高三数学一轮复习示范课
高三数学高考第一轮复习课件:不等式
第六单元 │ 使用建议
使用建议
1.本单元内容理论性强,知识覆盖面广,因此教学中 应注意:
(1)复习不等式的性质时,要克服“想当然”和“显 然成立”的思维定式,一定使要用注建议意不等式成立的条件,强化 或者弱化了条件都有可能得出错误的结论.
第34讲 │ 编读互动 编读互动
第34讲 │ 知识要点 知识要点
第34讲 │ 知识要点
第34讲 │ 知识要点
第34讲 │ 双基固化 双基固化
第34讲 │ 双基固化
第34讲 │ 双基固化
第34讲 │ 双基固化
第34讲 │ 双基固化
第34讲 │ 双基固化
第34讲 │ 双基固化
第34讲 │ 双基固化
(1)理解不等式的性质及其证明. (2)掌握两个(不扩展到三个)正数的算术平均数不小于 它们的几何平均数的定理,并会简单的应用. (3)掌握分析法、综合法、比较法证明简单的不等式. (4)掌握简单不等式的解法. (5)理解不等式|a|-|b|≤|a+b|≤|a|+| b|.
第六单元 │ 复习策略
复习策略
不等式
目录
第34讲 不等式的概念与性质 第35讲 均值不等式 第36讲 不等式的解法 第37讲 不等式的证明 第38讲 含绝对值的不等式
第六单元 不等式
第六单元 │ 知识框架 知识框架
第六单元 │ 考点解读 考点解读
不等式、不等式的基本性质、不等式的证明、不等式的 解法、含绝对值的不等式.
第六单元 │ 考点解读
第35讲 │ 双基固化
第35讲 │ 双基固化
第35讲 │ 双基固化
第35讲 │ 双基固化
高三高考数学第一轮复习课件三角函数复习
]
20)在△ABC中,a、b、c分别为角A、B
、C的对边,4sin2
B
2
C
-cos2A=
7 2
。
(1)求角A的度数;
(2)若a= 3 ,b+c=3,求b和c的值。
解:∴c4∴ocsoc2Aos(21s=A+A2 c-b=co2os122csAb22c)Aa-∴22==c72oA12s=2A60+。1=b272+c2-a2=bc 又∵b+c=3 bc=2
22 3
选A
例4
函数f(x)=cos2(x-
2 3
)+sin2(x-
5 6
)
+msinxcosx的值域为[a,2](x∈R,m>a)求m
值和f(x)的单调增区间。
解 :1 f (x1 2 )[ = c 2 1 x c o o 2 2 4 3 x s ) 4 3 ()c s 1 2 co x ( o 2 2x 5 s 3 5 3 ) (s ) m ] 2 m 2( s s2 i2 x i x n
=sin(45。±35。). ∴ Sinα =sin 10。 ,sinβ=sin 80。
∴α=10。 β=80。 cos(2α-β)=cos60。= 1
2
〔三〕单元测试
一、选择题
1〕函数y=
coxs s
|cox|s |s
inx inx|
|ttaaxxnn|的值域是〔A〕
(A) |3,-1| (B) |3,1| (C) |-1,1,3| (D) |-1,1-3|
(2)若x∈[求a的值。
2
,
2
]时,f(x)的最大值为1,
解:(1)f(x)=sin(x+
高三数学第一轮复习课件(ppt)目录
Page 12
目录 CONTENTS
第二章
2.1 函数及其表示 2.2 函数的单调性与最值 2.3 函数的奇偶性与周期性 2.4 一次函数、二次函数 2.5 指数与指数函数 2.6 对数与对数函数 2.7 幂函数 2.8 函数的图象及其变换 2.9 函数与方程
函数
2.10 函数模型及其应用
第一讲:三角函数
S ABC=1/2bcsinA=1/2absinC=1/2ah,可得sinA=√15/8,sinC=√15/4。
∴cosA=7/8,cosC=1/4,
∴cos(A-C)=7/8 x 1/4 + √15/8 x √15/4
=11/16 c=2
A
b=2
h=√15/2
Page 21
B
C 1/2 a
1/2
C、﹙1,+∞﹚
D、[1,+∞﹚
解析:由于3x>0,所以3x+1>1,所以f(x)>0,集合表示为(0,+∞),答案为A
2、已知函数y=2x+1的值域为(5,7),则对应的自变量x的范围为(
)
A、[2,3)
B、[2,3]
C、(2,3)
D、(2,3]
解析:根据题意:5<2x+1<7,解得2<x<3,用集合表示为(2,3),答案为C
A [1,2]
解析:解二元一次不等式x2 +2x-8≤0,可得-4≤x≤2,所以M为[-4,2]; 解不等式3x-2≥2x-1,可得x≥1,所以N为[1,+∞﹚。此时我们可以应用数轴马 上解决问题:
-4 0 1 2
如图所示,阴影部分即为所求。答案:A 启示:掌握好数轴工具,在集合、函数问题( B
B、﹙-∞,5]
)
D、[5,+∞﹚
高三数学一轮复习教案5篇
高三数学一轮复习教案5篇作为一名无私奉献的老师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。
那么教案应该怎么写才合适呢?以下是小编整理的高三数学一轮复习教案,仅供参考,大家一起来看看吧。
高三数学一轮复习教案1一、夯实基础。
今年高考数学试题的一个显著特点是注重基础。
