初一上学期数学第一次月考题

合集下载

初一上册数学月考试卷及答案解析

初一上册数学月考试卷及答案解析

初一上册数学月考试卷及答案解析【篇一】一、选择题(每小题3分,共30分)1.如果规定收入为正,支出为负.收入500元记作500元,那么支出237元应记作() A.﹣500元B.﹣237元C.237元D.500元考点:正数和负数.分析:根据题意237元应记作﹣237元.解答:解:根据题意,支出237元应记作﹣237元.故选B.点评:此题考查用正负数表示两个具有相反意义的量,属基础题.2.3的相反数是()A.﹣3B.+3C.0.3D.|﹣3|考点:相反数.分析:根据相反数的定义求解即可.解答:解:3的相反数为﹣3.故选A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.2012年国庆长假无锡共接待游客约6420000万,数据“6420000”用科学记数法表示正确的是()A.642×103B.64.2×103C.6.42×106D.0.642×103考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:6420000=6.42×106,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.在下列数﹣,+1,6.7,﹣14,0,,﹣5,25%中,属于整数的有()A.2个B.3个C.4个D.5个考点:有理数.分析:根据分母为一的数是整数,可得整数集合.解答:解:+1,﹣14,0,﹣5是整数,故选:C.点评:本题考查了有理数,分母为一的数是整数.5.下列说法正确的是()A.一个负数的绝对值一定是正数B.倒数是它本身的数是0和1C.绝对值是它本身的数是正数D.平方是它本身的数是0、±1考点:绝对值;倒数;有理数的乘方.分析:根据绝对值的性质,倒数的定义有理数的乘方对各选项分析判断利用排除法求解.解答:解:A、一个负数的绝对值一定是正数,正确,故本选项正确;B、倒数是它本身的数是﹣1和1,故本选项错误;C、绝对值是它本身的数是正数和零,故本选项错误;D、平方是它本身的数是0、1,故本选项错误.故选A.点评:本题考查了绝对值的性质,倒数的定义,有理数的乘方,熟记性质和相关概念是解题的关键.6.下列各组数中,相等的是()A.﹣1与(﹣4)+(﹣3)B.|﹣3|与﹣(﹣3)C.与D.(﹣4)2与﹣16考点:有理数的乘方;相反数;绝对值;有理数的加法.分析:分别利用有理数的加减运算法则以及绝对值的性质和幂的乘方计算得出答案即可.解答:解:A.(﹣4)+(﹣3)=﹣7,则﹣1与(﹣4)+(﹣3)不相等,故此选项错误;B.|﹣3|=3,﹣(﹣3)=3,则|﹣3|与﹣(﹣3)相等,故此选项正确;C.=,则与不相等,故此选项错误;D.(﹣4)2=16,故(﹣4)2与﹣16不相等,故此选项错误;故选:B.点评:此题主要考查了有理数的运算绝对值等知识,熟练化简各式是解题关键.7.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A.0.8kgB.0.6kgC.0.5kgD.0.4kg考点:正数和负数.分析:根据题意给出三袋面粉的质量波动范围,并求出任意两袋质量相差的数.解答:解:根据题意从中找出两袋质量波动的(25±0.3)kg,则相差0.3﹣(﹣0.3)=0.6kg.故选:B.点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.8.如图所示,根据有理数a、b在数轴上的位置,下列关系正确的是()A.|a|>|b|B.a>﹣bC.b<﹣aD.a+b>0考点:有理数大小比较;数轴.分析:根据各点在数轴上的位置即可得出结论.解答:解:∵由图可知,|b|>a,b<0<a,∴|a|<|b|,a<﹣b,a+b<0,b<﹣a,故A、B、D错误,C正确.故选C.点评:本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.9.下列一组数:﹣8,2.7,,,0.66666…,0,2,0.080080008…(相邻两个8之间依次增加一个0)其中是无理数的有()A.0个B.1个C.2个D.3个考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:无理数有:,0.080080008…(相邻两个8之间依次增加一个0).共2个.故选C.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.10.观察以下数组:(2),(4、6),(8、10、12),(14、16、18、20),…,问2016在第几组()A.44B.45C.46D.无法确定考点:规律型:数字的变化类.分析:根据数据的个数可知前n组共有数1+2+3+…+n个,利用规律得到n(n+1)≥2016(m为自然数),进一步试值即可求解.解答:解:设2016在第n组,则n(n+1)≥2016,当n=44时,44×(44+1)=1980<2016,当n=45时,45×(45+1)=2070>2016,所以2016在第45组.故选:B.点评:此题考查数字的变化规律,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.二、填空题(每小题3分,共24分)11.﹣4.5是4.5的相反数.考点:相反数.分析:直接利用相反数的定义得出答案.解答:解:∵﹣4.5+4.5=0,∴﹣4.5是4.5的相反数.故答案为:﹣4.5.点评:此题主要考查了相反数,正确把握相反数的定义是解题关键.12.用“>”、“<”、“=”号填空:>.考点:有理数大小比较.专题:计算题.分析:先计算得到|﹣|==,|﹣|==,然后根据负数的绝对值越大,这个数越小进行大小比较.解答:解:∵|﹣|==,|﹣|==,∴﹣>﹣.故答案为>.点评:本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.13.﹣|﹣|=﹣.考点:相反数;绝对值.分析:利用相反数及绝对值的定义求解即可.解答:解:﹣|﹣|=﹣.故答案为:﹣.点评:本题主要考查了相反数及绝对值,解题的关键是熟记定义.14.计算(﹣1)2012﹣(﹣1)2011的值是2.考点:有理数的乘方.分析:根据﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1解答.解答:解:(﹣1)2012﹣(﹣1)2011,=1﹣(﹣1),=1+1,=2.故答案为:2.点评:本题考查了有理数的乘方,熟记﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1是解题的关键.15.﹣3705.123用科学记数法表示是﹣3.705123×103.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将﹣3705.123用科学记数法表示为﹣3.705123×103.故答案为:﹣3.705123×103.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.现定义某种运算“*”,对任意两个有理数a、b,有a*b=ab,则(﹣3)*3=﹣27.考点:有理数的乘方.专题:新定义.分析:将新定义的运算按定义的规律转化为有理数的乘方运算,即可得出答案.解答:解:∵a*b=ab,∴(﹣3)*3=(﹣3)3=﹣27;故答案为:=﹣27.点评:此题考查了有理数的乘方,掌握新定义的运算,严格按定义的规律来计算是本题的关键.17.如图是一个程序运算,若输入的x为﹣5,则输出y的结果为﹣10.考点:代数式求值.专题:图表型.分析:根据图表列出算式,然后把x=﹣5代入算式进行计算即可得解.解答:解:根据题意可得,y=[x+4﹣(﹣3)]×(﹣5),当x=﹣5时,y=[﹣5+4﹣(﹣3)]×(﹣5)=(﹣5+4+3)×(﹣5)=2×(﹣5)=﹣10.故答案为:﹣10.点评:本题考查了代数式求值,根据图表正确列出算式是解题的关键.18.已知有理数a,b,c满足a+b+c=0,abc≠0.则的所有可能的值为±1.考点:有理数的除法;绝对值;有理数的加法.分析:根据有理数的加法和有理数的乘法运算法则判断出a、b、c三个数中只有一个负数,然后根据绝对值的性质解答即可.解答:解:∵a+b+c=0,abc≠0,∴a、b、c三个数中既有正数也有负数,∴a、b、c三个数中有一个负数或两个负数,∴=﹣1+1+1=1或=﹣1﹣1+1=﹣1;∴的所有可能的值为±1.故答案为:±1.点评:本题考查了有理数的除法和绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,难点在于判断出负数的个数.解答题19.(40分)计算:(1)(﹣)+(﹣)+(﹣)+;(2)﹣7.2﹣0.8﹣5.6+11.6;(3)﹣20+(﹣14)﹣(﹣18)﹣13(4)3×(﹣4)+28÷(﹣7)(5)(﹣)×0.125×(﹣2)×(﹣8)(6)(7)(8)(﹣24)×(﹣﹣);(9)18×(﹣)+13×﹣4×.(10).考点:有理数的混合运算.专题:计算题.分析:(1)原式结合后,相加即可得到结果;(2)原式结合后,相加即可得到结果;(3)原式利用减法法则变形,计算即可得到结果;(4)原式先计算乘除运算,再计算加减运算即可得到结果;(5)原式利用乘法法则计算即可得到结果;(6)原式利用乘法分配律计算即可得到结果;(7)原式变形后,利用乘法分配律计算即可得到结果;(8)原式利用乘法分配律计算即可得到结果;(9)原式逆用乘法分配律计算即可得到结果;(10)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.解答:解:(1)原式=(﹣﹣)+(﹣+)=﹣1;(2)原式=﹣8+6=﹣2;(3)原式=﹣20﹣14+18﹣13=﹣47+18=﹣29;(4)原式=﹣12﹣4=﹣16;(5)原式=﹣×××8=﹣1;(6)原式=12﹣18+8=2;(7)原式=(﹣60+)×(﹣16)=960﹣1=959;(8)原式=﹣8+3+4=﹣1;(9)原式=×(﹣18+13﹣4)=×(﹣9)=﹣6;(10)原式=﹣1××+0.2=﹣+=.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.把下列各数填在相应的大括号中3.1415926,8,,0.275,0,﹣,﹣6,π,﹣0.25,﹣|﹣2|,2.5353353335…分数:{…}非负整数:{…}无理数:{…}.考点:实数.专题:计算题.分析:利用分数,非负整数,以及无理数的定义判断即可.解答:解:分数:{3.1415926,,0.275,﹣,﹣0.25};非负整数:{8,9};无理数:{π,2.5353353335…}点评:此题考查了实数,熟练掌握各自的定义是解本题的关键.21.数轴上的点M对应的数是﹣4,一只蚂蚁从M点出发沿数轴以每秒2个单位长度的速度爬行,当它到达数轴上的N点后,立即返回到原点,共用11秒.(1)蚂蚁爬行的路程是多少?(2)点N对应的数是多少?(3)点M和点N之间的距离是多少?考点:数轴.分析:(1)根据公式:路程=速度×时间,直接得出答案;(2)先设点N表示的数为a,分两种情况:点M在点N左侧或右侧,求出从M点到N点单位长度的个数,再由M点表示的数是﹣4,从点N返回到原点即可得出N点表示的数.(3)根据点N表示的数即可得出点M和点N之间的距离.解答:解:(1)2×11=22(个单位长度).故蚂蚁爬行的路程是22个单位长度.(2)①当点M在点N左侧时:a+4+a=22,a=9;②当点M在点N右侧时:﹣a﹣4﹣a=22,a=﹣13;(3)点M和点N之间的距离是13或9.点评:本题考查了数轴,两点之间距离的求法:右边的数减去左边的数.22.在数轴上把下列各数表示出来,并用“<”连接各数.2,﹣|﹣1|,1,0,﹣(﹣3.5)考点:有理数大小比较;数轴.分析:在数轴上表示出各数,从左到右用“<”连接起来即可.解答:解:如图所示,,由图可知,﹣|﹣1|<0<1<2<﹣(﹣3.5).点评:本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.23.同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.试探索:(1)求|5﹣(﹣2)|=7.(2)同样道理|x+5|+|x﹣2|表示数轴上有理数x所对点到﹣5和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7,这样的整数是﹣5、﹣4、﹣3、﹣2、﹣1、0、1、2.(3)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,写出最小值;如果没有,说明理由.考点:绝对值;数轴.分析:(1)直接去括号,再按照去绝对值的方法去绝对值就可以了.(2)要x的整数值可以进行分段计算,令x+5=0或x﹣2=0时,分为3段进行计算,最后确定x的值.(3)根据(2)方法去绝对值,分为3种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值.解答:解:(1)原式=|5+2|=7故答案为:7;(2)令x+5=0或x﹣2=0时,则x=﹣5或x=2当x<﹣5时,∴﹣(x+5)﹣(x﹣2)=7,﹣x﹣5﹣x+2=7,x=5(范围内不成立)当﹣5<x<2时,∴(x+5)﹣(x﹣2)=7,x+5﹣x+2=7,7=7,∴x=﹣4,﹣3,﹣2,﹣1,0,1当x>2时,∴(x+5)+(x﹣2)=7,x+5+x﹣2=7,2x=4,x=2,x=2(范围内不成立)∴综上所述,符合条件的整数x有:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;(3)由(2)的探索猜想,对于任何有理数x,|x﹣3|+|x﹣6|有最小值为3.点评:此题主要考查了去绝对值和数轴相联系的综合试题以及去绝对值的方法和去绝对值在数轴上的运用,难度较大,去绝对的关键是确定绝对值里面的数的正负性.【篇二】一.选择题(共10小题,每题2分,共20分,请把正确答案写在答案卷上.)1.(2分)下列各数中,是负数的是()A.﹣(﹣3)B.2013C.0D.﹣24【分析】利用负数定义判断即可.【解答】解:﹣24=﹣16,是负数,故选D【点评】此题考查了有理数的乘方,正数与负数,以及相反数,熟练掌握各自的性质是解本题的关键.2.(2分)﹣3+5的相反数是()A.2B.﹣2C.﹣8D.8【分析】先计算﹣3+5的值,再求它的相反数.【解答】解:﹣3+5=2,2的相反数是﹣2.故选B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.(2分)将6﹣(+3)﹣(﹣7)+(﹣2)写成省略加号的和的形式为()A.﹣6﹣3+7﹣2B.6﹣3﹣7﹣2C.6﹣3+7﹣2D.6+3﹣7﹣2【分析】利用去括号的法则求解即可.【解答】解:6﹣(+3)﹣(﹣7)+(﹣2)=6﹣3+7﹣2,故选:C.【点评】本题主要考查了有理数加减混合运算,解题的关键是注意符号.4.(2分)实数a、b在数轴上的位置如图所示,则a与﹣b的大小关系是()A.a>﹣bB.a=﹣bC.a<﹣bD.不能判断【分析】根据数轴判断出a、b的正负情况以及绝对值的大小,然后解答即可.【解答】解:由图可知,a<0,b>0,且|a|>|b|,所以,﹣b<0,所以,a<﹣b.故选C.【点评】本题考查了实数与数轴,实数的大小比较,利用了两个负数相比较,绝度值大的反而小.5.