LiNbO3薄膜光学特性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C轴取向的LiNbO3薄膜的光学特性
Swati Shandilya a, Anjali Sharma a, Monika Tomar b, Vinay Gupta a,*
a 物理和天铁物理系,德里大学,德里-110007,印度
b米兰达女子学院,德里大学,德里 110007,印度
摘要
C-轴取向铌酸锂(LiNbO3晶体)薄膜被沉积到外延匹配(001)蓝宝石基
板采用脉冲激光沉积技术。
的薄膜的结构和光学特性已分别使用的X-射线衍(XRD)和紫外 - 可见光谱研究。
拉曼光谱已被用来研究的c轴取向LiNbO3薄膜的光学声子模和缺陷电影。
XRD分析表明在所生长的LiNbO3薄膜,这是由
于压力的存在铌酸锂晶体和蓝宝石之间的晶格失配小。
折射率(n =2.13在640 nm处)(006)铌酸锂晶体薄膜的要稍低一些相应的体积值(N =2.28)。
各个负责在从相应的(006)LiNbO3薄膜的折射率的偏差的因素散装讨论和值的偏
差的主要原因是,由于存在晶格收缩沉积膜中的应力。
关键词光学特性脉冲激光沉积薄膜铌酸锂
1.引言
铌酸锂(LiNbO3)
铌酸锂(LiNbO3晶体)是一个巨大的技术材料光学器件的利息。
大量的文献可在铌酸锂单晶等领域的基础研究和应用研究,其优异的光学性能的晶体沿观察c轴[1-3]。
铌酸锂单晶的已知表现出通用的非线性光学性质,因此它继续是一个极好的材料,各种光子的应用,如频率转换器,光开关,光调制器,多路复用器等人[4-7]。
在他们的薄膜是有利的批量对应不同的设备应用程序。
了解是众所周知的发挥了重要的作用的薄膜的折射率实现的光学设备,并且即使一个小的变化在其值会影响其应用。
铌酸锂晶体薄膜的折射率通过各种工人使用紫外可见光谱进行了测量和光导波技术。
对于声光和电光器件的制造,这是非常重要的研究的光学与c轴取向的LiNbO3薄膜的性能的。
几个报告的c轴取向LiNbO3薄膜的生长电影使用各种沉积技术[8,9],正在努力连续主要集中向增长的各种基板上包括,外延匹配蓝宝石,硅,熔融石英等蓝宝石衬底上已用于LiNbO3薄膜的沉积影片由不同的工人光学器件的应用,因为其低折射率和相似的晶体结构,尽管小晶格失配和较低的热膨胀系数差在比较的LiNbO3 [2]。
Shibata等。
成长外延铌酸锂晶体薄膜的(001)和(110)蓝宝石晶体脉冲激
光沉积法[10]。
他们报告说,化学计量从李丰富的铌酸锂薄膜只能存放中得到的目标(与Li / Nb的= 2),和李缺陷相asdeposited陶瓷靶,铌酸锂薄膜的制备Li/Nbb2。
高频(460-810 MHz)的表面声波(SAW)器件,已经实现了利
用LiNbO3/sapphire层状结构[10]。
笕等。
[11]已经报道了外延生长的铌酸锂晶体薄膜的α-Al2O3衬底上用脉冲激光沉积技术。
氧自由基的量的控制由改变激光能量密度的源,其影响Li浓度的沉积铌酸锂晶体薄膜。
光学财产的脉冲激光沉积(0012)织构铌酸锂晶体薄膜(001),研究了SiO2基板使用光导波技术和一个较小的值的折射率(ηTE= 2.144和ηTM= 2.036)散装铌酸锂相比已被报道[12]。
schwyn等。
[1]沉积铌酸锂晶体薄膜的外延匹配的蓝宝石衬底
上射频溅射技术和效果的射频功率(50到100 W)上的折射率(= 2.302至
2.260和ne = 2.100到2.200)进行了研究。
折射率脉冲激光沉积铌酸锂晶体薄膜也被认为是大大受加工参数,并从2.43下降到2.21增加氧气压力从