扎实的数学基础是成功解题的关键,从学生反馈来看,平时学习成绩不错但得分不高的主要原因不在于难题没做好,而在于基本概念不清,基本运算不准,基本方法不熟,解题过程不规范,结果“难题做不了,基础题又没做好”,因此在第一轮复习中,我们将格外突出基本概念、基础运算、基本方法,具体做法如下:1、注重课本的基础作用和考试说明的导向作用;2、加强主干知识的生成,重视知识的交汇点;3、培养逻辑思维能力、直觉思维、规范解题习惯;4、加强反思,完善复习方法。
二、解决好课内课外关系。
课内:1)例题讲解前,留给学生思考时间;讲解中,让学生陈述不同解题思路,对于解题过程中的闪光之处或不足之处进行褒扬或纠正;讲解后,对解法进行总结。
对题目尽量做到一题多解,一题多用。
一题多解的题目让学生领会不同方法的优劣,一题多用的题目让学生领会知识间的联系。
2)学生作业和考试中出现的错误,不但指出错误之处,更要引导学生寻根问底,使学生找出错误的真正原因。
3)每节课留10分钟让学生疏理本节知识,理解本节内容。
课外:除了正常每天布置适量作业外,另外布置一两道中档偏上的题目,判作业时面批面改,指出知识的疏漏。
三、注重师生互动1、多让学生思考回答问题,对于有些章节知识,按难易程度选择六至八道,尽量独自完成,无法独立解决的可以提示思路。
2、让学生自我小结,每一章复习完后,让学生自己建立知识网络结构,包括典型题目、思想方法、解题技巧,易错易做之题;3、每次考试结束后,让学生自己总结:①试题考查了哪些知识点;②怎样审题,怎样打开解题思路;③试题主要运用了哪些方法,技巧,关键步在哪里;④答题中有哪些典型错误,哪些是知识、逻辑心理因素造成,哪些是属于思路上的。
高三数学高考第一轮复习课件:概率与统计
第69讲 │ 双基固化
第69讲 │ 双基固化
第69讲 │ 双基固化
第69讲 │ 双基固化
第69讲 │ 双基固化
第69讲 │ 双基固化
第69讲 │ 双基固化
第69讲 │ 双基固化
第69讲 │ 双基固化
第69讲 │ 双基固化
第69讲 │ 双基固化
第69讲 │ 双基固化
第69讲 │ 能力提升 能力提升
3.本部分内容主要包括随机变量的概念及其分布列,离 散型随机变量的均值和方差,正态分布.从近几年的高考观 察,这部分内容有加强命题的趋势.注意以实际情景为主, 建立合适的分布列,通过均值和方差解决实际问题.
第十一单元 │ 使用建议
使用建议
1.复习中要注意 (1)全面复习,加强基础,注重应用. (2)本单元主要的数学思使用想建有议:化归思想,比较分类思想, 极限思想和模型化思维方法.学习时应注意发散思维和逆向 思维,通过分类分步把复杂问题分解,恰当地应用集合观点、 整体思想,从全集、补集等入手,使问题简化.
第68讲│ 编读互动
第68讲 │ 知识要点 知识要点
第68讲 │ 知识要点
第68讲 │ 知识要点
第68讲 │ 双基固化 双基固化
第68讲 │68讲 │ 双基固化
第68讲 │ 双基固化
第68讲 │ 双基固化
第68讲 │ 双基固化
第68讲 │ 双基固化
第67讲 │ 双基固化
第67讲 │ 能力提升 能力提升
第67讲 │ 能力提升
第67讲 │ 能力提升
第67讲 │ 能力提升
第67讲 │ 能力提升
第67讲 │ 规律总结 规律总结
第67讲 │ 规律总结
第68讲 │ 离散型随机变量的期望与方差
高三数学《师说》系列一轮复习 不等式选讲课件 理 新人教B
点评 解法一主要是分类讨论去绝对值,关键是确定讨论的区 间.解法二主要是根据具体问题结合数轴可得解集(即图象法).
变式迁移 1 不等式|2x+1|+|x-2|>4 的解集为________.
答案 {x|x<-1 或 x>1}
解析 当 x≤-12时, 原不等式可化为-2x-1+2-x>4 ∴x<-1.
②作商法:欲证 A>B,若 B>0,只需证AB>1;若 B<0,只 需证明AB<1.
步骤:作商 变形 判断商与“1”的大小. 注意 在比较商式与“1”的大小关系时,应注意函数(特别是 指数函数)的性质(特别是单调性)的运用.
(2)分析法. ①方法:分析法是从需求证的不等式出发,分析使这个不等式 成立的充分条件,通过肯定这些充分条件都已具备,从而断定原不 等式成立. ②特点:执果索因,即从“未知”看“需知”,逐步靠拢“已 知”. 注意 用分析法证明不等式往往把“逆求”错误用做为“逆 推”,分析过程只需寻求充分条件即可,而不是充要条件.
(5)放缩法. 欲证 A≥B,可通过适当放大或缩小,借助一个或多个中间量, 使得 B≤B1,B1≤B2,…,Bi≤A,或 A≥A1,A1≥A2,…,Ai≥B, 再利用传递性,达到欲证的目的,这种方法叫做放缩法. (6)用数学归纳法证明不等式 ①用数学归纳法证明不等式必须严格遵循数学归纳法的基本程 序“两步一结论” ②由于不等式的特殊性,在 n=k n=k+1 的过程中,假设成 立的结论代入后与目标结论尚有较大差异,此时要综合运用不等式 的证明方法.
平方和不等式:若 a,b∈R,则 a2+b2≥12(a+b)2; 重要不等式:a,b 均为正数,则a+2 b≥ ab,a,b∈R,则 a2 +b2≥2ab; 倒数和不等式,若 a,b 均为正数,则(a+b)(1a+1b)≥4.
