轻绳、轻杆、轻弹簧三种模型之比较

合集下载

高中物理必考模型:轻绳、轻弹簧、轻杆联系与区别全解析

高中物理必考模型:轻绳、轻弹簧、轻杆联系与区别全解析

高中物理必考模型:轻绳、轻弹簧、轻杆联系与区别全解析轻绳特点轻绳模型的建立轻绳或称为细线,它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。

它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。

轻绳模型的特点①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。

轻杆特点轻杆模型的建立轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。

轻杆模型的特点①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。

轻弹簧特点轻弹簧模型的建立轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。

轻弹簧的特点①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k 为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。

特别提醒:橡皮筋与轻弹簧极为相似,只是橡皮筋不能被压缩静止或匀速运动例1、如图所示,有一质量为m的小球用轻绳悬挂于小车顶部,小车静止或匀速直线运动时,求绳子对小球作用力的大小和方向。

解析:小车静止或匀速直线运动时,小球也处于静止或匀速直线运动状态。

由平衡条件可知,绳子对小球的弹力为F=mg,方向是沿着绳子向上。

若将轻绳换成轻弹簧,其结果是一样的。

例2、如图所示,小车上有一弯折轻杆,杆下端固定一质量为m的小球。

当小车处于静止或匀速直线运动状态时,求杆对球的作用力的大小和方向。

解析:以小球为研究对象,可知小球受到杆对它一个的弹力和重力作用,由平衡条件可知小球受力如图所示。

则可知杆对小球的弹力为F=mg,方向与重力的方向相反即竖直向上。

注意:在这里杆对小球的作用力方向不是沿着杆的方向。

以加速度a做匀加速直线运动时,求轻绳对小球的作用力的大小和方向。

浅析轻绳、轻杆和轻弹簧模型的应用

浅析轻绳、轻杆和轻弹簧模型的应用
(2)当 OA 为细绳时,OB 一断开拉力立即为零,OA 的 拉力也随即改变。这时,小球在拉力和重力的作用下,由 静止开始做变速圆周运动(图 2)。因为这时速度为零, 根据牛顿第二定律,有
T-mgcosθ =mv2/l=0 所以,拉力为
T=mgcosθ
请想一想: 这时 OA 的拉力与 OB 断开前的拉力之 比是多少?OB 断开瞬间,小球的运动加速度是 多少?
0 2 -1
分析:在细绳烧断之前,两球受到的平衡力如图所示。 在细绳烧断瞬间间,拉力(T)消失,而弹簧弹力不变, 即

T=2 mg
根据牛顿第二定律,A、B 的加速度分别为 aA=(F-mg)/m=g--方向竖直向上。
aB=mg/m=g--方向竖直向下。
请读者想一想:如果将连接 A、B 球的细绳换成轻 杆或者轻弹簧结果如何?

T= [(ma)2+( mg)2]1/2=m (a2+g2)1/2

拉力与竖直方向的夹角θ 可表示为 θ =tg (a/g). 可以看出:θ 角随加速度 a 的增大而增大。 当 a=0 时:T= mg , θ =0---拉力竖直向上; 当 a=gtgß 时: T= mg(1+tg ß)1 /2= mg/cosθ , θ =ß---拉力沿杆方向; 注意:这个临界加速度,可以利用逆向思维方法。由θ =ß 简捷的得出。 当 a»g 时, T≈ ma,θ ≈90 ――拉力趋于水平方向。 当 a«g 时, T≈ mg,θ ≈0――拉力趋于竖直方向。 请读者想一想:如果小球由一段轻绳或者轻弹簧连接,结果如何? 例 3:如图 4 所示,质量相同的 A、B 两球用细绳相连,然后由轻弹簧竖直悬挂。求 将细绳烧断瞬间,A、B 的加速度是多少?方向如何?

轻杆轻绳轻弹簧模型

轻杆轻绳轻弹簧模型

等于物体的重力;分别
取C点和G点为研究对象,
细绳EG的张力FTEG之比;
进行受力分析如图甲和
(2)轻杆BC对C端的支持力;
乙所示,根据平衡规律
(3)轻杆HG对G端的支持力。
可求解。
[答案]
(1)2MM12 (2)M1g 方向跟水平方向成 30°指 向右上方
(3) 3 M2g 方向水平向右
点评: 解答本题的关键是抓住:活结中轻绳上各点的拉力大小相
解析: 绳连接时,球由A到C做自由落体运动,A、C关于水平线
对称,设C处的速度为Vc,且方向竖直向下,选取B点为零能,m在vc绳2 突然拉紧的瞬间,将径向的动
能损耗掉,由C到B的过程中机械能守恒,选取B点为零能面,
1 2m12vmg(1 Lsin)1 2mB 2v
则α=37°
即方向与竖直方向成 37°角斜向下,这个力与轻绳的拉力恰好在同一条
直线上。根据物体平衡的条件可知,轻杆对小球的作用力大小为 5 N,方
向与竖直方向成 37°角斜向上
点评: 由于轻杆作用力的方向具有多向性的
特点,先确定其余力的合力,然后再根据 平衡条件判定轻杆作用力的大小和方向。
[典例2]轻杆长为L,一端用光滑轴固定,另一端系一个可视为 质点,质量为的小球,把小球拉至图示的位置,无初速度地自 由释放到最低处的过程中,小球做什么运动?到最低处时速度 多大?弹力多少?若其它条件不变,把轻杆换为细绳,则释放 后小球做什么运动?到最低处时速度多大?弹力为多少?
水平横梁BC右端的定滑轮挂住一个质 量为M1的物体,∠ACB=30°;图乙 中轻杆HG一端用铰链固定在竖直墙上, 另一端G通过细绳EG拉住,EG与水平 方向也成30°,轻杆的G点用细绳GF

轻绳、轻杆和轻弹簧模型(修)

轻绳、轻杆和轻弹簧模型(修)

轻绳、轻杆和轻弹簧模型的应用一、三个模型的相同点1、“轻”—不计质量,不受重力。

2、在任何情况下,沿绳、杆和弹簧伸缩方向的张力、弹力处处相等。

二、三个模型的不同点1、形变特点轻绳—可以任意弯曲,但不能伸长,即伸长形变不计。

轻杆—不能任意弯曲,不能伸长和缩短,即伸缩形变不计。

轻弹簧—可以伸长,也可以缩短,且伸缩形变不能忽略不计。

2、施力和受力特点轻绳—只能产生和承受沿绳方向的拉力。

轻杆—不仅能产生和承受沿杆方向的拉力和压力,还能产生和承受不沿杆方向的拉力和压力。

轻弹簧—可以产生和承受沿弹簧伸缩方向的拉力和压力。

3、力的变化特点轻绳—张力的产生、变化、或消失不需要时间,具有突变性和瞬时性。

轻杆—拉力和压力的产生、变化或消失不需要时间,具有突变性和瞬时性。

轻弹簧—弹力的产生、变化或消失需要时间,即只能渐变,不具有瞬时性,且在形变保持瞬间,弹力保持不变。

(注意:当弹簧的自由端无重物时,形变消失不需要时间)4、连接体的运动特点轻绳—轻绳平动时,两端的连接体沿绳方向的速度(或速度分量)总是相等,且等于省上各点的平动速度;轻绳转动并拉直时,连接体具有相同的角速度,而线速度与转动半径成正比。

轻杆—轻杆平动时,连接体具有相同的平动的速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比。

轻弹簧—在弹簧发生形变的过程中,两端连接体的速率不一定相等;在弹簧形变最大,即弹性势能最大时,两端连接体的速率相等;在弹簧转动时,连接体的转动半径随弹力变化,速度方向不一定垂直于弹力。