(2分)下列各组数中,最后运算结果相等的是()A.102和54B.﹣44和(﹣4)4C.﹣55和(﹣5)5D.()3和【分析】各项两式计算得到结果,比较即可.【解答】解:A、102=100,54=625,不符合题意;B、﹣44=﹣256,(﹣4)4=256,不符合题意;C、﹣55=(﹣5)5=﹣3125,符合题意;D、()3=,=,不符合题意,故选C【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.6.(2分)有这样三个数,它们的积是负数,它们的和是正数,则这三个数中负数的个数为()A.1个B.3个C.1个或3个D.2个【分析】根据三个数相乘积为负,得到三个数中有1个或3个负数,再由和为正数,确定出三个数中负数只有一个.【解答】解:有这样三个数,它们的积是负数,它们的和是正数,则这三个数中负数的个数为1个.故选A【点评】此题考查了有理数的乘法,以及有理数的加法,熟练掌握运算法则是解本题的关键.7.(2分)地球上的海洋面积约为361000000km2,用科学记数法可表示为()A.361×106km2B.36.1×107km2C.0.361×109km2D.3.61×108km2【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:361000000=3.61×108,故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(2分)如果|a+2|+(b﹣1)2=0,那么代数式(a+b)2013的值是()A.﹣1B.2013C.﹣2013D.1【分析】利用非负数的性质求出a与b的值,代入原式计算即可得到结果.【解答】解:∵|a+2|+(b﹣1)2=0,∴a+2=0,b﹣1=0,即a=﹣2,b=1,则原式=(﹣2+1)2013=(﹣1)2013=﹣1.故选A【点评】此题考查了代数式求值,以及非负数的性质,熟练掌握非负数的性质是解本题的关键.9.(2分)下列说法:①1是最小的正数②的负整数是﹣1③任何有理数的绝对值都是正数④若|a|=﹣a,则a是负数⑤互为相反数的两个数,绝对值相等⑥若﹣a=a,那么a=0其中正确的个数有()A.1个B.2个C.3个D.4个【分析】根据有理数的含义和分类,相反数的含义和求法,以及绝对值的含义和求法,判断出正确的说法有多少个即可.【解答】解:∵1不是最小的正数,∴选项①不正确;∵的负整数是﹣1,∴选项②正确;∵0的绝对值不是正数,∴选项③不正确;∵若|a|=﹣a,则a是负数或0,∴选项④不正确.∵互为相反数的两个数,绝对值相等,∴选项⑤正确;∵若﹣a=a,∴a=0,∴选项⑥正确.综上,可得正确的个数有3个:②、⑤、⑥.故选:C.【点评】此题主要考查了有理数的含义和分类,相反数的含义和求法,以及绝对值的含义和求法,要熟练掌握.10.(2分)已知m≥2,n≥2,且m、n均为正整数,如果将mn进行如图所示的“分解”,那么下列四个叙述中正确的有()①在25的“分解”中,的数是11.②在43的“分解”中,最小的数是13.③若m3的“分解”中最小的数是23,则m=5.④若3n的“分解”中最小的数是79,则n=5.A.1个B.2个C.3个D.4个【分析】通过观察可知:底数是几,分解成的奇数的个数为几,且奇数的个数之和为幂,由此规律进一步分析探讨得出正确的答案.【解答】解:①在25的“分解”中,的数是25﹣1+1=17,所以此叙述不正确;②在43的“分解”中最小的数是13,则其他三个数为15,17,19,四数的和为64,恰好为43,所以此叙述正确;③若m等于5,由53“分解”的最小数是2,1,则其余四个数为23,25,27,29,31,所以此叙述错误;④若3n的“分解”中最小的数是3n﹣1﹣2=79,则n=5,所以此叙述正确.故正确的有②④.故选:B.【点评】考查学生观察分析问题的能力,由观察可知底数是几,分解成的奇数的个数为几,且奇数的个数之和为幂.由此可以依次判断.二.填空题(共10小题,每题2分,共20分,请把结果直接填在答题卷上.)11.(2分)﹣3的倒数是﹣;相反数是3.【分析】根据相反数,倒数的概念可求解.【解答】解:﹣3的倒数是﹣;相反数是3.【点评】主要考查相反数,倒数的概念.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.12.(2分)如果温度上升6℃记作+6℃,那么下降3℃记作﹣3℃.【分析】用正负数来表示具有意义相反的两种量:上升记为正,则下降就记为负.【解答】解:∵温度上升6℃记作+6℃,∴下降3℃记作﹣3℃.故答案为:﹣3℃.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.13.(2分)如果﹣x=7,那么x=﹣7;如果|﹣x|=5,则x=±5.【分析】﹣x=7两边同时除以﹣1即可得到x的值;根据绝对值等于一个正数的数有两个可得|﹣x|=5时x=±5.【解答】解:∵﹣x=7,∴x=﹣7;∵|﹣x|=5,∴﹣x=±5,∴x=±5,故答案为:﹣7;±5.【点评】此题主要考查了绝对值和相反数,关键是掌握绝对值的性质:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.14.(2分)若|x|=3,|y|=2,且x>y,则x﹣y的值为1或5.【分析】首先根据绝对值的定义确定出x、y的值,再找出x>y的情况,然后计算x ﹣y即可.【解答】解:∵|x|=3,|y|=2,∴x=±3,y=±2,∵x>y,∴①x=3,y=2,x﹣y=1;②x=3,y=﹣2,x﹣y=3﹣(﹣2)=3+2=5;故答案为:1或5.【点评】此题主要考查了绝对值以及有理数的减法,关键是掌握绝对值概念,确定出x、y的值.15.(2分)满足条件大于﹣2而小于π的整数共有5个.【分析】在数轴上标出﹣2与π,根据数轴的特点直接解答即可.【解答】解:如图所示:大于﹣2而小于π的整数有:﹣1,0,1,2,3,共5个.故答案为:5.【点评】本题考查的是数轴的特点,根据数轴的特点利用数形结合求解是解答此题的关键.16.(2分)(1)|﹣18|+|﹣6|=24(2)﹣π<﹣3.14.【分析】(1)先求绝对值,再计算加减;(2)两个负数,绝对值大的其值反而小.【解答】解:(1)|﹣18|+|﹣6|=18+6=24;(2)﹣π<﹣3.14.故答案为:24;<.【点评】此题考查有理数的加法,绝对值,有理数大小比较,正确、灵活掌握各运算法则,以及注意运算顺序,是解题的关键.17.(2分)某次数学和测验,以90分为标准,老师公布成绩:小明+10分,小刚0分,小敏﹣2分,则小刚的实际得分是90,小敏的实际得分是88.【分析】根据正负数的意义即可求出答案.【解答】解:根据题意可知:小刚的得分为:90+0=90小敏的得分为:90﹣2=88故答案为:90,88【点评】本题考查正负数的意义,解题的关键是正确理解正负数的意义,本题属于基础题型.18.(2分)在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2013,且AO=2BO,则a+b的值为﹣671.【分析】根据已知条件可以得到a<0<b.然后通过取绝对值,根据两点间的距离定义知b﹣a=2013,a=﹣2b,则易求b=671.所以a+b=﹣2b+b=﹣b=﹣671.【解答】解:如图,a<0<b.∵|a﹣b|=2013,且AO=2BO,∴b﹣a=2013,①a=﹣2b,②由①②,解得b=671,∴a+b=﹣2b+b=﹣b=﹣671.故答案是:﹣671.【点评】本题考查了数轴、绝对值以及两点间的距离.根据已知条件得到a<0<b是解题的关键.19.(2分)初次见面通常以握手示礼,适当的握手时间与力度会让人有一种舒服亲切的感受.某次联谊会有41人参加,若41位与会人员彼此握手一次,那么全体与会人员共握手820次.如果有n个人参加,那么全体与会人员共握手n(n﹣1)次.【分析】设握手x次,根据图表中给出的类比规律,可知当有n个人时,握手次数为n(n﹣1),根据此规律可求出握手次数.【解答】解:由题意得:设握手n次,则x=n(n﹣1),当n=41时,x=n(n﹣1)=×41×(41﹣1)=820.故答案为:820,n(n﹣1).【点评】本题考查理解题意的能力,关键根据图表给的信心找出握手总次数和人数的关系式,从而可列出方程求解.20.(2分)下边横排有12个方格,每个方格都有一个数字,若任何相邻三个数字的和都是20,则x=5.5ABCDEFxGHI10【分析】根据任何相邻三个数字的和都是20列出关系式,依次即可求出x的值.【解答】解:根据题意得:5+A+B=20,A+B+C=20,C+D+E=20,D+E+F=20,E+F+x=20,∴A+B=15,C=5,B+D=15,D+E=15,F=5,F+x=10,则x=5.故答案为:5【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.三.解答题(共8小题,共60分.解答需写出必要的文字说明或演算步骤.)21.(4分)把数2、﹣|﹣1|、1、0、﹣(﹣3.5)在数轴上表示出来,再用“<”把它们连接起来.【分析】首先在数轴上表示各数,再根据在数轴上表示的有理数,右边的数总比左边的数大用“<”号把各数连接起来即可.【解答】解:如图所示:,﹣|﹣1|<0<1<2<﹣(﹣3.5).【点评】此题主要考查了有理数的比较大小,以及数轴,关键是掌握在数轴上表示的两个有理数,右边的数总比左边的数大.22.(5分)把下列各数填在相应的集合内:100,﹣0.82,﹣30,3.14,﹣2,0,﹣2011,﹣3.1,,﹣,2.010010001…,正分数集合:{3.14,,…}整数集合:{100,﹣2,0,﹣2011,…}负有理数集合:{﹣0.82,﹣30,﹣2,﹣2011,﹣3.1,…}非正整数集合;{﹣2,0,﹣2011,…}无理数集合:{﹣,2.010010001…,…}.【分析】根据分数,有理数,整数以及无理数的概念进行判断即可.【解答】解:正分数集合:{3.14,,…}整数集合:{100,﹣2,0,﹣2011,…}负有理数集合:{﹣0.82,﹣30,﹣2,﹣2011,﹣3.1,…}非正整数集合;{﹣2,0,﹣2011,…}无理数集合:{﹣,2.010010001…,…}.故答案为:3.14,;100,﹣2,0,﹣2011;﹣0.82,﹣30,﹣2,﹣2011,﹣3.1;﹣2,0,﹣2011;﹣,2.010010001….【点评】本题主要考查了实数的分类,解题时注意:有理数和无理数统称实数.23.(20分)计算:①8+(﹣10)﹣(﹣5)+(﹣2);②7﹣(﹣3)+(﹣4)﹣|﹣8|③(﹣+)×(﹣36)④﹣81÷×(﹣)÷3⑤49×(﹣5)(简便方法计算)【分析】按照先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,有时利用乘法结合律、加法结合律进行简便运算.【解答】解:①8+(﹣10)﹣(﹣5)+(﹣2)=8﹣10+5﹣2=13﹣12=1.②7﹣(﹣3)+(﹣4)﹣|﹣8|=7+3﹣4﹣8=10﹣12=﹣2.③(﹣+)×(﹣36)=﹣18+20﹣21=﹣19.④﹣81÷×(﹣)÷3=81×××=12.⑤49×(﹣5)=(50﹣)×(﹣5)=﹣250+=﹣249.【点评】本题考查有理数混合运算,注意:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,有时利用乘法结合律、加法结合律进行简便运算.24.(4分)若a、b互为相反数,c、d互为倒数,m的绝对值为2,求m2﹣cd+的值.【分析】利用相反数,绝对值,以及倒数的定义求出a+b,cd以及m的值,代入原式计算即可得到结果.【解答】解:根据题意得:a+b=0,cd=1,m=2或﹣2,∴m2=4原式=4﹣1+0=3;【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.25.(6分)出租车司机小王某天下午营运全是在东西走向的太湖大道上进行的.如果向东记作“+”,向西记作“﹣”.他这天下午行车情况如下:(单位:千米)﹣2,+5,﹣1,+10,﹣3,﹣2,﹣5,+6请回答:(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米还需收2元钱.那么小王这天下午共收到多少钱?【分析】(1)把小王下午的行车记录相加,然后根据正负数的意*答;(2)根据行车记录和收费方法列出算式,计算即可得解.【解答】解:(1)﹣2+5﹣1+10﹣3﹣2﹣5+6=﹣13+21=8千米,所以小王在下午出车的出发地的东面,距离出发地8千米;(2)10×8+2×(5﹣3)+2×(10﹣3)+2×(5﹣3)+2×(6﹣3)=80+4+14+4+6=108元.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.26.(6分)寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如下表:(1)当n个最小的连续偶数相加时,它们的和S与n之间有什么样的关系,用公式表示出来;(2)按此规律计算:①2+4+6+…+200值;②162+164+166+…+400值.【分析】(1)根据所给的式子可得S与n之间的关系为:S=n(n+1);(2)首先确定有几个加数,由(1)得出的规律,列出算式,进行计算即可.【解答】解:(1))∵1个最小的连续偶数相加时,S=1×(1+1),2个最小的连续偶数相加时,S=2×(2+1),3个最小的连续偶数相加时,S=3×(3+1),…∴n个最小的连续偶数相加时,S=n(n+1);(2)①根据(1)得:2+4+6+…+200=100×(100+1)=10100;②162+164+166+ (400)=(2+4+6+…+400)﹣(2+4+6+…+160),=200×201﹣80×81,=40200﹣6480,=33720.【点评】此题考查了数字的变化类,是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.27.(6分)阅读下列材料,并回答问题计算机利用的是二进制数,它共有两个数码:0,1;将一个十进制的数转化为二进制数,只需把该数写成若干个的数的和,依次写出1或0即可.例如十进制数19可以按下述方法转化为二进制数:19=16+2+1=1×24+0×23+0×22+1×21+1×20=10011.二进制数110110可以转换成十进制数为:110110=1×25+1×24+0×23+1×22+1×21+0×20=54.(1)将86化成二进制;(2)将1011101化成十进制.【分析】(1)十进制化成二进制用“除k取余法”是将十进制数除以2,然后将商继续除以2,直到商为0,然后将依次所得的余数倒序排列即可得到答案.(2)将二进制数转化为十进制数,可以用每个数位上的数字乘以对应的权重,累加后,即可得到答案.【解答】解:(1)86÷2=43,43÷2=21…1,21÷2=10…1,10÷2=5…0,5÷2=2…1,2÷2=1…0,1÷2=0…1,故86(10)=1010110(2).(2)(1011101)2=1×26+0×25+1×24+1×23+1×22+0×21+1×20=64+0+16+8+4+0+1=93;(1011101)2=(93)10.【点评】本题考查的知识点是不同进制之间的转换,其中其它进制转为十进制方法均为累加数字×权重,十进制转换为其它进制均采用除K求余法.28.(9分)已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0.(1)请求出a、b、c的值;。