高三数学人教版A版数学(理)高考一轮复习教案集合
第一节 集合1.集合的含义与表示(1)了解集合的含义、元素与集合的“属于”关系.(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题. 2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集. (2)在具体情境中,了解全集与空集的含义. 3.集合间的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集. (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集. (3)能使用韦恩(Venn)图表示集合的关系及运算. 知识点一 集合的基本概念1.集合中元素的三个特性:确定性、互异性、无序性. 2.元素与集合的关系:属于或不属于,表示符号分别为∈和∉. 3.集合的三种表示方法:列举法、描述法、V enn 图法.易误提醒 在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.[自测练习]1.已知a ∈R ,若{-1,0,1}=⎩⎨⎧⎭⎬⎫1a ,a 2,0,则a =________.解析:1a ≠0,a ≠0,a 2≠-1,只有a 2=1.当a =1时,1a =1,不满足互异性,∴a =-1.答案:-1知识点二 集合间的基本关系描述关系 文字语言符号语言 集合间的基本关系子集 A 中任意一元素均为B 中的元素A ⊆B 或B ⊇A真子集A 中任意一元素均为B 中的元素,且B 中至少有一个元素A 中没有AB 或B A相等集合A与集合B 中的所有元素都相同A=B 必记结论若集合A中有n个元素,则其子集个数为2n,真子集个数为2n-1,非空真子集的个数为2n-2.易误提醒易忘空集的特殊性,在写集合的子集时不要忘了空集和它本身.[自测练习]2.已知集合A={x|x=a+(a2-1)i}(a∈R,i是虚数单位),若A⊆R,则a=()A.1 B.-1 C.±1 D.0解析:A⊆R,∴a2-1=0,a=±1.答案:C3.已知集合A={1,2,3,4},B={(x,y)|x∈A,y∈A,xy∈A},则集合B的所有真子集的个数为()A.512 B.256C.255 D.254解析:由题意知当x=1时,y可取1,2,3,4;当x=2时,y可取1,2;当x=3时,y可取1;当x=4时,y可取1.综上,B中所含元素共有8个,所以其真子集有28-1=255个.选C.答案:C知识点三集合的基本运算及性质并集交集补集图形表示符号表示A∪B={x|x∈A或x∈B}A∩B={x|x∈A,且x∈B}∁U A={x|x∈U,且x∉A}性质A∪∅=AA∪A=AA∪B=B∪AA∪B=A⇔B⊆AA∩∅=∅A∩A=AA∩B=B∩AA∩B=A⇔A⊆BA∪(∁U A)=UA∩(∁U A)=∅∁U(∁U A)=A易误提醒运用数轴图示法易忽视端点是实心还是空心.必记结论∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).[自测练习]4.(2015·广州一模)已知全集U ={1,2,3,4,5},集合M ={3,4,5},N ={1,2,5},则集合{1,2}可以表示( )A .M ∩NB .(∁U M )∩NC .M ∩(∁U N )D .(∁U M )∩(∁U N )解析:M ∩N ={5},A 错误;∁U M ={1,2},(∁U M )∩N ={1,2},B 正确;∁U N ={3,4},M ∩(∁U N )={3,4},C错误;(∁U M )∩(∁U N )=∅,D 错误.故选B.答案:B5.(2015·长春二模)已知集合P ={x |x ≥0},Q =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x +1x -2≥0,则P ∩(∁R Q )=( ) A .(-∞,2) B .(-∞,-1] C .(-1,0)D .[0,2]解析:由题意可知Q ={x |x ≤-1或x >2},则∁R Q ={x |-1<x ≤2},所以P ∩(∁R Q )={x |0≤x ≤2}.故选D.答案:D考点一 集合的基本概念|1.已知集合S ={x |3x +a =0},如果1∈S ,那么a 的值为( ) A .-3 B .-1 C .1D .3解析:∵1∈S ,∴3+a =0,a =-3. 答案:A2.设集合A ={1,2,4},集合B ={x |x =a +b ,a ∈A ,b ∈A },则集合B 中的元素个数为( )A .4B .5C .6D .7 解析:∵a ∈A ,b ∈A ,x =a +b ,∴x =2,3,4,5,6,8,∴B 中有6个元素,故选C. 答案:C3.(2015·贵阳期末)已知全集U ={a 1,a 2,a 3,a 4},集合A 是集合U 的恰有两个元素的子集,且满足下列三个条件:①若a 1∈A ,则a 2∈A ;②若a 3∉A ,则a 2∉A ;③若a 3∈A ,则a 4∉A .则集合A =________.(用列举法表示)解析:若a 1∈A ,则a 2∈A ,则由若a 3∉A ,则a 2∉A 可知,a 3∈A ,假设不成立;若a 4∈A ,则a 3∉A ,则a 2∉A ,则a 1∉A ,假设不成立,故集合A ={a 2,a 3}.答案:{a2,a3}判断一个元素是某个集合元素的三种方法:列举法、特征元素法、数形结合法.考点二集合间的基本关系及应用|(1)已知全集A={x∈N|x2+2x-3≤0},B={y|y⊆A},则集合B中元素的个数为()A.2B.3C.4 D.5[解析]依题意得,A={x∈N|(x+3)(x-1)≤0}={x∈N|-3≤x≤1}={0,1},共有22=4个子集,因此集合B中元素的个数为4,选C.[答案] C(2)已知集合M={x|-1<x<2},N={x|x<a},若M⊆N,则实数a的取值范围是()A.