9.2 一元一次不等式[1][公开课课件]

合集下载

人教版数学《一元一次不等式》_完美课件

人教版数学《一元一次不等式》_完美课件

【获奖课件ppt】人教版数学《一元一 次不等 式》_ 完美课 件1-课 件分析 下载
知2-讲
(2) 去分母,得3(2+x)≥2(2x-1). 去括号,得 6+3x ≥4 x-2 . 移项,得 3x- 4x ≤ -2-6 . 合并同类项,得 -x ≥ -8 . 系数化为1,得x ≤ 8 . 这个不等式的解集在数轴上的表示如图所示 .
【获奖课件ppt】人教版数学《一元一 次不等 式》_ 完美课 件1-课 件分析 下载
【获奖课件ppt】人教版数学《一元一 次不等 式》_ 完美课 件1-课 件分析 下载
总结
知2-讲
一元一次不等式的解法与一元一次方程的解法 类似,其根据是不等式的基本性质,其步骤是:去 分母、去括号、移项、合并同类项、将未知数的系 数化为 1.
步骤
根据
1 去分母
不等式的基本性质 3
2 去括号
单项式乘以多项式法则
3 移项
不等式的基本性质 3
4
合并同类项,得ax>b, 合并同类项法则 或ax<b (a≠0)
5
两边同除以a(或乘
1 a
)
不等式的基本性质 3
【获奖课件ppt】人教版数学《一元一 次不等 式》_ 完美课 件1-课 件分析 下载
【获奖课件ppt】人教版数学《一元一 次不等 式》_ 完美课 件1-课 件分析 下载
B.1
C.-1
D.0
【获奖课件ppt】人教版数学《一元一 次不等 式》_ 完美课 件1-课 件分析 下载
【获奖课件ppt】人教版数学《一元一 次不等 式》_ 完美课 件1-课 件分析 下载
知识点 2 一元一次不等式的解法
知2-讲
解一元一次不等式与解一元一次方程的步骤类似. 解

9.2一元一次不等式课件(公开课)

9.2一元一次不等式课件(公开课)
-5x >-10
x<2
(2)再利用表(一)归纳解一元一次
不等式的一般步骤,并指出每个步骤的根据,完成表(二).
表(二)
步 骤


不等式的性质2,3

去分母

去括号

移项
不等式的性质1

合并同类项
合并同类项法则

系数化为1
不等式的性质2,3
去括号法则
例1. 解下列不等式,并在数轴上表示解集:
(1) 2(1 x) 3
x 7
一元一次不等式与一元一次方
程的解法有哪些类似之处?有什
么不同?
【归纳总结】
解一元一次不等式和解一元一次方程类似,有
去分母
去括号 移项
合并同类项
系数化为1等步骤.
区别在哪里?
在去分母和系数化为1的两步中,要特别注意
不等式的两边都乘以(或除以)一个负数时,不等
号的方向必须改变.
(1)利用解一元一次方程与解一元一次
求 a 的取值.
-2 -1
0 1
解: 移项,得 3x 2a 2
2
a

2
系数化为1,得 x
3
由图可知
x 1
2a 2

1
3
1
解得 a
2
1.解下列不等式,并在数轴上表示解集:
(1)2(x +5) < 3(x - 5) .
x

1
2
x

5
(2)

