算,是一套关于变化率的理论。
它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。
积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
微积分学基本定理指出,微分和积分互为逆运算,这也是两种理论被统一成微积分学的原因。
我们可以以两者中任意一者为起点来讨论微积分学,但是在教学中,微分学一般会先被引入。
在更深的数学领域中,微积分学通常被称为分析学,并被定义为研究函数的科学。
一、微积分的基本介绍微积分学基本定理指出,求不定积分与求导函数互为逆运算,把上下限代入不定积分即得到积分值,而微分则是导数值与自变量增量的乘积,这也是两种理论被统一成微积分学的原因。
我们可以以两者中任意一者为起点来讨论微积分学,但是在教学中,微分学一般会先被引入。
微积分学是微分学和积分学的总称。
它是一种数学思想,“无限细分”就是微分,“无限求和”就是积分。
十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的工作,分别独立地建立了微积分学。
他们建立微积分的出发点是直观的无穷小量,但是理论基础是不牢固的。
因为“无限”的概念是无法用已经拥有的代数公式进行演算,所以,直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。
学习微积分学,首要的一步就是要理解到,“极限”引入的必要性:因为,代数是人们已经熟悉的概念,但是,代数无法处理“无限”的概念。
所以,必须要利用代数处理代表无限的量,这时就精心构造了“极限”的概念。
构造函数法在微积分证明中的应用参考论文
构造函数法在微积分证明中的应用参考论文————————————————————————————————作者:————————————————————————————————日期:一、绪论构造函数思想是数学的一种重要的思想方法,在数学中具有广泛的应用。
所谓构造法,就是根据件或结论所具有的特征、性质,构造出满足条件或结论的数学模型,借助于该数学模型解决数学问题的方法。
它具有两个显著的特性:直观性和可行性,正是这两个特性,在数学应用中经常运用它. 构造法是我们在研究有关数学问题时,需要构造并解出一个合适的辅助问题,从而用它来求得一条通向表面看来难于接近问题的信道的一种解答问题的方法,其实质就是把研究的数学问题经过仔细的观察,挖掘其隐含条件,再通过丰富的联想,把问题化归为已知的数学模型,从而使问题得以解答。
本文主要针对如何利用函数的相关知识来构造辅助函数, 并将辅助函数应用到不等式的证明中作了一些总结。
不等式的证明是高等数学中的重要内容之一。
证明不等式的方法有很多, 常见的有比较法、综合法、分析法、反证法、基本不等式法等, 构造法就是其中的一种. 构造法的内涵十分丰富, 没有完全固定的模式可以套用,它是以广泛抽象的普遍性与现实问题的特殊性为基础, 针对具体问题的特点而采取相应的解决办法即借用一类问题的性质, 来研究另一类问题的思维方法。
在解题过程中, 若按思维定势来探求解题途径比较困难时, 这时我们不妨变换一下思维角度, 从不等式的结构和特点出发, 在已学过的知识的基础上进行广泛的联想, 构造一个与不等式相关的数学模型, 实现问题的转化, 从而使不等式得到证明. 运用构造法来解题也是培养学生创造意识和创新思维的手段之一, 同时对提高学生的解题能力也有所帮助, 下面我们通过举例来说明构造法解题训练学生发散思维, 谋求最佳解题途.个人收集整理,勿做商业用途本文为互联网收集,请勿用作商业用途二、构造函数在微积分证明中的应用构造法是数学解题的主要方法之一,它的应用极广。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海大学2013~2014学年秋季学期课程论文课程名称:信息化时代的数学探索与发现课程编号:0100L602 论文题目: 论微积分在我们生活中的应用作者姓名: 方舟学号: ******** 成绩:论文评语:评阅人:评阅日期:注:后附课程论文的正文浅谈微积分在生活中的应用作者姓名:方舟 学 号: 13121376摘要:主要关于微积分在几何,经济,物理以及我们生活方面的运用。
关键词:微积分,几何,经济学,物理学,极限,求导,微分方程(3-5个数学名词)(5号宋体)正文 (小4号宋体, 段首空两格)前言作为一个刚刚上大学的新生,高等数学是大学学习中十分重要的一部分,但在学习的过程中,我不禁慢慢产生了一个问题,老师都说微积分就是高等数学的精髓,那么微积分的意义又是什么呢?它对人类的生活造成的影响又是什么呢?存在必合理,微积分的应用一定很广,带着这个思想,我查找了一点资料,我想从几何,经济,物理三个角度来阐述关于微积分在我们生活中的应用,下面可能有些我在网上查找的题目,基本上都是直接摘录的,在此特向老师说明。
