【数学】中考数学平行四边形解答题压轴题提高专题练习附详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、平行四边形真题与模拟题分类汇编(难题易错题)
1.如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.
(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,求证:△PDH的周长是定值;
(3)当BE+CF的长取最小值时,求AP的长.
【答案】(1)证明见解析.(2)证明见解析.(3)2.
【解析】
试题分析:(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出
∠APB=∠PBC即可得出答案;
(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出
PD+DH+PH=AP+PD+DH+HC=AD+CD=8;
(3)过F作FM⊥AB,垂足为M,则FM=BC=AB,证明△EFM≌△BPA,设AP=x,利用折叠的性质和勾股定理的知识用x表示出BE和CF,结合二次函数的性质求出最值.
试题解析:(1)解:如图1,
∵PE=BE,
∴∠EBP=∠EPB.
又∵∠EPH=∠EBC=90°,
∴∠EPH-∠EPB=∠EBC-∠EBP.
即∠PBC=∠BPH.
又∵AD∥BC,
∴∠APB=∠PBC.
∴∠APB=∠BPH.
(2)证明:如图2,过B 作BQ ⊥PH ,垂足为Q .
由(1)知∠APB=∠BPH ,
又∵∠A=∠BQP=90°,BP=BP ,
在△ABP 和△QBP 中,
{90APB BPH
A BQP BP BP
∠=∠∠=∠=︒=,
∴△ABP ≌△QBP (AAS ),
∴AP=QP ,AB=BQ ,
又∵AB=BC ,
∴BC=BQ .
又∠C=∠BQH=90°,BH=BH ,
在△BCH 和△BQH 中,
{90BC BQ
C BQH BH BH
=∠=∠=︒=,
∴△BCH ≌△BQH (SAS ),
∴CH=QH .
∴△PHD 的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.
∴△PDH 的周长是定值.
(3)解:如图3,过F 作FM ⊥AB ,垂足为M ,则FM=BC=AB .
又∵EF 为折痕,
∴EF ⊥BP .
∴∠EFM+∠MEF=∠ABP+∠BEF=90°,
∴∠EFM=∠ABP .
又∵∠A=∠EMF=90°,
在△EFM 和△BPA 中,
{EFM ABP
EMF A FM AB
∠=∠∠=∠=,
∴△EFM ≌△BPA (AAS ).
∴EM=AP .
设AP=x
在Rt △APE 中,(4-BE )2+x 2=BE 2.
解得BE=2+28x
, ∴CF=BE-EM=2+28
x -x , ∴BE+CF=24
x -x+4=14(x-2)2+3. 当x=2时,BE+CF 取最小值,
∴AP=2.
考点:几何变换综合题.
2.操作:如图,边长为2的正方形ABCD ,点P 在射线BC 上,将△ABP 沿AP 向右翻折,得到△AEP ,DE 所在直线与AP 所在直线交于点F .
探究:(1)如图1,当点P 在线段BC 上时,①若∠BAP=30°,求∠AFE 的度数;②若点E 恰为线段DF 的中点时,请通过运算说明点P 会在线段BC 的什么位置?并求出此时∠AFD 的度数.
归纳:(2)若点P 是线段BC 上任意一点时(不与B ,C 重合),∠AFD 的度数是否会发生变化?试证明你的结论;
猜想:(3)如图2,若点P 在BC 边的延长线上时,∠AFD 的度数是否会发生变化?试在图中画出图形,并直接写出结论.
【答案】(1)①45°;②BC 的中点,45°;(2)不会发生变化,证明参见解析;(3)不会发生变化,作图参见解析.
【解析】
试题分析:(1)当点P 在线段BC 上时,①由折叠得到一对角相等,再利用正方形性质求出∠DAE 度数,在三角形AFD 中,利用内角和定理求出所求角度数即可;②由E 为DF 中
点,得到P为BC中点,如图1,连接BE交AF于点O,作EG∥AD,得EG∥BC,得到AF 垂直平分BE,进而得到三角形BOP与三角形EOG全等,利用全等三角形对应边相等得到BP=EG=1,得到P为BC中点,进而求出所求角度数即可;(2)若点P是线段BC上任意一点时(不与B,C重合),∠AFD的度数不会发生变化,作AG⊥DF于点G,如图1(a)所示,利用折叠的性质及三线合一性质,根据等式的性质求出∠1+∠2的度数,即为∠FAG 度数,即可求出∠F度数;(3)作出相应图形,如图2所示,若点P在BC边的延长线上时,∠AFD的度数不会发生变化,理由为:作AG⊥DE于G,得∠DAG=∠EAG,设
∠DAG=∠EAG=α,根据∠FAE为∠BAE一半求出所求角度数即可.