1
6
4
课本第124页第1题
2.解一元一次方程的基本步骤
(1)去分母
(2)去括号

人教版七年级下册数学课件 第九章 不等式与不等式组 一元一次不等式 第1课时 一元一次不等式的解法

人教版七年级下册数学课件 第九章 不等式与不等式组 一元一次不等式 第1课时 一元一次不等式的解法
数学 七年级下册 人教版
第九章 不等式与不等式组
9.2 一元一次不等式
第1课时 一元一次不等式的解法
1.(3 分)下列各式中,是一元一次不等式的是( B)
A.x2-2x>1
B.x3 -1>x-2 1
C.1x -2≥0 D.x+y2 <-1
2.(3 分)已知 xa-1+3<5 是关于 x 的一元一次不等式,则 a=_2__.
9.若点 P(3a-2,2b-3)在第二象限,则(C )
A.a>23 ,b>32
B.a>23 ,b<32
C.a<23 ,b>32
D.a<23 ,b<32
10.(呼和浩特中考)若不等式2x+ 3 5 -1≤2-x 的解集中 x 的每一个值, 都能使关于 x 的不等式 3(x-1)+5>5x+2(m+x)成立,则 m 的取值范围是(C )
三、解答题(共 36 分) 13.(10 分)当 x 取何值时,代数式6x-4 1 -2x 的值:(1)大于-2;(2)不大于 1-2x.
解:(1)由题意,得6x-4 1 -2x>-2,解得 x<72 (2)由题意,得6x-4 1 -2x≤1-2x,解得 x≤56
14.(10 分)已知关于 x 的方程x+3m -2x-2 1 =m 的解为负数,求 m 的取值范围. 解:解方程得 x=-m+34 ,∵方程的解为负数,∴-m+34 <0,解得 m>34
6.(12分)解下列不等式,并在数轴上表示出解集: (1)3x-1≥2(x-1); 解:去括号,得3x-1≥2x-2,移项,得3x-2x≥-2+1,合并同类项,得x≥-1. 将不等式的解集表示在数轴上如下:
x-2 (2) 5
-ቤተ መጻሕፍቲ ባይዱ+2 4
>-3.
解:去分母,得2(x-2)-5(x+4)>-30,去括号,得2x-4-5x-20>-30, 移项,得2x-5x>-30+4+20,合并同类项,得-3x>-6, 系数化为1,得x<2.将不等式的解集表示在数轴上如下:

一元一次不等式(公开课优秀课件)

一元一次不等式(公开课优秀课件)
图像法解一元一次不等式需要注意函数图像的走向和性质,以及临界点与不等式解 集的关系。
实际应用中的一元一次不等式
一元一次不等式在实际生活中 有着广泛的应用,如购物、投 资、工程等领域的决策问题。
解决实际应用中的一元一次不 等式需要将问题转化为数学模 型,然后运用代数法和图像法 求解。
解决实际应用中的一元一次不 等式需要注意问题的实际情况 和限制条件,以及解的可行性 和最优性。
一元一次不等式(公开课优秀课件)
目 录
• 一元一次不等式的定义与性质 • 一元一次不等式的解法 • 一元一次不等式的应用 • 一元一次不等式的扩展
01 一元一次不等式的定义与 性质
一元一次不等式的定义
总结词
一元一次不等式是数学中一种简单的不等式,它只含有一个变量,且变量的指 数为1。
详细描述
一元一次不等式的一般形式为 ax + b > c 或 ax + b < c,其中 a、b、c 是常 数,a ≠ 0。这个不等式表示一个线性函数在某个区间内大于或小于另一个值。
在人口发展过程中,如何预测未来人 口数量,可以通过一元一次不等式来 建立数学模型。
交通流量问题
在道路交通中,如何合理规划红绿灯 时间,ห้องสมุดไป่ตู้保证交通流畅,可以通过一 元一次不等式来求解。
一元一次不等式与其他数学知识的结合
一元一次不等式与函数
一元一次不等式可以看作是函数的值大于或小于某个常数的情况, 因此可以结合函数的性质进行求解。
代数法解一元一次不等式的步骤 包括:去分母、去括号、移项、
合并同类项、化系数为1等。
代数法解一元一次不等式需要注 意不等式的性质,如不等式的可 加性、可乘性、可除性和同向不

9.2一元一次不等式(公开课优秀课件)

