风力发电机组控制系统
风力发电机组的控制系统
![风力发电机组的控制系统](https://img.taocdn.com/s3/m/305c35584531b90d6c85ec3a87c24028915f85c1.png)
04
风力发电机组控制系统 的优化与改进
控制策略优化
优化控制策略是提高风力发电机组 效率的关键。
控制策略的优化主要涉及对风电机组 的启动、运行和停机阶段的控制逻辑 进行改进,以更好地适应风速的变化 ,提高发电效率和稳定性。
传感器优化
优化传感器是提高风力发电机组控制精度的必要步骤。
通过改进传感器的设计、提高其精度和可靠性,可以更准确地检测风速、风向、 温度、压力等参数,为控制系统提供更准确的数据,从而提高发电效率。
能源设备进行互联互通,实现能源的优化利用和节能减排。
谢谢观看
偏航控制
01
偏航控制是风力发电机组控制系统中的另一项关键技术, 其目的是在风向变化时,自动调整机组的朝向,以保持最 佳的捕风角度。
02
偏航控制通过实时监测风向和发电机组的朝向,采用适当 的控制算法,自动调节机组的偏航机构,以实现最佳的捕 风效果。
03
常用的偏航控制算法包括:基于风向标的偏航控制、基于 扭矩传感器的偏航控制和基于GPS的偏航控制等。这些算 法能够根据风向的变化情况,自动调整机组的朝向,使其 始终保持在最佳的捕风角度。
是整个控制系统的核心,负责接收传 感器数据、执行控制算法并驱动执行 机构。
I/O模块
用于接收和发送信号,实现与传感器 和执行机构之间的通信。
人机界面
提供操作员与控制系统之间的交互界 面,显示机组状态和参数。
数据存储器
用于存储运行数据,便于故障分析和 优化运行。
控制算法
最大功率跟踪算法
载荷限制算法
根据风速传感器数据,自动调整发电机转 速和桨距角,使机组始终在最佳效率下运 行。
03
02
桨距调节机构
根据控制系统的指令,调整风轮桨 距角。
风力发电机组的控制系统设计与仿真
![风力发电机组的控制系统设计与仿真](https://img.taocdn.com/s3/m/1195ecad846a561252d380eb6294dd88d0d23da7.png)
风力发电机组的控制系统设计与仿真一、引言风力发电作为可再生能源的一种重要形式,受到越来越多国家和地区的广泛关注和重视。
风力发电机组的控制系统对于提高发电效率和确保机组安全稳定运行具有至关重要的作用。
本文旨在介绍风力发电机组的控制系统设计和仿真,并探讨其在风力发电行业中的重要性和应用前景。
二、控制系统设计1. 控制系统架构风力发电机组的控制系统通常包括主控制器、传感器、执行器和通信模块等组成部分。
其中,主控制器负责整个系统的运行控制和监测;传感器用于采集风速、转矩、温度等参数;执行器控制叶片角度、转速等;通信模块用于与外部网络进行数据交互。
2. 控制策略风力发电机组的控制策略包括风轮转速控制、叶片角度控制和电网连接控制等。
其中,风轮转速控制可以通过调整叶片角度和变桨控制实现,以优化风轮在不同风速下的转速;叶片角度控制可以根据风速和转速等参数进行自适应调整,以达到最佳发电性能;电网连接控制包括对电力系统的稳定性和功率因数等进行监测和调整。
3. 仿真模型设计为了对风力发电机组的控制系统进行仿真验证,需要建立相应的仿真模型。
仿真模型应包括风速、转速、叶片角度和发电功率等参数,并结合风场条件和机组特性进行模拟。
在仿真过程中,可以通过改变参数和策略,评估不同控制系统设计对机组性能的影响,并找出最优解。
三、仿真应用与优化1. 性能评估通过仿真模型,可以对不同控制系统设计的风力发电机组进行性能评估。
包括发电效率、稳定性和可靠性等方面的指标。
根据评估结果,可以对控制系统进行优化设计,提高发电机组的整体性能。
2. 变桨控制优化变桨控制是风力发电机组中的重要环节,直接影响着叶片的角度和风轮的转速。
通过仿真模型,可以对不同变桨控制策略进行比较和优化。
例如,调整叶片角度的时机和角度范围,以提高风力发电机组的发电效率和稳定性。
3. 智能优化算法应用利用智能优化算法,可以对风力发电机组的控制系统进行优化设计。
例如,遗传算法、模糊控制和人工神经网络等算法可以结合仿真模型,寻求最佳的控制策略和参数配置,以提高机组的发电效率和适应性。
风力发电机组控制系统
![风力发电机组控制系统](https://img.taocdn.com/s3/m/5006b529453610661ed9f429.png)
昝润鹏双馈机运行原理图•控制系统利用DSP或单片机,在正常运行状态下,主要通过对运行过程中对输入信号的采集、传输、分析,来控制风电机组的转速和功率;如发生故障或其它异常情况能自动地检测并分析确定原因,自动调整排除故障或进入保护状态•DSP(digital signal processor)是一种独特的微处理器,是以数字信号来处理大量信息的器件。
其工作原理是接收模拟信号,转换为0或1的数字信号。
再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式。
它不仅具有可编程性,而且其实时运行速度可达每秒数以千万条复杂指令程序,远远超过通用微处理器,是数字化电子世界中日益重要的电脑芯片。
它的强大数据处理能力和高运行速度,是最值得称道的两大特色。
•控制系统主要任务就是能自动控制风电机组依照其特性运行、故障的自动检测并根据情况采取相应的措施。