试题解析:(1)①当点P在线段BC上时,∵∠EAP=∠BAP=30°,∴∠DAE=90°﹣
30°×2=30°,在△ADE中,AD=AE,∠DAE=30°,∴∠ADE=∠AED=(180°﹣30°)÷2=75°,在△AFD中,∠FAD=30°+30°=60°,∠ADF=75°,∴∠AFE=180°﹣60°﹣75°=45°;②点E为DF 的中点时,P也为BC的中点,理由如下:
如图1,连接BE交AF于点O,作EG∥AD,得EG∥BC,∵EG∥AD,
DE=EF,∴EG=AD=1,∵AB=AE,∴点A在线段BE的垂直平分线上,同理可得点P在线段BE的垂直平分线上,∴AF垂直平分线段BE,∴OB=OE,∵GE∥BP,∴∠OBP=∠OEG,
∠OPB=∠OGE,∴△BOP≌△EOG,∴BP=EG=1,即P为BC的中点,∴∠DAF=90°﹣
∠BAF,∠ADF=45°+∠BAF,∴∠AFD=180°﹣∠DAF﹣∠ADF=45°;(2)∠AFD的度数不会发生变化,作AG⊥DF于点G,如图1(a)所示,
在△ADE中,AD=AE,AG⊥DE,∵AG平分∠DAE,即∠2=∠DAG,且
∠1=∠BAP,∴∠1+∠2=×90°=45°,即∠FAG=45°,则∠AFD=90°﹣45°=45°;(3)如图2所示,∠AFE的大小不会发生变化,∠AFE=45°,
作AG⊥DE于G,得∠DAG=∠EAG,设∠DAG=∠EAG=α,
∴∠BAE=90°+2α,∴∠FAE=∠BAE=45°+α,∴∠FAG=∠FAE﹣∠EAG=45°,在Rt△AFG中,∠AFE=90°﹣45°=45°.
考点:1.正方形的性质;2.折叠性质;3.全等三角形的判定与性质.
3.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.
(1)如图①,当点D落在BC边上时,求点D的坐标;
(2)如图②,当点D落在线段BE上时,AD与BC交于点H.
①求证△ADB≌△AOB;
②求点H的坐标.
(3)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可).
【答案】(1)D(1,3);(2)①详见解析;②H(17
5
,3);(3)
30334
-
≤S 30334
+
【解析】
【分析】
(1)如图①,在Rt△ACD中求出CD即可解决问题;
(2)①根据HL证明即可;
②,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,根据AH2=HC2+AC2,构建方程求出m即可解决问题;
(3)如图③中,当点D在线段BK上时,△DEK的面积最小,当点D在BA的延长线上时,△D′E′K的面积最大,求出面积的最小值以及最大值即可解决问题;
【详解】
(1)如图①中,
∵A(5,0),B(0,3),
∴OA=5,OB=3,
∵四边形AOBC是矩形,
∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°,
∵矩形ADEF是由矩形AOBC旋转得到,
∴AD=AO=5,
在Rt△ADC中,CD=22
=4,
AD AC
∴BD=BC-CD=1,
∴D(1,3).
(2)①如图②中,
由四边形ADEF是矩形,得到∠ADE=90°,
∵点D在线段BE上,
∴∠ADB=90°,
由(1)可知,AD=AO,又AB=AB,∠AOB=90°,
∴Rt△ADB≌Rt△AOB(HL).
②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC,
∴∠CBA=∠OAB,
∴∠BAD=∠CBA,
∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m,
在Rt△AHC中,∵AH2=HC2+AC2,
∴m2=32+(5-m)2,
∴m=17
,
5
∴BH=17
5
,
∴H(17
5
,3).
(3)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值=1
2
•DE•DK=
1
2
×3×
(5-34
2
)=
30334
4
-
,
当点D在BA的延长线上时,△D′E′K的面积最大,最大面积=1
2
×D′E′×KD′=
1
2
×3×
(5+34
)=
30334
+
.