9.2一元一次不等式(公开课优秀课件)
(2)x 233x45 . 解:(1)原不等式的解集为x<5,在数轴上表示为
-1 0 1 2 3 4 5 6
(2)原不等式的解集为x≤-11,在数轴上表示为:
-11
0
解一元一次不等式的步骤: 1.去分母(同乘负数时,不等号方向改变) 2.去括号 3. 移项 4. 合并同类项 5. 系数化为 1(同乘或除以负数时,不等
9.2 一元一次不等式
学习目标 1.理解和掌握一元一次不等式的概念;
2.会用不等式的性质熟练地解一元一次不等式.(重点、 难点)
回顾
下列方程叫做什么方程?
1 x 4
2 3x 30
3 2x 1 x 41.5x 12 0.5x 1
32
一元一次方程
它是怎样定义的?
只含有一个未知数、并且未 知数的次数是1 的方程,叫
6-2x+4 >3x
去括号法则
-2x -3x >-6-4 不等式的基本性质1
-5x >-10
合并同类项法则
x<2
不等式的基本性质2,3
解一元一次不等式和解一元一次方程类似,有 去分母 去括号 移项 合并同类项 系数化为1等步骤.
区别在哪里?
在去分母和系数化为1的两步中,要特别注意不等式的两边 都乘以(或除以)一个负数时,不等号的方向必须改变.
例1 解下列不等式,并在数轴上表示解集:
(1) 2(1 x) 3
(2) 2 x 2x 1
2
3
3、下列解不等式过程是否正确,如果 不正确请给予改正。 解:不等式 x x x 1 1 x 8 去分母得 6x-32x+23(x+1)6<6-x+8 去括号得 6x-3x+2x+2 <6-x+8 移项得 6x-3x+2x-x<6+8+2 合并同类项得 4x<16 系数化为1,得 x<4

9.2 一元一次不等式应用课件 (新人教版七年级下册)

9.2 一元一次不等式应用课件 (新人教版七年级下册)

应用一元一次不等式解实际问题的步 骤有哪些?
请背诵不等式的性质及 解不等式的步骤。
通过本课时的学习,需要我们掌握: 应用一元一次不等式解实际问题的步骤: 实际问题 结合实际确 定答案 设未知数 解不等式 找出不等关系 列不等式
3.(广州·中考)某商店5月1日举行促销优惠活动,当天 到该商店购买商品有两种方案,方案一:用168元购买会 员卡成为会员后,凭会员卡购买商店内任何商品,一律按
元,一本笔记本3元,如果她钢笔和笔记本共买了8件,
每一种至少买一件,则她有多少种购买方案? 【解析】设她买了x支钢笔,则笔记本为(8-x)本,由题意, 得 4.5x+3(8-x)≤30 解得 x≤4 所以x=4或3或2或1. 因为x为正整数,
答:小兰有4种购买方案, ①4支钢笔和4本笔记本, ②3支 钢笔和5本笔记本,③2支钢笔和6本笔记本, ④1支钢笔和 7本笔记本.
甲商店优惠方案的起点为购物款 乙商店优惠方案的起点为购物款 分类讨论:源自100 50元后 元后
1.如果累计购物不超过50元,则在两店购物花费有区
别吗? (消费一样)
2.如果累计购物超过50元而不超过100元,则在哪家商 店购物花费小? (购买同样商品在乙店购物省钱)
3.如果累计购物超过100元,则在甲店购物花费小吗? 设累计购物x元,如果在甲店购物花费小,则
⑵列:根据所设未知数和找到的等量关系列方程 . 法”. ⑶解:解方程,求未知数的值.
⑷答:检验所求解,写出答案.
甲、乙两商店以同样价格出售同样的商品,并且又
各自推出不同的优惠方案:在甲店累计购买100元商品 后,再购买的商品按原价的90%收费;在乙店累计购买 50元商品后,再购买的商品按原价的95%收费,顾客怎 样选择商店购物能获得更大优惠?

人教新课标版初中七下92实际问题与一元一次不等式1课件

人教新课标版初中七下92实际问题与一元一次不等式1课件

同 步 演 练
教学流程
情境引入 探索新知 反馈练习 拓展提高 小结作业
电 子 教 案

北京某旅游场馆门票是每位10元,20人以上

呈 现
(含20人)的团体票8折优惠.现有初一(1)班

的18名同学去参观,当领队李小敏准备好钱去售

分 析
票处买18张票时,爱动脑筋的张立同学喊住了李

小敏,提议买20张门票.其他同学提出异议:明
教学流程
情境引入 探索新知 反馈练习 拓展提高 小结作业

子 教
解:设累计购物x元


1.当0≤x≤50时,则在两个商店购物花费没有区别

呈 现
2.当50<x≤100时,

在甲商店购物是按原价购买,花费仍是x元;

分 析
在乙商店购物是其中50元按原价购买,剩下的(x-

50)元实际花费(x-50)×95%,

标 呈
购物不超过200元,则不给折扣;如果一次购物

超过200元,但不超过500元的,给九折优惠;
教 材
如果一次购物超过500元,其中500元按上述九


折优惠,超过500元的部分给八折优惠.某人两

次去该商场购物,分别付款168元和423元,如

流 程
果他合起来一次去购买同样的商品,他可以节

省多少钱?