•控制系统包括控制和检测两部分,控制部分又分为手动和自动。
运行维护人员可在现场根据需要进行手动控制,自动控制应该在无人值守的条件下实施运行人员设置的控制策略,保证机组正常安全运行。
•检测部分将各种传感器采集到的数据送到控制器,经过处理作为控制参数或作为原始记录储存起来,在机组控制器的显示屏上可以查询,也要送到风电场中央控制室的电脑系统,通过网络或电信系统现场数据还能传输到业主所在城市的办公室。
•第一:低于切入风速区域。
一旦满足切入条件,控制启动风机。
•第二:切入风速到额定风速区域。
控制目标是最大风能捕获,通常将桨距角保持在某个优化值不变,通过发电机转矩控制叶轮转速,实现最佳叶尖速比。
•第三:超过额定风速区域。
通过变桨控制保持输出功率和叶轮转速恒定。
叶尖速比:叶轮的叶尖线速度与风速之比。
叶尖速比在5-15时,具有较高的风能利用系数Cp(最大值是0.593)。
通常可取6-8。
•风传感器:风速、风向;•温度传感器:空气、润滑油、发电机线圈等;•位置传感器:润滑油、刹车片厚度、偏航等;•转速传感器:叶轮、发电机等;•压力传感器:液压油压力,润滑油压力等;•特殊传感器:叶片角度、电量变送器等;•⑴控制系统保持风力发电机组安全可靠运行,同时高质量地将不断变化的风能转化为频率、电压恒定的交流电送入电网。
风力发电机组 控制系统及SCADA系统
![风力发电机组 控制系统及SCADA系统](https://img.taocdn.com/s3/m/325f70df76a20029bd642dee.png)
自动运行控制要求
► 1、开机并网控制
当风速十分钟平均值在系统工作区域内,机 械刹车松开,叶片开始变桨,风力作用于风 轮旋转平面上,风机慢慢起动,当转速即将 升到发电机同步转速时,软启动装置使发电 机连入电网呈异步电动机状态,促使转速快 速升高,待软启动结束旁路接触器动作,机 组并入电网运行。
自动运行控制要求
► 伺服驱动单元 ► 紧急变桨蓄电池及监视单元 ► 紧急变桨模块 ► 超速保护继电器 ► 小型断路器,各种继电器及端子板 ► 各种按钮,指示灯及维护开关
轮毂控制柜功能
► 变桨及紧急收桨控制 ► 紧急收桨系统在线检测 ► 超速保护
► 轮毂速度检测
► 变桨轴承和变桨齿轮润滑控制
► 轮毂温度监视
滑环装置
风机运行状态划分
► 运行状态
1)机械刹车松开 2)允许机组并网发电 3)偏航系统投入自动 4)变桨系统选择最佳工作状态 5)发电机出口开关闭合,若风速够大可以 发电,则大、小发电机的相应开关闭合
风机运行状态划分
► 停机状态
1)机械刹车松开 2)偏航系统停止工作 3)叶片收回至90°变桨系统停止工作 4)发电机出口开关闭合,其余开关均断开
机舱控制柜
► 机舱控制柜组成
1.机舱PLC站 电源模块 FASTBUS从站模块 CANBUS主站模块 以太网模块(本地PC维护接口) DIO AIO模块 2.塔基X-Y振动传感器单元PCH 3.紧急故障继电器 4.各种断路器、继电器、开关等
机舱控制柜主要功能
► 手动/自动偏航控制包括液压刹车 ► 气象站数据检测(风速、风向、温度) ► 润滑系统控制
温度记录模块PTAI216
温度记录模块PTAI216有4路模拟输 入和12路PT100传感器输入 ► 单端或差分模拟输入信号 ► 可输入2线Pt100传感器 ► 分辨率14位(AI) / 12位( Pt100 ) ► 取样时间2.5毫秒(AI) / 600毫秒 ( Pt100 ) ► 输入与系统电隔离 ► 断线监测投入 ► 监测外部电源电压
2.1--金风1.5兆瓦风力发电机组控制系统介绍
![2.1--金风1.5兆瓦风力发电机组控制系统介绍](https://img.taocdn.com/s3/m/3c09c52765ce050877321304.png)
主电缆
电机侧二极管整 流单元
斩波升压单元 网侧逆变单元
AC
DC DC
DC DC
DC
DC
AC
主断路器
进线电缆
开关柜
Freqcon变流器
叶
片
及
永磁同步
变
发电机
桨
驱
动
连接器
DP总线
底座
D
P
总
线
塔架
机组主控制柜
变流控制器
I/O D 信P 号总
▲风机控制 ▲参数设置 ▲查阅信息
▲统计报表 ▲风机控制 ▲参数设置 ▲查阅信息
主控制器(风机系统逻辑控制)
▲风机正常工作逻辑控制 ▲故障诊断及保护 ▲数据采集/统计 ▲与各个系统的数据交互控制
变桨系统
▲桨距调节 ▲桨距角采集 ▲异常保护 ▲故障诊断及保护
变流系统
▲电力变换 ▲功率控制 ▲转矩控制 ▲功率因数调节 ▲故障诊断及保护
10 / 35 kV f = 50 Hz
一、金风1.5兆瓦风力发电机组的控制系统 Switch变流配金置风的15系00统千瓦直驱风力发电机组系统结构图
主电缆
电机侧功率单元 网侧功率单元 主断路器
AC
DC DC
DC
AC
620 / 690 V
进线电缆 f = 50 Hz
10 / 35 kV f = 50 Hz
D
P 总 线
冷 却 水 管
2、红色虚线框里表示水冷系统 (塔底) 3、绿色虚线框里表示主控系统 (塔底) 4、黑色虚线框里表示机舱控制系统(塔顶) 5、紫色虚线框里表示变桨控制系统(塔顶)
风力发电机组控制系统设计与性能优化
