面面垂直的性质定理

面面垂直的性质定理

性质定理:如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。如果两个平面相互垂直,那么经过第一个平面内的一点作垂直于第二个平面的直线在第一个平面内等。扩展资料

定义:

若两个平面的二面角为直二面角(平面角是直角的二面角),则这两个平面互相垂直。

性质定理:

1、如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

2、如果两个平面相互垂直,那么经过第一个平面内的一点作垂直于第二个平面的直线在第一个平面内。

3、如果两个相交平面都垂直于第三个平面,那么它们的'交线垂直于第三个平面。

4、如果两个平面互相垂直,那么一个平面的垂线与另一个平面平行。(判定定理推论1的逆定理)

线面、面面平行和垂直的八大定理

线面、面面平行和垂直的八大定理 一、线面平行。 1、判定定理:平面外一条直线与平面内一条直线平行,那么这条直线与这个平 面平行。符合表示: β ββ////a b a b a ???????? 2、性质定理:如果一条直线与平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 符号表示: b a b a a a ////??? ? ????=??βαβαα I 二、面面平行。 1、判定定理:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。 符号表示: β α//////????? ?????==N n m M b a a m b n I I 2、性质定理:如果两个平面平行同时与第三个平面相交,那它们的交线平行。 符号表示: d l d l ////??? ???==γβγαβαI I (更加实用的性质:一个平 面内的任一直线平行另一平面) 三、线面垂直。 1、判定定理:如果一条直线与一个平面内的两条相交直线都垂直,那么这条直 线垂直这个平面。 符号表示: α⊥?????? ??????=⊥⊥a M c b b a c a I $:三垂线定理:(经常考到这种逻辑)在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

符号表示: PA a A oA a po oA a ⊥??? ? ????=⊥⊥??αα α 2、性质定理:垂直同一平面的两条直线互相平行。(更加实用的性质是:一个平面的垂线垂直于该平面内任一直线。) 四、面面垂直。 1、判定定理:经过一个平面的垂线的平面与该平面垂直。 βααβ⊥??⊥a a , 2、性质定理:已知两个平面垂直,在一个平面内垂直于交线的直线垂直于另一个平面。βαβαβα⊥?⊥?=?⊥a b a a b ,,,

高中数学线面、面面垂直的判定与性质

线面、面面垂直的判定与性质 知识回顾 1.直线与平面垂直的判定 (1)定义:如果直线l 与平面α内的任意一条直线都垂直,就说直线l 与平面α垂直,记作l ⊥α. (2)判定定理 文字表述:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直. 符号表述: ⎭ ⎪⎬⎪⎫l ⊥a l ⊥b ⇒l ⊥α. 2.直线与平面垂直的性质 文字表述:垂直于同一个平面的两条直线平行。 符号表述: ⎭⎪⎬⎪ ⎫a ⊥αb ⊥α⇒ a ∥b 3. 直线与平面所成的角 定义:平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角. 4.平面与平面的垂直的判定 (1)定义:如果两个平面相交,且它们所成的二面角是直角,就说这两个平面互相垂直. (2)面面垂直的判定定理 文字语言:一个平面过另一个平面的垂线,则这两个平面垂直. 符号表示: ⎭ ⎪⎬⎪ ⎫a ⊥β ⇒α⊥β. 5.平面与平面垂直的性质 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直. 用符号表示为:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β. 6.二面角

二面角:从一条直线出发的两个半平面所组成的图形叫做二面角. 二面角的平面角: 如图,在二面角α-l-β的棱l上任取一点O,在半平面α和β内分别作垂直于棱l的射线OA和OB,则∠AOB叫做二面角的平面角. 题型讲解 题型一 例1、空间四边形ABCD的四边相等,则它的两对角线AC、BD的关系是() A.垂直且相交 B.相交但不一定垂直 C.垂直但不相交 D.不垂直也不相交 答案:C 例2、如图所示,PA⊥平面ABC,△ABC中BC⊥AC,则图中直角三角形的个数为() A.4 B.3 C.2 D.1 答案:A 例3、如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱B1C1、B1B的中点.求证:CF⊥平面EAB. 证明在平面B1BCC1中, ∵E、F分别是B1C1、B1B的中点, ∴△BB1E≌△CBF, ∴∠B1BE=∠BCF, ∴∠BCF+∠EBC=90°,∴CF⊥BE, 又AB⊥平面B1BCC1,CF⊂平面B1BCC1, ∴AB⊥CF,AB∩BE=B,∴CF⊥平面EAB.