同步演练

子 教
3.为了保护环境,某企业决定购买10台污水处理设

备,现有A、B两种型号的设备,其中每台的价格、
目 标
月处理污水量及年消耗费如右表所示。经预算,

9-2利用解一元一次不等式解决实际问题 课件

9-2利用解一元一次不等式解决实际问题 课件
1
设可以购买x(x为整数)件这样的商品.4×5+(x-4)×5×0.8≤42,解得 ≤ 9 2,
则最多可以购买该商品的件数是9,故选:A.
利用一元一次不等式解决实际生活问题
某人要完成2.1千米的路程,并要在不超过18分钟的时间内到达,已知他每分
钟走90米.若跑步每分钟可跑210米,问这人完成这段路程,至少要跑(
是购买10本以上,从第11本开始按标价的70%出售;乙商店的优惠条件是,从第一本起按标价的
80%出售。
(1)若设小明要购买x(x>10)本练习本,则当小明到甲商店购买时,须付款
到乙商店购买时,须付款
元,当
元;
(2)买多少本练习本时,两家商店付款相同?
(3)请你给出小明购买建议。
解:(1)根据题意得,当小明到甲商店购买时,须付款:70%(x﹣10)+10=0.7x+3,当到乙商店购买时,
答:这人完成这段路程,至少要跑4分钟.故选:B.
)
利用一元一次不等式解决实际生活问题
我国从2011年5月1日起在公众场所实行“禁烟”.为配合“禁烟”行动,某校组织开展了
“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记
-5分.小明参加本次竞赛得分要超过100分,他至少要答对多少道题(
3)________________________________________。
情景引入
甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:
在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物
超过50元后,超出50元的部分按95%收费.顾客到哪家商场购物花费少?
某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x元;下午,他又买了20斤,价格为每斤y

一元一次不等式 完整版课件

一元一次不等式   完整版课件
3.如果不等式-a-x+6>4a+2的解为x<1,试求a的值。
4.如果不等式-a-x+6>4a+2正整数解为1,2,3,试求a 的取值范围。
3x2y p1 5、已知关于x的方程组 4x3y p1
的解满足x>y,求p的取值范围。
宾馆里有一座电梯的最大载量为1000千克 。两名宾馆服务员要用电梯把一批重物从 底层搬到顶层,这两名服务员的身体质量 分别为60千克和80千克,货物每箱的质量 为50千克,问他们每次最多只能搬运重物 多少箱?
小结 :
①去分母; ②去括号;
③移项;
④合并同类项;
⑤两边都除以未知数 的系数.(考虑系数的 符号)
不等式基本性质3; 单项式乘以多项式法则 不等式基本性质2 合并同类项法则 不等式基本性质3
1.如果x=2是不等式(a-2)x<4a+2的一个解,试 求a的最 小整数值。
2.如果方程-a-x+6=4a+2的解为正数,试求a的取值 范围。
宾馆里有一座电梯的最大载量为1000千克 。两名宾馆服务员要用电梯把一批重物从底层 搬到顶层,这两名服务员的身体质量分别为60 千克和80千克,货物每箱的质量为50千克,问 他们每次最多只能搬运重物多少箱?
建议讨论以下问题: (1)选择哪一种数学模型? 是列方程,还是列不等式? (2)问题中有哪些相等的数 量关系和不等的数量关系?
解:设他们每次能搬运重 物x箱,根据题意得:
60+80+50x≤1000
解得 x≤17.2
答:他们每次最多能搬运 重物17箱。
• 用一元一次不等式可以刻画和解决很多实际生活中的有关数 量不等关系的问题,处理这类问题一般也可以按照问题解决 的四个基本步骤来帮助思考和求解.