七年级上学期数学第一次月考考试试卷第1套真题

七年级上学期数学第一次月考考试试卷第1套真题

七年级上学期数学第一次月考考试试卷一、单选题1. 的相反数是()A . -2B . 2C . -D .2. 在-2,0,1,3这四个数中,比0小的数是()A . -2B . 0C . 1D . 33. 计算:-2+3=()A . 1B . -1C . -5D . -64. 在,,,这四个数中,负数的个数是()A . 1个B . 2个C . 3个D . 4个5. 绝对值比大的数是()A . -3B . 0C . 1D . 26. 一袋大米的标准重量为.把一袋重的大米记为,则一袋重的大米记为()A . -9.8kgB . +9.8kgC . -0.2kgD . 0.2kg7. 在数轴上,到表示-1的点的距离等于6的点表示的数是()A . 5B . -7C . 5或-7D . 88. 有理数在数轴上对应的点如图所示,则,,的大小关系正确的是()A . -a<a<1B . a<-a<1C . 1<-a<aD . a<1<-a9. 化简后是()A . -3B . 3C . ±3D . 以上都不对二、填空题10. 小明的姐姐在银行工作,她把存入万元记作万元,那么支取万元应记作________,万元表示________.11. 比较大小:(填“ ”或“ ”)(1)-24________ ;(2)-1.5________ ;(3)0________ ;(4)________ .12. 的相反数是________,它的倒数是________,它的绝对值是________.13. 计算:________,________,________.三、解答题14. 在数轴上表示下列各数,并用“ ”把它们连接起来.-3 2.5 0 -4.5 0.515. 若,求的值.16. 下列各数填入相应的大括号里:,,,,,,,,,…①正数集合:{ }②整数集合:{ }③负数集合:{ }④分数集合:{ }.17. 计算题(1)49+(-23)+(-35)(2)19-(-76)-22-(-52)(3)(4) .18. 一辆汽车沿着一条南北方向的公路来回行驶.某一天早晨从A 地出发,晚上到达B 地.约定向北为正,向南为负,当天记录如下:(单位:千米)-18.3 ,−9.5 ,+7.1 ,−14 ,−6.2 ,+13 ,−6.8 ,−8.5(1)问地在地何处,相距多少千米?(2)若汽车行驶每千米耗油升,那么这一天共耗油多少升?19. 体育课上某班女同学进行跳绳比赛,以跳个为标准(达标),超过记为正数,其中名同学的成绩如下(单位:):,,,,,,,,,.(1)这名同学的达标率是多少?(2)10名学生一共跳了多少个?20. 有筐白菜,以每筐为准,超过的千克记作正数,不足的千克记作负数,称后记录如下:,,,,,,,,,这筐白菜一共多少千克?21. 某老师把某一小组五名同学的成绩简记为:,,,,,又知道记为的成绩表示分,正数表示超过分,则五名同学的平均成绩为多少分?。

吉林省名校调研系列卷2024年七年级上学期第一次月考数学试题

吉林省名校调研系列卷2024年七年级上学期第一次月考数学试题

名校调研系列卷·七年上第一次月考试卷数学(人教版)一、选择题(每小题2分,共12分)1. 实数5−的相反数是( )A. 5B. 5−C. 15D. 15− 2. 老师评卷时,如果把得4分记为4+分,那么扣4分记为( )A. 4−分B. 4+分C. 0分D. 8分 3. 下列四个数中,属于负分数的是( )A. 6B. 1.6−C. 0D. 3− 4. 已知算式()99− 的值为1−,则“ ”内应填入的运算符号为( )A. +B. −C. ×D. ÷5. 下列计算正确的是( ) A. 1(2)(1)2−÷−=− B. 154−+=−C. ()7535−×=− D. 428−−=− 6. 有理数a 、b 在数轴上的位置如图所示,则下列各式的符号为正的是( )A. a b +B. a bC. abD. a b −二、填空题(每小题3分,共24分)7. ﹣19的倒数是_____. 8. 化简:2128−=______. 9. 若数轴上表示3−和6的两点分别是点P 和点Q ,则点P 与点Q 之间的距离是______. 10 比较大小:32−______43−(填“>,<,或=”). 11. 比3−小8数是________.12. 如图,数轴上的两个点分别表示3−和m ,请写出一个符合条件的m 的整数值:______________..的13. 某地上午气温为16C °,下午上升3C °,到半夜又下降20C °,则该地半夜的气温为_______. 14. 某同学在计算8a −÷时,误将“÷”看成“+”而算得结果是12−,则8a −÷的正确结果是______.三、解答题(每小题5分,共20分)15. 计算:()()()72053−++−−−+.16. 计算:()()1899−÷−×−17. 计算:23(36)(3)94 −×−−÷−18 计算:3571491236 −−+÷−四、解答题(每小题7分,共28分)19. (1)在如图所示的数轴上表示下列各数:0,3,1.5,4−,1,32−;(2)按从小到大的顺序用“<”号把(1)中的这些数连接起来. 20. 把下列各数填入相应集合的括号内:8.5+,132−,0.3,0, 3.4−,2024,9−,143,2−,0.67. (1)整数集合:{ };(2)分数集合:{ };(3)非负数集合:{ }.21. 阅读下面的材料: 计算:1579(8)16×−, 解:15111179(8)80(8)80(8)(8)64063916161622 ×−=−×−=×−−×−=−+=−. 应用:根据你对材料的理解,计算:2399(6)24×−. 22 列式并计算.(1) 4.3−加上 2.9−的绝对值的和; (2)5−与2的差乘以7−所得的积是多少?五、解答题(每小题8分,共16分)..23. 已知7a =,10b =,且0ab <.(1)求a 、b 的值;(2)求a b −的值.24. 定义一种新的运算“⊕”,规则如下:3a b ab ⊕−.(1)142 ⊕−=______; (2)求1(15)(3)5−⊕−⊕− 的值.六、解答题(每小题10分,共20分)25. 某校六年级(1)班学生在劳动课上采摘成熟的白萝卜,一共采摘了10筐,以每筐25千克为标准,超过的千克数记作正数,相等的千克数记作0,不足的千克数记作负数,称重后记录如下: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)2.5− 1.53− 0 1 0.5−2− 2− 1.5− 2回答下面问题: (1)这10筐白萝卜,第8筐白萝卜实际质量为多少千克.(2)以每筐25千克为标准,这10筐白萝卜总计超过或不足多少千克?(3)若白萝卜每千克售价2元,则售出这10筐白萝卜可得多少元?26. 如图,在数轴上点A 表示数是8,若动点P 从原点O 出发,以每秒2个单位长度的速度向左运动,同时另一动点Q 从点A 出发,以每秒4个单位长度的速度也向左运动,到达原点后立即以原来的速度返回,向右运动,设运动的时间为t 秒.(1)当0.5=t 时,点Q 到原点O 的距离为_______________;(2)当 2.5t =时,求点Q 到原点O 的距离;(3)当点Q 到原点O 的距离为4时,求点P 到原点O 的距离.的。

陕西省西安市莲湖区2024-2025学年七年级上学期第一次月考数学试题[含答案]

陕西省西安市莲湖区2024-2025学年七年级上学期第一次月考数学试题[含答案]