(2,+∞) B.[2,+∞)C.(-∞,-1) D.(-∞,-1][解析]依题意,由M⊆N得a≥2,即所求的实数a的取值范围是[2,+∞),选B.[答案] B1.判断两集合的关系常有两种方法(1)化简集合,从表达式中寻找两集合间的关系.(2)用列举法表示各集合,从元素中寻找关系.2.已知两集合间的关系求参数时的两个关键点(1)将两集合间的关系转化为元素间的关系,进而转化为参数满足的关系.(2)合理利用数轴、Venn图帮助分析.1.(2015·辽宁五校联考)设集合P={x|x>1},Q={x|x2-x>0},则下列结论正确的是() A.P⊆Q B.Q⊆PC.P=Q D.P∪Q=R解析:由集合Q={x|x2-x>0},知Q={x|x<0或x>1},所以选A.答案:A考点三集合的基本运算|(1)(2015·高考全国卷Ⅱ)已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=()A.{-1,0}B.{0,1}C.{-1,0,1} D.{0,1,2}[解析]由于B={x|-2<x<1},所以A∩B={-1,0}.故选A.[答案] A(2)(2015·郑州期末)已知函数f(x)=2-x-1,集合A为函数f(x)的定义域,集合B为函数f(x)的值域,则如图所示的阴影部分表示的集合为________.[解析]本题考查函数的定义域、值域以及集合的表示.要使函数f(x)=2-x-1有意义,则2-x-1≥0,解得x≤0,所以A=(-∞,0].又函数f(x)=2-x-1的值域B=[0,+∞).阴影部分用集合表示为∁A∪B(A∩B)=(-∞,0)∪(0,+∞).[答案](-∞,0)∪(0,+∞)集合运算问题的四种常见类型及解题策略(1)离散型数集或抽象集合间的运算.常借助Venn图求解.(2)连续型数集的运算.常借助数轴求解.(3)已知集合的运算结果求集合.借助数轴或Venn图求解.(4)根据集合运算求参数.先把符号语言译成文字语言,然后适时应用数形结合求解.2.(2015·高考陕西卷)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()A.[0,1]B.(0,1]C.[0,1) D.(-∞,1]解析:∵M={x|x2=x}={0,1},N={x|lg x≤0}={x|0<x≤1},∴M∪N={x|0≤x≤1},故选A.答案:A考点四集合的创新问题|设集合A={1,2,3},B={2,3,4,5},定义A⊙B={(x,y)|x∈A∩B,y∈A∪B},则A⊙B中元素的个数是()A.7B.10C.25D.52[解析]A∩B={2,3},A∪B={1,2,3,4,5},由列举法可知A⊙B={(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5)},共有10个元素,故选B.[答案] B解决集合创新问题的三个策略(1)遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质.(2)按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.(3)对于选择题,可以结合选项通过验证,用排除、对比、特值等方法求解.3.设P和Q是两个集合,定义集合P-Q={x|x∈P,且x∉Q},如果P={x|log2x<1},Q={x||x-2|<1},那么P-Q=()A.{x|0<x<1} B.{x|0<x≤1}C.{x|1≤x<2} D.{x|2≤x<3}解析:由log2x<1,得0<x<2,所以P={x|0<x<2};由|x-2|<1,得1<x<3,所以Q={x|1<x<3}.由题意,得P-Q={x|0<x≤1}.答案:B1.遗忘空集致误【典例】 设全集是实数集R ,A ={x |2x 2-7x +3≤0},B ={x |x 2+a <0}.若(∁R A )∩B =B ,则实数a 的取值范围是________.[解析] ∵A =⎩⎨⎧⎭⎬⎫x ⎪⎪ 12≤x ≤3,∴∁R A =⎩⎨⎧⎭⎬⎫x ⎪⎪x <12或x >3,当(∁R A )∩B =B 时,B ⊆∁R A 即A ∩B =∅.①当B =∅,即a ≥0时,满足B ⊆∁R A ; ②当B ≠∅,即a <0时, B ={x |--a <x <-a }, 要使B ⊆∁R A ,需-a ≤12,解得-14≤a <0.综上可得,实数a 的取值范围是a ≥-14.[答案] a ≥-14[易误点评] 由∁R A ∩B =B 知B ⊆∁R A ,即A ∩B =∅,又集合B 中元素属性满足x 2+a <0,当a ≥0时B =∅易忽视导致漏解.[防范措施] (1)根据集合间的关系求参数是高考的一个重点内容.解答此类问题的关键是抓住集合间的关系以及集合元素的特征.(2)已知集合B ,若已知A ⊆B 或A ∩B =∅,则考生很容易忽视A =∅而造成漏解.在解题过程中应根据集合A 分三种情况进行讨论.[跟踪练习] 已知U =R ,集合A ={x |x 2-x -2=0},B ={x |mx +1=0},B ∩(∁U A )=∅,则m =________.解析:A ={-1,2},B =∅时,m =0;B ={-1}时,m =1;B ={2}时,m =-12.答案:0,1,-12A 组 考点能力演练1.集合U ={0,1,2,3,4},A ={1,2},B ={x ∈Z |x 2-5x +4<0},则∁U (A ∪B )=( ) A .{0,1,3,4} B .{1,2,3} C .{0,4}D .{0}解析:因为集合B ={x ∈Z |x 2-5x +4<0}={2,3},所以A ∪B ={1,2,3},又全集U ={0,1,2,3,4},所以∁U (A ∪B )={0,4}.所以选C.答案:C2.已知集合A={0,1,2,3,4},B={x|x=n,n∈A},则A∩B的真子集个数为() A.5 B.6C.7 D.8解析:由题意,得B={0,1,2,3,2},所以A∩B={0,1,2},所以A∩B的真子集个数为23-1=7,故选C.