1×10-5〜5×10-2毫巴和从2.07增加至2.28,增加激光能量密度为0.5〜2.5 J/cm2的[13]。
据悉,拉曼光谱法是一种灵敏的工具识别的膜质量和膜中存在的缺陷,并因此光学声子模式的研究是非常重要的[14,15]。
在我们较早的工作拉曼光谱已用于研究缺陷存在于c轴取向LiNbO3薄膜沉积在在硅衬底[16]。
然而,很少关注向(006)的铌酸锂的拉曼光谱分析中给出薄膜沉积在蓝宝石衬底外延匹配。
在目前的工作中c轴取向LiNbO3晶体薄膜的生长外延匹配(001)的蓝宝石基板上。
结构和LiNbO3薄膜的光学性质的研究已被使用X-射线衍射,紫外 - 可见分光光度计和拉曼光谱。
分散在c轴取向LiNbO3薄膜的折射率膜已经研究了随波长的光的单个振荡器模型
2.详细实验步骤
LiNbO3薄膜(001)蓝宝石衬底上沉积脉冲激光沉积(PLD)技术。
薄膜生长在(001)
13.3Pa的蓝宝石单晶在700℃的衬底温度下氧压采用Nd:YAG激光(III 10 Surelite;品牌:连续流,USA)的波长266纳米(第4次谐波)。
高致密的陶瓷光盘(1英寸直径。
)的铌酸锂晶体含有过量5%对Li2O已准备使用常规的固态反应途径,并用作靶铌酸锂薄膜沉积。
目标的细节准备报道[16]。
聚焦的激光束短脉冲具有的脉冲宽度为10 ns的形式和重复速率为10 Hz的时间是在45°的角度入射在靶表面上。
使用3 J cm-2时的能量密度的激光脉冲。
薄膜沉积在100%氧气氛中,在压力为13.3宾夕法尼亚州将基板保持在距离25 mmfrom靶表面。
所沉积的晶体结构和晶格参数膜进行了研究,使用X-射线衍射(XRD)技术,使用布拉格布伦塔诺(θ-2θ)扫描的X-射线衍射仪(Bruker 公司D8发现),Cu靶辐射(λ= 1.54056Å)。
膜厚度为采用DEKTAK150表面轮廓仪(品牌:Veeco公司)。
紫外 - 可见光谱(品牌:Perkin Elmer公司,型号:LAMDA35)已被用来研究LiNbO3薄膜的光学性能的膜。
LiNbO3薄膜的结晶质量和相的纯度沉积在蓝宝石衬底上一直使用拉曼光谱研究在后向散射几何一致的INNOVA氩离子激光偏振光源(λ=514.5nm的)和分析使用一个Jobin Yvon公司T64000光谱仪配备了电荷耦合设备。
3.结果与讨论
3.1。
c轴取向LiNbO3薄膜的X射线衍射(XRD)和拉曼光谱研究
C轴取向LiNbO3薄膜沉积厚度约0.6微米的外延匹配(001)使用的蓝宝石基板上脉冲激光沉积技术。
生长LiNbO3薄膜被认为是透明的,均匀且牢固地粘附到基板上。
图1 沉积在(001)蓝宝石晶体上的(006)LiNbO3薄膜的XRD图
图1示出了沉积LiNbO3薄膜的XRD图谱蓝宝石水晶玻璃。
两个尖锐和激烈的衍射峰对应的(006)和(0012)面的铌酸锂,在2θ=39.18°和83.86°,分别观察到(图1),表示生长的影响纹理LiNbO3薄膜具有晶粒沿优选取向生长方向与c轴蓝宝石表面法线。
X射线衍射峰(001)面的蓝宝石水晶也观察到在图。
1,在2θ=41.88°。
的偏差中的地(006)衍射峰的铌酸锂薄膜,观察到相应的单晶值(38.94°),并主要与在淀积的薄膜中的应变的存在。
生长的LiNbO3薄膜的角峰的位置(39.18°)稍微高于相应的散值,这表明淀积薄膜在一个均匀的状态的应力与压缩组件平行于c轴。
存在的尖锐和激烈的XRD相对应的(006)峰和(0012)面,显示了重要的为成核作用的底层的晶格匹配蓝宝石衬底铌酸锂的晶体沿优选生长(c-轴)的方向发展。
晶格参数'C'的沉积LiNbO3薄膜膜计算所观察到的(006)衍射峰,发现在1.37纳米。
将得到的值的晶格常数是略少比相应的值(1.38 nm)的铌酸锂晶体单结晶和相媲美的值(1.375 nm)的观察其他工人的铌酸锂晶体薄膜的[2]。