5、作功和能量转化特点轻绳—在连接体作匀速率和变速率圆周运动的过程中,绳的拉力都不作功;在绳突然拉直的瞬间,有机械能转化为绳的内能,即机械能不守恒。

轻杆—在连接体作匀速率和变速率圆周运动的过程中,轻杆的法向力对物体不作功,而切向力既可以对物体作正功,也可以对物体作负功,但系统机械能守恒。

轻弹簧—弹力对物体作功,系统机械能守恒;弹力作正功,弹性势能减少,物体动能增加;弹力作负功,弹性势能增加,物体动能减少。

对轻杆、轻绳、轻弹簧三种模型的深入探讨

对轻杆、轻绳、轻弹簧三种模型的深入探讨
因此,对于轻杆受力问题,首先应明确一

’一。、] 引探导航·难点突破
,,
端是否固定.若不固定,则另一端合力必沿 杆方向,若固定,则可以受任何方向的力,应 根据实际情况加以分析.
2.轻弹簧中弹力的大小 在弹簧测力计的两端各用5 N的力对拉, 测力计 的读数是多 少?请 同学们注意 不是 10 N也不是0 N.对于这个问题我们可以做如 下分析:我们可以把弹簧分成很多段,显然在 弹簧 发生伸长 形变时, 相邻两端 之间都互 相
囊:二、三种模型的主要特点
1.轻绳 轻绳或称为细线,它的质量可忽略不计, 轻绳是软的,不能产生侧向力,只能产生沿着 绳子 方向的力 .它的劲 度系数非 常大,以 至 于认为在受力时形变极微小,看作不可伸长. 其特点是: ①轻 绳中各处 受力相 等,且 拉力方向 沿 着绳子. ②轻绳不能伸长. ③用轻 绳连接的 系统通过 轻绳的碰 撞、 撞击时,系统的机械能有损失. ④轻绳的弹力会发生突变. 2.轻杆 轻杆的质量可忽略不计,轻杆是硬的,能 产生侧向力,它的劲度系数非常大,以至于认 为在 受力时形 变极微小 ,看作不 可伸长或 压 缩.其特点是: ①轻杆 各处受力 相等,其 力的方向 不一 定沿 着杆的方向 . ②轻杆不能伸长或压缩. ③轻仟受到 的弹力的力武有:拉力 或匮力. 3.轻弹簧 轻弹簧 可以被压 缩或拉伸 ,其弹力 的大 小与弹簧的伸长量或缩短量有关.其特点是: ①轻 弹簧各处 受力相 等,其 方向与弹 簧 形变的 向相反. ② 弹力 的大 小为 F=k x,其 中 k为弹 簧的
l l!l l i;39’’’。。‘1。。‘’。’~、7…一一一一一一~一 引探导航·难点突破
昌掰疆舀国深氏冁讨
尹秀辉
曩:一、三种模型的相同点
1.轻绳、轻杆和轻弹簧的“轻”就是质量 可忽略,重力不计.

(完整版)轻绳、轻杆和轻弹簧模型

(完整版)轻绳、轻杆和轻弹簧模型

浅析轻绳、轻杆和轻弹簧模型的应用山西泽州县第一中学成文荣李智涛 048000轻绳、轻杆和轻弹簧,是力学中三个重要的理想模型,在高中物理解题中有着重要的地位,为了帮助学生正确地分析和解决与轻绳、轻杆和轻弹簧有关的问题,笔者对三个模型的相同点和不同点进行了总结,并想通过一定的实例,对学生学习和应用给与启迪思考。

一、三个模型的相同点1、“轻”- 不计质量,不受重力。

2、在任何情况下,沿绳、杆和弹簧伸缩方向的张力、弹力处处相等.二、三个模型的不同点1、形变特点轻绳—可以任意弯曲,但不能伸长,即伸长形变不计。

轻杆—不能任意弯曲,不能伸长和缩短,即伸缩形变不计。

轻弹簧—可以伸长,也可以缩短,且伸缩形变不能忽略不计。

2、施力和受力特点轻绳 - 只能产生和承受沿绳方向的拉力.轻杆 - 不仅能产生和承受沿杆方向的拉力和压力,还能产生和承受不沿杆方向的拉力和压力。

轻弹簧—可以产生和承受沿弹簧伸缩方向的拉力和压力。

3、力的变化特点轻绳—张力的产生、变化、或消失不需要时间,具有突变性和瞬时性。

轻杆 - 拉力和压力的产生、变化或消失不需要时间,具有突变性和瞬时性.轻弹簧—弹力的产生、变化或消失需要时间,即只能渐变,不具有瞬时性,且在形变保持瞬间,弹力保持不变。

(注意 :当弹簧的自由端无重物时,形变消失不需要时间)4、连接体的运动特点轻绳 - 轻绳平动时,两端的连接体沿绳方向的速度(或速度分量)总是相等,且等于省上各点的平动速度;轻绳转动并拉直时,连接体具有相同的角速度,而线速度与转动半径成正比。

轻杆—轻杆平动时,连接体具有相同的平动的速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比.轻弹簧—在弹簧发生形变的过程中,两端连接体的速率不一定相等;在弹簧形变最大,即弹性势能最大时,两端连接体的速率相等;在弹簧转动时,连接体的转动半径随弹力变化,速度方向不一定垂直于弹力。

5、作功和能量转化特点轻绳 - 在连接体作匀速率和变速率圆周运动的过程中,绳的拉力都不作功;在绳突然拉直的瞬间,有机械能转化为绳的内能,即机械能不守恒.轻杆—在连接体作匀速率和变速率圆周运动的过程中,轻杆的法向力对物体不作功,而切向力既可以对物体作正功,也可以对物体作负功,但系统机械能守恒。