我了解到微积分是从生产技术和理论科学的需要中产生,又反过来广泛影响着生产技术和科学的发展。
如今,微积分已是广大科学工作者以及技术人员不可缺少的工具。
如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。
微积分堪称是人类智慧最伟大的成就之一。
从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。
通过研究微积分能够在几何,物理,经济等方面的具体应用,得到微积分在现实生活中的重要意义,从而能够利用微积分这一数学工具科学地解决问题。
希望通过本文的介绍能使人们意识到微积分与其他各学科的密切关系,让大家能意识到理论与实际结合的重要性。
1.微积分在几何中的应用微积分在我看来在几何中主要是为了研究函数的图像,面积,体积,近似值等问题,对工程制图以及设计有不可替代的作用。
很高兴我在网上找到了一些内容与现在我们学的定积分恰巧联系上了。
顿觉微积分应用真的很广!1.1求平面图形的面积(1)求平面图形的面积由定积分的定义和几何意义可知,函数y=f(x)在区间[a,b]上的定积分等于由函数y=f(x),x=a ,x=b 和轴所围成的图形的面积的代数和。
由此可知通过求函数的定积分就可求出曲边梯形的面积。
例如:求曲线2f x 和直线x=l ,x=2及x 轴所围成的图形的面积。
分析:由定积分的定义和几何意义可知,函数在区间上的定积分等于由曲线和直线,及轴所围成的图形的面积。
所以该曲边梯形的面积为2233222112173333x f x dx ===-=⎰ (2)求旋转体的体积(I)由连续曲线y=f(x)与直线x=a 、x=b(a<b) 及x 轴围成的平面图形绕x 轴旋转一周而成的旋转体的体积为2()()ba V f x d x π=⎰。
(Ⅱ)由连续曲线y=g(y)与直线y=c 、y=d(c<d)及y 轴围成的平面图形绕y 轴旋转一周而成的旋转体的体积为2()()dc V g yd y π=⎰。
(III)由连续曲线y=f(x)( ()0f x ≥)与直线x=a 、x=b(0a ≤ <b)及y 轴围成的平面图形绕y 轴旋转一周而成的旋转体的体积为2()()ba V xf x d x π=⎰。
例如:求椭圆22221x y a b+=所围成的图形分别绕x 轴和y 轴旋转一周而成的旋转体的体积。
分析:椭圆绕x 轴旋转时,旋转体可以看作是上半椭圆2()y x a x a =-≤≤,与x 轴所围成的图形绕轴旋转一周而成的,因此椭圆22221x y a b +=所围成的图形绕x 轴旋转一周而成的旋转体的体积为2222232214()33a a y a a a a b v dx dx ab a x x ab a ππππ---===-=⎰⎰椭圆绕y轴旋转时,旋转体可以看作是右半椭圆)x b y b =-≤≤,与y 轴所围成的图形绕y 轴旋转一周而成的,因此椭圆22221x y a b+=所围成的图形绕y 轴旋转一周而成的旋转体的体积为2222232214()33b b y b b b b a v dy dy b a b y y a b b ππππ---===-=⎰⎰(3)求平面曲线的弧长(I)、设曲线弧由参数方程(){()()x t t y t ϕαβφ=≤≤= 给出其中''(),()t t ϕφ在[,]αβ上连续,则该曲线弧的长度为()s x βα=⎰。
(Ⅲ)设曲线弧的极坐标方程为()()r r θαθβ=≤≤,其中'()r θ在[,]αβ上连续,则该曲线弧的长度为()s βαθ=⎰。
例如:求曲线21ln 42x y x =-从x=l 到x=e 之间一段曲线的弧长。
解:'122x y x =-,于是弧长微元为ds =,11()2dx x dx x==+。
所以,所求弧长为:22111111()(ln )(1)2224ee x s x dx x e x =+=+=+⎰。
一、在几何中的应用(一)微分学在几何中的应用(1)求曲线切线的斜率由导数的几何意义可知,曲线y=( x)在点0x 处的切线等于过该点切线的斜率。
即'0()tan f x a =,由此可以求出曲线的切线方程和法线方程。
例如:求曲线2y x =在点(1,1)处的切线方程和法线方程。
分析:由导数的几何意义知,所求切线的斜率为:'1122x x k y x =====,所以,所求切线的方程为y-l=2(x 一1),化解得切线方程为2x-y-1=0。
又因为法线的斜率为切线斜率的负倒数,所以,所求法线方程为11(1)2y x -=--,化解得法线方程为2y+x-3=0。