答案:C3.(2015·太原一模)已知全集U=R,集合M={x|(x-1)(x+3)<0},N={x||x|≤1},则阴影部分表示的集合是()A.[-1,1)B.(-3,1]C.(-∞,-3)∪[-1,+∞)D.(-3,-1)x|-1≤x≤1,∴阴影部分表示的集解析:由题意可知,M={}x|-3<x<1,N={}合为M∩(∁U N)={}x|-3<x<-1.答案:D4.集合A={x|x-2<0},B={x|x<a},若A∩B=A,则实数a的取值范围是()A.(-∞,-2] B.[-2,+∞)C.(-∞,2] D.[2,+∞)解析:由题意,得A={x|x<2}.又因为A∩B=A,所以a≥2,故选D.答案:D5.(2015·山西质检)集合A,B满足A∪B={1,2},则不同的有序集合对(A,B)共有() A.4个B.7个C.8个D.9个解析:由题意可按集合A中的元素个数分类.易知集合{1,2}的子集有4个:∅,{1},{2},{1,2}.若A=∅,则B={1,2};若A={1},则B={2}或B={1,2};若A={2},则B ={1}或B={1,2};若A={1,2};则B=∅或B={1}或B={2}或B={1,2}.综上所述,不同的有序集合对(A,B)共有9个,故选D.答案:D6.(2015·广州模拟)设集合A={(x,y)|2x+y=6},B={(x,y)|3x+2y=4},满足C⊆(A∩B)的集合C的个数为________.解析:依题意得,A ∩B ={(8,-10)},因此满足C ⊆(A ∩B )的集合C 的个数是2. 答案:27.设集合S n ={1,2,3,…,n },若X ⊆S n ,把X 的所有元素的乘积称为X 的容量(若X 中只有一个元素,则该元素的数值即为它的容量,规定空集的容量为0).若X 的容量为奇(偶)数,则称X 为S n 的奇(偶)子集,则S 4的所有奇子集的容量之和为________.解析:∵S 4={1,2,3,4},∴X =∅,{1},{2},{3},{4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}.其中是奇子集的为X ={1},{3},{1,3},其容量分别为1,3,3,所以S 4的所有奇子集的容量之和为7.答案:78.已知集合P ={-1,m },Q =⎩⎨⎧⎭⎬⎫x ⎪⎪-1<x <34,若P ∩Q ≠∅,则整数m =________. 解析:由{-1,m }∩⎩⎨⎧⎭⎬⎫x ⎪⎪-1<x <34≠∅,可得-1<m <34,由此可得整数m =0. 答案:09.已知集合A ={x |x 2-2x -3≤0},B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R }. (1)若A ∩B =[0,3],求实数m 的值; (2)若A ⊆∁R B ,求实数m 的取值范围. 解:由已知得A ={x |-1≤x ≤3}, B ={x |m -2≤x ≤m +2}.(1)∵A ∩B =[0,3],∴⎩⎪⎨⎪⎧m -2=0,m +2≥3.∴m =2.(2)∁R B ={x |x <m -2或x >m +2},∴A ⊆∁R B , ∴m -2>3或m +2<-1,即m >5或m <-3. 因此实数m 的取值范围是{m |m >5或m <-3}.10.设全集I =R ,已知集合M ={x |(x +3)2≤0},N ={x |x 2+x -6=0}. (1)求(∁I M )∩N ;(2)记集合A =(∁I M )∩N ,已知集合B ={x |a -1≤x ≤5-a ,a ∈R },若B ∪A =A ,求实数a 的取值范围.解:(1)∵M ={x |(x +3)2≤0}={-3}, N ={x |x 2+x -6=0}={-3,2},∴∁I M ={x |x ∈R 且x ≠-3}, ∴(∁I M )∩N ={2}.(2)由(1)知A =(∁I M )∩N ={2},∵A ∪B =A ,∴B ⊆A ,∴B =∅或B ={2}, 当B =∅时,a -1>5-a ,∴a >3;当B ={2}时,⎩⎪⎨⎪⎧a -1=2,5-a =2,解得a =3,综上所述,实数a 的取值范围为{a |a ≥3}.B 组 高考题型专练1.(2014·高考课标全国卷Ⅰ)已知集合A ={x |x 2-2x -3≥0},B ={x |-2≤x <2},则A ∩B =( )A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)解析:由不等式x 2-2x -3≥0解得x ≥3或x ≤-1,因此集合A ={x |x ≤-1或x ≥3},又集合B ={x |-2≤x <2},所以A ∩B ={x |-2≤x ≤-1},故选A.答案:A2.(2014·高考课标全国卷Ⅱ)设集合M ={0,1,2},N ={x |x 2-3x +2≤0},则M ∩N =( ) A .{1} B .{2} C .{0,1}D .{1,2}解析:由已知得N ={x |1≤x ≤2},∵M ={0,1,2},∴M ∩N ={1,2},故选D. 答案:D3.(2015·高考全国卷Ⅰ)已知集合A ={x |x =3n +2,n ∈N },B ={6,8,10,12,14},则集合A ∩B 中元素的个数为( )A .5B .4C .3D .2解析:集合A ={x |x =3n +2,n ∈N },当n =0时,3n +2=2,当n =1时,3n +2=5,当n =2时,3n +2=8,当n =3时,3n +2=11,当n =4时,3n +2=14,∵B ={6,8,10,12,14},∴A ∩B 中元素的个数为2,选D.答案:D4.(2015·高考福建卷)若集合A={i,i2,i3,i4}(i是虚数单位),B={1,-1},则A∩B 等于()A.{-1} B.{1}C.{1,-1} D.∅解析:因为A={i,-1,-i,1},B={1,-1},所以A∩B={1,-1},故选C.答案:C5.(2015·高考浙江卷)已知集合P={x|x2-2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=() A.[0,1) B.(0,2]C.(1,2) D.[1,2]解析:∁R P={x|0<x<2},故(∁R P)∩Q={x|1<x<2}.答案:C6.(2015·高考重庆卷)已知集合A={1,2,3},B={2,3},则()A.A=B B.A∩B=∅C.A B D.B A解析:由真子集的概念知B A,故选D.答案:D。