物理建模轻杆轻绳轻弹簧模型

物理建模轻杆轻绳轻弹簧模型

物理建模 1.轻杆、轻绳、轻弹簧模型模型阐述轻杆、轻绳、轻弹簧都是忽略质量的理想模型,与这三个模型相关的问题在高中物理中有相当重要的地位,且涉及的情景综合性较强,物理过程复杂,能很好地考查学生的综合分析能力,是高考的常考问题.为结点)图2-1-8【典例2】 一轻弹簧两端分别连接物体a 、b ,在水平力作用下共同向右做匀加速运动,如图2-1-9所示,在水平面上时,力为F 1,弹簧长为L 1,在斜面上时,力为F 2,弹簧长为L 2,已知a 、b 两物体与接触面间的动摩擦因数相同,则轻弹簧的原长为( ).图2-1-9A.L 1+L 22B.F 1L 1-F 2L 2F 2-F 1C.F 2L 1-F 1L 2F 2-F 1 D.F 2L 1+F 1L 2F 2+F 1即学即练 (2013·石家庄质检,18)如图2-1-10所示,一个“Y”形弹弓顶部跨度为L ,两根相同的橡皮条自由长度均为L ,在两橡皮条的末端用一块软羊皮(长度不计)做成裹片.若橡皮条的弹力与形变量的关系满足胡克定律,且劲度系数为k ,发射弹丸时每根橡皮条的最大长度为2L (弹性限度内),则发射过程中裹片对弹丸的最大作用力为( ).图2-1-10A .kLB .2kL C.32kL D.152kL 附:对应高考题组(PPT 课件文本,见教师用书)1.(2010·新课标全国卷,15)一根轻质弹簧一端固定,用大小为F 1的力压弹簧的另一端,平衡时长度为l 1;改用大小为F 2的力拉弹簧,平衡时长度为l 2.弹簧的拉伸或压缩均在弹性限度内,该弹簧的劲度系数为( ).A.F 2-F 1l 2-l 1 B.F 2+F 1l 2+l 1C.F 2+F 1l 2-l 1 D.F 2-F 1l 2+l 12.(2011·山东卷,19)如图所示,将两相同的木块a 、b 置于粗糙的水平地面上,中间用一轻弹簧连接,两侧用细绳系于墙壁.开始时a 、b 均静止,弹簧处于伸长状态,两细绳均有拉力,a 所受摩擦力F f a ≠0,b 所受摩擦力F f b =0.现将右侧细绳剪断,则剪断瞬间( ).A .F f a 大小不变B .F f a 方向改变C .F f b 仍然为零D .F f b 方向向右3.(2012·山东基本能力,85)力是物体间的相互作用,下列有关力的图示及表述正确的是( ).物理建模 1.轻杆、轻绳、轻弹簧模型模型阐述轻杆、轻绳、轻弹簧都是忽略质量的理想模型,与这三个模型相关的问题在高中物理中有相当重要的地位,且涉及的情景综合性较强,物理过程复杂,能很好地考查学生的综合分析能力,是高考的常考问题.为结点)图2-1-8解析 甲为自由杆,受力一定沿杆方向,如下图甲所示的F N1.乙为固定杆,受力由O 点所处状态决定,此时受力平衡,由平衡条件知杆的支持力F N2的方向与mg 和F 1的合力方向相反,如下图乙所示.答案 如解析图所示【典例2】 一轻弹簧两端分别连接物体a 、b ,在水平力作用下共同向右做匀加速运动,如图2-1-9所示,在水平面上时,力为F 1,弹簧长为L 1,在斜面上时,力为F 2,弹簧长为L 2,已知a 、b 两物体与接触面间的动摩擦因数相同,则轻弹簧的原长为( ).图2-1-9A.L 1+L 22B.F 1L 1-F 2L 2F 2-F 1C.F 2L 1-F 1L 2F 2-F 1 D.F 2L 1+F 1L 2F 2+F 1解析 设物体a 、b 的质量分别为m 1、m 2,与接触面间的动摩擦因数为μ,弹簧原长为L 0,在水平面上时,以整体为研究对象有F 1-μ(m 1+m 2)g =(m 1+m 2)a ,①隔离a 物体有k (L 1-L 0)-μm 1g =m 1a ,② 联立解得k (L 1-L 0)=m 1m 1+m 2F 1,③ 同理可得k (L 2-L 0)=m 1m 1+m 2F 2,④ 联立③④可得轻弹簧的原长为L 0=F 2L 1-F 1L 2F 2-F 1,C 对.答案 C反思总结 如何理解理想化模型——“轻弹簧”与“橡皮筋” (1)弹簧与橡皮筋产生的弹力遵循胡克定律F =kx ,x 是指形变量.(2)“轻”即指弹簧(或橡皮筋)的重力不计,所以同一弹簧的两端及中间各点的弹力大小相等. (3)弹簧既能受拉力,也能受压力(沿弹簧轴线),分析弹簧问题时一定要特别注意这一点,而橡皮筋只能受拉力作用.(4)弹簧和橡皮筋中的弹力均不能突变,但当将弹簧(或橡皮筋)剪断时,其弹力立即消失.即学即练 (2013·石家庄质检,18)如图2-1-10所示,一个“Y”形弹弓顶部跨度为L ,两根相同的橡皮条自由长度均为L ,在两橡皮条的末端用一块软羊皮(长度不计)做成裹片.若橡皮条的弹力与形变量的关系满足胡克定律,且劲度系数为k ,发射弹丸时每根橡皮条的最大长度为2L (弹性限度内),则发射过程中裹片对弹丸的最大作用力为( ).图2-1-10A .kLB .2kL C.32kL D.152kL 解析 对裹片受力分析,由相似三角形可得:kL2L=F2?2L ?2-⎝⎛⎭⎫L 22得:F =152kL 则裹片对弹丸的最大作用力为F 丸=F =152kL ,故选项D 正确. 答案 D附:对应高考题组(PPT 课件文本,见教师用书)1.(2010·新课标全国卷,15)一根轻质弹簧一端固定,用大小为F 1的力压弹簧的另一端,平衡时长度为l 1;改用大小为F 2的力拉弹簧,平衡时长度为l 2.弹簧的拉伸或压缩均在弹性限度内,该弹簧的劲度系数为( ).A.F 2-F 1l 2-l 1B.F 2+F 1l 2+l 1 C.F 2+F 1l 2-l 1 D.F 2-F 1l 2+l 1解析 设弹簧原长为l ,由题意知,F 1=k (l -l 1),F 2=k (l 2-l ),两式联立,得k =F 2+F 1l 2-l 1,选项C 正确. 答案 C2.(2011·山东卷,19)如图所示,将两相同的木块a 、b 置于粗糙的水平地面上,中间用一轻弹簧连接,两侧用细绳系于墙壁.开始时a、b均静止,弹簧处于伸长状态,两细绳均有拉力,a所受摩擦力F f a≠0,b所受摩擦力F f b=0.现将右侧细绳剪断,则剪断瞬间( ).A.F f a大小不变B.F f a方向改变C.F f b仍然为零D.F f b方向向右解析剪断右侧绳的瞬间,右侧细绳上拉力突变为零,而弹簧对两木块的拉力没有发生突变,与原来一样,所以b对地面有向左的运动趋势,受到静摩擦力F f b方向向右,C错误,D正确.剪断右侧绳的瞬间,木块a受到的各力都没有发生变化,A正确,B错误.答案AD3.(2012·山东基本能力,85)力是物体间的相互作用,下列有关力的图示及表述正确的是( ).解析由于在不同纬度处重力加速度g不同,旅客所受重力不同,故对飞机的压力不同,A错误.充足气的篮球平衡时,篮球壳对内部气体有压力作用,即内外气体对篮球壳压力的差值等于篮球壳对内部气体的压力,故B正确.书对桌子的压力作用在桌子上,箭尾应位于桌面上,故C错误.平地上匀速行驶的汽车,其主动轮受到地面的摩擦力是其前进的动力,地面对其从动轮的摩擦力是阻力,汽车受到的动力与阻力平衡时才能匀速前进,故D正确.答案BD。

怎样区别轻绳、轻杆、轻弹簧

怎样区别轻绳、轻杆、轻弹簧
A、有可能N处于拉伸状态而 处于压缩状态 、有可能 处于拉伸状态而 处于拉伸状态而M处于压缩状态 B、有可能 处于压缩状态而 处于拉伸状态 处于压缩状态而M处于拉伸状态 、有可能N处于压缩状态而 C、有可能 处于不伸不缩状态而 处于拉伸 状 处于不伸不缩状态而M处于拉伸 、有可能N处于不伸不缩状态而 态 D、有可能 处于拉伸状态而 处于不伸不缩状态 处于拉伸状态而M处于不伸不缩状态 、有可能N处于拉伸状态而
一、三种模型的相同点
(1)轻绳、轻杆和轻弹簧的“轻”,指的是质量可 )轻绳、轻杆和轻弹簧的“ 以忽略,重力不计. 以忽略,重力不计 (2)他们对物体的作用力都是弹力,属于接触力、 )他们对物体的作用力都是弹力,属于接触力、 被动力。 被动力。 (3)各处的受力一般认为相同 )各处的受力一般认为相同. (4)都可以连接物体。 )都可以连接物体。
A、由位置A到位置 重力做功为 、由位置 到位置 重力做功为mgh, 到位置B重力做功为 C、由位置A到位置 小球克服弹力做功为 、由位置 到位置 小球克服弹力做功为mgh 到位置B小球克服弹力做功为
1 B、由位置 到位置 重力势能减少 mv2 到位置B重力势能减少 、由位置A到位置 2
1 D、小球到达位置 时弹簧的弹性势能为 时弹簧的弹性势能为mgh、小球到达位置B时弹簧的弹性势能为 2 mv2
(2)轻绳弹力的方向总是指向绳收缩的方向;轻杆弹力 )轻绳弹力的方向总是指向绳收缩的方向; 的方向由运动状态决定; 的方向由运动状态决定;轻弹簧弹力的方向总是沿 弹簧指向反抗形变的方向。 弹簧指向反抗形变的方向。 所示, 例3、如图 所示,小车顶端悬挂 、如图3所示 一个小球,当小车以加速度a做 一个小球,当小车以加速度 做 匀变速运动时, 匀变速运动时,悬线与竖直方 向成某一固定角θ, 向成某一固定角 ,若小球质量 为m,求悬线对小球的拉力。 ,求悬线对小球的拉力。