综上所述,30334
-
≤S≤
30334
+
.
【点睛】
本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题.
4.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且
∠ABC+∠ADC=180°.
(1)求证:四边形ABCD是矩形.
(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度数.
【答案】(1)见解析;(2)18°.
【解析】
【分析】
(1)根据平行四边形的判定得出四边形ABCD是平行四边形,求出∠ABC=90°,根据矩形的判定得出即可;
(2)求出∠FDC的度数,根据三角形内角和定理求出∠DCO,根据矩形的性质得出
OD=OC,求出∠CDO,即可求出答案.
【详解】
(1)证明:∵AO=CO,BO=DO
∴四边形ABCD是平行四边形,
∴∠ABC=∠ADC,
∵∠ABC+∠ADC=180°,
∴∠ABC=∠ADC=90°,
∴四边形ABCD是矩形;
(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,
∴∠FDC=36°,
∵DF⊥AC,
∴∠DCO=90°﹣36°=54°,
∵四边形ABCD是矩形,
∴OC=OD,
∴∠ODC=54°
∴∠BDF=∠ODC﹣∠FDC=18°.
【点睛】
本题考查了平行四边形的性质和判定,矩形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形.
5.已知:如图,在平行四边形ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.
(1)求证:△DOE≌△BOF.
(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.
【答案】(1)证明见解析;(2)当∠DOE=90°时,四边形BFED为菱形,理由见解析.【解析】
试题分析:(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF (ASA);
(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用垂直平分线的性质得出BE=ED,即可得出答案.
试题解析:(1)∵在▱ABCD中,O为对角线BD的中点,
∴BO=DO,∠EDB=∠FBO,
在△EOD和△FOB中
,
∴△DOE≌△BOF(ASA);
(2)当∠DOE=90°时,四边形BFDE为菱形,
理由:∵△DOE≌△BOF,∴OE=OF,又∵OB=OD,∴四边形EBFD是平行四边形,
∵∠EOD=90°,∴EF⊥BD,∴四边形BFDE为菱形.
考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定.
6.现有一张矩形纸片ABCD(如图),其中AB=4cm,BC=6cm,点E是BC的中点.将纸片沿直线AE折叠,点B落在四边形AECD内,记为点B′,过E作EF垂直B′C,交B′C于F.
(1)求AE、EF的位置关系;
(2)求线段B′C的长,并求△B′EC的面积.
【答案】(1)见解析;(2)S△B′EC=108 25
.
【解析】
【分析】
(1)由折线法及点E是BC的中点,可证得△B'EC是等腰三角形,再有条件证明∠AEF=90°即可得到AE⊥EF;
(2)连接BB′,通过折叠,可知∠EBB′=∠EB′B,由E是BC的中点,可得EB′=EC,
∠ECB′=∠EB′C,从而可证△BB′C为直角三角形,在Rt△AOB和Rt△BOE中,可将OB,BB′的长求出,在Rt△BB′C中,根据勾股定理可将B′C的值求出.
【详解】
(1)由折线法及点E是BC的中点,
∴EB=EB′=EC,∠AEB=∠AEB′,
∴△B'EC是等腰三角形,
又∵EF⊥B′C
∴EF 为∠B 'EC 的角平分线,即∠B ′EF =∠FEC ,
∴∠AEF =180°﹣(∠AEB +∠CEF )=90°,即∠AEF =90°,
即AE ⊥EF ;
(2)连接BB '交AE 于点O ,由折线法及点E 是BC 的中点,
∴EB =EB ′=EC ,
∴∠EBB ′=∠EB ′B ,∠ECB ′=∠EB ′C ;
又∵△BB 'C 三内角之和为180°,
∴∠BB 'C =90°;
∵点B ′是点B 关于直线AE 的对称点,
∴AE 垂直平分BB ′;
在Rt △AOB 和Rt △BOE 中,BO 2=AB 2﹣AO 2=BE 2﹣(AE ﹣AO )2
将AB =4cm ,BE =3cm ,AE =5cm ,
∴AO =165 cm , ∴BO =22AB AO -=
125cm , ∴BB ′=2BO =
245cm , ∴在Rt △BB 'C 中,B ′C =22BC BB '-=
518cm , 由题意可知四边形OEFB ′是矩形,
∴EF =OB ′=
125, ∴S △B ′EC =*111812108225525
B C EF '
⨯=⨯⨯=.