所观察到的较小值如生长的LiNbO3薄膜比较的晶格常数到相应的单个晶体的值表示的单元电池沿c-轴,被压缩的压缩力作用在所淀积的薄膜的平面的。
在压力的估计值LiNbO3薄膜生长在蓝宝石水晶大约是4.1×1010dyne/cm2。
类似的结果(006)取向铌酸锂晶体的生长压力的薄膜的表面上外延匹配蓝宝石基板已报告了其他工人[2,17-19],并可能归因于小的晶格失配之间的蓝宝石单晶体和LiNbO3薄膜。
图2 沉积在(001)蓝宝石基体上的C轴取向的LiNbO3薄膜的室温拉曼光谱
S对应基板相关的声子模式
图2示出了室温下的拉曼光谱的c轴取向的
铌酸锂薄膜沉积在(001)蓝宝石水晶玻璃。
“谱录得的后向散射几何Z(X + Y,X + Y),其中,Z是入射的方向的Z配置光沿着c轴垂直于膜表面,且X
和Y的方向上沿a和b晶轴的平面中的偏振铌酸锂晶体薄膜。
根据选择规则4 A(LO)+9根据本E(TO)允许在铌酸锂基频配置。
所有观察到的声子模的拉曼光谱(图2)Z切铌酸锂单晶的模式是一致的
其他工人根据选择规则[20,21]。
贝尔纳韦等。
[21]表明,声子模式[E
“(1TO),E(8直接)和A1(4LO)]是非常敏感的化学计量和存在的在任何类型的内在缺陷沉积LiNbO3薄膜。
在目前的情况下,所有的声子模式(13基波频率)可以清楚地看到,在生长的LiNbO3薄膜的拉曼光谱膜(图2)。
这些模式被认为是尖锐,存在于位置报道了近化学计量比铌酸锂单晶,表明增长的质感和(006)取向LiNbO3薄膜膜的蓝宝石衬底上。
c轴取LiNbO3薄膜的光学性质的一直使用紫外 - 可见分光光度计研究。
图3 沉积在(001)蓝宝石晶体上的(006)LiNbO3薄膜的光学透射谱
图3示出的光沉积在生长的LiNbO3薄膜的透射光谱透明的(001)的蓝宝
石晶体作为波长的函数。
“透射光谱显示出高传输(N80%),在可见光区域
和示出了尖锐的基本吸收边在约285 nm处。
在场的定义的干涉条纹图案,在的透射光谱(图3)表示的生长良好的光学质量LiNbO3薄膜。
情节广场(αhν)与光子能量,(hν的)示于图。
4,其中,α是吸收系数。
的吸收系数(α)计算出的透射率的值在附近的基本吸收边和膜厚度。
铌酸锂的厚度的薄膜的带
隙的值0.6微米的线性部分从外推估计Tauc图(图4),以(αhν)2 = 0被发现为约4.43电子伏特。
“c轴取向LiNbO3晶体薄膜的带隙得到的值本研究
是高于相应的值(在范围为3.8eV到4.0电子伏特)的铌酸锂单晶[22]报道。
带隙的值更高的压力的存在,可能与在生长的LiNbO3薄膜所观察到的X射线衍
射图案(图1)。
相似的结果,较高的光学带隙的值(例如:= 4.22 eV和
4.55 eV的)和较低的晶格参数值'C'(006)铌酸锂晶体薄膜的外延匹配的蓝宝石晶报告了其他人[2,16]。
的折射率中,n(λ)时的c轴取向的LiNbO3薄膜从观测到的波长的函数的计算的透射光谱中的干涉条纹图案(图3)使用的关系[23]
这里
的最大值(Tmax)的和N的值,可以计算出从最小值(Tmin的)值的传输,在相同的波长从信封上的干涉条纹。
没有和NS空气的折射率和基板(蓝宝石)的值。
折光指数的估计值被认为是约2.13在λ= 640nm处,这是接近的相应值
(2.16),铌酸锂薄膜在蓝宝石衬底上其他工人报告[2]。
然而,所获得的值的折射率的LiNbO3薄膜膜是低于报告的对应的值(2.28)铌酸锂单晶[2]。
基本吸收边(带间隙)已被报告有关的晶格收缩或扩大在淀积的薄膜[24]。
在前面的章节沉积薄膜被发现紧张由于一个小的晶格失配之间的LiNbO3薄膜(006)和(001)蓝宝石基板上。