轻绳、轻杆、轻弹簧三种模型之比较

轻绳、轻杆、轻弹簧三种模型之比较

轻绳、轻杆、轻弹簧三种模型之比较河南陈超众在力学中有很多的研究对象是通过“轻绳”“轻杆”“轻弹簧”连接的,在实际解题过程中,发现不少同学对这三种模型的特点、区别还不够清楚,容易混淆,造成解题错误。

下面就这三种模型的特点和不同之处及应用进行归纳,希望对大家有所帮助。

一. 三种模型的主要特点1. 轻绳(1)轻绳模型的建立轻绳或称为细线,它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。

它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。

(2)轻绳模型的特点①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。

2. 轻杆(l)轻杆模型的建立轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。

(2)轻杆模型的特点①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。

3. 轻弹簧(1)轻弹簧模型的建立轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。

(2)轻弹簧的特点①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。

二. 三种模型的主要区别1. 静止或匀速直线运动时例1. 如图1所示,有一质量为m的小球用轻绳悬挂于小车顶部,小车静止或匀速直线运动时,求绳子对小球作用力的大小和方向。

图1解析:小车静止或匀速直线运动时,小球也处于静止或匀速直线运动状态。

由平衡条件,方向是沿着绳子向上。

可知,绳子对小球的弹力为F mg若将轻绳换成轻弹簧,其结果是一样的。

例2. 如图2所示,小车上有一弯折轻杆,杆下端固定一质量为m的小球。

当小车处于静止或匀速直线运动状态时,求杆对球的作用力的大小和方向。

轻绳轻杆轻弹簧三种模型之比较

轻绳轻杆轻弹簧三种模型之比较

精心整理图4轻绳、轻杆、轻弹簧三种模型之比较轻绳、轻杆、轻弹簧作为中学物理最常见的三种典型的理想化力学模型,在各类题目中都会出现,有必要将它们的特点归类,供同学们学习时参考。

一.轻绳(或细绳)中学物理中的绳和线,是理想化的模型,具有以下几个特征:(1)轻:即绳(或线)的质量或重力可以视为等于零。

由此特点可知,同一根绳(或线)的两端例1.如图1所示,PQ 是固定的水平导轨,两端有两个小定滑轮,物体A 、B 用轻绳连结,绕过定滑轮,不计滑轮的摩擦,系统处于静止时,α=37°,β=53°,若B 重10N ,A 重20N ,A 与水平导轨间摩擦因数0.2μ=,则A 受的摩擦力()A .大小为4N ,方向向左B .大小为4N ,方向向右C .大小为2N ,方向向左D .大小为2N ,方向向右解析:要分析A 物体所受摩擦力,必须确定两绳子对A 的拉力情况。

因为两绳均为轻绳,且滑轮摩擦不计,因此绳子两端及其中间各点的张力大小相等,只要对B 物体受力分析即可知道绳子拉力大小情况。

如图2所示,B 受重力、两绳拉力1F 、2F 而平衡,由力的平衡知识即平行四边形法则可知:1=sin =6B F G N α,1=cos =8B F G N α。

再以A 物体为研究对象,如图可知,A 物体所受摩擦力为21862f F F N N N =-=-=,方向向左。

本题C 选项符合题意。

(2)软:即绳(或线)只能受拉力,不能承受压力。

由此特点可知:绳(或线)与其他物体的相互间作用力的方向总是沿着绳子。

注意轻绳“拉紧”和“伸直”的区别:有张力,而“伸直”的轻绳,还没有发生形变,没有张力。

例2.物体A 质量为m ,用两根轻绳B 、C 连接到墙上,在物体A 上施加一个力F ,如图所示,60θ=︒,要使两绳都能伸直,求力F 的大小范围。

解析:我们先假设拉力F 较小,则绳C 将松弛,绳B 将拉紧,因Q B A αAP Q 图1 BAαAP Q图2αA图此,拉力F的最小值minF,出现在绳C恰好伸直无弹力,而绳B张紧时。

轻绳、轻杆、轻弹簧三种模型之比较

轻绳、轻杆、轻弹簧三种模型之比较

轻绳、轻杆、轻弹簧三种模型之比较一. 三种模型的主要特点1. 轻绳(1)轻绳模型的建立轻绳或称为细线,它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。

它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。

(2)轻绳模型的特点①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。

2. 轻杆(l)轻杆模型的建立轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。

(2)轻杆模型的特点①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。

3. 轻弹簧(1)轻弹簧模型的建立轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。

(2)轻弹簧的特点①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。

二. 三种模型的主要区别1.静止或匀速直线运动时例1.如图1所示,有一质量为m的小球用轻绳悬挂于小车顶部,小车静止或匀速直线运动时,求绳子对小球作用力的大小和方向。