2024~2025学年第一学期初一年级数学练习(一)注意事项:本试卷分为第一部分(选择题)和第二部分(非选择题).全卷共2页,总分100分.考试时间60分钟.一、选择题(共8小题,每小题3分,共24分)1.2027-的相反数是()A.12027-B.2027-C.12027D.20272.如图,三个图形是由立体图形展开得到的,相应的立体图形顺序是()A.圆柱、三棱柱、圆锥B.圆锥、三棱柱、圆柱C.圆柱、三棱锥、圆锥D.圆柱、三棱柱、半球3.如图,用虚线所示平面切割一块长方体的铁块,则截面形状是()A.B.C.D.4.一小袋味精的质量标准为“500.25±克”,那么下列四小袋味精质量符合要求的是()A.50.35克B.49.80克C.49.72克D.50.40克5.如图,已知长方形的长为a、宽为b(其中a b>),将这个长方形分别绕它的长和宽所在直线旋转一周,得到两个圆柱甲、乙,则这两个圆柱的侧面积和体积的关系为()A .甲乙的侧面积相同,体积不同B .甲乙的侧面积相同,体积也相同C .甲乙的侧面积不相同,体积相同D .甲乙的侧面积不相同,体积也不相同6.a 、b 两数在数轴上位置如图所示,将a 、b 、a -、b -用“<”连接,其中正确的是( )A .a a b b<-<<-B .a b b a -<<-<C .b a a b -<<-<D .b a b a-<<<-7.数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为21厘米的线段AB ,则线段AB 盖住的整点数是( )A .20个或21个B .20个或22个C .21个或22个D .21个或23个8.等边ABC V 在数轴上的位置如图所示,点A 、C 对应的数分别为0和1-,若ABC V 绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1,则连续翻转若干次后,数2024对应的点为( )A .点AB .点BC .点CD .不确定二、填空题(共5小题,每小题3分,共15分)9.各数如下:4-,0.25,227, 3.14-,2023,153æö--ç÷èø,80%,其中分数有 个.10.比较下列数的大小:133- ()3.3--;78- 67-.(填“>”、“<”、“=”)11.如图是一个正方体的表面展开图,若正方体中相对的面上的数互为相反数,则2x y -的值为 .12.一个几何体由若干个大小相同的小立方块搭成,如图分别是从它的正面、上面看到的形状图,该几何体至少是用 块小立方块搭成的.13.已知有理数a ,b ,c 满足0a b c ++=,则b c a c a b a b c +++++的值为 .三、解答题(共7小题,共61分)14.把下列各数表示在数轴上,并用“<”把它们连接起来.3.5-,2-,1,122-.15.计算下列各题:(1)()713-+;(2)()()295-+-;(3)211633æöæö--+-ç÷ç÷èøèø;(4)()()()16 3.14 3.144++-+--;(5)()67128510æö-+--+ç÷èø;(6)029.817.522 2.27.5--+---16.一个几何体是由几个大小相同的小正方体搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示该位置正方体的个数.(1)请画出从正面和从左面看到的这个几何体的形状;(2)若搭成该几何体的小正方体的棱长为1,现在需要给这个几何体外表面涂上颜色(不含底部),请求出需要涂色的面积.17.如图1是某景区建造的粮仓模型,图2是从图1中抽象出的立体图形,已知粮仓底面直径为8m ,粮仓顶部顶点到地面的垂直距离为9m ,粮仓下半部分高为6m ,观察并回答下列问题:(1)粮仓是由两个几何体组成的,他们分别是________;(2)求出该桹仓的容积(结果保留p ).(2=圆柱V r h p ,213=圆锥V r h p )18.在郑州抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+14,﹣9,+8,﹣7,+13,﹣6,+12,﹣5.(1)救灾过程中,冲锋舟离出发点A 最远处有多远?(2)若冲锋舟每千米耗油0.5升,油箱容量为28L ,求冲锋舟当天救灾过程中至少还需补充多少升油?19.由绝对值的几何意义可知,数轴上表示数a 的点到原点的距离为a .小小进一步探究发现,在数轴上,表示3和5的两点之间的距离为532-=;表示3-和5的两点之间的距离为358--=;表示3-和5-的两点之间的距离为()352---=.根据以上内容回答下列问题:(1)数轴上表示1-和5的两点之间的距离为________.(2)若52x -=,则x =________;(3)若248x x ++-=,则x =________.20.已知在数轴上A ,B ,C 三点对应数分别为4-,20,n .(1)把这条数轴在数m 对应的点处对折,使A ,B 两点恰好互相重合,则数m =________;(2)若点C 在数轴上表示的数为n ,当A ,B ,C 中的一个点到另外两个点的距离相等时,求此时数n 的值;(3)若点A 、点B 同时出发,都以1个单位/秒的速度相向运动,同时点C 从原点出发,以2个单位/秒的速度向右运动,运动过程中,是否存在点C ,使32CA CB =?若存在,请求出此时n 的值;若不存在,请说明理由.1.D【分析】本题考查了相反数:只有符号不同的两个数互为相反数,熟记定义是解题关键.根据相反数的定义选择即可.-的相反数是2027,【详解】解:2027故选:D.2.A【分析】根据圆柱、三棱柱、圆锥表面展开图的特点解题.【详解】观察图形,由立体图形及其表面展开图的特点可知相应的立体图形顺次是圆柱、三棱柱、圆锥.故选:A.【点睛】本题考查了圆锥、三棱柱、圆柱表面展开图,记住这些立体图形的表面展开图是解题的关键.3.C【分析】本题主要考查了截一个几何体,根据题意可知截面的四个角是直角,从而可得答案.【详解】解:根据题意可知,截面是一个长方形,∴四个选项中只有C选项符合题意,故选C.4.B±克”,可求出一小袋味精的质量的范围,【分析】先根据一小袋味精的质量标准为“500.25再对照选项逐一判断即可.±克”,【详解】解:∵一小袋味精的质量标准为“500.25∴一小袋味精的质量的范围是49.75-50.25只有B选项符合,故选B.【点睛】本题考查了正负数的意义,正确理解正负数的意义是解题的关键.5.A【分析】本题考查旋转体,圆柱的侧面积和体积,根据长方形旋转后得到圆柱体,分别求出两个圆柱体的侧面积和体积,即可得出结果.【详解】解:甲图圆柱的侧面积为2ab p,体积为2ab p;乙图圆柱的侧面积为:2ab p,体积为2ba p;故甲乙的侧面积相同,体积不同;故选A.6.C【分析】本题考查了有理数的大小比较及相反数、数轴等知识,根据数据上右边的数总比左边大来进行数的比较是解决本题的关键.根据a、b在数轴上的位置和相反数的意义在数轴上标出表示a-,b-的点,利用数轴进行比较.【详解】解:如图,-<<-<.根据数轴上右边的数总比左边大,则可得:b a a b故选:C.7.C【分析】本题考查数轴表示数的意义和方法,理解线段及端点与数轴上点的对应关系是解决问题的前提.分线段的端点与整数点重合、不重合两种情况进行计算即可.【详解】解:依题意得:①当线段AB起点在整点时覆盖22个数;②当线段AB起点不在整点,即在两个整点之间时覆盖21个数.故选:C.8.C【分析】本题考查了数轴以及变化类:数的变化,根据点的变化,找出变化规律是解题的关键.根据随着翻转点的变化,可找出点的变化周期为3,结合2024为3的整数倍余2,可得出数2024对应的点为C.【详解】解:∵翻转1次后,数1对应的点为B,翻转2次后,数2对应的点为C,翻转3次后,数3对应的点为A,翻转4次后,数4对应的点为B,…,∴点的变化周期为3.¸=×××,又∵202436742∴连续翻转2024次后,则数2024对应的点为C.故选:C.9.5【分析】本题考查有理数的分类,熟练掌握整数和分数统称为有理数是解题的关键.利用分数定义判断即可.【详解】解:分数有2210.25 3.145,80%73æö---ç÷èø,,,∴有5个,故答案为:5.10. > <【分析】此题考查了有理数的大小比较,绝对值的意义,正确掌握有理数大小比较法则:正数大于零,零大于负数,两个负数绝对值大的反而小,是解题的关键.先计算绝对值和多重符号,然后比较大小即可.【详解】∵113333-=,()3.3 3.3--=∵13 3.33>∴()13 3.33->--;∵77498856-==,66487756-==∵49485656>∴7687-<-;故答案为:>,<.11.3-【分析】根据正方体的展开图中可得x 与y 是对面,5与23x -是对面,从而可根据相反数的定义求得x 的值及y 的值,最后代入计算即可.【详解】∵x 与y 是对面,5与23x -是对面,且相对的面上的数互为相反数,∴235x y x =-ìí-=-î,解得11x y =-ìí=î,∴()22113x y -=´--=-.故答案为:3-【点睛】本题考查正方体相对两面上的字,相反数的定义,正确识别正方体展开图中相对的两面是解题的关键.12.6【分析】本题考查了由三视图判断几何体,应分别根据主视图、俯视图和左视图综合考虑几何体的形状,体现了对空间想象力的考查.根据题意可以得到该几何体从正面和上面看至少有多少个小立方体,即可得出答案 .【详解】解:根据主视图可得,俯视图中第一列至少一处有2层,第二列均为为1层,第三列均为1层,∴该几何体至少用6个小立方块搭成的,故答案为:6.13.3-【分析】本题考查代数式求值,根据0a b c ++=,得到,,b c a a b c a c b +=-+=-+=-,整体代入法求值即可.【详解】解:∵0a b c ++=,∴,,b c a a b c a c b +=-+=-+=-,∴1113b c a c a b a b c a b c a b c+++---++=++=---=-;故答案为:3-.14.数轴表示见详解,13.52122-<-<<-【分析】此题主要考查有理数的大小比较和数轴上表示点,解题的关键是熟知有理数在数轴上表示的方法.首先在数轴上表示各数,然后再根据在数轴上表示的有理数,右边的数总比左边的数大用“<”把这些数连接起来即可.【详解】解:数轴表示为:由数轴可得:13.52122-<-<<-.15.(1)6(2)34-(3)17-(4)20(5)412-(6)35-【分析】本题考查了有理数的加减混合运算,绝对值的意义,熟练掌握计算法则是解题的关键.(1)根据有理数加法法则计算即可;(2)根据有理数加法法则计算即可;(3)根据有理数的加减法法则,以及交换律和结合律,即可得出答案;(4)根据有理数的加减法法则,以及交换律和结合律,即可得出答案;(5)根据有理数的加减法法则,以及交换律和结合律,即可得出答案;(6)根据有理数的加减法法则,以及交换律和结合律,绝对值的意义即可得出答案.【详解】(1)解:()713-+6=;(2)解:()()295-+-()295=-+34=-;(3)解:211633æöæö--+-ç÷ç÷èøèø211633éùæöæö=-+--ç÷ç÷êúèøèøëû116=--17=-;(4)解:()()()16 3.14 3.144++-+--()()16 3.14 3.144++-++=()()164 3.14 3.14=++-20=;(5)解:()67128510æö-+--+ç÷èø()()7121281010æö=-+-+-éùç÷ëûèø1202=--412=-;(6)解:029.817.522 2.27.5--+---029.817.522 2.27.5--+--=()()29.8 2.217.57.522=-++--+()322522=-+-+35=-.16.(1)见解析;(2)31【分析】(1)主视图有3列,每列小正方形数目分别为2,3,3,左视图有2列,每列小正方数形数目分别为3,2.据此可画出图形.(2)数出每个小正方体所需要涂色的面的个数,再求和即需要涂颜色的面的总数,然后计算出总面积即可.【详解】(1)主视图有3列,每列小正方形数目分别为2,2,3,左视图有2列,每列小正方数形数目分别为3,2.如图所示:(2)涂上颜色部分的总面积: 2×(6+7)+5=31(平方单位).答:涂上颜色部分的总面积是31(平方单位).【点睛】此题主要考查了作三视图,以及求几何体的表面积,关键是在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.17.(1)圆锥、圆柱(2)3112m V p =【分析】本题考查圆锥和圆柱的识别及圆锥、圆柱的体积,熟练掌握知识点和公式是解题的关键.(1)根据图形拆分图形即可得到答案;(2)根据圆锥圆柱的体积公式代入求解即可得到答案.【详解】(1)解:由示意图可得,图形的上部是一个圆锥,下部是圆柱,故答案为:圆锥、圆柱;(2)解:由题意可得,∵粮仓底面直径为8m ,粮仓顶部顶点到地面的垂直距离为9m ,粮仓下半部分高为6m ,∴()()()()223182682969616112m 3V p p p p p =´¸´+´´¸´-=+=18.(1)25千米(2)9升【分析】(1)分别计算出各点离出发点的距离,取数值较大的点即可;(2)先求出这一天走的总路程,再计算出一共所需油量,减去油箱容量即可求出途中还需补充的油量.【详解】(1)解:第1次记录时冲锋舟离出发点A 的距离为|+14|=14千米,第2次记录时冲锋舟离出发点A 的距离为|14+(-9)|=5千米,第3次记录时冲锋舟离出发点A 的距离为|5+(+8)|=13千米,第4次记录时冲锋舟离出发点A 的距离为|13+(-7)|=6千米,第5次记录时冲锋舟离出发点A 的距离为|6+(+13)|=19千米,第6次记录时冲锋舟离出发点A 的距离为|19+(-6)|=13千米,第7次记录时冲锋舟离出发点A 的距离为|13+(+12)|=25千米,第8次记录时冲锋舟离出发点A 的距离为|25+(-5)|=20千米,由此可知,救灾过程中,冲锋舟离出发点A 最远处为25千米;答:救灾过程中,冲锋舟离出发点A 最远处有25千米.(2)解:冲锋舟当天航行总路程为:|+14|+|-9|+|+8|+|-7|+|+13|+|-6|+|+12|+|-5|=14+9+8+7+13+6+12+5=74(千米),则74×0.5-28=37-28=9(升),答:冲锋舟当天救灾过程中至少还需补充9升油.【点睛】本题考查的是有理数的加减混合运算,绝对值的意义,解答此题的关键是熟知用正负数表示两种具有相反意义的量,注意所走总路程一定是绝对值的和.19.(1)6(2)7或3(3)3-或5【分析】本题考查的是绝对值的定义,解一元一次方程,数轴上两点之间的距离,解答此类问题时要用分类讨论的思想.(1)根据定义得到()516--=;(2)根据定义得到,52x -=或52x -=-,分别解之即可;(3)分类讨论,当2x <-时,248x x --+-=,解方程;当24x -££时,发现 68¹,不成立,舍去;当4x >时,248x x ++-=,解方程即可.【详解】(1)解:由题意得,距离为:()516--=,故答案为:6;(2)解:由题意得,52x -=或52x -=-,解得:7x =或3x =,故答案为:7或3;(3)解:248x x ++-=当2x <-时,248x x --+-=,解得:3x =-;当24x -££时,248x x ++-=,即68¹,不成立,舍去;当4x >时,248x x ++-=,解得:5x =,故答案为:3-或5.20.(1)8(2)20或28-或8或44或4-(3)存在,1043n =或569n =【分析】此题考查数轴,数轴上两点距离,一元一次方程的实际运用,利用图形,得出数量关系是解决问题的关键.(1)利用中点坐标计算方法直接得出答案即可;(2)()20424AB =--=,①点A 到,B C 的距离相等,则AC AB =,得到424n +=,②点C 到,A B 的距离相等,则CA CB =,得到420n n +=-,③点B 到,A C 的距离相等,则BA BC =,得到2024n -=,再分别解方程即可;(3)分类讨论,当点A 在点B 左侧和点B 在点A 左侧时,分别表示,CA CB ,根据32CA CB =建立一元一次方程,求解即可.【详解】(1)解: 42082m -+==,故答案为:8.(2)解:()20424AB =--=①点A 到,B C 的距离相等,则AC AB =,∴424n +=,∴20n =或28n =-;②点C 到,A B 的距离相等,则CA CB =,∴420n n +=-,∴8n =;③点B 到,A C 的距离相等,则BA BC =,∴2024n -=,∴44n =或n =-4,综上:数n 的值为20或28-或8或44或4-;(3)解:当点A 在点B 左侧,如图:()244CA t t t =--+=+,202203CB t t t =--=-∵32CA CB=∴()()342203t t +=-,解得:289t =,则2856299n =´=;②当点A 在点B 右侧时,如图:()244CA t t t =--+=+,()220320CB t t t =--=-,∵32CA CB =,∴()()342320t t +=-,解得:523t =,∴52104233n =´=综上所述,存在,1043n =或569n =.。