应变的存在下,预计将得到更高的值光学带隙和较低的折射率,将淀积LiNbO3薄膜中观察到了目前的工作。
的折射率变化索引作为波长的函数(006)LiNbO3薄膜膜沉积在蓝宝石衬底的(001)示于图。
5。
的折射沉积的c轴取向的LiNbO3薄膜的折射率n(λ)的示出下面的带间吸收的光子能量的分散体与
边缘。
该行为是相似的在大量观察无定形和结晶的氧化物材料[25]。
折射率生长的LiNbO3薄膜被发现从2.32下降到2.12波长从400nm至660nm(图5)中的增加。
wemple等。
[25]分析了这种类型的折射率色散数据为大量的材料,使用的是单effectiveoscillator模式
生长在(001)蓝宝石衬底上的(006)LiNbO3薄膜的折射率随波长变化曲线
3.2。
单振子模型
折射率在带间的过渡区域中的分散性的所观察到的多种材料,大多是用一
个单一的建模电子振荡器。
的公知的分散体的理论折射指数的具有长波长的近
似由下式给出单一的长期的谢米尔关系[26]
其中,λ0是平均振荡器的位置,所以是平均振荡器强度。
So和λ0的值
可以通过绘制估计图形之间的1 /(n2的-1)相对于1/λ2。
的直线部分的斜
坡此图所给出的值1/So,而无限的波长拦截给1/Soλo2。
因此,λ0,了解分
散参数EO /所以也可以被计算出来其中E0 = HC /eλo(c为光速,h为普朗克常数,e为电子收费)是一个有效的振荡器能源。
在光子的能量方程。
可写为
Hυ是光子的能量,Ed是分散能源是带间光学跃迁的强度的度量。
平均所
以= EdEo /(振子强度有关的色散能h2c2)。
单一的振荡器模型已嵌合的折射率色散获得的数据(006)铌酸锂晶体薄膜的沉积蓝宝石衬底外延匹配配件和λ0参数。
所以和λ0的初始估计值的积的1 /(n2为1)的线性部分与1/λ2取自(006)LiNbO3薄膜色散的实验数据膜。
获得最佳的拟合曲线方程。
(4)中还示出图。
5(实线)。
实验分散体的数
据(符号)的屈光指数显示出良好的理论(实线)与波长区域的350nm至
550nm的。
以及重大的系统性在LiNbO3薄膜的折射率数据的值的偏差从观察到
在较高的波长的最佳拟合曲线(式(4))(N550纳米)。
的折射率相似的行
为的数据作为一个函数的波长,观察到其它氧化物的材料,如氧化锌,二氧化钛,钛酸钡,钛酸锶等[27〜29]。
所以该振荡器参数,EO和Ed确定最适合的
实验折射率索引数据的方程。
(4)是6×109厘米2,5.49 eV和16.53 eV的分别(006)LiNbO3薄膜,这是稍有不同的从相应的铌酸锂单晶的报道值。
的
估计值的折射率色散等参数EO /(= 9.26×10-10 EV平方厘米)被发现与相应的匹配非常好报告的值为其他氧化物材料[26]。
该值
分散能源(ED)计算的平均振荡器强度和平均振荡器位置被发现为16.53 eV的,这是低于所报告的值(25.9 eV)的铌酸锂单水晶[25]。
所观察到的结果表明:在强度较低带间光学跃迁(006)LiNbO3薄膜相比,在LiNbO3单晶,并可能是
由于应变的存在下,在单元电池的淀积的LiNbO3薄膜。
有趣的功能所建议的Wemple和Deminico[25]的数量
其中,Nc是协调数近邻阳离子,Za是正式的阴离子的化合价,和Ne的有
效数阴离子的的帷幔电子%。
的β值的离子和共价化合物为0.26和0.37,分
别和任何含有可被分成不同的单阴离子种离子和共价类[25]。
β的值(006)LiNbO3薄膜一直计算出的色散能(爱德)使用值Nc = 4,杂= 2和Ne = 8的
铌酸锂。
发现β的估计值0.26电子伏特,这是接近的值(β= 0.27 eV)的报