图1解析:小车静止或匀速直线运动时,小球也处于静止或匀速直线运动状态。

由平衡条件可知,绳子对小球的弹力为F mg=,方向是沿着绳子向上。

若将轻绳换成轻弹簧,其结果是一样的。

例2.如图2所示,小车上有一弯折轻杆,杆下端固定一质量为m的小球。

当小车处于静止或匀速直线运动状态时,求杆对球的作用力的大小和方向。

图2解析:以小球为研究对象,可知小球受到杆对它一个的弹力和重力作用,由平衡条件可知小球受力如图3所示。

则可知杆对小球的弹力为F mg=,方向与重力的方向相反即竖直向上。

图3注意:在这里杆对小球的作用力方向不是沿着杆的方向。

6.轻绳、轻杆、弹性绳和轻弹簧的比较 —人教版高一暑假综合易错点、易混淆点突破专题讲义

6.轻绳、轻杆、弹性绳和轻弹簧的比较 —人教版高一暑假综合易错点、易混淆点突破专题讲义

六、轻绳、轻杆、弹性绳和轻弹簧的比较--易错点易、混淆点突破轻绳轻杆弹性绳轻弹簧模型图示质量大小0000受外力作用时形变的种类拉伸形变拉伸形变、压缩形变、弯曲形变拉伸形变拉伸形变、压缩形变受外力作用时形变量大小微小,可忽略微小,可忽略较大,不可忽略较大,不可忽略弹力方向沿着绳,指向绳收缩的方向不一定沿杆,固定杆中可以是任意方向沿着绳,指向绳收缩的方向沿着弹簧,指向弹簧恢复原长的方向作用效果特点只能提供拉力可以提供拉力、支持力只能提供拉力只能提供拉力弹力大小突变特点可以突变可以突变不能突变不能突变(1)轻杆、轻绳、轻弹簧都是忽略质量的理想化模型.(2)分析轻杆上的弹力时必须结合物体的运动状态.(3)讨论轻弹簧上的弹力时应明确弹簧处于伸长还是压缩状态.1.如图所示的四个图中,AB、BC均为轻质杆,各图中杆的A、C端都通过铰链与墙连接,两杆都在B处由铰链连接,且系统均处于静止状态.现用等长的轻绳来代替轻杆,能保持平衡的是()A.图中的AB杆可以用轻绳代替的有甲、乙、丙B.图中的AB杆可以用轻绳代替的有甲、丙、丁C.图中的BC杆可以用轻绳代替的有乙、丙、丁D.图中的BC杆可以用轻绳代替的有甲、乙、丁答案:B解析:选B.如果杆受拉力作用,可以用与之等长的轻绳代替,如果杆受压力作用,则不可用等长的轻绳代替,题图甲、丙、丁中的AB杆均受拉力作用,而甲、乙、丁中的BC杆均受沿杆的压力作用,故A、C、D均错误,B正确.2.小车上固定一根弹性直杆A,杆顶固定一个小球B(如图所示),现让小车从光滑斜面上自由下滑,在下列如图所示的情况中杆发生了不同的形变,其中正确的是()答案:C解析:小车在光滑斜面上自由下滑,则加速度a=g sin θ(θ为斜面的倾角),由牛顿第二定律可知小球所受重力和杆的弹力的合力沿斜面向下,且小球的加速度等于g sin θ,则杆的弹力方向垂直于斜面向上,杆不会发生弯曲或倾斜,C正确.3.如图所示,小车上固定着一根弯成θ角的曲杆,杆的另一端固定一个质量为m的小球.重力加速度为g,关于杆对球的作用力F,下列判断正确的是()A .小车静止时,F =mg cos θ,方向沿杆向上B .小车静止时,F =mg cos θ,方向垂直杆向上C .小车静止时,F =mg ,方向竖直向上D .小车向右以加速度a 运动时,F =mg ,方向竖直向上 答案:C解析:小车静止时,由平衡条件知此时杆对球的作用力方向竖直向上,且大小等于球的重力mg ,故A 、B 错误,C 正确.小车向右以加速度a 运动时,此时弹力F 的方向一定指向右上方,只有这样,才能保证小球在竖直方向上受力平衡,水平方向上具有向右的加速度.设小球所受弹力方向与竖直方向的夹角为α,如图所示,据力的平衡条件和牛顿第二定律得F sin α=ma ,F cos α=mg ,解得F =m g 2+a 2,故D 错误.3. 如图所示,与竖直墙壁成53°角的轻杆一端斜插入墙中并固定,另一端固定一个质量为m 的小球,水平轻质弹簧处于压缩状态,弹力大小为34mg (g 表示重力加速度),则轻杆对小球的弹力大小为( )A .53mgB .35mgC .45mgD .54mg答案:D解析:小球处于静止状态,其合力为零,对小球受力分析,如图所示,由图中几何关系可得F =(mg )2+(34mg )2=54mg ,选项D 正确.4.(2020·重庆市部分区县第一次诊断)如图所示,水平直杆OP 右端固定于竖直墙上的O 点,长为L =2 m 的轻绳一端固定于直杆P 点,另一端固定于墙上O 点正下方的Q 点,OP 长为d =1.2 m ,重为8 N 的钩码用质量不计的光滑挂钩挂在轻绳上且处于静止状态,则轻绳的弹力大小为( )A .10 NB .8 NC .6 ND .5 N 答案:D解析:设挂钩所在处为N 点,延长PN 交墙于M 点,如图所示:同一条绳子拉力相等,根据对称性可知两边的绳子与竖直方向的夹角相等,设为α,则根据几何关系可知∠NQM =∠NMQ =α,故NQ =MN ,即PM 等于绳长; 根据几何关系可得:sin α=PO PM =1.22=0.6,则cos α=0.8,根据平衡条件可得:2F T cos α=G ,解得:F T =5 N ,故D 正确.5.(2019·山东潍坊市二模)如图所示,固定光滑直杆倾角为30°,质量为m 的小环穿过直杆,并通过弹簧悬挂在天花板上,小环静止时,弹簧恰好处于竖直位置,现对小环施加沿杆向上的拉力F ,使环缓慢沿杆滑动,直到弹簧与竖直方向的夹角为60°.整个过程中,弹簧始终处于伸长状态,以下判断正确的是( )A.弹簧的弹力逐渐增大B.弹簧的弹力先减小后增大C.杆对环的弹力逐渐增大D.拉力F先增大后减小答案:B解析:由几何关系可知,弹簧的长度先减小后增大,即伸长量先减小后增大,则弹簧的弹力先减小后增大,选项A错误,B正确;开始时弹簧处于拉伸状态,根据平衡条件可知弹簧的弹力的大小等于环的重力,即F弹=mg,此时杆对环的弹力为零,否则弹簧不会竖直;当弹簧与竖直方向的夹角为60°时,由几何关系可知,此时弹簧的长度等于原来竖直位置时的长度,则此时弹簧弹力的大小也为F弹=mg,根据力的合成可知此时弹簧对小环的弹力与环自身重力的合成沿杆向下,所以此时杆对环的弹力仍为零,故杆对环的弹力不是逐渐增大的,选项C错误;设弹簧与杆之间的夹角为θ,则在环从开始滑到弹簧与杆垂直位置的过程中,由平衡知识:F弹cos θ+F=mg sin 30°,随θ角的增加,F弹cos θ减小,则F增大;在环从弹簧与杆垂直位置到弹簧与竖直方向的夹角为60°的过程中,由平衡知识:F=F弹cos θ+mg sin 30°,随θ角的减小,F弹cos θ增大,则F增大,故F一直增大,选项D错误.6.(2019·安徽蚌埠市第三次质量检测)如图所示,一根绳的两端分别固定在两座山的A、B处,A、B 两点水平距离BD=16 m,竖直距离AD=2 m,A、B间绳长为20 m.重力为120 N的猴子抓住套在绳子上的光滑轻质滑环在AB间滑动,某时刻猴子在最低点C处静止,则此时绳的张力大小为(绳处于拉直状态)()A.75 N B.100 N C.150 N D.200 N答案:B解析:对猴子受力分析如图所示设拉力F T 与水平方向的夹角为θ,由几何关系可得:cos θ=1620=45,解得θ=37°,又由平衡条件得:2F T sin θ=mg ,解得:F T =mg 2sin θ=1202×35N =100 N ,故A 、C 、D 错误,B 正确.7.(2018·淄博模拟)A 、B 是天花板上两点,一根长为l 的轻绳穿过带有光滑孔的球,两端分别系在A 、B 点,如图甲所示;现将长度也为l 的均匀铁链悬挂于A 、B 点,如图乙所示。

高考物理 专题2.6 轻绳、轻杆、轻弹簧 “绳上的‘死结’和‘活结’模型” “活动杆”与“固定杆”问题

高考物理 专题2.6 轻绳、轻杆、轻弹簧 “绳上的‘死结’和‘活结’模型” “活动杆”与“固定杆”问题

专题2.6 轻绳、轻杆、轻弹簧“绳上的‘死结’和‘活结’模型”“活动杆”与“固定杆”问题轻杆、轻绳、轻弹簧模型1.三种模型对比型图型特只能发生微小形变张力大小相等方向特点可以是任意方向2.弹簧与橡皮筋的弹力特点(1)弹簧与橡皮筋产生的弹力遵循胡克定律F=kx。