初中数学 人教版七年级下册 9.2一元一次不等式 课件

初中数学 人教版七年级下册  9.2一元一次不等式  课件


两边同除以a
不等式的基本性质2,3
写不等式的解时,要把表示未知数的字母写在不等号的左边。
练习反馈
4.解下列不等式,并在数轴上表示解集.
(1) -5x ≤10 ;
x ≥ -2
(2)4x-3 < 10x+7 .
x
>
-
5 3
(3) 3x -1 > 2(2-5x) ;
5
x > 13
(4) x 32≥2x23
合并同类项,得 系数化为1,得
2x 1 x 1
2
移项,得 合并同类项,得 系数化为1,得
3x 4x 2 6, x 8,
x 8.
归纳总结 归纳解不等式的一般步骤,并指出每个步骤的根据,完成下表.
步骤
根据

去分母
不等式的基本性质2,3

去括号
去括号法则

移项
不等式的基本性质1

合并同类项
合并同类项法则
-5x >-10
x=2
系数化为1
x<2
总结归纳
解一元一次不等式与解一元一次方程的依据和步骤有什么异同点?
相同之处:

基本步骤相同:去分母,去括号,移项,合并同类项,
一 议
系数它化们为的1依这.据些不步相骤同中. ,要特别注意的是:
解一元一不次等方式程两的边依都乘(或除以)同一个 据是等式负的数性,质必,须解改变不等号的方向.这是 一元一次与不解等一式元的一依次方程不同的地方.
✓ (2)5x+3<5(x-y) ✓
✕ (4)x(x–1)< x2 -2x ✓
✕ (6) x2-3x-5<6

人教版数学七年级下册第九章《9.2-一元一次不等式》课件

人教版数学七年级下册第九章《9.2-一元一次不等式》课件
若a>b,且c>0,那么ac__bc. a/c b/c 若a>b,且c<0,那么ac__bc. a/c b/c 3、方程的两边都是整式,只含有一个未知数,并且未知 数的次数是一次,这样的方程叫做 一元。一次方程
能力考验 根据语句写出式子
(1)m与2的差大于-1;
(2)2(a+1)大于或等于1;
(3)已知一台升降机的最大载重量是1200kg,在一名重75kg的工
人乘坐的情况下,它最多能装载多少件25kg重的货物?设能载x件
25kg重的货物
75+25x≤1200
总结能力 一、一元一次不等式的概念


这,样7的5 ,+ 25x ≤1200
只含有一个未知数,未知数的次数是1,不等号左
右两边是整式的不等式,称为一元一次不等式.
它与一元一次方程的定
义有什么共同点吗?
人教版数学七年级下册第九章
9.2.1 一元一次不等式(一)
知己知彼
目标
1、了解一元一次不等式的概念,掌握 一元一次不等式的解法;
2、类比一元一次方程的解法,将一元一次不等 式逐步化成x ≤a(或x<a,x>a,x≥a)的不等式.
功底考察
1、用符号“<”(或“ ≤ ”), “>” (或“ ≥ ”), “≠” 连接而成的数学式子,叫做_不__等_式__. 2、若a<b,则a+c__b+c.
共同点: 都只含有一个未知数,且未知数的次数是1
类比能力 二、一元一次不等式 的解法
例1 观察下列一元一次方程和一元一次不等式 的解法:
(1)
解:: 3(2+x)=2(2x-1)
(2)