![风力发电机组控制系统设计与性能优化](https://img.taocdn.com/s3/m/0a77bcf9970590c69ec3d5bbfd0a79563c1ed4cf.png)
风力发电机组控制系统设计与性能优化一、引言风力发电作为一种可再生能源,正逐渐成为全球能源结构调整中的重要组成部分。
风力发电机组控制系统作为风力发电系统中的核心部分,起到了控制和优化发电机组运行的重要作用。
本文将从风力发电机组控制系统的设计和性能优化两个方面进行探讨。
二、风力发电机组控制系统设计1. 系统结构设计在风力发电机组控制系统的设计中,需要首先确定系统的结构。
一般来说,风力发电机组控制系统由传感器、执行器、控制器和监控系统等多个组成部分构成。
在确定系统结构时需要考虑系统的稳定性、可靠性以及适应性。
2. 传感器选择与配置风力发电机组控制系统中的传感器起到了采集各种运行参数的作用,对系统的控制和优化至关重要。
传感器的选择和配置需要根据风力发电机组的实际情况进行考虑,包括风速传感器、转速传感器、温度传感器等。
在传感器的选择与配置中,需要考虑到其稳定性、精度以及可靠性等因素。
3. 控制算法设计风力发电机组控制系统的核心是控制算法的设计。
控制算法的设计需要考虑到风力发电机组的输出功率以及转速等关键参数。
常用的控制算法包括PID控制算法、模糊控制算法和遗传算法等。
在控制算法设计中,需要考虑到系统的稳定性和响应速度等因素。
三、风力发电机组控制系统性能优化1. 功率曲线优化风力发电机组的输出功率与风速之间存在着复杂的非线性关系。
通过对风力发电机组的功率曲线进行优化,可以获得更高的发电效率。
在功率曲线优化中,可以通过调整控制算法参数、叶片角度以及系统的响应速度等因素来实现。
2. 风速跟踪与预测风速的变化对风力发电机组的发电效率有着重要影响。
通过对风速的跟踪与预测,可以实现对风力发电机组的控制和优化。
在风速跟踪与预测中,可以使用神经网络、模糊控制等方法进行建模和预测。
3. 故障诊断与容错控制风力发电机组在运行过程中可能会出现各种故障,如变桨系统故障、传感器故障等。
通过故障诊断与容错控制,可以有效提高系统的可靠性和稳定性。
风力发电机组的控制系统
![风力发电机组的控制系统](https://img.taocdn.com/s3/m/dfb8ab1fdc36a32d7375a417866fb84ae45cc314.png)
风力发电机组的控制系统风力发电作为一种清洁、可再生的能源,越来越得到人们的重视和使用。
而风力发电最核心的部分就是风力发电机组控制系统。
本文将深入探讨风力发电机组控制系统的相关知识。
一、风力发电机组的基本组成部分风力发电机组通常由3个主要部分组成:风力涡轮、变速器和发电机。
其中变速器是为了将风力涡轮的旋转速度转变成适合发电机的速度,同时保证风力涡轮在各种风速下都能正常转动。
而发电机则是将机械能转变为电能。
二、风力发电机组的控制系统的分类根据控制对象的不同,风力发电机组控制系统可以分为风力涡轮控制系统和整机控制系统。
1. 风力涡轮控制系统风力涡轮控制系统主要由风速测量仪、方向传感器、转矩信号传感器、角度传感器、变桨控制器等部分组成。
其主要作用是对风速和转矩进行检测和获取,然后根据这些数据控制机组桨叶的角度,调节风力涡轮的输出功率,以适应不同的风速和负载要求。
当遭遇大风或预期外部异常情况时,风力涡轮控制系统还可以自动停机。
2. 整机控制系统整机控制系统主要由仪表、控制器、通信模块、电动机传动机构、机械部分等部分组成。
整机控制系统起到了协调、控制各部分工作的作用,可以实现以最佳的效率输出电能。
其主要作用是监控发电机组的运转状态,通过检测各项参数实时调整变速器的转速,并及时进行告警和自动停机。
三、风力发电机组控制系统的关键技术1. 风力涡轮桨叶轴系统的控制风力涡轮桨叶轴系统的控制是风力发电机组控制系统的核心部分之一,也是解决风机输出功率波动和抖动问题的重要技术。
目前常见的调节方式包括机械调节和电动调节两种。
机械调节方式主要采用伺服驱动的伸缩臂与桨叶之间的连杆机构实现,而电动调节则利用变速器的电动油门、电子液压伺服系统或液压拉杆控制桨毂角度。
其中,电动调节方式更加智能化、精准化。
2. 整机控制系统的优化算法整机控制系统的优化算法是风力发电机组控制系统技术的另一个重要方向。
通过对风能、转速、功率、角度等数据进行分析,整机控制系统可通过智能算法,实现最大效率的输出电能。
风力发电机组的控制与安全系统技术要求
![风力发电机组的控制与安全系统技术要求](https://img.taocdn.com/s3/m/2394ab5ca9114431b90d6c85ec3a87c240288a8f.png)
风力发电机组的控制与安全系统技术要求简介风力发电机组是一种利用风能转化为电能的设备,越来越多地被应用于能源领域。
为了保证风力发电机组的安全运行,需要进行控制和监管。
本文将介绍风力发电机组控制与安全系统的技术要求。
控制系统风力发电机组的控制系统是由控制器、传感器、执行机构等组成的,用于控制风力发电机的运行和维护。
控制器风力发电机组的控制器是核心部件,功率变换器、功率调整器、变桨器等都需要通过控制器来控制。
控制器需要支持各种常见的通讯协议,如Modbus、CAN等。
控制器需要具备以下技术要求:1.快速响应:控制器需要在短时间内响应并调节系统的状态,以保证发电机的安全运行。
2.稳定性:控制器需要能够保持在复杂多变的环境中的稳定性。