【点睛】
考查图形的折叠变化及三角形的内角和定理勾股定理的和矩形的性质综合运用.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.
7.如图,在正方形ABCD 中,对角线AC 与BD 交于点O ,在Rt △PFE 中,∠EPF=90°,点E 、F 分别在边AD 、AB 上.
(1)如图1,若点P 与点O 重合:①求证:AF=DE ;②若正方形的边长为3,当
∠DOE=15°时,求线段EF 的长;
(2)如图2,若Rt △PFE 的顶点P 在线段OB 上移动(不与点O 、B 重合),当BD=3BP 时,证明:PE=2PF .
【答案】(1)①证明见解析,②
22;(2)证明见解析.
【解析】
【分析】
(1)①根据正方形的性质和旋转的性质即可证得:△AOF ≌△DOE 根据全等三角形的性质证明;
②作OG ⊥AB 于G ,根据余弦的概念求出OF 的长,根据勾股定理求值即可;
(2)首先过点P 作HP ⊥BD 交AB 于点H ,根据相似三角形的判定和性质求出PE 与PF 的数量关系.
【详解】
(1)①证明:∵四边形ABCD 是正方形,
∴OA=OD ,∠OAF=∠ODE=45°,∠AOD=90°,
∴∠AOE+∠DOE=90°,
∵∠EPF=90°,
∴∠AOF+∠AOE=90°,
∴∠DOE=∠AOF ,
在△AOF 和△DOE 中,
OAF ODE OA OD
AOF DOE ===∠∠⎧⎪⎨⎪∠∠⎩
, ∴△AOF ≌△DOE ,
∴AF=DE ;
②解:过点O 作OG ⊥AB 于G ,
∵正方形的边长为23, ∴OG=12
BC=3, ∵∠DOE=15°,△AOF ≌△DOE ,
∴∠AOF=15°,
∴∠FOG=45°-15°=30°,
∴OF=OG cos DOG
∠=2, ∴EF=22=22OF OE +;
(2)证明:如图2,过点P 作HP ⊥BD 交AB 于点H ,
则△HPB 为等腰直角三角形,∠HPD=90°,
∴HP=BP ,
∵BD=3BP ,
∴PD=2BP ,
∴PD=2HP ,
又∵∠HPF+∠HPE=90°,∠DPE+∠HPE=90°,
∴∠HPF=∠DPE ,
又∵∠BHP=∠EDP=45°,
∴△PHF ∽△PDE ,
∴
12
PF PH PE PD ==, ∴PE=2PF .
【点睛】 此题属于四边形的综合题.考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质以及勾股定理.注意准确作出辅助线是解此题的关键.
8.在ABC 中,ABC 90∠=,BD 为AC 边上的中线,过点C 作CE BD ⊥于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG BD =,连接BG ,DF .
()1求证:BD DF =;
()2求证:四边形BDFG 为菱形;
()3若AG 5=,CF 7=,求四边形BDFG 的周长.
【答案】(1)证明见解析(2)证明见解析(3)8
【解析】
【分析】
()1利用平行线的性质得到90CFA ∠=,再利用直角三角形斜边上的中线等于斜边的一半即可得证,
()2利用平行四边形的判定定理判定四边形BDFG 为平行四边形,再利用()1得结论即可得证,
()3设GF x =,则5AF x =-,利用菱形的性质和勾股定理得到CF 、AF 和AC 之间的关系,解出x 即可.
【详解】
()1证明:AG //BD ,CF BD ⊥,
CF AG ∴⊥,
又D 为AC 的中点,
1DF AC 2
∴=, 又1BD AC 2
=, BD DF ∴=, ()2证明:
BD//GF ,BD FG =, ∴四边形BDFG 为平行四边形, 又BD DF =,
∴四边形BDFG 为菱形,
()3解:设GF x =,则AF 5x =-,AC 2x =,
在Rt AFC 中,222(2x)7)(5x)=+-, 解得:1x 2=,216x (3
=-舍去), GF 2∴=,
∴菱形BDFG 的周长为8.