高三数学(理)一轮复习课件:5.4 数列求和
an a1 (n 1)d 19 (n 1) (2)
21 2n
n(a1 an ) n(19 21 2n) n 2 20 n Sn 2 2
的等差数列,S n为数列an 的前n项和 ( 1 )求 : an 及S n
1 1 1 1 1 2 2 n 1 n 2
3 2n 3 4 2n 1n 2
拓展训练: 已知等差数列an 的前项n和Sn满足S3 0, S5 5 (1)求an 的通项公式; 1 (2)求数列 的前项和. a2 n1a2 n1
(2010 重庆, 17)已知数列an 是首项为1 9,公差为- 2
(2)设数列bn an 是首项为1,公比为3 的等比数列, 求 : b n 及前n项和T n
( 2) 解 : 由 题 意 知
: bn an 1 3n1, 即 bn 3n1 21 2n
Tn b1 b2 b3 bn
P90 变式训练2
例 4:
an 中前n项和为Sn,前6项和为36, 已知: 等差数列
最后6项的和为 180 (n 6),求Sn 解:由题意知 :
a1 a2 a3 a4 a5 a6 36
n
①
an an1 an2 an3 an4 an5 180
2 1 2 2 n 3 n 5n 2 8
的等差数列,S n为数列an 的前n项和 ( 1 )求 : an 及S n
(2010 重庆, 17)已知数列an 是首项为1 9,公差为- 2
拓展训练:
(2)设数列bn an 是首项为1,公比为3 的等比数列, 求 : b n 及前n项和T n
高三一轮复习公开课一等奖优质课大赛微课获奖课件
②方向:a.F⊥B, F⊥v。即:F⊥v、B决定平面
b.左手定则(四指指向正电荷运动方向) ③特点:洛伦兹力永远不做功。
④与安培力关系: 安培力时洛伦兹力宏观表达。
第3页
练1.一个带正电荷小球沿光滑水平绝缘桌面向右运动, 速度方向垂直于一个水平方向匀强磁场,如图所表示, 飞离桌子边沿落到地板上.设其飞行时间为t1,水平射程 为s1,着地速度大小为v1;若撤去磁场,其余条件不变时, 小球飞行时间为t2,水平射程为s2,着地速度大小为v2,则: ()
y a→ v
O
bx
v
第15页
a
C.沿路径 a 运动,轨迹半径越来越小
v0 b
D.沿路径 b 运动,轨迹半径越来越大
例2.一带电粒子以速度v先后通过匀强电场E和匀强磁场B
电场和磁场对粒子做总功W1,把电场和磁场正交叠加后 粒子仍以速度v(v<E/B)速度穿过叠加区域,电场和磁场对
粒子做总功W2(不计重力),则: A.W1=W2 B.W1>W2 C.W1<W2 D.无法比较
第13页
例5.如图,真空室内存在匀强磁场,磁场方向垂直于图
中纸面向里,磁感应强度大小B=0.60T.磁场内有一块平
面感光板ab,板面与磁场方向平行.在距ab距离为
L=16cm处,有一个点状α放射源S,它向各个方向发射α粒
子,α粒子速度都是v=3.0×106 m/s.已知α粒子电荷量与
质量之比 q/m=5.0×107 C/kg.现只考虑在图纸平面中
N
第8页
探究三:洛伦兹力作用下临界和极值问题
例3.如图所表示,两个同心圆,半径分别为r和2r, 在两圆之间环形区域内存在垂直纸面向里匀强磁场, 磁感应强度为B.圆心O处有一放射源,放出粒子质量 为m,带电量为q,假设粒子速度方向都和纸面平行。 (1)图中箭头表示某一粒子初速度方向,OA与初速度 方向夹角为60°,要想使该粒子通过磁场第一次通过A 点,则初速度大小是多少? (2)要使粒子不穿出环形区域,则粒子初速度不能超出 多少?
直线的方程课件 高三数学一轮复习
解析:如图所示:
当直线l过B时设直线l的斜率为k1,
则k1=
3−0=-0−13, Nhomakorabea当直线l过A时设直线l的斜率为k2, 则k2=12−−01=1,
∴要使直线l与线段AB有公共点,则直线l的斜率的取值范围是(-∞,- 3] ∪
1, + ∞ .
题后师说
(1)由直线倾斜角的取值范围求斜率的取值范围或由斜率的取值范围 求 π)上直的线单倾调斜性角求的解取,值这范里围特时别,要常注借意助,正正切切函函数数y=在ta[0n,x在π2)[∪0,(π2,π2)π∪)上(π2 , 并不是单调的.
课堂互动探究案
1.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算 公式.
2.根据确定直线位置的几何要素,掌握直线方程的几种形式(点斜 式、两点式及一般式).
问题思考·夯实技能 【问题1】 直线的倾斜角越大,斜率越大对吗?
答案:不对.设直线的倾斜角为α,斜率为k.
【问题2】
在平面直角坐标系中,给定直线l上一个定点P0(x0,y0)和斜率k,则 直线l上不同于该定点的任意一点P(x,y)的横坐标x与纵坐标y所满足 的关系式是什么?
公共点,则直线l斜率的取值范围为__[13_,___3_]_.
解析:∵P(-1,0),A(2,1),B(0, 3), ∴kPA=2−1−−01 =13,kPB=0−3−−01 = 3. 由图可知,直线l的斜率k的取值范围为[13 , 3].
【变式练习】 若本例(2)中“P(-1,0)”改为“P(1,0)”,其他 条件不变,则直线l的斜率的取值范围为__(-__∞__,_-___3_]_∪__1_,__+__∞__.