面面垂直性质定理

数学学案 【学习目标】 1.掌握平面与平面垂直的性质定理; 2.能运用平面垂直的性质定理解决一些简单问题; 3.了解平面与平面垂直的判定定理和性质定理间的相互联系。 【学习重点】掌握平面与平面垂直的性质定理并能运用解决一些简单问题 【数学思想】转化的思想 【知识回顾】 1.两个平面互相垂直的定义: 2.两个平面互相垂直的判定定理: 符号表示: 【新知导航】 线面平行?面面平行 线面垂直?面面垂直(面面垂直判定定理) 面面垂直?线面垂直 ? 【探究1】黑板所在平面与地面垂直,你能否在黑板上画几条与地面垂直的直线?你为什么这么画?你能归纳总结出这些直线有什么共同点吗? 【探究2】下图正方体中,平面11AD D A 与平面A B C D 垂直,直线1A A 垂直于其交线AD ,平面11AD D A 内的直线1A A 与平面ABCD 垂直吗? 探究结论: ( ) 【新知学习】两个平面互相垂直的性质定理 平面与平面垂直的性质 编辑: B A 11

定理的证明:(由文字语言转化为符号语言证明) 已知: 求证: 证明: 【探究3】过平面外一点作已知平面的垂线,你能做出几条来? 探究结论 ( ) 【尝试练习1】如图,已知平面,,αβαβ⊥,直线a 满足,a a βα⊥?,试判断直线a 与平面α的位置关系. 【尝试练习2】如图,已知平面α⊥平面γ,平面β⊥平面γ,a αβ?=,求证: .a γ⊥ 【课堂小结】 1、请归纳一下本节课你学习了什么性质定理,其内容各是什么? 2、类比两个性质定理,你发现它们之间有何联系?

【达标检测】 1、下列命题中,正确的是( ) A 、过平面外一点,可作无数条直线和这个平面垂直 B 、过一点有且仅有一个平面和一条定直线垂直 C 、若,a b 异面,过a 一定可作一个平面与b 垂直 D 、,a b 异面,过不在,a b 上的点M ,一定可以作一个平面和,a b 都垂直. 2、已知直线m l ,,平面βα,,且βα?⊥m l ,,给出下列命题: (1)m l ⊥?βα// (2)βα//?⊥m l (3)m l //?⊥βα (4)βα⊥?m l // 其中正确的命题是 3、 在三棱锥P —ABC 中,⊥PA 面ABC , 平面PAB ⊥平面PBC ,求证:AB BC ⊥ 4、如图,在正方体1111D C B A ABCD -中,M 是AB 上的一点,N 是C A 1的中点, ⊥MN 面DC A 1,求证:(1)1//AD MN (2)M 是AB 的中点

线线垂直、线面垂直、面面垂直判定和性质

空间中的垂直关系 1.线面垂直 直线与平面垂直的判断定理:假如,那么这条直线垂直于这个平面。 推理模式: 直线和平面垂直的性质定理:假如两条直线同垂直于一个平面,那么这两条直线。 2.面面垂直 两个平面垂直的定义:订交成的两个平面叫做相互垂直的平面。 两平面垂直的判断定理:(线面垂直面面垂直) 假如,那么这两个平面相互垂直。 推理模式: 两平面垂直的性质定理:(面面垂直线面垂直) 若两个平面相互垂直,那么在一个平面内垂直于它们的的直线垂直于另一个平面。 一般来说,线线垂直或面面垂直都可转变为线面垂直来剖析解决,其关系为:线线垂直判断判断 线面垂直面面垂直.这三者之间的关系特别亲密, 性质性质 能够相互转变,以前面推出后边是判断定理,而从后边推出前面是性质定理.同 学们应该学会灵巧应用这些定理证明问题.在空间图形中,高一级的垂直关系中 包含着低一级的垂直关系,下边举例说明.