广东省深圳市龙岗区平安里学校2023-2024学年七年级上学期第一次月考数学试卷(含解析)

广东省深圳市龙岗区平安里学校2023-2024学年七年级上学期第一次月考数学试卷(含解析)

2023-2024上学期第一次质量检测初一数学试卷一.选择题(共10小题)1.﹣7的相反数是( )A .﹣7B .﹣C .7D .12.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为( )A .2.1×109B .0.21×109C .2.1×108D .21×1073.某图纸上注明:一种零件的直径是mm ,下列尺寸合格的是( )A .30.05mmB .29.08mmC .29.97mmD .30.01mm4.下列算式正确的是( )A .- 3 - 2 = - 6B .0﹣(﹣3)=3C .(﹣9)×12 =(﹣10﹣)×12D .|3﹣5|=﹣(5﹣3)5.下面各对数中相等的是( )A .﹣32与﹣23B .(﹣3)2与﹣32C .(﹣2)3与﹣23D .﹣(﹣3)与﹣|﹣3|6.已知a ,b 都是实数,若(a +2)2+|b ﹣1|=0,则(a +b )2023的值是( )A .﹣2023B .﹣1C .1D .20237.如图是一个简单的数值运算程序,若开始输入x =﹣1,则最后输出的结果是( )A .﹣3B .﹣5C .﹣11D .﹣198.已知实数a ,b 在数轴上的位置如图所示,下列结论错误的是( )A .1<|a |<bB .1<﹣a <bC .|a |<1<|b |D .﹣b <a <﹣19.下列说法中正确的个数有( )①最大的负整数是﹣1;②相反数是本身的数是正数;1211121③有理数分为正有理数和负有理数;④数轴上表示﹣a 的点一定在原点的左边;⑤几个有理数相乘,负因数的个数是奇数个时,积为负数.A .1个B .2个C .3个D .4个10.用十进制记数法表示正整数,如:365=300+60+5=3×102+6×101+5,用二进制记数法来表示正整数,如:5=4+1=1×22+0×21+1,记作:5=(101)2,14=8+4+2=1×23+1×22+1×21+0×1,记作:14=(1110)2,则(1010110)2表示数( )A .60B .72C .86D .132二.填空题(共4小题)11.如果将“收入50元”记作“+50元”,那么“﹣20元”表示 .12.比较大小-1-1.13.若a 是最小的正整数,b 是最小的非负数,m 表示大于﹣4且小于3的整数的个数,则a ﹣b +m = .14.定义新运算:a ⋆b =a b +1,如2⋆3=23+1.当m =﹣4,n =3时,式子m ⋆2+n ⋆3的值为  .15.为了求1+3+32+33+...+3100的值,小明想到了以下方法:令x =1+3+32+33+ (3100)则3x =3×(1+3+32+33+…+3100)=3+32+33+…+3100+3101,因此3x - x =3101﹣1,所以x =,即1+3+32+33+…+3100 =。