3.可靠性:控制器需要遵循良好的电路设计和质量控制标准,确保可靠性。
传感器风力发电机组的传感器用于检测风速、转速、温度等参数,为控制器提供可靠的反馈信息。
传感器需要具备以下技术要求:1.高效准确:传感器需要精确地检测各种参数。
2.可靠性:传感器需要具备较高的可靠性,以确保风力发电系统的正确工作。
执行机构风力发电机组的执行机构用于控制转子和叶片的角度,控制风力发电机的转速,从而确保风电机组能够按照预定要求工作。
执行机构需要具备以下技术要求:1.响应速度:执行机构需要具有较快的响应速度,以进行精密控制。
2.稳定性:执行机构需要能够保持在复杂多变的环境中的稳定性。
3.可靠性:执行机构需要遵循良好的电路设计和质量控制标准,确保可靠性。
安全系统风力发电机组的安全系统是通过对控制系统、电气设备、机械设备等的监测,实现风力发电机组的安全运行。
控制系统风电控制系统的安全要求主要包括以下几个方面:1.控制系统故障保护:确保控制器在故障情况下能够自动断电并防止发电机的持续运行。
2.防止电网反向流:避免电网中产生反向电流,对电气设备和控制器造成损害。
3.突发状况下的控制系统安全:应对发电机的速度和输出功率的变化,确保发电机及其附件的安全。
风力发电机组控制系统
![风力发电机组控制系统](https://img.taocdn.com/s3/m/341baa63a517866fb84ae45c3b3567ec102ddc1c.png)
风力发电机组控制系统摘要:主控系统是风力发电机组的核心,通过数字量和模拟量的输入来完成数据的采集,然后根据内部设定的程序,完成逻辑功能的判断,最后通过模拟量和数字量的输出达到控制机组和保障机组安全稳定运行的目的。
关键词:数据;逻辑;控制1主控系统工作内容⑴主控系统是机组可靠运行的核心,主要完成以下工作:⑵采集数据并处理输入、输出信号;判定逻辑功能;⑶对外围执行机构发出控制指令;⑷与机舱柜及变桨控制系统进行通讯,接收机舱柜及变桨控制系统的信号;⑸与中央监控系统通讯、传递信息。
2数字模拟⑴数字输入模块用于连接外部的机械触点和电子数字式传感器,例如二线式光电开关和接近开关等。
数字量输入模块将从现场传来的外部数字信号的电平转换为PLC内部的信号电平。
输入电路中一般设有RC滤波电路,以防止由于输入触点的抖动或外部干扰脉冲引起的错误输入信号,输入电流一般为数毫安。
⑵数字量输出模块用于驱动电磁阀、接触器、小功率电动机、灯和电动机启动器等负载。
数字量输出模块将CPU内部信号电平转化为控制过程所需的外部信号电平,同时有隔离和功率放大的作用。
输出模块的功率放大元件有驱动直流负载的大功率晶体管和场效应晶体管、驱动交流负载的双向晶闸管或固态继电器。
⑶模拟量输入模块用于将模拟量信号转换为CPU内部处理用的数字信号,主要由A/D转换器组成。
⑷模拟量输出模块将CPU送给它的数字信号转换成电流信号或电压信号,对执行机构进行调节或控制,主要由D/A转换器组成。
⑸CX5020:金风2.0MW主控系统选用CX5020为主控系统的核心控制器CX5020带有两个独立的以太网端口(可定义两个独立的IP地址)和四个USB2.0接口。
一块位于盖板后面并可从外部拆装的可互换的CF卡作为CX5020的引导和存储介质,CX5020还内置了一个1秒钟UPS,可确保在CF卡上安全备份持久性应用数据,目前CX5020选用的操作系统是Windows CE,可以通过CERHOST软件进行访问。
风力发电机组控制系统设计与仿真
![风力发电机组控制系统设计与仿真](https://img.taocdn.com/s3/m/3dd0c5cd690203d8ce2f0066f5335a8102d2662a.png)
风力发电机组控制系统设计与仿真一、引言风能作为一种可再生的清洁能源,受到越来越多的关注和应用。
风力发电机组是利用风能将其转化为电能的设备,而风力发电机组控制系统则是保证风力发电机组安全可靠运行的核心。
本文将介绍风力发电机组控制系统的设计与仿真,涵盖系统的功能、架构、控制策略和仿真实验等方面。
二、功能需求1. 风力发电机组控制系统的主要功能是对风力发电机组进行全面控制和监测,包括对风轮、发电机和变流器等的控制和保护。
2. 控制系统应能自动调节风轮转速和变桨角度,以确保最大化风能转化效率。
3. 控制系统应具备实时检测和响应的能力,能够对外部环境变化做出及时调整,并保证机组的安全运行。
4. 控制系统应能对发电机和变流器进行功率控制和电流保护,以确保电网的稳定性和可靠性。
三、系统架构设计1. 风力发电机组控制系统的架构主要分为三层:监控层、控制层和执行层。
2. 监控层负责对整个风力发电机组系统进行实时监测和数据采集,包括风速、转速、功率等参数的测量。
3. 控制层负责根据监控层的数据进行决策和控制策略制定,实现对风力发电机组的自动调节和保护。
4. 执行层负责根据控制层发出的指令对风轮和变桨系统进行控制,以及实现发电机和变流器的功率控制和保护。
四、控制策略设计1. 风力发电机组控制系统的控制策略需要考虑到外部环境和内部状态的变化,以实现最佳的风能转化效率和系统的安全运行。
2. 针对风速变化,控制系统应根据实时风速数据自动调整风轮的转速和变桨角度,使其始终处于最佳工作状态。
3. 控制系统应实施齐备的故障检测和识别算法,能够快速准确地判断风力发电机组是否存在故障,并采取相应的保护措施。