告的铌酸锂单晶[25]。
所获得的值,β是在协议预期值(β= 0.26 eV)的报告离子晶体建议(006)LiNbO3薄膜沉积在(001)蓝宝石基材是离子的性质[25]。
一般的薄膜的折射率是已知的依赖上的三个因素(ⅰ)的晶格收缩或膨胀(ⅱ)包装
密度及(iii)膜的化学计量[30]。
报告可在文献[31]对价值较低的折射率薄膜相比,单晶由于偏差在化学计量。
在目前情况下,拉曼光谱研究清楚地表明,
形成高度化学计量的和内在的缺陷免费LiNbO3薄膜具有优选c轴方向外延匹配蓝宝石衬底。
因此,所观察到的在c轴取向的折射率的值的偏差相应的单晶铌
酸锂薄膜被相关的任一低级填充密度或晶格收缩或扩展[30]。
米恩等。
[30]研究了影响包装密度和晶格的折射率上的收缩/膨胀氧化物薄膜。
具有贡献的薄膜的折射率从填充密度和晶格收缩/扩展[30]
其中nf,nb等和nv的折射率的薄膜,单晶体和空隙(= 1),p是填充密度,和cf和cb是用于薄膜和单晶的晶格参数分别。
式的第一和第二项。
(6)代表的贡献的填充密度和晶格的折射率从常量'C'。
因此,折射率在薄电影将增加或减少相比,大部分值,根据其中的两个理论贡献占主导地位(公式(6))。
从折射率(阴性)的估计值的和(006)LiNbO3薄膜的晶格参数'C'(在本研究
中获得的)和已知的值的索引铌酸锂单晶(nb的),填充密度'p'的被发现约
0.96用公式。
(6)。
堆积密度的观测值(p值= 0.96)是接近的统一表示,
生长LiNbO3薄膜是致密的,具有较小的空隙数。
因此,折射率中的偏差的主要贡献(006)LiNbO3薄膜比相应的单晶体值与压力的存在,由于膜晶格收缩。
一个收缩的c轴晶格参数从已被观察到如此沉积的LiNbO3薄膜X射线衍射分析,这是由于小之间的晶格失配(006)LiNbO3薄膜和蓝宝石基片(001)。
4.结论
高质地和C轴取向的LiNbO
薄膜已经被沉积在(001)蓝宝石单晶沉底上
3
用脉冲激光沉积技术并且对生长参数进行了优化。
XRD和拉曼光谱仪分析证实
了无缺陷的增长和化学计量比铌酸锂晶体薄膜(006)优选方向与c轴垂直于衬底。
生长LiNbO3薄膜压力下,由于小的铌酸锂晶体的晶格失配与蓝宝石。
LiNbO3薄膜展品分散体的折射率与上面的基本吸收边波长和色散在光的单振子
模型的数据进行了研究。
一(006)LiNbO3薄膜的折射率值的偏差从观察到,
这是由于相应的散值主要是由于存在中的应力的晶格收缩沉积的薄膜。
的折射
率的数据示出了较高的值堆积密度(0.96)(006)LiNbO3薄膜确认生长良好
的光学品质的薄膜,具有较少数量的空隙。
感谢
所有作者感谢印度政府的海军研究局(DRDO)财政支持。
其中一位作者(AS)感谢印度科学与工业研究理事会(CSIR)的研究奖学金。
参考文献
[1] S. Schwyn, H.W. Lehmann, R. Widmer, J. Appl. Phys. 72 (1992) 1154.
[2] N.S.L.S. Vasconcelus, J.S. Vasconcelos, V. Bouquet, S.M. Zanetti, E.R. Leite, E. Longo,L.E.B. Soledade, F.M. Pontes, M. Guilloux-Viry, A. Perrin, M.I. Bernardi, J.A. Varela,Thin Solid Films 436 (2003) 213.
[3] S. Tan, T. Gilbert, C.Y. Hung, T.E. Schlesinger, J. Appl. Phys. 79 (1996) 3548.