七年级数学上学期第一次月考试题含解析试题

七年级数学上学期第一次月考试题含解析试题

夏双语中学2021-2021学年七年级数学上学期第一次月考试题单位:乙州丁厂七市润芝学校时间:2022年4月12日创编者:阳芡明一、选择题〔每一小题3分,一共36分〕1.以下说法错误的选项是( )A.0既不是正数也不是负数B.一个有理数不是整数就是分数C.0和正整数是自然数D.有理数又可分为正有理数和负有理数2.在有理数中,绝对值等于它本身的数有( )A.1个B.2个C.3个D.无穷多个3.以下各式中,正确的选项是( )A.﹣|﹣16|>0 B.|0.2|>|﹣0.2| C.﹣>﹣D.<04.以下说法错误的选项是( )A.0是非负数B.0是最小的正整数C.0的绝对值等于它的相反数D.0的绝对值等于本身5.有理数a,b所对应的点在数轴上的位置如下图,那么有( )A.﹣a<0<b B.﹣b<a<0 C.a<0<﹣b D.0<b<﹣a6.|a|=﹣a,那么a一定是( )A.负数 B.正数 C.非正数D.非负数7.以下说法正确的选项是( )A.自然数就是非负整数B.一个数不是正数,就是负数C.整数就是自然数D.正数和负数统称有理数8.有理数的大小顺序是( )A.B.C.D.9.M点在数轴上表示﹣4,N点离M的间隔是3,那么N点表示的数为( )A.﹣1 B.﹣7 C.﹣1或者﹣7 D.﹣1或者110.假设﹣a不是负数,那么a( )A.是正数B.不是负数 C.是负数D.不是正数11.假如两个数的积为负数,和也为负数,那么这两个数( )A.都是负数B.都是正数C.一正一负,且负数的绝对值大D.一正一负,且正数的绝对值大12.下面说法正确的有( )①π的相反数是﹣3.14;②符号相反的数互为相反数;③﹣〔﹣3.8〕的相反数是3.8;④一个数和它的相反数不可能相等.A.0个B.1个C.2个D.3个二、填空题〔每一小题3分,一共30分〕13.相反数等于它本身的数是__________,绝对值等于它本身的数是__________,14.绝对值大于1而小于4的整数有__________个.15.|a﹣2|+|b﹣3|+|c﹣4|=0,计算a+2b+3c=__________.16.﹣a的相反数是__________.﹣a的相反数是﹣5,那么a=__________.17.设a为最小的自然数,b是最大的负整数的相反数,c是绝对值最小的有理数,那么a+b+c=__________.18.|x|+|y|=3,|x|=1,那么y=__________.19.假如小华家月收入2500元记作2500元,那么他家这个月水、电、煤气支出200元应记作__________元.20.把以下各数填在相应的集合内,﹣23,0.5,﹣,28,0,﹣4,,﹣5.2.整数集合__________,正数集合__________.21.﹣7的相反数的绝对值是____________________.22.﹣〔﹣2〕的相反数是__________.三、解答题〔一共54分〕23.〔36分〕计算〔1〕〔+3.41〕﹣〔﹣0.59〕〔2〕〔﹣13〕﹣〔﹣13〕〔3〕;〔4〕〔5〕25×+〔﹣25〕×+25×〔﹣〕〔6〕.24.|x|=2021,|y|=2021,且x>0,y<0,求x+y的值.25.a<0,ab<0,且|a|>|b|,试在数轴上简单地表示出a,b,﹣a与﹣b的位置,并用“<〞号将它们连接起来.26.观察以下顺序排列的等式:9×0+1=1;9×1+2=11;9×2+3=21;9×3+__________=31;9×4+5=__________;…猜测第10个等式应为__________.2021-2021学年夏双语中学七年级〔上〕第一次月考数学试卷一、选择题〔每一小题3分,一共36分〕1.以下说法错误的选项是( )A.0既不是正数也不是负数B.一个有理数不是整数就是分数C.0和正整数是自然数D.有理数又可分为正有理数和负有理数【考点】有理数.【分析】根据有理数的分类进展判断即可.有理数包括:整数〔正整数、0和负整数〕和分数〔正分数和负分数〕.【解答】解:A、正确;B、有理数是整数与分数的统称,应选项正确;C、正确;D、有理数又可分为正有理数和负有理数和0,应选项错误.应选D.【点评】此题考察了实数的分类,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.2.在有理数中,绝对值等于它本身的数有( )A.1个B.2个C.3个D.无穷多个【考点】绝对值.【分析】根据绝对值的意义求解.【解答】解:在有理数中,绝对值等于它本身的数有0和所有正数.应选D.【点评】此题考察了绝对值:假设a>0,那么|a|=a;假设a=0,那么|a|=0;假设a<0,那么|a|=﹣a.3.以下各式中,正确的选项是( )A.﹣|﹣16|>0 B.|0.2|>|﹣0.2| C.﹣>﹣D.<0【考点】有理数大小比拟.【分析】根据正数大于零,零大于负数,可得答案.【解答】解:A、﹣|﹣16|=﹣16<0,故A错误;B、|0.2|=﹣0.2|,故B错误;C、两个负数比拟大小,绝对值大的反而小,故C正确;D、正数大于零,故D错误;应选:C.【点评】此题考察了有理数比拟大小,利用了正数大于零,零大于负数.4.以下说法错误的选项是( )A.0是非负数B.0是最小的正整数C.0的绝对值等于它的相反数D.0的绝对值等于本身【考点】绝对值;有理数;相反数.【分析】根据非负数正数和0,可判断A;根据0 既不是正数,也不是负数,可判断B;0的根据绝对值,可判断C、D.【解答】解:∵0不是负数,故A说法正确;∵00 既不是正数,也不是负数,故B说法错误;∵=0,0的相反数是0,故C说法正确;∵=0,故D说法正确;应选:B.【点评】此题考察了绝对值,理解0的绝对值、0既不是正数也不是负数是解题关键.5.有理数a,b所对应的点在数轴上的位置如下图,那么有( )A.﹣a<0<b B.﹣b<a<0 C.a<0<﹣b D.0<b<﹣a【考点】数轴;有理数大小比拟.【分析】先根据数轴的特点判断出a、b的符号,再根据两点到原点的间隔判断出﹣b与a 的大小即可.【解答】解:∵a在原点的左侧,b在原点的右侧,∴a<0,b>0,∵a到原点的间隔小于b到原点的间隔,∴﹣b<a<0.应选B.【点评】此题考察的是数轴的定义及有理数比拟大小的法那么,比拟简单.6.|a|=﹣a,那么a一定是( )A.负数 B.正数 C.非正数D.非负数【考点】绝对值.【分析】从题中的条件可以很容易的看出a的性质,进而选出正确选项.【解答】解:∵|a|=﹣ a∴a≤0,故a是非正数,应选C.【点评】此题考察了绝对值的性质,即.7.以下说法正确的选项是( )A.自然数就是非负整数B.一个数不是正数,就是负数C.整数就是自然数D.正数和负数统称有理数【考点】有理数.【分析】根据自然数的定义,可判断A;根据有理数的性质,可判断B;根据整数的定义,可判断C;根据有理数的意义,可判断D.【解答】解:A、自然数是非负整数,故A正确;B、一个数不是正数,可能是零、负数,故B错误;C、整数是分母为1的数,故C错误;D、整数和分数统称有理数,故D错误;应选:A.【点评】此题考察了有理数,利用了有理数的意义.8.有理数的大小顺序是( )A.B.C.D.【考点】有理数大小比拟.【分析】先分别计算每个数的绝对值,再根据绝对值大的反而小,得出结果.【解答】解:∵|﹣|==,|﹣|==,|﹣|==,又∵,∴﹣.应选D.【点评】此题考察了几个负有理数比拟大小的方法:负数比拟,绝对值大的反而小.9.M点在数轴上表示﹣4,N点离M的间隔是3,那么N点表示的数为( )A.﹣1 B.﹣7 C.﹣1或者﹣7 D.﹣1或者1【考点】数轴.【分析】数轴上与﹣4 间隔为3的点有两个,一个在左,一个在右,可得N点表示的数.【解答】解:﹣4+3=﹣1,﹣4﹣3=﹣7,故C正确.应选C.【点评】此题考察了数轴,注意数轴上到一个点间隔相等的点有两个,要考虑全面.10.假设﹣a不是负数,那么a( )A.是正数B.不是负数 C.是负数D.不是正数【考点】相反数.【分析】根据正数和负数的性质判断:0既不是正数也不是负数.0是正负数的分界点,正数是大于0的数,负数是小于0的数.【解答】解:根据题意得:﹣a≥0,∴a≤0.应选D.【点评】此题考察了正数和负数的性质,解题的关键是牢记性质,此题比拟简单,易于掌握.11.假如两个数的积为负数,和也为负数,那么这两个数( )A.都是负数B.都是正数C.一正一负,且负数的绝对值大D.一正一负,且正数的绝对值大【考点】有理数的乘法;有理数的加法.【分析】两个数的积为负数说明这两数异号,和也为负数说明这两数中负数的绝对值大.【解答】解:∵两个数的积为负数,∴这两数异号;又∵和也为负数,∴这两数中负数的绝对值较大.应选C.【点评】此题主要考察了有理数的加法与乘法的符号法那么.两数相乘,异号得负;绝对值不相等的异号两数相加,取绝对值较大的加数的符号.12.下面说法正确的有( )①π的相反数是﹣3.14;②符号相反的数互为相反数;③﹣〔﹣3.8〕的相反数是3.8;④一个数和它的相反数不可能相等.A.0个B.1个C.2个D.3个【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:①π的相反数是﹣π,故①错误;②只有符号相反的数互为相反数,故②错误;③﹣〔﹣3.8〕的相反数是﹣3.8,故③错误;④0的相反数等于0,故④错误;应选:A.【点评】此题考察了相反数,在一个数的前面加上负号就是这个数的相反数,注意0的相反数是0.二、填空题〔每一小题3分,一共30分〕13.相反数等于它本身的数是0,绝对值等于它本身的数是非负数,【考点】绝对值;相反数.【专题】常规题型.【分析】根据相反数和绝对值的性质,相反数等于它本身的数只能是0,绝对值等于它本身的数是正数和0.【解答】解:由题意得:相反数等于它本身的数是0.绝对值等于它本身的数是非负数,有无数个.故答案为:0,非负数.【点评】此题考察了绝对值和相反数的知识,一个数的相反数就是在这个数前面添上“﹣〞号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.14.绝对值大于1而小于4的整数有4个.【考点】绝对值.【专题】常规题型.【分析】求绝对值大于1且小于4的整数,即求绝对值等于2或者3的整数.根据绝对值是一个正数的数有两个,它们互为相反数,得出结果.【解答】解:绝对值大于1且小于3的整数有±2,±3.故答案为:4.【点评】主要考察了绝对值的性质,绝对值规律总结:绝对值是一个正数的数有两个,它们互为相反数;绝对值是0的数就是0;没有绝对值是负数的数.15.|a﹣2|+|b﹣3|+|c﹣4|=0,计算a+2b+3c=20.【考点】非负数的性质:绝对值;有理数的加法.【分析】根据非负数的性质可求出a、b、c的值,再将它们代入代数式求解即可【解答】解:根据题意得:,解得:,那么a+2b+3c=2+6+12=20.故答案是:20.【点评】此题考察了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.16.﹣a的相反数是a.﹣a的相反数是﹣5,那么a=﹣5.【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣a的相反数是a,﹣a的相反数是﹣5,那么﹣〔﹣a〕=﹣5,所以,a=﹣5.故答案为:a;﹣5.【点评】此题考察了相反数的定义,是根底题,熟记概念是解题的关键.17.设a为最小的自然数,b是最大的负整数的相反数,c是绝对值最小的有理数,那么a+b+c=1.【考点】代数式求值;有理数;相反数;绝对值.【专题】计算题;实数.【分析】利用相反数,绝对值的代数意义,确定出a,b,c的值,代入原式计算即可得到结果.【解答】解:根据题意得:a=0,b=1,c=0,那么a+b+c=0+1+0=1,故答案为:1.【点评】此题考察了代数式求值,纯熟掌握运算法那么是解此题的关键.18.|x|+|y|=3,|x|=1,那么y=±2.【考点】绝对值.【分析】由|x|+|y|=3,|x|=1,得出|y|=2,进一步利用绝对值的意义求得y即可.【解答】解:∵|x|+|y|=3,|x|=1,∴|y|=2,∴y=±2.故答案为:±2.【点评】此题主要考察绝对值,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0;绝对值都为非负数.19.假如小华家月收入2500元记作2500元,那么他家这个月水、电、煤气支出200元应记作﹣200元.【考点】正数和负数.【分析】根据正数和负数表示相反意义的量,收入记为正,可得支出的表示方法.【解答】解:小华家月收入2500元记作2500元,那么他家这个月水、电、煤气支出200元应记作﹣200元.故答案为:﹣200.【点评】此题考察了正数和负数,相反意义的量用正数和负数表示.20.把以下各数填在相应的集合内,﹣23,0.5,﹣,28,0,﹣4,,﹣5.2.整数集合﹣23,28,0,﹣4,正数集合0.5,28,.【考点】有理数.【分析】根据分母为一的数是整数,可得整数集合,根据大于零的数是正数,可得正数集合.【解答】解:把以下各数填在相应的集合内,﹣23,0.5,﹣,28,0,﹣4,,﹣5.2.整数集合﹣23,28,0,﹣4,正数集合 0.5,28,0,,故答案为:﹣23,28,0,﹣4;0.5,,28.【点评】此题考察了有理数,利用了有理数的分类.21.﹣7的相反数的绝对值是7.【考点】绝对值;相反数.【分析】根据相反数和绝对值的意义求解.【解答】解:﹣7的相反数是7,7的绝对值为7;﹣0.50的绝对值是0.5,0.5的相反数为﹣0.5.【点评】此题考察了绝对值:假设a>0,那么|a|=a;假设a=0,那么|a|=0;假设a<0,那么|a|=﹣a.也考察了相反数的意义.22.﹣〔﹣2〕的相反数是﹣2.【考点】相反数.【分析】根据相反数的定义解答.【解答】解:﹣〔﹣2〕的相反数是﹣2.故答案为:﹣2.【点评】此题考察了相反数的定义,是根底题,熟记概念是解题的关键.三、解答题〔一共54分〕23.〔36分〕计算〔1〕〔+3.41〕﹣〔﹣0.59〕〔2〕〔﹣13〕﹣〔﹣13〕〔3〕;〔4〕〔5〕25×+〔﹣25〕×+25×〔﹣〕〔6〕.【考点】有理数的加减混合运算.【分析】〔1〕原式利用减法法那么变形,计算即可得到结果;〔2〕原式利用减法法那么变形,计算即可得到结果;〔3〕原式利用减法法那么变形,结合后,相加即可得到结果;〔4〕原式逆用乘法分配律计算即可得到结果;〔5〕原式逆用乘法分配律计算即可得到结果;〔6〕原式利用减法法那么变形,结合后相加即可得到结果.【解答】解:〔1〕原式=3.41+0.59=4;〔2〕原式=﹣13+13=;〔3〕原式=〔3+1〕+〔﹣5﹣3〕+〔12+12〕=5﹣9+25=21;〔4〕原式=×〔﹣1.53+0.53﹣3.4〕=×〔﹣4.4〕=﹣3.3;〔5〕原式=25×〔﹣﹣〕=0;〔6〕原式=〔﹣1﹣2〕+〔1+3﹣1〕=﹣4+3=﹣.【点评】此题考察了有理数的加减混合运算,纯熟掌握运算法那么是解此题的关键.24.|x|=2021,|y|=2021,且x>0,y<0,求x+y的值.【考点】有理数的加法;绝对值.【分析】根据正数的绝对值是它本身,负数的绝对值是它的相反数,根据异号两数相加,取绝对值较大加数的符号,用较大的绝对值减较小的绝对值,可得答案.【解答】解:由|x|=2021,|y|=2021,且x>0,y<0,得x=2021,y=﹣2021.x+y=2021﹣2021=1.【点评】此题考察了有理数的加法,化简绝对值是解题关键:正数的绝对值是它本身,负数的绝对值是它的相反数.25.a<0,ab<0,且|a|>|b|,试在数轴上简单地表示出a,b,﹣a与﹣b的位置,并用“<〞号将它们连接起来.【考点】绝对值;数轴;有理数大小比拟.【专题】应用题.【分析】根据绝对值是数轴上表示这个数的点到原点的间隔分别把a,b,﹣a与﹣b表示在数轴上,然后即可比拟大小.【解答】解:a,b,﹣a、﹣b表示如图:用“<〞号将它们连接起来为:a<﹣b<b<﹣a.【点评】此题主要考察了利用数轴比拟有理数的大小,作出数轴是解题的关键.26.观察以下顺序排列的等式:9×0+1=1;9×1+2=11;9×2+3=21;9×3+4=31;9×4+5=41;…猜测第10个等式应为9×9+10=91.【考点】规律型:数字的变化类.【分析】由等式可以看出:9乘一个数减1,加上这个数,等于这个数的10倍减去9,由此得出答案即可.【解答】解:∵9×0+1=1;9×1+2=11;9×2+3=21;9×3+4=31;9×4+5=41;…∴第10个等式应为9×9+10=91.故答案为:4,41,9×9+10=91.【点评】此题考察数字的变化规律,找出算式中蕴含的数字规律是解决问题的关键.。

七年级上学期第一次月考数学试题

七年级上学期第一次月考数学试题

七年级上学期第一次月考数学试题《有理数》班级 ______座号 ______姓名 ________________成绩 ___________一、选择题(20 分)1.以下各组数中 ,不是互为相反意义的量的是 ()A.收入 200 元与支出 20 元;B.上涨 10 米和降落 7 米 ;C.超出 0.05mm 与不足 0.03mm;D. 增大 2 岁与减少 2 升2.在 22,(2)2 , ( 2),2 中,负数的个数是()A 、 l 个B 、 2个C 、 3个D 、 4个3. - 1的相反数的绝对值是()21B.2C.-21A.-D.224.以下有理数大小关系判断正确的选项是()A.(1)1 B. 010C. 33D. 10.019105.以下各项判断正确的选项是()A.a+b 必定大于 a-b;B.若-ab<0,则 a 、 b 异号 ;C.若 a 3=b 3 ,则 a=b;D. 若 a 2=b 2,则 a=b 6.以下运算正确的选项是 ( )381A.-22÷(-2)2=1;B.21327C.51325D. 31( 3.25)633.2532.5354 47.若 a=-2 ×32,b=(-2 × 3)2 ,c=-(2× 3)2,则以下大小关系中正确的选项是 ()A.a>b>0B.b>c>a;C.b>a>cD.c>a>b8.若│ a │ =8 ,│ b │ =5 ,且 a+b > 0,那么 a - b 的值是()A.3 或 13B.13 或- 13C.3 或- 3D.- 3 或- 139.文具店、书店和玩具店挨次座落在一条东西走向的大街上,文具店在书店西边20 米处,玩具店位于书店东边 100 米处,小明从书店沿街向东走了 30 米,接着又向东走了-50 米,此时小明的地点在()A.文具店B.玩具店C.文具店西 30 米处D. 玩具店西50 米处10. 2008年 8 月第 29 届奥运会将在北京开幕, 5 个城市的国标标准时间(单位:时)在数轴上表示如图所示,那么北京时间 2008 年 8 月 8 日 20 时应是( )A.伦敦时间 2008年 8月 8 日 11时 B.巴黎时间 2008年 8月 8日 13时 C.纽约时间 2008年 8月 8 日 5 时D.汉城时间 2008年 8月 8日 19时纽约 伦敦巴黎北京汉城5 018 9三、填空题( 24 分)11.一种部件的直径尺寸在图纸上是300.03(单位: mm ),它表示这类部件的标准尺寸是 30mm ,则合0.02格产品加工要求尺寸范围是 ____________________ 。