4. 控制系统应具备电网响应能力,能够根据电网需求调整发电机的功率输出,以保持电网的稳定性。
五、仿真实验1. 通过仿真实验可以验证风力发电机组控制系统的设计方案和控制策略的有效性。
2. 使用仿真软件建立风力发电机组的数学模型,并根据实际工作情况设置仿真参数。
风力发电机组控制系统及智能化设计
![风力发电机组控制系统及智能化设计](https://img.taocdn.com/s3/m/64f80a6c905f804d2b160b4e767f5acfa1c7832e.png)
风力发电机组控制系统及智能化设计一、风力发电机组控制系统概述风力发电是一种清洁、可再生的能源,已经被广泛应用。
风力发电机组控制系统是核心的控制部分,负责监测和控制风力发电机组的运行状态,确保其安全、高效地发电。
智能化设计使得风力发电机组控制系统更加智能和可靠,提高了发电效率和自动化程度。
二、风力发电机组控制系统的基本组成1. 控制器:风力发电机组的大脑,负责整个系统的控制和保护。
通过监测传感器获取各类数据,实现对风电场的风能、发电机组和传动系统的控制。
2. 传感器:用于收集环境和机组运行状态的各类数据,包括风速、风向、温度、湿度、转速、振动等。
传感器的数据是风力发电机组控制系统的重要输入。
3. 执行器:通过控制风机的旋转、倾斜角度、刹车等动作,实现风电场的运行和调节。
执行器包括驱动电机、转向齿轮、刹车系统等。
4. 通信模块:将风力发电机组控制系统与监控中心、其他风力发电机组进行数据交互和通信。
实现对整个风电场的集中控制和管理。
5. 数据存储:通过数据存储设备将风电场的历史数据和实时数据进行存储,为后续数据分析和系统优化提供支持。
三、风力发电机组控制系统的主要功能1. 监测和控制环境参数:通过传感器监测风速、风向、温度等环境参数,根据环境条件调整风力发电机组的运行状态和输出功率。
2. 系统保护:风力发电机组控制系统具备故障自检能力,能够监测和检测各个部件的工作状态,实时发现故障并采取相应的保护措施,避免发生事故。
3. 提高发电效率:通过智能化算法,对风力发电机组的转速、发电功率进行优化调节,提高发电效率,降低能源消耗。
4. 远程监控和管理:借助通信模块,风力发电机组控制系统可以实现对风电场的集中监控和管理,实时获取各个机组的状态,进行远程操作和故障处理。
5. 故障诊断和维护:通过数据存储和分析,风力发电机组控制系统可以进行故障诊断,根据故障类型提出相应的维护方案,减少停机时间和维护成本。
四、风力发电机组控制系统的智能化设计1. 引入人工智能技术:通过机器学习和深度学习算法,对风力发电机组控制系统的数据进行分析和处理,自动识别和判断运行状态,提出优化建议。
风力发电机组控制系统设计与实现
![风力发电机组控制系统设计与实现](https://img.taocdn.com/s3/m/f0e051ca85868762caaedd3383c4bb4cf7ecb78d.png)
风力发电机组控制系统设计与实现风力发电机组是一种常见的可再生能源装置,它是利用风能驱动转子旋转,通过机械转换和电气转换等过程,将风能转化为电能,并输送到用电设备上。
为了确保风力发电机组能够正常、高效的工作,需要一个控制系统来监测和控制其运行状态。
因此本文将详细探讨风力发电机组的控制系统设计与实现。
一、风力发电机组的工作原理风力发电机组主要由塔架、轮毂、叶轮、机舱、发电机和电器设备等组成。
其工作原理是通过叶轮转动带动轮毂带动发电机旋转,利用发电机机械能转化为电能,并将电能输送到电网上。
二、风力发电机组控制系统的组成风力发电机组的控制系统主要由控制器、传感器、执行器等组成。
控制器负责采集各种传感器检测到的参数,如风速、转速、温度等,根据这些参数计算出当前的运行状态,并控制执行器调整叶片角度、转速等。
传感器是控制系统的重要组成部分。
它能够实时采集风速、转速、温度等各种参数,并且通过信号传输将这些参数传递给控制器,控制器依据这些参数做出相应的调节,以达到最优化的发电效果。
执行器是控制系统的另外一个重要组成部分,它通常包括电机、阀门、开关等等。
执行器与控制器通过控制信号进行通讯,以实现对发电机组的控制,例如调整叶片角度、控制发电机的电压、转速等等,以保持风力发电机组的稳定性和高效性。
三、风力发电机组控制系统的设计过程在风力发电机组控制系统的设计过程中,需要考虑几个关键因素:1、控制策略的制定控制策略是控制系统设计中最重要的因素之一。
控制策略的核心是确定发电机组的运行状态,并自动调整叶片角度、转速等参数,以实现最佳发电效果。
在制定控制策略时,需要考虑多种参数,如风速、载荷、温度等,以保证发电量和稳定性。
2、选择合适的传感器和执行器传感器和执行器是控制系统中必不可少的组成部分。
要选择合适的传感器和执行器,以保证控制系统的准确性和可靠性。
3、结构设计在结构设计中,需要考虑特定的环境条件,如温度、湿度、风速等,以保证控制器和电器设备的稳定性和可靠性。
风力发电机组控制系统仿真考核试卷
![风力发电机组控制系统仿真考核试卷](https://img.taocdn.com/s3/m/7f6ca34b4a73f242336c1eb91a37f111f1850d25.png)
B.刚度
C.质量密度
D.所有以上因素
14.以下哪些是风力发电机组中的保护系统?()