[4] D. Kalymniost, M.T.V. Scibor-Rylskit, J. Phys. D: Appl. Phys. 7 (1974) L79.
[5] Y.W. Shin, O. Eknoyan, C.K. Madsen, H.F. Taylor, IEEE Conference on Optical Fiber communication/National Fiber Optic Engineers (OFC/NFOEC 2008), 2008, p. 1,
(Print ISBN: 978-1-55752-856-8).
[6] L. Pierno, M. Dispenza, A. Secchi, A. Fiorello, V. Foglietti, J. Opt. A: Pure Appl. Opt.10 (2008) 06417.
[7] D. Xue, K. Betzler, H. Hesse, J. Appl. Phys. 89 (2001) 849.
[8] A.M. Marsh, S.D. Harkness, F. Qian, R.K. Singh, Appl. Phys. Lett. 62 (1993) 952.
[9] V. Gupta, P. Bhattacharya, Y. Yuzyuk, R.S. Katiyar, M. Tomar, K. Sreenivas, J. Mater.Res. 19 (2004) 2235.
[10] N. Fujimura, M. Kakinoki, H. Tsuboi, T. Ito, J. Appl. Phys. 75 (1994) 2169.
[11] Y. Shibata, K. Kaya, K. Akashi, M. Kanai, T. Kawai, K. Shichio, J. Appl. Phys. 77(1995) 1498.
[12] Y. Kakehi, A. Okamoto, Y. Sakurai, Y. Nishikawa, T. Yotsuya, S. Ogawa, Appl. Surf.Sci. 169 (2001) 560.
[13] X. Guo, J. Liu, Z. Liu, Chin. Phys. Lett. 12 (1995) 249.
[14] C.N. Afonso, J. Gonzalo, F. Vega, E. Dieguez, J.C.C. Wong, C. Ortega, J. Siejka, G.Amsel, Appl. Phys. Lett. 66 (1995) 1452.
[15] S. Nakashimaa, Y. Nakatake, Y. Ishida, T. Talkahashi, H. Okumura, Physica B 308–310 (2001) 684.
[16] S. Shandilya, M. Tomar, K. Sreenivas, V. Gupta, J. Phys. D: Appl. Phys. 42 (2009)095303.
[17] Y. Furushima, T. Nishida, M. Shimizu, T. Shiosaki, IEEE Ultrason. Symp. 1 (1993)263.
[18] F.V. Eignant, M. Gandais, P. Aubert, G.J. Garry, Cryst. Growth 196 (1999) 141.
[19] P. Aubert, G. Garry, R. Bisaro, J.G. Lopez, Appl. Surf. Sci. 86 (1995) 144.
[20] A. Ridah, P. Bourson, M.D. Fontana, G.J. Malovichko, Phys. Condens. Matter 9
(1997) 9687.
[21] A.D. Bernabe, C. Prieto, A.D. Andres, J. Appl. Phys. 79 (1996) 143.
[22] J. Zhu, S. Zhao, D. Xiao, X. Wang, G.Xu. Jiangou, J. Phys. Condens. Matter 4 (1992)2977.
[23] J.C. Manifiacie r, J. Gasiot, J.P. Fillard, J. Phys. E: Sci. Instrum. 9 (1976) 1002.
[24] S. Cabuk, A. Mamedov, J. Opt. A: Pure Appl. Opt. 1 (1999) 424.
[25] S.H. Wemple, M. DiDomenico Jr., Phys. Rev. B 3 (1971) 1338.
[26] M. Di Domenico Jr., S.H. Wemple, J. Appl. Phys. 40 (1969) 420.
[27] V. Gupta, A. Mansingh, J. Appl. Phys. 80 (1996) 1063.
[28] W.L. Bond, J. Appl. Phys. 36 (1965) 1674.
[29] S.H. Wemple, M. Di Domenico Jr., I. Camlibel, J. Phys. Chem. Solids 29 (1968)
1797.
[30] N. Mehan, V. Gupta, K. Sreenivas, A. Mansingh, J. Appl. Phys. 96 (2004) 3137.
[31] M. Takenaga,N. Yamada, K.Nishiuchi,N. Akahira, T. Ohta, S.Nakamura, T. Yamashita,J. Appl. Phys. 54 (1983) 5376.。