(2)橡皮筋、弹簧的两端及中间各点的弹力大小相等。

(3)弹簧既能受拉力,也能受压力(沿弹簧轴线),而橡皮筋只能受拉力作用。

(4)弹簧和橡皮筋中的弹力均不能突变,但当将弹簧或橡皮筋剪断时,其弹力立即消失。

【典例1】如图所示为位于水平面上的小车,固定在小车上的支架的斜杆与竖直杆的夹角为θ,在斜杆的下端固定有质量为m 的小球。

下列关于斜杆对小球的作用力F 的判断中,正确的是( )A .小车静止时,F =mg sin θ,方向沿杆向上B .小车静止时,F =mg cos θ,方向垂直于杆向上C .小车向右匀速运动时,一定有F =mg ,方向竖直向上D .小车向右匀加速运动时,一定有F >mg ,方向一定沿杆向上 【思路点拨】解答本题时可按以下思路进行:小球的运动状态―→小球所受的合力―――――――→牛顿第二定律或者平衡条件确定弹力的大小和方向【名师点睛】 轻杆弹力的确定方法杆的弹力与绳的弹力不同,绳的弹力始终沿绳指向绳收缩的方向,但杆的弹力方向不一定沿杆的方向,其大小和方向的判断要根据物体的运动状态来确定,可以理解为“按需提供”,即为了维持物体的状态,由受力平衡或牛顿运动定律求解得到所需弹力的大小和方向,杆就会根据需要提供相应大小和方向的弹力。

一、“活结”与“死结”绳是物体间连接的一种方式,当多个物体用绳连接的时候,其间必然有“结”的出现,根据“结”的形式不同,可以分为“活结”和“死结”两种.“活结”“活结”可理解为把绳子分成两段,且可以沿绳子移动的结点.“活结”一般是由绳跨过滑轮或者绳上挂一光滑挂钩而形成的.绳子虽然因“活结”而弯曲,但实际上是同根绳,所以由“活结”分开的两段绳子上弹力的大小一定相等,两段绳子合力的方向一定沿这两段绳子夹角的平分线.“死结”“死结”可理解为把绳子分成两段,且不可沿绳子移动的结点。

高中物理中“轻绳”、“轻杆”和“轻弹簧”问题的分析

高中物理中“轻绳”、“轻杆”和“轻弹簧”问题的分析

高中物理中“轻绳” 、“轻杆”和“轻弹簧”的问题分析中学阶段常涉及到“轻绳” 、“轻杆”和“轻弹簧”模型,这三种模型都是由各种实际情况中的绳、杆和弹簧抽象出来的理想化物理模型。

但它们的成因和特性并不完全相同,由此导致这类模型在实际应用中有很多同学混淆出错,下面对这三种模型的特点及区别应用作一些简单的讨论和分析。

一、三个模型的正确理解1.轻绳模型轻绳也称细线,它的质量可忽略不计;轻绳是软的;同时它的劲度系数非常大,可认为在受外力作用时它的形变极微小,看作不可伸长;其弹力的主要特征是:①不能承受压力,不能产生侧向力,只能产生沿绳收缩方向的拉力。

②内部张力大小处处相等,且与运动状态无关。

③轻绳的弹力大小可发生突变。

2.轻杆模型轻杆的质量可忽略不计,轻杆是硬的,它的劲度系数非常大,可认为在受外力作用时形变极微小,看作不可伸长或压缩;其弹力的主要特征是:①轻杆既可产生压力、也可产生拉力,且能产生侧向力(力的方向不一定沿着杆的方向);②轻杆各处受力大小相等,且与运动状态无关;③轻杆的弹力可发生突变。

3.轻弹簧模型轻弹簧的质量可忽略不计,可以被压缩或拉伸。

其弹力的主要特征是:①轻弹簧能产生沿弹簧轴线伸缩方向的压力或拉力;②轻弹簧各处受力大小相等,且与弹簧形变的方向相反;③轻弹簧产生的弹力是连续变化的,不能发生突变,只能渐变(除弹簧被剪断外);④在弹性限度内,弹力的大小与弹簧的形变量成正比,即F=kx,其中 k 为弹簧的劲度系数, x 为弹簧的伸长量或缩短量。

二、三种模型的主要区别及应用下面结合例题分析它们的区别及应用:1.轻绳对物体只能产生沿绳收缩方向的拉力,而轻杆对物体的弹力不一定沿杆的方向。

【例1】如图1 所示,轻绳一端系着质量为m 的小球,另一端系在固定于小车上一直杆 AB 的上端;试求当小车以 a 的加速度水平向左匀加速度直线运动,轻绳对小球作用力的大小和方向?解析:如图 2 所示,小球受两个力作用:重力mg 和绳对小球弹力T。

方法15 高中物理模型盘点(五)轻杆、轻绳和轻弹簧模型-高考物理学习记忆方法大全

方法15  高中物理模型盘点(五)轻杆、轻绳和轻弹簧模型-高考物理学习记忆方法大全

方法15 高中物理模型盘点(五)轻杆、轻绳和轻弹簧模型物理模型盘点——轻杆、轻绳、轻弹簧模型1.三种模型的相同点(1)“轻”——不计质量,不受重力。

(2)在任何情况下,沿绳、杆和弹簧伸缩方向的弹力处处相等。

2.三种模型的不同点轻杆轻绳轻弹簧形变 特点 只能发生微小形变,不能弯曲只能发生微小形变,各处弹力大小相等,能弯曲发生明显形变,可伸长,也可压缩,不能弯曲方向 特点 不一定沿杆,可以是任意方向只能沿绳,指向绳收缩的方向 一定沿弹簧轴线,与形变方向相反 作用效 果特点 可提供拉力、推力只能提供拉力可以提供拉力、推力能否 突变能发生突变 能发生突变 一般不能发生突变如图所示,水平轻杆的一端固定在墙上,轻绳与竖直方向的夹角为37°,小球的重力为12 N ,轻绳的拉力为10 N ,水平轻弹簧的拉力为9 N ,则轻杆对小球的作用力的大小及其方向与竖直方向夹角θ为( )A .12 N 53°B .6 N 90°C .5 N 37°D .1 N 90°解析: 本题考查轻绳、轻杆、轻弹簧中力的方向及大小的特点,解题时要结合题意及小球处于平衡状态的受力特点。

以小球为研究对象,受力分析如图所示,小球受四个力的作用:重力、轻绳的拉力、轻弹簧的拉力、轻杆的作用力,其中轻杆的作用力的方向和大小不能确定,重力、弹簧的弹力二者的合力的大小为F =G 2+F 21=15 N 。

设F 与竖直方向夹角为α,sin α=F 1F =35,则α=37°。

所以杆对小球的作用力方向与F 2方向相同,大小为F 1-F 2=5 N 。

故选项C 正确。

答案: C如图所示,一重为10 N的球固定在支杆AB的上端,用一段绳子水平拉球,使杆发生弯曲。

已知绳的拉力为7.5 N,则AB杆对球的作用力()A.大小为7.5 NB.大小为10 NC.方向与水平方向成53°角斜向右下方D.方向与水平方向成53°角斜向左上方解析:对小球进行受力分析可得,AB杆对球的作用力和绳子的拉力与小球的重力的合力等值反向,由平衡条件知:F=102+7.52 N=156.25 N,故A、B均错。