例题: 1.如图, AB 是圆 O 的直径, C 是圆周上一点, PA⊥平面 ABC.(1)求证:平面 PAC⊥平面 PBC; (2)若 D 也是圆周上一点,且与 C 分居直径 AB 的双侧,试写出图中全部相互垂直的各对平面. 2、如图,棱柱ABC A 1 BC 11 的侧面 BCC 1 B 1 是菱形,B1C A1B 证明:平面 AB1C平面 A1 BC1 3、如下图,在长方体ABCD A1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点 (Ⅰ)求异面直线A1M 和 C1D1所成的角的正切值; (Ⅱ)证明:平面ABM⊥平面 A1B1M 1

4、如图,AB是圆O的直径,C是圆周上一点,PA平面 ABC.若 AE⊥ PC ,E为垂足,F是 PB 上随意一点,求证:平面 AEF⊥平面 PBC. 5、如图,直三棱柱 ABC— A1B1C1中,AC = BC =1,∠ACB = 90°,AA1=2 , D是 A1B1中点.( 1)求证 C1D ⊥平面 A1B ;(2)当点 F 在 BB1上什么地点时,会使得 AB1⊥平面 C1DF 并证明你的结论

证明面面垂直的方法及定理

证明面面垂直的方法及定理 证明面面垂直的方法及定理 面面垂直可不好证明,这是要合适的证明方法的,不然证明就会出错。下面就是店铺给大家整理的证明面面垂直的方法内容,希望大家喜欢。 证明面面垂直的方法 #CD=#BD-#BC,#AC=#BC-#BA,#AD=#BD-#BA. 对角线的点积:#AC·#BD=(#BC-#BA)·#BD=#BC·#BD-#BA·#BD 两组对边平方和分别为: AB2+CD2=AB2+(#BD-#BC)2=AB2+BD2+BC2-2#BD·#BC AD2+BC2=(#BD-#BA)2+BC2=BD2+BA2+BC2-2#BD·#BA 则AB2+CD2=AD2+BC2等价于#BD·#BC=#BD·#BA等价于#AC·#BD=0 所以原命题成立,空间四边形对角线垂直的充要条件是两组对边的平方和相等 证明一个面上的一条线垂直另一个面;首先可以转化成 一个平面的'垂线在另一个平面内,即一条直线垂直于另一个平面 然后转化成 一条直线垂直于另一个平面内的两条相交直线 也可以运用两个面的法向量互相垂直。 这是解析几何的方法。 面面垂直学生如何证明 一、初中部分 1利用直角三角形中两锐角互余证明 由直角三角形的定义与三角形的内角和定理可知直角三角形的两个锐角和等于90° ,即直角三角形的两个锐角互余。 2勾股定理逆定理 3圆周角定理的推论:直径所对的圆周角是直角,一个三角形的一

边中线等于这边的一半,则这个三角形是直角三角形。 二、高中部分 线线垂直分为共面与不共面。不共面时,两直线经过平移后相交成直角,则称两条直线互相垂直。 1向量法两条直线的方向向量数量积为0 2斜率两条直线斜率积为-1 3线面垂直,则这条直线垂直于该平面内的所有直线 一条直线垂直于三角形的两边,那么它也垂直于另外一边 4三垂线定理在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。 5三垂线定理逆定理如果平面内一条直线和平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。 3高中立体几何的证明主要是平行关系与垂直关系的证明。方法如下(难以建立坐标系时再考虑): Ⅰ.平行关系: 线线平行:1.在同一平面内无公共点的两条直线平行。2.公理4(平行公理)。3.线面平行的性质。4.面面平行的性质。5.垂直于同一平面的两条直线平行。 线面平行:1.直线与平面无公共点。2.平面外的一条直线与平面内的一条直线平行。3.两平面平行,一个平面内的任一直线与另一平面平行。 面面平行:1.两个平面无公共点。2.一个平面内的两条相交直线分别与另一平面平行。 Ⅱ.垂直关系: 线线垂直:1.直线所成角为90°。2.一条直线与一个平面垂直,那么这条直线与平面内的任一直线垂直。 线面垂直:1.一条直线与一个平面内的任一直线垂直。2.一条直线与一个平面内的两条相交直线都垂直。3.面面垂直的性质。4.两条平行直线中的一条垂直与一个平面,那么另一直线也与此平面垂直。5.一条直线垂直与两个平行平面中的一个,那么这条直线也与另一平面垂