(2)求函数值增量的近似值由微分的定义可知,函数的微分是函数值增量的近似值,所以通过求函数的微分可求出函数值增量的近似值。
例如:计算sin 46o 的近似值。
分析:令f(x)=sin(x),则f(x)=cosx ,取0045x =,001,(1)180x π∆+=,则由微机分的定义可知000'022sin 46sin(451)sin 45(45)0.719418022180f ππ=+≈+=+•≈ 2.微积分在经济学的应用在我所查找到的关于微积分在经济学领域的应用中,我发现高等数学在经济学中运用十分基础和广泛,是学好经济学 剖析现实经济现象的基本工具。
经济学与数学是密不可分息息相关的。
高等数学方法在经济学中的运用增强了经济学的严密性和说理性,将经济问题转化为数学问题,用数学方法对经济学问题进行分析,将数学中的极限,导数、微分方程知识在经济中的运用。
尤其我看到在经济管理中,由边际函数求总函数(即原函数),一般采用不定积分来解决,或求一个变上限的定积分;如果求总函数在某个范围的改变量,则采用定积分来解决。
这个对一个企业的发展至关重要!1关于最值问题例设:生产x 个产品的边际成本C=100+2x ,其固定成本为C (0)=1000元,产品单价规定为500元。
假设生产出的产品能完全销售,问生产量为多少时利润最大?并求最大利润解:总成本函数为C(x)=∫x0(100+2t)dt+C(0)=100x +x 2+1000总收益函数为R(x)=500x总利润L(x)=R(x)-C(x)=400x-x2-1000,L’=400-2x ,令L’=0,得x=200,因为L’’(200)<0。
所以,生产量为200单位时,利润最大。
最大利润为L(200)=400×200-2002-1000=390009(元)在这里我们应用了定积分,分析出利润最大,并不是意味着多增加产量就必定增加利润,只有合理安排生产量,才能取得总大的利润。
2关于增长率问题例:设变量y 是时间t 的函数y = f (t),则比值为函数f (t)在时间区间上的相对改变量;如果f (t)可微,则定义极限为函数f (t)在时间点t 的瞬时增长率。
对指数函数而言,由于,因此,该函数在任何时间点t 上都以常数比率r 增长。
这样,关系式 (*)就不仅可作为复利公式,在经济学中还有广泛的应用。
如企业的资金、投资、国民收入、人口、劳动力等这些变量都是时间t 的函数,若这些变量在一个较长的时间内以常数比率增长,都可以用(*)式来描述。
因此,指数函数中的“r”在经济学中就一般的解释为在任意时刻点t 的增长率。
如果当函数中的r 取负值时,也认为是瞬时增长率,这是负增长,这时也称r 为衰减率。
贴现问题就是负增长。
3.弹性函数设函数y=f(x)在点x 处可导,函数的相对改变量Δyy=f(x+Δx)-f(x)y 与自变量的相对改变量Δxx 之比,当Δx →0时的极限称为函数y=f(x)在点x 处的相对变化率,或称为弹性函数。
记为EyEx •EyEx=lim δx →0Δyy Δxx=lim δx →0Δy Δx .xy=f ’(x)xf(x)在点x=x 0处,弹性函数值Ef(x 0)Ex=f ’(x 0)xf(x 0)称为f (x )在点x=x 0处的弹性值,简称弹性。
EE xf(x 0)%表示在点x=x 0处,当x 产生1%的改变时,f (x )近似地改变EE xf(x 0)%。
经济学中,把需求量对价格的相对变化率称为需求弹性。
对于需求函数Q=f (P )(或P=P (Q )),由于价格上涨时,商品的需求函数Q=f(p)(或P=P(Q))为单调减少函数,ΔP 与ΔQ 异号,所以特殊地定义,需求对价格的弹性函数为η(p)=-f ’(p)pf(p)例 设某商品的需求函数为Q=e -p5,求(1)需求弹性函数;(2)P=3,P=5,P=6时的需求弹性。
解:(1)η(p)=-f ’(p)pf(p)=-(-15)e -p5.pe -p5=p5;(2)η(3)=35=0.6;η(5)=55=1;η(6)=65=1.2η(3)=0.6<1,说明当P=3时,价格上涨1%,需求只减少0.6%,需求变动的幅度小于价格变动的幅度。
η(5)=1,说明当P=5时,价格上涨1%,需求也减少1%,价格与需求变动的幅度相同。
除了上述三个例子之外,还有“规模报酬、货币乘数、马歇尔-勒那条件等无数的经济概念和原理是在充分运用导数、积分、全微分等各种微积分知识构建的。
他们极大的丰富了经济学内涵,为政府的宏观调控提供了重要帮助3.微积分在物理的应用物理是我高中最喜欢的课程,在高中进行物理竞赛是学到了不少关于微积分的思想,比如在考虑物体的运动时,因为其速度在不断改变,很难求其在一点的速度,微积分中的微元的思想此刻闪现出它的光芒,把非匀速运动看成由一段一段匀速运动构成,再进行计算,省了很多的时间。