题后师说
求直线方程的两种方法 (1)直接法:由题意确定出直线方程的适当形式. (2)待定系数法:先由直线满足的条件设出直线方程,方程中含有待 定的系数,再由题设条件求出待定系数.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学一轮复习示范课一、背景分析最近3年高考数学命题很平稳,坚持了稳中求改、稳中创新的原则。
充分发挥数学作为基础学科的作用,既重视考查中学数学基础知识的掌握程度,又注意考查进入高校继续学习的潜能。
做到了总体保持稳定,深化能力立意,积极改革创新,兼顾了数学基础、思想方法、思维、应用、运算和潜能等多方面的考查,融入课程改革的理念,拓宽题材,选材多样化,宽角度、多视点地考查数学素养,多层次地考查思想能力,充分体现新课标的特色。
二. 教学指导原则1、高度重视基础知识,基本技能和基本方法的复习。
“基础知识,基本技能和基本方法”就是中考备考的重点。
在备考课中必须认真落实双基,并特别注意蕴涵在基础知识中的能力因素,特别注意基本问题中的能力培育. 特别就是必须学会把基础知识放到崭新情景中回去分析,应用领域。
2、高中的“重点知识”复习中要保持较大的比重和必要的深度。
重点内容函数、三角、不等式、数列、立体几何,向量、概率及解析几何中的综合问题等。
在教学中,必须防止重复及直观的训练。
总之高三的数学备考课必须以培育逻辑思维能力为核心,强化运算能力为主体展开备考。
3、重视“通性、通法”的落实。
必须把备考的重点放到教材中典型例题、习题上;放到彰显通性、通法的例题、习题上;放到各部分知识网络之间的内在联系上抓好课堂教学质量,定出实施方法和评价方案。
4、扩散数学思想方法, 培育数学学科能力。
《考试说明》明确指出要考查数学思想方法, 要加强学科能力的考查。
我们在备考中要强化数学思想方法的备考, 例如转变与化归的思想、函数与方程的思想、分类探讨的思想、数形融合的思想. 以及换元法、未定系数法、反证法、数学归纳法等数学基本方法都必须有意识地根据学生自学实际不予备考及全面落实。
5、结合实际,了解学生,分类指导。
重点打造出尖子生同时全力展开辅弱工作,对临界生展开辅导,根据学校的具体安排,做出全面的全面落实,三、教学参考进度:第一轮的备考必须以基础知识、基本技能、基本方法居多,为以后的专题备考搞好准备工作。
一、背景分析近年来的中考数学试题逐步努力做到科学化、规范化,秉持了信中求改为、稳中求进中技术创新的原则。
考试题不但秉持了考查全面,比例适度,布局合理的特点,也注重彰显Conques科学知识立意为能力立意这一措施。
更加著重考查学生步入高校自学所需的基本素养,这些问题应当引发我们在教学中的高度关注和注重。
数学试卷充分发挥数学作为基础学科的作用,既重视考查中学数学基础知识的掌握程度,又注意考查进入高校继续学习的潜能。
在前三年命题工作的基础上做到了总体保持稳定,深化能力立意,积极改革创新,兼顾了数学基础、思想方法、思维、应用和潜能等多方面的考查,融入课程改革的理念,拓宽题材,选材多样化,宽角度、多视点地考查数学素养,多层次地考查思想能力,充分体现新课标的特色:1、试题题型稳定、注重对主干科学知识的考查、注重对追加内容的考查;2、充分考虑文、理科考生的思维水平与不同的学习要求,体现出良好的层次性;3、注重对数学思想方法的考查;4、深化能力立意,考查考生的学习潜能;5、注重基础,以教材为本;6、重视应用题设计,考查考生数学应用意识;二. 教学指导原则1、高度重视基础知识,基本技能和基本方法的复习。
“基础知识,基本技能和基本方法”就是中考备考的重点。
在备考课中必须认真落实双基,并特别注意蕴涵在基础知识中的能力因素,特别注意基本问题中的能力培育. 特别就是必须学会把基础知识放到崭新情景中回去分析,应用领域。
2、高中的“重点知识”复习中要保持较大的比重和必要的深度。
原来的重点内容函数、不等式、数列、立体几何,平面三角及解析几何中的综合问题等。
在教学中,必须防止重复及直观的训练。
追加的内容:向量、概率等内容在备考时也应当引发我们的足够多注重。
总之高三的数学备考课必须以培育逻辑思维能力为核心,强化运算能力为主体展开备考。
3、重视“通性、通法”的落实。
必须把备考的重点放到教材中典型例题、习题上;放到彰显通性、通法的例题、习题上;放到各部分科学知识网络之间的内在联系上狠抓课堂教学质量,厘定实行方法和评价方案。
4、渗透数学思想方法, 培养数学学科能力。
《考试表明》明确指出必须考查数学思想方法, 必须强化学科能力的考查。
我们在备考中要强化数学思想方法的备考, 例如转变与化归的思想、函数与方程的思想、分类探讨的思想、数形融合的思想. 以及分体式方法、换元法、未定系数法、反证法、数学归纳法、解析法等数学基本方法都必须有意识地根据学生自学实际不予备考及全面落实。
5、复习课中注意新的目标定位。
① 培育学生收集和处置信息的能力;② 激发学生的创新精神;③ 培育学生在自学过程中的的合作精神;④ 激活显示各科知识的储存,尝试相关知识的灵活应用及综合应用。
6、结合实际,介绍学生,分类指导。
第一轮复习从7月初开始,基础知识复习阶段。
在这一阶段,老师将率领同学科重温高中阶段所学的课程,但这绝不只是对以前所学科学知识的直观重复,而是东站在更高的角度,对旧有科学知识产生全新重新认识的关键过程。
主线索就是科学知识的横向联系与横向联系结合,以章节为单位,将那些零散的、零乱的知识点串联出来,并将它们系统化、综合化,侧重点在各个知识点之间的融会贯通。