A.过速保护
B.过温保护
C.振动监测
D.所有以上系统
15.在风力发电机组的设计过程中,以下哪些因素会影响叶片的设计?()
A.预期发电量
B.风场特性
C.材料成本
D.所有以上因素
16.以下哪些技术可以用于风力发电机组的远程监控?()
6.在风力发电机组控制系统中,__________控制策略被广泛应用于转速控制。
7.风力发电机组在并网运行时,需要满足__________和__________的稳定性要求。
8.风力发电机组中的制动系统主要包括__________和__________两种类型。
9.仿真模型中,__________和__________是评价风力发电机组性能的重要参数。
A.模糊控制
B.神经网络控制
C. PID控制
D.专家系统控制
5.风力发电机组中的变桨距控制是为了:()
A.保持最佳叶尖速比
B.降低叶片载荷
C.提高发电效率
D.减小尾流影响
6.下列哪种因素会影响风力发电机组的输出功率?()
A.风速
B.叶片长度
C.气压
D.所有以上因素
7.在风力发电机组控制系统中,以下哪个环节是模拟量控制系统?()
A.调整电压和频率
B.提高发电效率
C.降低噪音
D.减小尾流影响
13.下列哪种因素会影响风力发电机组叶片的疲劳寿命?()A.风速Biblioteka B.叶片材料C.桨距角
D.所有以上因素
14.风力发电机组中的塔架主要起到什么作用?()
风力发电机组的系统控制
![风力发电机组的系统控制](https://img.taocdn.com/s3/m/58991679366baf1ffc4ffe4733687e21af45ffc6.png)
风力发电机组的系统控制随着环境保护意识的不断提高和能源危机的加剧,风力发电作为一种清洁、可再生的能源利用方式,逐渐受到人们的关注和推广。
而风力发电机组的系统控制是实现稳定、高效发电的重要保障。
一、风力发电机组的系统组成和工作原理风力发电机组由风轮、转速控制系统、发电机和电力转换器等组成。
当风轮受风的作用旋转时,转动产生动能被传给发电机,经过电力转换器转化成交流电并输出。
其中,转速控制系统对风轮的转动进行调节,保证发电机在最大效率下运转。
二、风力发电机组的系统控制策略1.转速调节:转速调节是风力发电机组的基本控制策略。
其目的是保证风轮叶片旋转的速度达到最优区间,从而提高发电机的输出功率。
转速调节主要分为机械、电子和混合控制等方式。
机械控制:传统的机械控制方式采用转向浆的机械设计,通过改变羽片的角度来控制风轮转速。
该方式简单、成本低但稳定性不够。
电子控制:通过控制发电机转子上的磁场来改变发电机的输出功率,进而实现转速控制。
该方式精度高、稳定性好但成本较高。
混合控制:将机械和电子控制方式的优点结合起来,增强控制系统的稳定性和可靠性。
混合控制方式是当前主流的转速调节方式。
2.偏航控制:偏航控制是风力发电机组的必要控制策略,用来控制风轮的方向。
在复杂的气象条件下,通过偏航控制将风轮转向风向,并在突发的气象变化中及时调整风轮方向,减小因系统失控导致的风力发电机组运行出现事故。
3.电网支撑和功率平衡控制:电网支撑和功率平衡控制是指将风力发电机组的输出能量与电网负荷之间建立反馈控制,保证电能质量和电力系统的稳定性。
在市场化环境,对接电网的风力发电机组还需要实现功率平衡控制,控制机组的风电功率与基础负荷之和保持稳定。
三、风力发电机组的系统控制优化随着风力发电行业的快速发展,风力发电机组的系统控制的优化已成为实现高效、稳定发电的重要途径。
通过优化转速调节、偏航控制、电网支撑和功率平衡控制等关键系统控制策略,可以实现以下目标:1.提高机组发电效率,降低运行成本;2.提高机组的响应速度,保证风场运行的稳定性;3.实现对风力资源与市场需求的动态调整,提高风力发电系统的灵活性;4.通过风力发电机组的智能化控制系统,实现设备状态监测、故障诊断等高端需求。
风力发电机组的PLC控制
![风力发电机组的PLC控制](https://img.taocdn.com/s3/m/79eff761cdbff121dd36a32d7375a417866fc1df.png)
风力发电机组的PLC控制
介绍
风力发电是新型的清洁能源之一,而PLC控制技术在风力发电中也扮演着重要的角色。
PLC控制系统是通过PLC实现风力发电机组的控制,可实现对风力发电机组运行状态的监控、维护等功能。
PLC控制系统的工作原理
PLC控制系统由PLC、I/O模块、人机界面(即HMI屏幕)、软件等组成。
通过传感器采集风机的参数,PLC再进行相应的计算,控制风机的放电风荷载等功能。
PLC控制系统可实现自动化、智能化的实时监控,保障风力发电机组的安全运行。
风力发电机组PLC控制系统的优点
1. 提高了风力发电机组的可靠性
2. 节省了运维成本和人工成本
3. 增强了风力发电机组对外部环境的适应能力
4. 减少了风力发电机组的损坏和停机时间,提高了风力发电机组的能量转化效率
风力发电机组PLC控制系统的劣势
1. 需要专业的工程师进行维护和操作
2. 相比于其他控制方式,成本较高
总结
风力发电机组PLC控制系统是一种高效、可靠、智能的控制方式,可以有效提高风力发电机组的效率和运行效果,减少风力发电机组的故障和损坏,有望成为未来风力发电的主流控制方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