第九章不等式与不等式组课件9.2一元一次不等式

第九章不等式与不等式组课件9.2一元一次不等式
解: 2( y 1) 3( y 1)
在数轴上表示:
并把它的解集在数轴上表示出来。
y 1 y3
一罐饮料净重约300克,罐上注 有“蛋白质含量≥0.6%”,其中蛋白质
的含量为多少克?
解: 设蛋白质的含量为 x 克, 由题意得: x ≥300×0.6% x ≥1.8 答:蛋白质的含量不小于1.8 克.
同乘最简 公分母12, 方向不变
合并同类项得: -7x≥-56 把系数化为1得: x≤8
-1 0 1 2 3 4 5 6 7 8
同除以-7, 方向改变
解:去分母,得:2x < 30 3 – 5(3 – x) +5x 去括号,得:2x < 30 – 15 – x 移项,得: 2x –5x < 30 –15 合并同类项,得: –3x < 15 系数化为1,得:x < > –5
亏本?
根据“去掉损耗后的售价≥进价”
列出不等式即可求解.
解:设商家把售价应该定为每千克 x 元, 由题意得:
( 1 - 5% ) x ≥ 1.9
x≥2 答:商家把售价应该至少定为
每千克2元.
小颖家每月水费都不少于15 元,自来水公司的收费标准如下: 若每户每月用水不超过5吨,则每 吨收费1.8元;若每户每月用水超 过5吨,则超出部分每吨收费2元, 小颖家每月用水量至少是多少吨?
根据实际情况,把计算的结果作出调整。 ∵ x 是正整数
∴符合条件的最小正整数 x =37
答:明年要比去年空气质量 良好的天数至少增加37,才 能使这一年空气质量良好的 天数超过全年天数的70%.
一、课前复习
1.某商品的单价是 a 元,买50件总商品 的费用不超过342元,则

9.2一元一次不等式第2课时一元一次不等式的应用课件人教版七年级下册

9.2一元一次不等式第2课时一元一次不等式的应用课件人教版七年级下册
C.50
D.60
B
)
体会解不等式过程中的化归思想与类比思想,体会分类讨论思想在用不等式解决实际问题中的应用。
A.18 B.19 C.20 D.21 依题意,得10×3+6m≥62.
为了不迟到,小李后来的速度至少是多少?
解:设安排x人种甲种蔬菜,则种乙蔬菜的人数为(10-x)人,
5A万.元16,个则8最B.多.只17有能个安1排多0少名人种菜甲种农蔬菜,? 每人可种甲种蔬菜3亩或乙种蔬菜2亩.已知甲种蔬菜每亩
15.(2020·长沙)今年6月以来,我国多地遭遇强降雨,引发洪涝灾害, 人民的生活受到了极大的影响.“一方有难,八方支援”, 某市筹集了大量的生活物资,用A,B两种型号的货车, 分两批运往受灾严重的地区.具体运输情况如下:
A型货车的辆数(单位:辆) B型货车的辆数(单位:辆) 累计运输物资的吨数(单位:吨)
4.某车工计划在15天内至少加工零件408个,前3天每天加工零件24个.该 车工若在规定的时间内完成任务,此后平均每天需要加工零件( A )
A.最少28个 B.最少29个 C.最多28个 D.最多29个
5.一种导火线的燃烧速度是0.7 cm/s, 一名爆破员点燃导火线后以5 m/s的速度跑到距爆破点130 m以外的安全 地带,则导火线的长度至少应超过__1_8_.2_c_m__.
备注:第一批、第二批每辆货车均满载
第一批 1 3 28
第二批 2 5 50
(1)求A,B两种型号货车每辆满载分别能运多少吨生活物资?
(2)该市后续又筹集了62.4吨生活物资,现已联系了3辆A种型号货车. 2 km 后,计划发生变化,准备至少提前 2 天完成修路任务,以后几天内平均每天至少要修路多少?
7.在一次“新冠肺炎疫情防护”知识竞赛中,竞赛题共25道,