2024-2025学年初中七年级上学期(第1-2章) 数学月考试题及答案(新浙教版)

2024-2025学年初中七年级上学期(第1-2章) 数学月考试题及答案(新浙教版)

2024-2025学年七年级上学期第一次月考试卷数学试题考试内容:第1至2章,满分120分,难度系数:0.65一、选择题(本大题共10小题,每小题2分,共20分)1.中国是世界上最早提出和采用“正负数表示相反意义的量”的国家,关于正负数的记载最早见于公元一世纪的中国数学著作《九章算术》中,比欧洲早一千余年.如果将“向东走40米”记作“40+米”,那么“向西走30米”记作( ) A .30−米B .30+米C .10−米D .10米2.2024年巴黎奥运会开幕式选择在塞纳河举行.塞纳河包括支流在内的流域总面积为78700平方公里.其中数据78700用科学记数法表示为( ) A .278710×B .37.8710×C .47.8710×D .50.78710×3.在23−、2(3) 、(2)−−、|5|−−、0中,负数的个数是( ) A .1个B .2个C .3个D .4个4.中国人最早使用负数,可追溯到两千多年前的秦汉时期,下列关于负数的计算正确的是( ) A .2=2−−B .()32=8−C .2−的相反数是2D .2−的倒数是0.2−5.下列各对数中,互为相反数的是( ) A .(5)−+与(5)+− B .12−与(0.5)+C .-|-0.01|与1100−−D .13−与0.3 6.在数轴上,点A ,B 在原点O 的同侧,分别表示数a ,1,将点A 向左平移3个单位长度,得到点C .若点C 与点B 互为相反数,则a 的值为( ) A .3B .2C .1−D .07.下列运算过程中,有错误的是( )A .(3﹣412)×2=3﹣412×2B .﹣4×(﹣7)×(﹣125)=﹣(4×125×7)C .91819×16=(10﹣119)×16=160﹣1619D .[3×(﹣25)]×(﹣2)=3×[(﹣25)×(﹣2)]8.定义一种新的运算:如果0a ≠,则有2a b a b =+▲,那么722−▲的值( ) A .34B .32−C .152D .129.如图所示,下列关于a ,b ,c 的说法中正确的个数是( ) ①12a <<②1c <−③2b >−④b a <⑤12c −<<⑥a 到原点的距离大于b 到原点的距离 ⑦在a 与c 之间有2个整数A .3个B .4个C .5个D .6个10.分形的概念是由数学家本华·曼德博提出的.如图是分形的一种,第1个图案有2个三角形;第2个图案有4个三角形;第3个图案有8个二角形;第4个图案有16个三角形;……,下列数据中是按此规律分形得到的三角形的个数是( )A .126B .513C .980D .1024二、填空题(本大题共10小题,每小题3分,共30分)11.12024−的相反数是 . 12.某粮店出售的两种品牌的面粉袋上分别标有质量为()250.1kg ±,()250.2kg ±的字样,从中任意拿出两袋,它们的质量最多相差 kg .1314.按照如图所示的操作步骤,若输入x 的值为10−,则输出的值为 .15.比较两数大小: −76−16.把算式()()()579−−−−+写成省略加号和括号的形式 ,读作 17.比2−小6的数是 .18.当||2,||4x y ==,且2x y +=−,则xy = . 19.已知1xyz xyz =,则x zy x y z++值为 .20.在学习有理数乘法时,李老师和同学们做了这样的游戏,将2023这个数说给第一位同学,第一位同学将它减去它二分之一的结果告诉第二位同学,第二位同学再将听到的结果减去它的三分之一的结果告诉第三位同学.第三位同学再将听到的结果减去它的四分之一的结果告诉第四位同学,…照这样的方法直到全班48人全部传完,则最后一位同学告诉李老师的正确结果是 .三、解答题(本大题共8小题,共70分)21.(本题16分)计算下列各题: (1)()()43772743+−++−;(2)12433−÷−×;(3)()()32211234−+×−+−;(4)()235363412−+×−.22.(本题6分)对于有理数a 、b ,定义新运算:“✞”,a b ab a b ⊗−−. (1)计算:()42⊗−________()24−⊗;()()53−⊗−________()()35−⊗−; 152 −⊗ ________152 ⊗−(填“>”或“=”或“<”); (2)我们知道:有理数的加法运算和乘法运算满足交换律,那么,由(1)计算的结果,你认为这种运算:“✞”是否满足交换律?若满足,请说明理由;若不满足,请举例说明.23.(本题6分)在数轴上画出表示下列各数的点,并用“<”连接下列各数.0,112,3−,()0.5−−,34−−,133+−.24.(本题8分)如图,在数轴上有A、B、C这三个点.回答:(1)A、B、C这三个点表示的数各是多少?A:;B:;C:.(2)A、B两点间的距离是,A、C两点间的距离是.(3)应怎样移动点B的位置,使点B到点A和点C的距离相等?25.(本题8分)“滴滴”司机沈师傅从上午800915:~:在东西方向的江平大道上营运,共连续运载十批乘客.若规定向东为正,向西为负,沈师傅营运十批乘客里程如下:(单位:千米)8636848433+−+−++−−++,,,,,,,,,.(1)将最后一批乘客送到目的地时,沈师傅距离第一批乘客出发地的东面还是西面?距离出发地多少千米?(2)若汽车每千米耗油0.4升,则800915:~:汽车共耗油多少升?(3)若“滴滴”的收费标准为:起步价11元(不超过3千米),超过3千米,超过部分每千米2元.则沈师傅在上午800915:~:一共收入多少元?26.(本题8分)观察下列各式: 第1个等式:11111222−×=−+=−;第2个等式:1111123236−×=−+=−; 第3个等式:11111343412−×=−+=−;…… (1)根据上述规律写出第5个等式: ;(2)第n 个等式: ;(用含n 的式子表示) (3)计算:111111112233420222023−×+−×+−×+⋅⋅⋅⋅⋅⋅+−×.27.(本题8分)阅读下列材料:计算111503412÷−+.解法一:原式11150505050350450125503412=÷−÷+÷=×−×+×=.解法二:原式4312505050630012121212÷−+÷×.解法三:原式的倒数为111503412−+÷111111111113412503504501250300=−+×=×−×+×=. 故原式300=.(1)上述得出的结果不同,肯定有错误的解法,你认为哪个解法是错误的. (2)请你选择两种合适的解法解答下列问题:计算:113224261437−÷−+−28.(本题10分)【概念学习】定义新运算:求若干个相同的有理数(均不等于0)的商的运算叫做除方.比加222÷÷,()()()()3333−÷−÷−÷−等,类比有理数的乘方,我们把222÷÷写作2③,读作“2的圈3次方”,()()()()3333−÷−÷−÷−写作()3−④,读作“()3−的圈4次方”.一般地,把n aa a a a ÷÷÷ 个记作:a ⓝ,读作“a 的圈n 次方”.特别地,规定:a a =①.【初步探究】(1)直接写出计算结果:2023=② ;(2)若n 为任意正整数,下列关于除方的说法中,正确的有 ;(横线上填写序号) A .任何非零数的圈2次方都等于1 B .任何非零数的圈3次方都等于它的倒数 C .圈n 次方等于它本身的数是1或1−D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?(3)请把有理数()0a a ≠的圈n (3n ≥)次方写成幂的形式:a =ⓝ ;(4)计算:()2111472−−÷−×−④⑥⑧.2024-2025学年七年级上学期第一次月考试卷数学试题考试内容:第1至2章,满分120分,难度系数:0.65一、选择题(本大题共10小题,每小题2分,共20分)1.中国是世界上最早提出和采用“正负数表示相反意义的量”的国家,关于正负数的记载最早见于公元一世纪的中国数学著作《九章算术》中,比欧洲早一千余年.如果将“向东走40米”记作“40+米”,那么“向西走30米”记作( ) A .30−米 B .30+米 C .10−米 D .10米【答案】A【分析】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,根据向东走记为正,则向西走就记为负,直接得出结论即可. 【详解】解:∵向东走40米记作40+米, ∴向西走30米可记作30−米, 故选A .2.2024年巴黎奥运会开幕式选择在塞纳河举行.塞纳河包括支流在内的流域总面积为78700平方公里.其中数据78700用科学记数法表示为( ) A .278710× B .37.8710×C .47.8710× D .50.78710×【答案】C【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ×的形式,其中≤<110a ,n 为整数,表示时关键要正确确定a 的值以及n 的值.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:将78700用科学记数法表示为:47.8710× 故选:C .3.在23−、2(3) 、(2)−−、|5|−−、0中,负数的个数是( ) A .1个 B .2个 C .3个 D .4个【答案】B【分析】将每个数进行化简后,得出判断.【详解】解:239−=−,2(93) ,(2)2−−=,|5|5−−=−,因此负数有:23−和|5|−−,共有2个, 故选:B .4.中国人最早使用负数,可追溯到两千多年前的秦汉时期,下列关于负数的计算正确的是( ) A .2=2−− B .()32=8−C .2−的相反数是2D .2−的倒数是0.2−【答案】C【分析】本题考查了绝对值、有理数的乘方、相反数、倒数,熟练掌握这几个定义是解题的关键.根据绝对值、有理数的乘方、相反数、倒数的定义分别计算判断即可. 【详解】解:A 、22−=,故此选项不符合题意; B 、()328−=−,故此选项不符合题意; C 、−2的相反数是2,故此选项符合题意; D 、−2的倒数是0.5−,故此选项不符合题意; 故选:C .5.下列各对数中,互为相反数的是( ) A .(5)−+与(5)+− B .12−与(0.5)−+C .-|-0.01|与1100−−D .13−与0.3 【答案】C【分析】先化简,根据相反数的定义:只有符号不同的两个数即可求解. 【详解】解:A .−(+5)=−5−5)=−5,选项A 不符合题意; B .−(+0.5)=−0.5,与12−相等,选项B 不符合题意;C .−|−0.01|=−0.01,−(1100−)=1100=0.01,−0.01与0.01互为相反数,选项C 符合题意; D .13−与0.3不是相反数,选项D 不符合题意;故选:C .6.在数轴上,点A ,B 在原点O 的同侧,分别表示数a ,1,将点A 向左平移3个单位长度,得到点C .若点C 与点B 互为相反数,则a 的值为( ) A .3 B .2 C .1− D .0【答案】B【分析】先用a 的式子表示出点C ,根据点C 与点B 互为相反数列出方程求解即可. 【详解】解:由题可知:A 点表示的数为a ,B 点表示的数为1, ∵C 点是A 向左平移3个单位长度,∴C 点可表示为:3a −, 又∵点C 与点B 互为相反数,∴310a −+=, ∴2a =. 故选:B .7.下列运算过程中,有错误的是( )A .(3﹣412)×2=3﹣412×2B .﹣4×(﹣7)×(﹣125)=﹣(4×125×7)C .91819×16=(10﹣119)×16=160﹣1619D .[3×(﹣25)]×(﹣2)=3×[(﹣25)×(﹣2)] 【答案】A【分析】各式计算得到结果,即可作出判断.【详解】解:A 、原式=3×2﹣92×2=6﹣9=﹣3,符合题意;B 、原式=﹣(4×125×7),不符合题意;C 、原式=(10﹣119)×16=160﹣1619,不符合题意; D 、原式=3×[(﹣25)×(﹣2)],不符合题意. 故选:A .8.定义一种新的运算:如果0a ≠,则有2a b a b =+▲,那么722−▲的值( ) A .34 B .32− C .152 D .12【答案】C【分析】本题主要考查了有理数的乘方运算,求一个数的绝对值,有理数的加法运算等知识点,熟练掌握相关运算法则是解题的关键. 先计算乘方和绝对值,然后相加即可. 【详解】解:722−▲2722=+−742=+152=,故选:C .9.如图所示,下列关于a ,b ,c 的说法中正确的个数是( ) ①12a << ②1c <− ③2b >− ④b a < ⑤12c −<<⑥a 到原点的距离大于b 到原点的距离 ⑦在a 与c 之间有2个整数A .3个B .4个C .5个D .6个【答案】B【分析】此题考查了利用数轴比较有理数的大小,由a ,b ,c 在数轴上的位置得到1012b c a <−<<<<<,进而逐项求解即可.