风力发电机组控制系统一风电控制系统简述风电控制系统包括现场风力发电机组控制单元、高速环型冗余光纤以太网、远程上位机操作员站等部分。
现场风力发电机组控制单元是每台风机控制的核心,实现机组的参数监视、自动发电控制和设备保护等功能;每台风力发电机组配有就地HMI人机接口以实现就地操作、调试和维护机组;高速环型冗余光纤以太网是系统的数据高速公路,将机组的实时数据送至上位机界面;上位机操作员站是风电厂的运行监视核心,并具备完善的机组状态监视、参数报警,实时/历史数据的记录显示等功能,操作员在控制室内实现对风场所有机组的运行监视及操作。
风力发电机组控制单元(WPCU)是每台风机的控制核心,分散布置在机组的塔筒和机舱内。
由于风电机组现场运行环境恶劣,对控制系统的可靠性要求非常高,而风电控制系统是专门针对大型风电场的运行需求而设计,应具有极高的环境适应性和抗电磁干扰等能力,其系统结构如下:风电控制系统的现场控制站包括:塔座主控制器机柜、机舱控制站机柜、变桨距系统、变流器系统、现场触摸屏站、以太网交换机、现场总线通讯网络、UPS电源、紧急停机后备系统等。
风电控制系统的网络结构。
1、塔座控制站2、塔座控制站即主控制器机柜是风电机组设备控制的核心,主要包括控制器、I/O 模件等。
控制器硬件采用32位处理器,系统软件采用强实时性的操作系统,运行机组的各类复杂主控逻辑通过现场总线与机舱控制器机柜、变桨距系统、变流器系统进行实时通讯,以使机组运行在最佳状态。
3、控制器的组态采用功能丰富、界面友好的组态软件,采用符合IEC61131-3标准的组态方式,包括:功能图(FBD)、指令表(LD)、顺序功能块(SFC)、梯形图、结构化文本等组态方式。
4、2、机舱控制站5、机舱控制站采集机组传感器测量的温度、压力、转速以及环境参数等信号,通过现场总线和机组主控制站通讯,主控制器通过机舱控制机架以实现机组的偏航、解缆等功能,此外还对机舱内各类辅助电机、油泵、风扇进行控制以使机组工作在最佳状态。
6、3、变桨距系统7、大型MW级以上风电机组通常采用液压变桨系统或电动变桨系统。
变桨系统由前端控制器对3个风机叶片的桨距驱动装置进行控制,其是主控制器的执行单元,采用CANOPEN与主控制器进行通讯,以调节3个叶片的桨距工作在最佳状态。
变桨系统有后备电源系统和安全链保护,保证在危急工况下紧急停机。
8、4、变流器系统9、大型风力发电机组目前普遍采用大功率的变流器以实现发电能源的变换,变流器系统通过现场总线与主控制器进行通讯,实现机组的转速、有功功率和无功功率的调节。
10、5、现场触摸屏站11、现场触摸屏站是机组监控的就地操作站,实现风力机组的就地参数设置、设备调试、维护等功能,是机组控制系统的现场上位机操作员站。
12、6、以太网交换机(HUB)13、系统采用工业级以太网交换机,以实现单台机组的控制器、现场触摸屏和远端控制中心网络的连接。
现场机柜内采用普通双绞线连接,和远程控制室上位机采用光缆连接。
14、7、现场通讯网络15、主控制器具有CANOPEN、PROFIBUS、MODBUS、以太网等多种类型的现场总线接口,可根据项目的实际需求进行配置。
16、8、UPS电源17、UPS电源用于保证系统在外部电源断电的情况下,机组控制系统、危急保护系统以及相关执行单元的供电。
18、9、后备危急安全链系统19、后备危急安全链系统独立于计算机系统的硬件保护措施,即使控制系统发生异常,也不会影响安全链的正常动作。
安全链是将可能对风力发电机造成致命伤害的超常故障串联成一个回路,当安全链动作后将引起紧急停机,机组脱网,从而最大限度地保证机组的安全。
20、所有风电机组通过光纤以太网连接至主控室的上位机操作员站,实现整个风场的远程监控,上位机监控软件应具有如下功能:21、①系统具有友好的控制界面。
在编制监控软件时,充分考虑到风电场运行管理的要求,使用汉语菜单,使操作简单,尽可能为风电场的管理提供方便。
22、②系统显示各台机组的运行数据,如每台机组的瞬时发电功率、累计发电量、发电小时数、风轮及电机的转速和风速、风向等,将下位机的这些数据调入上位机,在显示器上显示出来,必要时还可以用曲线或图表的形式直观地显示出来。
23、③系统显示各风电机组的运行状态,如开机、停车、调向、手/自动控制以及大/小发电机工作等情况,通过各风电机组的状态了解整个风电场的运行情况。
24、④系统能够及时显示各机组运行过程中发生的故障。
在显示故障时,能显示出故障的类型及发生时间,以便运行人员及时处理及消除故障,保证风电机组的安全和持续运行。
25、⑤系统能够对风电机组实现集中控制。
值班员在集中控制室内,只需对标明某种功能的相应键进行操作,就能对下位机进行改变设置状态和对其实施控制。
如开机、停机和左右调向等。
但这类操作有一定的权限,以保证整个风电场的运行安全。
26、⑥系统管理。
监控软件具有运行数据的定时打印和人工即时打印以及故障自动记录的功能,以便随时查看风电场运行状况的历史记录情况。
27、二风电控制系统基本功能28、(1)数据采集(DAS)功能:包括采集电网、气象、机组参数,实现控制、报警、记录、曲线功能等;29、(2)机组控制功能:包括自动启动机组、并网控制、转速控制、功率控制、无功补偿控制、自动对风控制、解缆控制、自动脱网、安全停机控制等;30、(3)远程监控系统功能:包括机组参数、相关设备状态的监控,历史和实时曲线功能,机组运行状况的累计监测等。