轻绳-轻杆-轻弹簧三种模型的特点及其应用

轻绳-轻杆-轻弹簧三种模型的特点及其应用

轻绳、轻杆、轻弹簧三种模型的特点及其应用在中学物理中,经常会遇到绳、杆、弹簧三种典型的模型,在这里将它们的特点归类,供同学们学习时参考。

一. 三种模型的特点1. 轻绳(或细绳)中学物理中的绳和线,是理想化的模型,具有以下几个特征:①轻:即绳(或线)的质量或重力可以视为等于零。

由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等;②软:即绳(或线)只能受拉力,不能承受压力。

由此特点可知:绳(或线)与其他物体的相互间作用力的方向总是沿着绳子;③不可伸长:即无论绳(或线)所受拉力多大,绳子(或线)的长度不变。

由此特点可知:绳(或线)中的张力可以突变。

2. 轻杆具有以下几个特征:①轻:即轻杆的质量和重力可以视为等于零。

由此特点可知,同一轻杆的两端及其中间各点的张力大小相等;②硬:轻杆既能承受拉力也能承受压力,但其力的方向不一定沿着杆的方向;③轻杆不能伸长或压缩。

3. 轻弹簧中学物理中的轻弹簧,也是理想化的模型。

具有以下几个特征:①轻:即弹簧的质量和重力可以视为等于零。

由此特点可知,向一轻弹簧的两端及其中间各点的张力大小相等;②弹簧既能承受拉力也能承受压力,其方向与弹簧的形变的方向相反;③由于弹簧受力时,要发生形变需要一段时间,所以弹簧的弹力不能发生突变,但当弹簧被剪断时,它所受的弹力立即消失。

二. 三种模型的应用例1. 如图1所示,质量相等的两个物体之间用一轻弹簧相连,再用一细线悬挂在天花板上静止,当剪断细线的瞬间两物体的加速度各为多大解析:分析物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度。

此类问题应注意两种模型的建立。

先分析剪断细线前两个物体的受力如图2,据平衡条件求出绳或弹簧上的弹力。

可知,F mg 2=,F F mg mg 122=+='。

剪断细线后再分析两个物体的受力示意图,如图2,绳中的弹力F 1立即消失,而弹簧的弹力不变,找出合外力据牛顿第二定律求出瞬时加速度,则图2剪断后m 1的加速度大小为2g ,方向向下,而m 2的加速度为零。

浅析“轻绳”、“轻杆”和“轻弹簧”

浅析“轻绳”、“轻杆”和“轻弹簧”
中学教 学 参 考
复 习指 津
浅 析“ 绳" “ 轻 、 轻杆 ’ 轻 弹 簧" ’ 和“
广西 百 色凌 云县 中学 (3 1 0 黄宏 标 53 0 )
中学阶段 常 涉及 到 “ 绳” “ 杆” “ 弹 簧” 轻 、轻 和 轻 模 型, 这三种模 型都是 由各种 实际情 况 中的绳 、 杆和 弹簧 抽象出来的理想化物理模型. 但它们 的成因和特性 并不 完全相同 , 由此导致这类模 型在实 际应 用 中有很 多学生 混 淆 出 错 , 者 拟 对 这 三 种 模 型 的特 点 及 区 别 应 用 作 一 笔 些简单的讨论. 下面结合例题分析它们的区别及应用 : 轻 绳对 物 体 只 能 产 生 沿 绳 收 缩 方 向 的 拉 力 , 而 轻杆对物体 的弹 力不一定沿杆的方向 【 1 如 图 1 示 , 绳 一 端 系 着 质 量 为 的小 例 】 所 轻 球 , 一 端 系 在 固定 于小 车 上 一 直 杆 A_的上 端 ; 求 当 另 B 试 小车以加速度 “水平 向左做匀加速 运动时 , 求轻绳 对小 球 作 用 力 的 大 小 和方 向.
与重力 同 向; O 当 ≤
与重 力 反 向 , 选 项 C正 确 , 故 D
ZH ONGX J A UE I OXUE C ANKA O
解 题 方 法与技 巧
利 用 知 识 迁 移 巧 解 电 功 率 计 算

可见轻绳对小球 的作用 力大 小随着 加速 度 n的改
变 而改 变 , 它 的方 向一 定 是 在 绳 子 的 方 向上 . 但
【 2 如 图 3 示 , 车 上 固 例 】 所 小 定一 弯 折 硬 杆 AB C 端 固 定 一 质 C, 量 为 的小 球 , : 问 () 1 当小车向左匀速直线运动时, A B 杆 对小球作用力 的大 小和方 向. C () ( ) 小 车 以 加 速 度 水 平 向 2当 左做匀加速直线运 动时 , C杆对小 B 球作用力 的大小和方 向. 解析 : 以小 球 为研 究 对 象 进行 受 力分 析 , 球 受 两 个 力 作 用 : 力 m 小 重 g
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轻绳、轻杆、轻弹簧三种模型之比较轻绳、轻杆、轻弹簧作为中学物理最常见的三种典型的理想化力学模型, 在各类题目中都会出现,有必要将它们的特点归类,供同学们学习时参考。

.轻绳(或细绳)中学物理中的绳和线,是理想化的模型,具有以下几个特征:(1)轻:即绳(或线)的质量或重力可以视为等于零。

由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等;例1.如图1所示,PQ 是固定的水平导轨,两端 小定滑轮,物体A 、B 用轻绳连结,绕过定滑轮, 轮的摩擦,系统处于静止时,a =37°,片53°,10N,A 重20N, A 与水平导轨间摩擦因数=0.2 ,的摩擦力()A •大小为4N ,方向向左B •大小为4N ,方向向右C .大小为2N ,方向向左D .大小为2N解析:要分析A 物体所受摩擦力,必须确定两绳子 的拉力情况。

因为两绳均为轻绳,且滑轮摩擦不计, 绳子两端及其中间各点的张力大小相等,只要对 B 受力分析即可知道绳子拉力大小情况。

如图2所示,B 受重力、两绳拉力F ,、F 2而平衡, 的平衡知识即平行四边形法则可知:F ,=G B S in : =6N , F ,=G B cos 〉=8N 。

再以 A 物体为研 象 ,如图可知,A 物体所受摩擦力为f =F 2 -F^8N -6N =2N ,方向向左。

本题 C 选项符合题意。

(2)软:即绳(或线)只能受拉力,不能承受压力。

由此特点可知:绳(或线)与其他物体的相 互间作用力的方向总是沿着绳子。

注意轻绳“拉紧”和“伸直”的区别:“拉紧”的轻绳,一定而“伸直”的轻绳,还没有发生形变,没有张力。

例2■物体A 质量为m ,用两根轻绳B 、C 连接到墙上,在物体 一个力F ,如图所示,二=60,要使两绳都能伸直,求 小范围。

解析:我们先假设拉力F 较小,则绳C 将松弛,绳B 将有两个 不计滑 若B 重 则A 受因此 物体由力究对 拉紧,因有张力,A 上施加力F 的大图此,拉力F 的最小值F min ,出现在绳C 恰好伸直无弹力,而绳B 张紧时。

此时A 球的受力分析如 图4所示,F B 为绳B 的拉力。

由力的正交分解,有:水平方向: F min COST = F B COS V ,竖直方向: F min sinv+F B sinr 二mg再假设拉力F 较大,则绳B 将松弛,绳C 将拉紧,拉力F 的最大值F max ,出现在绳B 恰好伸 直无弹力,而绳C 张紧时。

此时A 球的受力分析如图5所示,F c 为绳C 的拉力。

由力的正交分解, (3)轻绳伸长不计:即无论轻绳(或线)所受拉力多大,绳子(或线)的形变量忽略不计,认为 轻绳长度不变。

由此特点可知,绳(或线)中的张力可以突变。

-——w u/例3.如图6所示,一质量为m 的物体系于长度分别为L i 、 上, L i 的一端悬挂在天花板上,与竖直方向夹角为9, L 2水于平衡状态。

现将L 2线剪断,求剪断瞬间物体的加速度。

下面是某同学对该题的一种解法: 分析与解:设L i 线上拉力为T i ,L 2线上拉力为T 2。

重力为 作用下保持平衡,有:T i cos 4mg ,T i sin &T 2,T 2 = mgtan 9剪断线的瞬间,T 2突然消失,物体即在T 2反方向获得加速度。