所以大家在复习过程中应做到:1、立足课本,快速转化成已研习过的各个知识点, “重回”课本,打牢基础,熟练掌握解题的通性、通法,提升解题速度;2、注意所做题目知识点覆盖范围的变化,有意识地思考、研究这些知识点在课本中所处的地位和相互之间的联系;3、明晰课本从前至后的知识结构,将整个科学知识体系框架化、网络化;4、经常将使用最多的知识点总结起来,研究重点知识所在章节,并了解各章节在课本中的地位和作用;5、适度挑选出高考题以周侧形式发生;6、资料选取以《核按钮》和课本为主,结合近几年高考试题为辅;中考备考必须融合中考的实际,也必须融合学生的实际,必须介绍学生的全面情况,推行综合指导。
可能将有的学生应当专攻薄弱环节,而另一些学生则应当扬长避短。
了解学生要加强量的分析,建立档案;了解学生,才有利于个别辅导,因材施教,对于好的学生,重在提高;对于差的学生,重在补缺。
三、教学参照进度:第一轮的复习要以基础知识、基本技能、基本方法为主,为以后的调研考试做好准备。
为了集训20xx年的中考,合理而有效率的利用各种资源科学复习,特制订本计划。
一、复习步骤我们急于分后3个阶段去顺利完成数学备考。
第一轮从年8月开学开始至20xx年3月10日前结束第二轮从20xx年3月10至20xx年4月中旬第三轮从20xx年4月中旬至20xx年5月底第一轮:著重基础。
这一届学生适逢我校课改实验阶段,由于课程容量大,教学进度快,很多学生的基础知识不扎实,课本上的题也不会做。
高考试题“源于课本,高于课本”,有些是课本题目经过加工改造,组合嫁接而成,有些甚至是原题。
课本是考试内容的具体化,是中、低档题目的直接来源,是解题能力的生长点。
因此,,一轮备考按课本的章节顺序去展开,必须以课本为充分利用,,以章节为单位,将零散与零乱的知识点串成出来,并将它们系统化,强化科学知识的横向与横向联系,重点是将各知识点的网络化及融会贯通。
应当针对学生基础极差,动手能力不弱,科学知识无法四海联系,选择题与填空题的速度与准确率不高等问题展开重点、难点突破,并使学生奠定稳固的基础,提升自学兴趣和信心。
必须特别注意进一步增强学生的写作理解能力,提升审题能力。
注重学生卷面表达的训练。
高考要获得好分数,除了具有较高的数学功底外,还要避免出现失误失分。
一方面要通过试题训练使学生减少、避免马虎、失误丢分,还要强调学生的书面表达,训练学生答卷时做到字迹工整、格式规范、推证合理、详略适当,做到会的题目不丢分,不会做的题目也争取得部分步骤分。
必须注重数学思想方法的教学。
在问题的分析、思路发展过程中运用数学思想方法展开思维的导向,在思维过程中代普雷数学思想方法在解题思路辨认出过程中所起至的重点促进作用。
还要做好试卷评析工作。
讲评试卷要分析题目考的哪些知识点、需要哪几种能力、体现哪些数学方法,使学生体会出题者意图。
讲评中还要不断转换条件,进行变式训练,达到举一反三,触类旁通的训练,不能只满足于就题论题,要注重探求解题规律,提高点评的质量和效益。
第二轮专题闯关组成整个知识体系的重点章节,重点知识点,高考试题中会对这些反复进行考查,不会有意对这些内容进行回避。
因此我们要对整个书本进行梳理,对特别重要的章节中所考查的知识点要全部列举出来,再看看近几年的高考题,看已经考了哪些知识点,那么剩下的那些点就应更加注意,高考题一般会在一定的周期内对这些知识点进行全面的考查。
二轮按知识体系与内在联系进行,从知识结构上二轮复习专题一般分为:科学知识专题第1专题:不等式第2专题:函数与导数第3专题:数列第4专题:三角函数与平面向量第5专题:解析几何第6专题:立体几何第7专题:计数原理与概率统计题型专题第8专题:高考中选择题的解法第9专题:中考中填空题的数学分析第10专题:高考中解答题的解法在这一阶段,锻炼身体学生的综合能力与应试技巧,不要注重知识结构的先后次序,须要协调着专题的自学,提升学生化解数学问题的能力,同时针对挑选、填空题的特色,自学一些解题的特定技巧、方法,以提升在中考考试中的对时间的掌控力。
第三轮综合模拟根据各地的中考信息编拟不好冲刺训练的演示试卷,通过规范训练,辨认出平时备考的薄弱点和思维的'易错点,提升课堂教学能力,走进中考。
主要就是搞各地的模拟题,这时候就是高强度的训练。
训练考试技巧和学生的应试心理的调整阶段,也就是强化非智力因素的训练。
5月底6月初,重回课本,有的放矢对症下药,重现知识点。
践行信心,随心所欲参加考试。
该阶段需要解决的问题是:1、加强科学知识的综合性和交汇性,稳固方法的选择性和灵活性。
2、检查复习的知识疏漏点和解题易错点,探索解题的规律。
3、检验科学知识网络的分解成过程。
4、领会数学思想方法在解答一些高考真题和新颖的模拟试题时的工具性。
第1周:子集和命题。
第2—4周:函数。
第5—6周:三角函数。
第7—9周:解斜三角形、平面向量、数系的扩充与复数的引入。
第10—11周:数列、段托福第12周:不等式、推理与证明。
第13—15周:立体几何、空间向量。
第16—19周:平面解析几何第20—22周:算法初步、统计数据、统计数据案例、备考期末考试二、复习措施1、强化备课组的协作,充分发挥集体智慧。
各备课组成员必须心往一处想要,劲往一处并使,针对备考中存有的注重问题,强化集体复习,共同研究找寻对策,强化互相交流,互相学习,精心甄选各类中考信息。
2、切实抓好强化训练,首先要精选试题,立足于中、低档题目,不能盲目拔高,追求“一次到位”,去建造空中楼阁。