31、1、数据采集(DAS)功能32、机组运行过程中进行监测的相关参数包括:33、(1)电网参数,包括电网三相电压、三相电流、电网频率、功率因数等。
电压故障检测:电网电压闪变、过电压、低电压、电压跌落、相序故障、三相不对称等。
34、(2)气象参数,包括风速、风向、环境温度等。
35、(3)机组状态参数检测,包括:风轮转速、发电机转速、发电机线圈温度、发电机前后轴承温度、齿轮箱油温度、齿轮箱前后轴承温度、液压系统油温、油压、油位、机舱振动、电缆纽转、机舱温度等。
36、风电场远程监控中心的上位机和塔座触摸屏站均可实现机组的状态监视,实现相关参数的显示、记录、曲线、报警等功能。
37、2、机组启停、发电控制38、(1)主控系统检测电网参数、气象参数、机组运行参数,当条件满足时,启动偏航系统执行自动解缆、对风控制控制工程网版权所有,释放机组的刹车盘,调节桨距角度,风车开始自由转动,进入待机状态。
39、(2)当外部气象系统监测的风速大于某一定值时,主控系统启动变流器系统开始进行转子励磁,待发电机定子输出电能与电网同频、同相、同幅时,合闸出口断路器实现并网发电。
40、(3)风力机组功率、转速调节41、根据风力机特性,当机组处于最佳叶尖速比λ运行时,风机机组将捕获得最大的能量,虽理论上机组转速可在任意转速下运行,但受实际机组转速限制、系统功率限制,不得不将该阶段分为以下几个运行区域:即变速运行区域、恒速运行区域和恒功率运行区。
额定功率内的运行状态包括:变速运行区(最佳的λ)和恒速运行区。
当风机并网后,转速小于极限转速、功率低于额定功率时,根据当前实际风速,调节风轮的转速,使机组工作在捕获最大风能的状态。
由于风速仪测量点的风速与作用于桨叶的风速存在一定误差,所以转距观测器来预测风力机组的机械传动转距,在通过发电机转速和转距的对应关系推出转速。
ω为发电机转速期望值。
Tm为转距的观测值。
Kopt为最佳转速时的比例常数。
当风速增加使发电机转速达上限后,主控制器需维持转速恒定,风力机组发出的电功率,随风速的增加而增加,此时机组偏离了风力机的最佳λ曲线运行。
当风速继续增加,使转速、功率都达到上限后,进入恒功率运行区运行,此状态下主控通过变流器,维持机组的功率恒定,主控制器一方面通过桨距系统的调节减少风力攻角,减少叶片对风能的捕获;另一方面通过变流器降低发电机转速节,使风力机组偏离最佳λ曲线运行,维持发电机的输出功率稳定。
3、风电控制系统辅助设备逻辑(1)发电机系统监控发电机运行参数,通过3台冷却风扇和4台电加热器,控制发电机线圈温度、轴承温度、滑环室温度在适当的范围内,相关逻辑如下:当发电机温度升高至某设定值后控制工程网版权所有,起动冷却风扇,当温度降低到某设定值时,停止风扇运行;当发电机温度过高或过低并超限后,发出报警信号,并执行安全停机程序。
当温度越低至某设定值后,起动电加热器,温度升高至某设定值后时,停止加热器运行;同时电加热器也用于控制发电机的温度端差在合理的范围内。
(2)液压系统机组的液压系统用于偏航系统刹车、机械刹车盘驱动。
机组正常时,需维持额定压力区间运行。
液压泵控制液压系统压力,当压力下降至设定值后,启动油泵运行,当压力升高至某设定值后,停泵。
(3)气象系统气象系统为智能气象测量仪器,通过RS485口和控制器进行通讯,将机舱外的气象参数采集至控制系统。
根据环境温度控制气象测量系统的加热器以防止结冰。
闪光障碍灯控制,每个叶片的末端安装闪光障碍灯,在夜晚点亮。
机舱风扇控制机舱内环境温度。
(4)电动变桨距系统变桨距系统包括每个叶片上的电机、驱动器、以及主控制PLC等部件,该PLC通过CAN总线和机组的主控系统通讯,是风电控制系统中桨距调节控制单元,变桨距系统有后备DO顺桨控制接口。
桨距系统的主要功能如下:紧急刹车顺桨系统控制,在紧急情况下,实现风机顺桨控制。
通过CAN通讯接口和主控制器通讯,接受主控指令,桨距系统调节桨叶的节角距至预定位置。
桨距系统和主控制器的通讯内容包括:桨叶A位置反馈桨叶B位置反馈桨叶C位置反馈桨叶节距给定指令桨距系统综合故障状态叶片在顺桨状态顺桨命令(5)增速齿轮箱系统齿轮箱系统用于将风轮转速增速至双馈发电机的正常转速运行范围内,需监视和控制齿轮油泵、齿轮油冷却器、加热器、润滑油泵等等。
当齿轮油压力低于设定值时,起动齿轮油泵;当压力高于设定值时,停止齿轮油泵。
当压力越限后,发出警报,并执行停机程序。
齿轮油冷却器/加热器控制齿轮油温度:当温度低于设定值时,起动加热器,当温度高于设定值时停止加热器;当温度高于某设定值时,起动齿轮油冷却器,当温度降低到设定值时停止齿轮油冷却器。
润滑油泵控制,当润滑油压低于设定值时,起动润滑油泵,当油压高于某设定值时,停止润滑油泵。
(6)偏航系统控制根据当前的机舱角度和测量的低频平均风向信号值,以及机组当前的运行状态、负荷信号,调节CW(顺时针)和CCW(逆时针)电机,实现自动对风、电缆解缆控制。
自动对风:当机组处于运行状态或待机状态时,根据机舱角度和测量风向的偏差值调节CW、CCW电机,实现自动对风。
(以设定的偏航转速进行偏航,同时需要对偏航电机的运行状态进行检测)自动解缆控制:当机组处于暂停状态时,如机舱向某个方向扭转大于720度时,启动自动解缆程序,或者机组在运行状态时,如果扭转大于1024度时,实现解缆程序。