【点睛】
本题考查了菱形的判定与性质直角三角形斜边上的中线,勾股定理等知识,正确掌握这些定义性质及判定并结合图形作答是解决本题的关键.
9.正方形ABCD的边长为1,对角线AC与BD相交于点O,点E是AB边上的一个动点(点E不与点A、B重合),CE与BD相交于点F,设线段BE的长度为x.
(1)如图1,当AD=2OF时,求出x的值;
(2)如图2,把线段CE绕点E顺时针旋转90°,使点C落在点P处,连接AP,设△APE 的面积为S,试求S与x的函数关系式并求出S的最大值.
【答案】(1)x=﹣1;
(2)S=﹣(x﹣)2+(0<x<1),
当x=时,S的值最大,最大值为,.
【解析】
试题分析:(1)过O作OM∥AB交CE于点M,如图1,由平行线等分线段定理得到
CM=ME,根据三角形的中位线定理得到AE=2OM=2OF,得到OM=OF,于是得到BF=BE=x,
求得OF=OM=解方程,即可得到结果;
(2)过P作PG⊥AB交AB的延长线于G,如图2,根据已知条件得到∠ECB=∠PEG,根据
全等三角形的性质得到EB=PG=x,由三角形的面积公式得到S=(1﹣x)•x,根据二次函数的性质即可得到结论.
试题解析:(1)过O作OM∥AB交CE于点M,如图1,
∵OA=OC,
∴CM=ME,
∴AE=2OM=2OF,
∴OM=OF,
∴,
∴BF=BE=x,
∴OF=OM=,
∵AB=1,
∴OB=,
∴,
∴x=﹣1;
(2)过P作PG⊥AB交AB的延长线于G,如图2,
∵∠CEP=∠EBC=90°,
∴∠ECB=∠PEG,
∵PE=EC,∠EGP=∠CBE=90°,
在△EPG与△CEB中,
,
∴△EPG≌△CEB,
∴EB=PG=x,
∴AE=1﹣x,
∴S=(1﹣x)•x=﹣x2+x=﹣(x﹣)2+,(0<x<1),∵﹣<0,
∴当x=时,S的值最大,最大值为,.
考点:四边形综合题
10.如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.
(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,求证:△PDH的周长是定值;
(3)当BE+CF的长取最小值时,求AP的长.
【答案】(1)证明见解析.(2)证明见解析.(3)2.
【解析】
试题分析:(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出
∠APB=∠PBC即可得出答案;
(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出
PD+DH+PH=AP+PD+DH+HC=AD+CD=8;
(3)过F作FM⊥AB,垂足为M,则FM=BC=AB,证明△EFM≌△BPA,设AP=x,利用折叠的性质和勾股定理的知识用x表示出BE和CF,结合二次函数的性质求出最值.
试题解析:(1)解:如图1,
∵PE=BE,
∴∠EBP=∠EPB.
又∵∠EPH=∠EBC=90°,
∴∠EPH-∠EPB=∠EBC-∠EBP.
即∠PBC=∠BPH.
又∵AD∥BC,
∴∠APB=∠PBC.
∴∠APB=∠BPH.
(2)证明:如图2,过B作BQ⊥PH,垂足为Q.
由(1)知∠APB=∠BPH,
又∵∠A=∠BQP=90°,BP=BP,
在△ABP和△QBP中,
,
∴△ABP≌△QBP(AAS),
∴AP=QP,AB=BQ,
又∵AB=BC,
∴BC=BQ.
又∠C=∠BQH=90°,BH=BH,
在△BCH和△BQH中,
,
∴△BCH≌△BQH(SAS),
∴CH=QH.
∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.
∴△PDH的周长是定值.
(3)解:如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB.
又∵EF为折痕,
∴EF⊥BP.
∴∠EFM+∠MEF=∠ABP+∠BEF=90°,
∴∠EFM=∠ABP.
又∵∠A=∠EMF=90°,
在△EFM和△BPA中,
,
∴△EFM≌△BPA(AAS).
∴EM=AP.
设AP=x
在Rt△APE中,(4-BE)2+x2=BE2.解得BE=2+,
∴CF=BE-EM=2+-x,
∴BE+CF=-x+4=(x-2)2+3.
当x=2时,BE+CF取最小值,
∴AP=2.
考点:几何变换综合题.。