《9.2 一元一次不等式》课件3 公开课课件.ppt 公开课课件

《9.2 一元一次不等式》课件3 公开课课件.ppt 公开课课件

例1 解不等式,并在数轴上表示解集.
(1) 2(1+x)<3;
(2) 2 x 2x 1 .
2
3
解一元一次不等式的过 程和解一元一次方程的过程 有什么关系?
联系:两种解法的步骤相似.
区别: (1)一元一次不等式两边都(或 除以)同一个负数时,不等号的方 向改变;而方程两边乘(或除以) 同一个负数时,等号不变.
【南史曰:元帝避建邺则都江陵,外迫强敌,内失人和。魏师至,方征兵四方,未至而城见克。在幽逼求酒,饮之,制诗四绝。后为梁王詧所害。】 南风且绝唱,西陵最可悲。今日还蒿里,终非封禅时。 人世逢百六,天道异贞恒。何言异蝼蚁,一旦损鲲鹏。 松风侵晓哀,霜雰当夜来。寂寥千载后,谁畏轩辕台。 夜长无岁月,安知秋与春。原陵五树杏,空得动耕人。
蔡琰(作者有待考证)的《胡笳十八拍》 郭璞的《游仙诗》 鲍照的《拟行路难》 庾信的《拟咏怀》 都特别喜欢。不过都是组诗,太长了,就不贴了orz。
最后还想推一下萧绎的《幽逼诗》四首:
【南史曰:元帝避建邺则都江陵,外迫强敌,内失人和。魏师至,方征兵四方,未至而城见克。在幽逼求酒,饮之,制诗四绝。后为梁王詧所害。】 南风且绝唱,西陵最可悲。今日还蒿里,终非封禅时。 人世逢百六,天道异贞恒。何言异蝼蚁,一旦损鲲鹏。 松风侵晓哀,霜雰当夜来。寂寥千载后,谁畏轩辕台。 夜长无岁月,安知秋与春。原陵五树杏,空得动耕人。
下列不等式是一元一次不等式吗?
(1)x-7>26; √ (2)3x<2x+1; √
(3)-4x>3; √
(4)
2 3
x>50;

(5)
1 x
>1.
(1)不等式的两边都是整式; (2)只含有一个未知数; (3)未知数的次数是1.

人教初中数学七下 9.2.3 一元一次不等式复习课件 【经典初中数学课件】

人教初中数学七下 9.2.3 一元一次不等式复习课件 【经典初中数学课件】

思考四:你能给它下一个定义吗?
a+b=10 x+y=7 2x-y=11
1、含有两个未知数 2、未知数项的次数都是一次 3、整式方程
这三个方程有 什么特点?
• 含有两个未知数, 且含有未知数的项的次 数都是一次的整式方程叫做二元一次方程。
你能举出几个二元一次方程吗?
相信自己,我能行!
判断下列方程是否是二元一次方程
4、某班到毕业时共结余经费1800元,班委会决 定拿出不少于270元但不超过300元的资金为老 师购买纪念品,其余资金用于在毕业晚会上给 50位同学每人购买一件文化衫或一本相册作为 纪念品.已知每件文化衫比每本相册贵9元,用 200元恰好可以买到2件文化衫和5本相册. (1)求每件文化衫和每本相册的价格分别为多 少元? (2)有几购买文化衫和相册的方案?哪种方案 用于购买老师纪念品的资金更充足?
答案:所以,当人数为16人时,甲、乙两家旅行社的收费 相同;当人数为17~25人时,选择甲旅行社费用较少; 当人数为10~15人时,选择乙旅行社费用较少。
3 不等式组的解法
若 x>3
X>7
0 1 2 3 45 6 7 8 9
则x>7
大大取大
ห้องสมุดไป่ตู้
若 x<3 X<-1
-3 -2 -1 0 1 2 3 4 5

