巧用定积分求极限
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定积分在求极限中的应用
1、知识准备
绪论
微积分学在大学的数学学习中占有相当重要的地位.然而,求极限又是微积分学中常常要面临的问题.因此,积累更多求极限的方法应是每位大学生必备的素养.
求极限的方法层出不穷,最常用的方法有极限的定义和性质,重要极限的结论,洛必达法则以及泰勒公式等.应用极限的定义时,往往是在极限的结果已经比较明显,只需要根据极限的定义把相关式子进行放缩便可得到相应的结果.但是,这种方法一方面叙述上比较麻烦,另一方面也只适用于看上去容易放缩的式子.重要极限的结论形式上要求
非常严格,也只能解决两种形式的极限问题.洛必达法则是用于解决“0
”型的极限和
“∞
∞
”型极限的.泰勒公式适宜于解决求分式极限中分子或分母有加减运算的问题,通过泰勒展式后可以达到某些项抵消效果.但若仔细观察这些方法,其特点不是表达较繁琐就是仅仅应用到微分学知识.事实上,微分学和积分学的关系正如中小学时代学习过的加法与减法,乘法与除法,乘方与开方以及幂运算与取对数运算的关系一样,他们互为逆运算.倘若也能用到积分学知识来解决求极限的问题,那么求极限的方法才算完美.而利用定积分求极限正体现了这一理念. 定积分的概念
下面首先让我们回顾一下定积分以及极限的定义:
定积分:设函数()f x 在闭区间[],a b 上有定义,在闭区间[],a b 内任意插入n-1个分点将
[],a b 分成
n 个区间[,]x i i x x -,记(1,2,,i i i x x x i n ∆=-=L ),1[,]i i x x ξ-∀∈,作乘积
()i i f x ξ∆(称为积分元),把这些乘积相加得到和式1
()n
i i i f x ξ=∆∑(称为积分形式)设
{}max :1i x i n λ=∆≤≤,若0
1
lim ()n
i i i f x λξ→=∆∑极限存在唯一且该极限值与区是[],a b 的分法及分点i ξ的取法无关,则称这个唯一的极限值为函数()f x 在[],a b 上的定积分,记作
b a
()f x dx ⎰,即0
1
()lim ()n
b a
i i i f x dx f x λξ→=⎰=∆∑.否则称()f x 在[],a b 上不可积.
注1:由牛顿莱布尼兹公式知,计算定积分与原函数有关,故这里借助了不定积分的符号.
注2:若()b a f x dx ⎰存在,区间[],a b 进行特殊分割,分点i ξ进行特殊的取法得到的和式极限存在且与定积分的值相等,但反之不成立,这种思想在考题中经常出现,请读者要真正理解.
注3:定积分是否存在或者值是多少只与被积函数式和积分区间有关与积分变量用
什么字母表示无关,即()()().b b b
a a a f x dx f t dt f u du ⎰=⎰=⎰
仔细观察定积分的定义,我们一定会发现定积分的极限有以下两个特征.第一,定积分是无穷项和式的极限,容易知道一般项在项数趋近于无穷大时极限值必然趋近于零,否则和式极限不存在.第二,定积分与某一连续函数有紧密的关系,它的一般项受到这一连续函数的约束,它是连续函数在某个区间上进行了无穷的分割,各小区间上任意的函数值与区间长度的乘积的累加.
对于极限,大学主要学习了数列的极限和函数的极限.数列的极限是用于解决离散的自然数的相关极限,而函数的极限则主要用于解决连续函数的相关极限.那么就让我们先一一来回忆它们吧! 极限的概念
数列的极限
设{}n a 为数列, a 为实数,若对任给的正数ε,总存在正整数N ,使得当n N >时有
||n a a ε-<, 则称数列{}n a 收敛于a ,实数a 称为数列{}n a 的极限,并记作lim n n a a →∞
=或
()n a a n →→∞.
(读作:当n 趋于无穷大时, n a 的极限等于a 或n a 趋于a ).由于n 限于取正整数,所以在数列极限的记号中把n →+∞写成n →∞,即lim n n a a →∞
=或()n a a n →→∞.
若数列{}n a 没有极限,则称{}n a 不收敛,或称{}n a 为发散数列.
注1:关于ε:①ε的任意性.定义1中的正数ε的作用在于衡量数列通项n a 与常数a 的接近程度,ε越小,表示接近得越好;而正数ε可以任意小,说明n a 与常数a 可以接近到任何程度;②ε的暂时固定性.尽管ε有其任意性,但一经给出,就暂时地被确定下来,以便依靠它来求出N;③ε的多值性.ε既是任意小的正数,那么2,3,2ε
εε等等,同样也是任
意小的正数,因此定义1中的不等式||n a a ε-<中的ε可用
2,3,2
ε
εε等来代替.从而
“||n a a ε-<”可用“||n a a ε-≤”代替;④正由于ε是任意小的正数,我们可以限定ε小于一个确定的正数.
注2:关于N :①相应性,一般地, N 随ε的变小而变大,因此常把N 定义作()N ε来强调, N 是依赖于ε的;ε一经给定,就可以找到一个N ;②N 多值性N 的相应性并不意味着N 是由ε唯一确定的,因为对给定的ε,若100N =时能使得当n N >时,有
||n a a ε-<,则101N =或更大的数时此不等式自然成立.所以N 不是唯一的.事实上,在
许多场合下,最重要的是N 的存在性,而不是它的值有多大.基于此,在实际使用中的N 也不必限于自然数,只要N 是正数即可;而且把“n N >”改为“n N >”也无妨.
函数的极限
设函数()f x 在点0x 的某一去心邻域内有定义.如果存在常数A ,对于任意给定的正数ε(不论它有多么小),总存在某正数δ,使得当x 满足不等式00x x δ<-<时,对应的函数值()f x 都满足不等式()f x A ε-<,那么常数A 就叫做函数()f x 当0x x →时的极限,记为0
0lim ()()()x x f x A f x A x x →=→→或当.
可以看出,数列极限与函数极限定义的思想是一致的,都是相应的某个表达上的值无限地接近某个常数值.不同的是数列是离散的,数列中的项在跳跃式地接近,而函数是连续的,函数值在逐渐地接近,但二者都能与相应的常数值以任意程度地接近.
2、定积分与极限
定积分在求极限中应用概述
不难看出,无论是数列的极限还是函数的极限,它们都与定积分的定义存在着千丝