因为 mgtama ,所以加速度 a = gtan 0方向与T 2方向相反。

你认为这个结果正确吗?请对该解法作出评价并说明理由。

解得: F minmg 2sin vf mg在竖直方向有: F max Sin 二二mg解得: F maxmg sin v因此,要使两绳都能伸直,求力F 的大小范围为 fmg 汗23:: ----- mg 。

L 2的两根细线mg ,物体在三力平拉直,物体处图6精心整理解析:该同学做法是错误的。

因为 L 2被剪断前,L i 、L 2 小T i 、T 2满足T i cos 4mg , T i sin 丰T 2,可解得 T 1= mg , T 2= mgtan Q cos 6 后, T 2瞬间突变为零,而此时,T i 也将发生突变。

如图7细线瞬间,物体只受重力与细线 L i 的拉力T/的作用,由 伸长,因此沿L i 方向物体加速度为零,垂直于 L i 方向物 度,因此将物体重力分解为沿 L i 方向和垂直于L i 方向的沿L i 方向物体加速度为零,有:T )=mgcos^ 沿垂直于细线方向(切线方向)有:mgsinv = ma ,a=gsinr ,与细线垂直斜向右下方。

可见,剪断L 2瞬间,L i 上的张力由「=-mg-突变为T ,=mgcosr ,物体加速度为a=gs inn 。

cos 6二•轻杆具有以下几个特征:1 z-_ i 、 /(1) 轻:即轻杆的质量和重力可以视为等于零。

由此特点可知,同一轻杆的两端及其中间各点的 张力大小相等;例4.如图8所示,A 、B 两物体用水平杆C 相连,置于水平地面上,已知 m A = m B = 4kg ,上的张力大剪断细线 所示,剪断 于L i 不可 体具有加速 两个分力。

A 、B 与水平地面的动摩擦因数均为 J =0.i 。

现用F=20N 的水平恒力作用在A 物体上,(i )若杆为轻杆,求杆对 A 、B 作用力的 大小 (2) 若杆的质量m C = 2kg ,求杆对A 、B 作用力的大小 解析:(i)对A 、B 及杆整体分析,由牛顿 第二定律,有:解得:a _F 二艸mA+m B )g = 20_0■仆(4+4)"0(m A m B )m s 2 =i.5m s 2隔离A ,设杆对A 拉力为F A ,如图9所示。

由牛顿第二定律:F - F A - 'm A g 二m A a 77777777777图9解得:F A "ON隔离B ,设杆对B 拉力为F B ,如图i0所示由牛顿第二定律:F B - "m B g =m B a —B —I77777777777解得:F B =i0N图i0由此可见,轻杆两端张力大小相同。

这是因为,轻杆质量为零,如果两端张力的合力不为零, 轻杆加速度将无穷大,这是不可能出现的。

(2)若杆的质量m C = 2kg,同样对整体应用牛顿第二定律:隔离A,设杆对A拉力为F A ,由牛顿第二定律:F - F A -」m A g = m A a解得:F A:〉12N隔离B,设杆对B拉力为F B ,由牛顿第二定律:F B"-\m3g =m B a・解得:F B HON由此可见,F/-F A '当杆的质量不为零时,在一个运动系统中,杆两端的张力大小不一定相等。

(2)硬:轻杆不能伸长或压缩。

轻杆既能承受拉力也能承受压力,①对于可以绕一端自由转动的轻杆,其另一端受力一定沿杆方向;②对于一端固定不能转动的轻杆,其另一端受力方向不一定沿着杆的方向;例5.如图11所示,轻杆HG —端用铰链固定在竖直墙上,杆与墙的另一端通过轻质细绳EG拉住,EG与墙的夹角为60°,轻杆的拉住一质量为m的物体A。

试求轻杆对G点的弹力的大小和解析:由于HG是轻杆,且H 端为绕铰链,因此杆的G点受到一定沿杆方向。

现对G点受力分析,如图12所示,杆对G点斜上上。

由共点力的平衡,可知F =mgcos&= —mg。

方向沿2例6.如图13所示,小车上固定一弯折硬杆ABC,C端固定质球,已知:=30恒定。

当小车水平向左以v=0.5ms的速度匀速杆对小球的作用力的大小是,方向是;当小车水平向左以a=g的加速度作匀加速运动时,BC杆对小球的作用力的大小是,方向是。

图12 夹角为30°。

点用细绳GF方向。

杆的作用力的弹力沿杆杆斜向上。

量为m的小运动时,BCEG图11(1)当小车水平向左以v=0.5m s 的速度匀速运动时,由平衡条件,细杆对小球的力必定与重力等大反向,如图14所示。

此时杆的弹力并不沿杆方向(2)当小车水平向左以a=g 的加速度作匀加速运动时,小球所受合力F 合=mg 沿水平方向,则小球 受细杆的弹力F = :2mg ,与水平方向夹角为:=45,如图15所示。

此时杆的弹力也不沿杆方向。

3.轻弹簧中学物理中的轻弹簧,也是理想化的模型。

具有以下几个特征:(1)轻:即弹簧的质量和重力可以视为等于零。

由此特点可知,向一轻弹簧的两端及其中间各点 的张力大小相等;(2)弹簧既能承受拉力也能承受压力,其方向与弹簧的形变的方向相反;例7.如图16所示,质量为m 的质点,与三根相同的螺旋形轻弹 止时,弹簧c 沿竖直方向,相邻两弹簧间的夹角均为 120。

已知 质点的作用力大小均为F ,则弹簧c 对质点的作用力大小可能为B. F + mgC. F — mg解析:由于弹簧对小球施加的是推力还是拉力未知,因此分类讨论如下:(1)弹簧a 、b 对球是拉力,弹簧c 对球是推力,。

此时,a 、b 对球拉力的合力仍为F ,方向竖直 向上,对球有F+F C 二mg ,因此F C = mg - F 。

D 选项正确。

(2) 弹簧a 、b 对球是拉力,弹簧c 对球也是拉力,有:F =F C +mg ,因此F C =F - mg , 选项C 正确13解析:对细杆来说,图14图15是坚硬的物体,可以产生与杆垂直的横向的力,也可以产生与杆任何夹角的弹D . mg — F图16簧相连.静 弹簧a b 对 ()(3)弹簧a、b对球是推力,弹簧c对球也是推力,有:F+mg =F C,选项B正确。

(4) 弹簧a 、b 对球是推力,弹簧c 对球是拉力或处于原长,此时小球不能平衡, (5) 弹簧a 、b 对球是拉力,弹簧c 处于,原长即满足F =mg ,此时F^ 0 0综上,本题正确选项为 BCD o(3)由于弹簧受力时,要发生形变需要一段时间,所以弹簧的弹力不能发生突变。

例8.若将上文例3图6中的细线L i 改为长度相同、质量不计的轻弹簧,如图件不变,求解的步骤和结果与例3中某同学的做法完全相 解析:这种情况下该同学做法是对的。

因为L 2被剪断 的长度来不及发生变化,其大小和方向都不变。

具体请参 做法。

作者联系方式: 姓名:刘坤'| |通信地址:上海市徐汇区番禺路 800弄22号西南高级中学,刘坤 邮编:200030你认为这个结果正确吗?请说明理由17所示,其他条同,即 a = gtan 0的瞬间,弹簧L 1 考例3中该同学9L 2图17。

相关文档
最新文档