6.已知不等式3x-m ≤0有4个正整数解,
则m的取值范围是

9.
已知不等式组
2x m 8 3x2 9m1
无解,则m的取值范围是________。
1、一群女生住若干间宿舍,每间住4人, 剩19人无房住;每间住6人,有一间宿舍 住不满, 1.设有x间宿舍,请写出x应满足的不等式组; 2.可能有多少间宿舍,多少名 学生?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.掌握一元一次不等式的概念及解法;并
能正确地将一元一次不等式的解集表示在
数轴上。
一、预习先学
[自学要求]:认真阅读教材122-123 页,用红笔圈画重点内容,并完成
学案《预习先学》内容.
判断
1.下列不等式中,哪些是一元一次不等式? ① 3x+2<2x-5 是 ② 2 x 3x 3 不是
解:去分母,得: 3(2+x) ≤ 2(2x-1) 去括号,得: 6+3x ≤ 4x-2
移项,得: 3x-4x ≤ -2-6
合并同类项,得: 系数化为1,得: -x ≤ -8 x ≥8
二、探索交流 ⑴解方程: 2 x 2 x 1
2 3
同时回忆解一元一次方程的一般步骤和依据。
⑵类比解方程解不等式: 2 x 2 x 1
想一想: (1)解一元一次不等式的目标是什么? (2)解一元一次不等式的一般步骤是什么? (3)解一元一次不等式每一步变形依据是什么?
(1)将一元一次不等式转化为"x>a"或"x<a"的形式. (2)解一元一次不等式的一般步骤是: 去分母,去括号,移项,合并同类项,系数化为1.
2 3
二、探索交流 ⑴解方程: 2 x 2 x 1
3(1+x) > 2(2x-1) 3+3x > 4x-2 3x-4x > -2-3 -x > -5 m<5
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8
该不等式解集在数轴表示如图所示,该不等式 的正整数解为1 , 2 , 3 , 4 .
2. 一题多变,学会转换
5 (2)[转化条件]求 6 x 1 不大于
2. 一题多变,学会转换
1 x 2x 1 (1)[转化结论]求不等式 的正整数解. 2 3
5 (2)[转化条件]求 6 x 1 不大于
的非负整数解.
2. 一题多变,学会转换
1 x 2x 1 (1)[转化结论]求不等式 的正整数解. 2 3
解:去分母,得 去括号,得 移项,得 合并同类项,得 系数化为1,得
的非负整数解.
解:根据题意,得
5 x 1 x 1 6 2
去分母,得 5x-6 ≤ 3(x-1) 去括号,得 5x-6 ≤ 3x-3 移项,得 5x-3x ≤ -3 + 6 合并同类项,得 2x ≤ 3 系数化为1,得 m ≤ 1.5 该不等式解集在数轴表示如图所示,该不等式 的非负整数解为0 , 1 .
走进生活
一次环保知识竞赛共有 25道题,答对一道得 4分,答
错或不答一道扣 1分。竞赛中,小明被评为优秀 (85或85
分以上),小明至少答对几道? 分析:不等关系是:答对得分-答错或不答扣分≥85分 解:设小明答对x道题。 由题意,得 4x-1×(25-x)≥ 85 去括号,得 移项,得 合并,得 系数化为1,得 答:小明至少答对22道题。 4x-25+x ≥ 85 4x+x ≥ 85+25 5x ≥110 x ≥22
2 3
同时回忆解一元一次方程的一般步骤和依据。
⑵类比解方程解不等式: 2 x 2 x 1
2 3
想一想:比较解一元一次不等式和解一元一 次方程有哪些相同和不同之处?
相同之处: 基本步骤相同:去分母,去括号,移项,合并同类项, 系数化为1. 基本思想相同:都是运用化归思想,将一元一次方程 或一元一次不等式变形为最简形式. 不同之处: (1)解法依据不同:解一元一次不等式的依据是不 等式的性质,解一元一次方程的依据是等式的性质. (2)最简形式不同,一元一次不等式的最简形式是 x>a或x<a ,一元一次方程的最简形式是x=a.
解:x+4< 7 两边同时减 4,得 x+4-4<7-4 x<7-4 x<3
这个不等式的解集在数轴上表示如下:
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8
移项
二、探索交流 ⑴解方程: 2 x 2 x 1
2 3
同时回忆解一元一次方程的一般步骤和依据。
⑵类比解方程解不等式: 2 x 2 x 1
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8
小结
①什么叫一元一次不等式? 只含有一个未知数,未知数的次数是 1 , 且不等号的两边都是整式的不等式叫做 一元一次不等式.
②解一元一次不④ 合并同类项; ⑤ 系数化为1。
③解一元一次不等式应注意什么?
2 3
想一想: (1)解一元一次不等式的目标是什么? (2)解一元一次不等式的一般步骤是什么? (3)解一元一次不等式每一步变形依据是什么?
二、探索交流 ⑴解方程: 2 x 2 x 1
2 3
同时回忆解一元一次方程的一般步骤和依据。
⑵类比解方程解不等式: 2 x 2 x 1
2 3
2
3 8 不是 ③ 2x
x4 2 是 ④ 3
⑤ 0 .5 x 1 2 是 ⑥
3x 4 y 0 不是
2.一元一次不等式的概念
① ② 只含有一个未知数,
未知数的次数是1,
且不等号的两边都是整式的不等式 ③
叫做一元一次不等式.
3、利用不等式的性质解不等式x+4<7,并把 它的解集表示在数轴上。
相关文档
最新文档