(完整版)面面垂直的判定+性质定理(例题)

面面垂直的判定 1、 如图,棱柱111C B A ABC -的侧面11B BCC 是菱形,且11B C A B ⊥ 证明:平面1AB C ⊥平面11A BC 2、如图,AB 是 ⊙O 的直径,PA 垂直于⊙O 所在的平面,C 是 圆周上不同于A ,B 的任意一点,求证:平面PAC ⊥平面PBC. 3、如图所示,四棱锥P-ABCD 的底面ABCD 是菱形,∠BCD =60°,E 是CD 的中点,PA ⊥底面ABCD ,求证:平面PBE ⊥平面PAB ; 4、如图,在四面体ABCD 中,CB =CD ,AD ⊥BD ,点E 、F 分别是AB 、BD 的中点.求证:(1)直线EF ∥平面ACD ;(2)平面EFC ⊥平面BCD .

5、如图,在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=AB,点M是SD的中点,AN⊥SC,且交SC于点N. (I)求证:SB∥平面ACM;(II)求证:平面SAC⊥平面AMN. 面面垂直的性质 1、S是△ABC所在平面外一点,SA⊥平面ABC,平面SAB⊥平面SBC,求证AB ⊥BC.

2、 在四棱锥中,底面ABCD 是正方形,侧面VAD 是正三角形, 平面VAD ⊥底面ABCD 证明:AB ⊥平面VAD 3、如图,平行四边形ABCD 中,60DAB ︒∠=,2,4AB AD ==将CBD ∆沿BD 折起到EBD ∆的位置,使平面EDB ⊥平面ABD 。求证:AB DE ⊥ w 。w 。w 。k 。s 。5.u 。c 。o 。m 4、如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB=AD , ∠BAD=60°,E 、F 分别是AP 、AD 的中点 求证:(1)直线EF ‖平面PCD ;(2)平面BEF ⊥平面PAD V D C B A S A C B

空间面面垂直的判定与性质

空间面面垂直的判定与性质 一、平面的斜线 1.斜线:一条直线和一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线.斜线和平面的交点叫斜足;斜线上一点与斜足间的线段叫这点到这个平面的斜线段. 2.斜线的射影:过斜线上斜足外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面内的射影.垂足和斜足间线段叫这点到这个平面的斜线段在这个平面内的射影. 说明:直线与平面平行,直线在平面内的射影是一条直线,并且射线与直线平行.直线与平面垂直射影是点.斜线任一点在平面内的射影一定在斜线的射影上(需要去证明一下). 3.斜线段射影的性质定理:

C O A B 从平面外一点向这个平面所引的垂线段和斜线段中: (1)射影相等的两条斜线段相等;射影较长的斜线段也较长.(若OB 等于OC ,则AB 与AC 相等,反过来也一样。射影长的斜线段也长,射影短的斜线段也短;斜线段长射影也长) (2)相等的斜线段射影相等,较长的斜线段射影较长. 例1 在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.(性质三,又称三垂线定理)

例1′ 在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直.(反过来也对,也称三垂线定理的逆定理) 二、二面角 1.二面角的概念:从一条直线出发的两个半平面组成的图形.这条直线称为二面角的棱,两个半平面称为二面角的面.(二面角研究的是半平面的事,就不能把平面延展) 二面角的表示:AB --αβ或Q AB P --(也就是ABQ 所在的平面和ABP 所在的平面,Q 在AB 的哪面就是哪半面平面)

相关主题
相关文档
最新文档