【详解】解:由题意得,1012b c a <−<<<<<, ∴12a <<,①正确;1c >−,②错误; 2b <−,③错误;b a <,④正确; 12c −<<,⑤正确;a 到原点的距离小于b 到原点的距离,⑥错误;在a 与c 之间有2个整数,⑦正确.∴正确的有4个.故选:B .10.分形的概念是由数学家本华·曼德博提出的.如图是分形的一种,第1个图案有2个三角形;第2个图案有4个三角形;第3个图案有8个二角形;第4个图案有16个三角形;……,下列数据中是按此规律分形得到的三角形的个数是( )A .126B .513C .980D .1024【答案】D【分析】根据前面图案中三角形的个数,找出规律,即可求解. 【详解】解:第1个图案有2个三角形,即12个; 第2个图案有4个三角形,即22个; 第3个图案有8个二角形,即32个; 第4个图案有16个三角形,即42个; 则第n 个图案有2n 个三角形,只有D 选项,当21024n =时,10n =符合题意,其余选项n 都不符合题意, 故选:D二、填空题(本大题共10小题,每小题3分,共30分)11.12024−的相反数是 . 【答案】12024【分析】本题考查了相反数,熟练掌握相反数的概念:“只有符号不同的两个数叫做互为相反数”,是解题的关键. 【详解】解:12024−的相反数是12024. 故答案为:12024. 12.某粮店出售的两种品牌的面粉袋上分别标有质量为()250.1kg ±,()250.2kg ±的字样,从中任意拿出两袋,它们的质量最多相差 kg . 【答案】0.4【分析】本题主要考查正负数的意义,有理数的加减混合运算,根据题意质量相差最多的是()250.2kg ±,再根据有理数的加减运算即可求解,解题的关键理解并掌握正负数的意义,进行有理数的混合运算.【详解】解:根据题可得,质量最少的是少了0.2kg ,质量最多的是多了0.2kg ,∴质量最多相差0.20.20.4(kg)+=, 故答案为:0.4.13 【答案】2−【分析】根据绝对值的意义进行化简即可求解. 【详解】解:2−−=2−, 故答案为:2−.14.按照如图所示的操作步骤,若输入x 的值为10−,则输出的值为 .【答案】25−【分析】本题考查了有理数的混合运算,根据操作步骤列出式子进行计算即可求解. 【详解】解:依题意,()()310529 −÷−×−−()289=×−− 169=−− 25=−故答案为:25−.15.比较两数大小: −76−【答案】>【分析】本题主要考查的是比较有理数的大小,依据两个负数比较大小,绝对值大的反而小比较即可; 【详解】解:∵6677−=,7766−=,6776<, ∴−>−6776, 故答案为:>.16.把算式()()()579−−−−+写成省略加号和括号的形式 ,读作 【答案】 579−+− 负5加7减9【分析】本题主要考查了有理数的加减混合运算,熟练掌握有理数的加减法法则是解题的关键.利用有理数的减法法则和有理数的加法法则解答即可.【详解】()()()()()()579579579−−−−+=−+++−=−+−, 读作:负5加7减9;故答案为:579−+−;负5加7减9. 17.比2−小6的数是 . 【答案】8−【分析】本题考查了有理数的减法,理解题意,根据题意正确列出式子,进行计算即可. 【详解】解:比2−小6的数是268−−=−, 故答案为:8−.18.当||2,||4x y ==,且2x y +=−,则xy = . 【答案】8−【分析】根据绝对值先求出x ,y 的值,再根据2x y +=−得出符合条件的值,计算即可. 【详解】解:∵||2,||4x y ==, ∴2x =±,4y =±, ∵2x y +=−, ∴2,4x y ==−, ∴8xy =−, 故答案为:8−. 19.已知1xyz xyz =,则x zy x y z++值为 . 【答案】1−或3【分析】此题考查了绝对值,以及有理数的除法,熟练掌握运算法则是解本题的关键.根据已知等式得到||xyz xyz =,确定出x ,y ,z 中负因式有0个或2个,原式利用绝对值的代数意义化简即可得到结果. 【详解】解:由1||xyzxyz =,得到||xyz xyz =,x ∴,y ,z 中有0个或2个负数,当2个都为负数时,原式1111=−−+=−; 当0个为负数时,原式1113=++=.∴1x zy xy z++=−或3 故答案为:1−或320.在学习有理数乘法时,李老师和同学们做了这样的游戏,将2023这个数说给第一位同学,第一位同学将它减去它二分之一的结果告诉第二位同学,第二位同学再将听到的结果减去它的三分之一的结果告诉第三位同学.第三位同学再将听到的结果减去它的四分之一的结果告诉第四位同学,…照这样的方法直到全班48人全部传完,则最后一位同学告诉李老师的正确结果是 . 【答案】202348【分析】根据题意列出算式进行计算即可. 【详解】解:根据题意可得:11112023111123448×−×−×−− ……12347202323448=××××……1202348× 202348=. 故答案为:202348. 三、解答题(本大题共8小题,共70分)21.(本题16分)计算下列各题: (1)()()43772743+−++−; (2)12433−÷−× ;(3)()()32211234−+×−+−;(4)()235363412−+×−. 【答案】(1)50− (2)38(3)6(4)12−【分析】(1)根据有理数的加法法则计算即可; (2)根据有理数的混合运算法则解答即可;(3)根据含有乘方的有理数的混合运算法则解答即可; (4)根据乘法运算律解答即可.本题考查了有理数的混合运算,运算律的应用,熟练掌握法则和预算律是解题的关键. 【详解】(1)解:()()43772743+−++− ()43277743=++−− ()70120=+−50=−.(2)解:12433−÷−×()2433=−×−×236=+ 38=.(3)解:()()32211234−+×−+−()11894=−+×−+129=−−+ 6=.(4)解:()235363412−+×−()()()2353636363412=×−−×−+×− 242715=−+−12=−.22.(本题6分)对于有理数a 、b ,定义新运算:“✞”,a b ab a b ⊗−−. (1)计算:()42⊗−________()24−⊗;()()53−⊗−________()()35−⊗−; 152 −⊗ ________152 ⊗−(填“>”或“=”或“<”); (2)我们知道:有理数的加法运算和乘法运算满足交换律,那么,由(1)计算的结果,你认为这种运算:“✞”是否满足交换律?若满足,请说明理由;若不满足,请举例说明. 【答案】(1)=,=,= (2)满足交换律,理由见解析【分析】本题考查有理数的混合运算,新定义,理解新定义是关键. (1)按照题中新定义的运算进行计算即可作出判断; (2)就一般情况根据新定义进行计算即可.【详解】(1)解:∵()424(2)4(2)10⊗−=×−−−−=−,()24(2)4(2)410−⊗=−×−−−=−; ∴()42(2)4⊗−=−⊗;∵()()53(5)(3)(5)(3)23−⊗−=−×−−−−−=,()()35(3)(5)(3)(5)23−⊗−=−×−−−−−=,∴(5)(3)(3)(5)-⊗-=-⨯-;∵1115557222 −⊗=−×−−−=− ,1115557222⊗−=×−−−−=− ; ∴115522 −⊗=⊗− ; 故答案:=,=,=(2)解:运算:“✞”满足交换律 理由如下:由新定义知:a b ab a b ⊗−−,b a ba b a ⊗−−, ∴a b b a ⊗=⊗,表明运算“✞”满足交换律.23.(本题6分)在数轴上画出表示下列各数的点,并用“<”连接下列各数.0,112,3−,()0.5−−,34−−,133+−.【答案】见解析,()11300.5133234<<−−<+−<−<−−【分析】本题考查了有理数的大小比较,解题的关键是先将所给各数化简,在数轴上表示出各数,再根 【详解】解:()33110.50.5,,334433−−=−−=−+−=− . 画出数轴并在数轴上表示出各数如图:根据数轴的特点从左到右用“<”把各数连接起来为: ()1313300.51342+−<−<−−<<−−<24.(本题8分)如图,在数轴上有A 、B 、C 这三个点.回答:(1)A 、B 、C 这三个点表示的数各是多少?A : ;B : ;C : .(2)A 、B 两点间的距离是 ,A 、C 两点间的距离是 . (3)应怎样移动点B 的位置,使点B 到点A 和点C 的距离相等? 【答案】(1)6−、1、4 (2)7;10(3)点B 向左移动2个单位【分析】本题考查了是数轴,运用数轴上点的移动和数的大小变化规律是左减右加是解答此题的关键. (1)本题可直接根据数轴观察出A 、B 、C 三点所对应的数; (2)根据数轴的几何意义,根据图示直接回答;(3)由于10AC =,则点B 到点A 和点C 的距离都是5,此时将点B 向左移动2个单位即可. 【详解】(1)解:根据图示可知:A 、B 、C 这三个点表示的数各是6−、1、4, 故答案为:6−;1;4.(2)解:根据图示知:AB 的距离是()167−−=;AC 的距离是6410−−=, 故答案为:7;10;(3)解:∵A 、C 的距离是10, ∴点B 到点A 和点C 的距离都是5,∴应将点B 向左移动2B 表示的数为1−,5ABBC ==. 25.(本题8分)“滴滴”司机沈师傅从上午800915:~:在东西方向的江平大道上营运,共连续运载十批乘客.若规定向东为正,向西为负,沈师傅营运十批乘客里程如下:(单位:千米)8636848433+−+−++−−++,,,,,,,,,.(1)将最后一批乘客送到目的地时,沈师傅距离第一批乘客出发地的东面还是西面?距离出发地多少千米?(2)若汽车每千米耗油0.4升,则800915:~:汽车共耗油多少升?(3)若“滴滴”的收费标准为:起步价11元(不超过3千米),超过3千米,超过部分每千米2元.则沈师傅在上午800915:~:一共收入多少元? 【答案】(1)将最后一批乘客送到目的地时,沈师傅在第一批乘客出发地的东面,距离是5千米 (2)800915:~:汽车共耗油21.2升(3)沈师傅在上午800915:~:一共收入156元【分析】本题考查了正数和负数在实际问题中的应用,明确正负数的含义及题中的数量关系,是解题的关键.(1)把记录的数字相加即可得到结果,结果为正则在东面,结果为负则在西面; (2)把记录的数字的绝对值相加,再乘以0.4,即可得答案;(3)先计算起步费总额,再将超过3千米的路程相加,所得的和乘以2,将起步费加上超过3千米的费用总额,即可得答案.【详解】(1)解:∵(8)(6)(3)(6)(8)(4)(8)(4)(3)(3)5++−+++−+++++−+−++++=, ∴将最后一批乘客送到目的地时,沈师傅在第一批乘客出发地的东面,距离是5千米; (2)解:|8||6||3||6||8||4||8||4||3||3|+−+++−+++++−+−++++8636848433=+++++++++ 53=,∴0.45321.2×=(升),∴800915:~:汽车共耗油21.2升. (3)解:∵共营运十批乘客, ∴起步费为:1110110×=(元), 超过3千米的收费总额为:[](83)(63)(33)(63)(83)(43)(83)(43)(33)(33)246−+−+−+−+−+−+−+−+−+−×=(元),∴11046156+=(元),∴沈师傅在上午800915:~:一共收入156元 26.(本题8分)观察下列各式: 第1个等式:11111222−×=−+=−;第2个等式:1111123236−×=−+=−; 第3个等式:11111343412−×=−+=−;…… (1)根据上述规律写出第5个等式: ;(2)第n 个等式: ;(用含n 的式子表示) (3)计算:111111112233420222023−×+−×+−×+⋅⋅⋅⋅⋅⋅+−× .【答案】(1)11111565630−×=−+=− (2)()11111111n n n n n n −×=−+=−+++ (3)20222023−【分析】本题考查了有理数的乘法运算,(1)根据题干,模仿写出第5个等式,即可作答;(2)由(1)以及题干条件,即得第n 个等式:()11111111n n n n n n −×=−+=−+++;(3) 由(2)的结论,先化简再运算,即可作答,掌握第n 个等式:()11111111n n n n n n −×=−+=−+++是解题的关键. 【详解】(1)解:依题意,第5个等式: 11111305656−×=−+=−; (2)解:第1个等式:11111222−×=−+=−; 第2个等式:1111123236−×=−+=−; 第3个等式:11111343412−×=−+=−; 第4个等式:11111454520−×=−+=−; 第5个等式:11111565630−×=−+=−; ……故第n 个等式:()11111111n n n n n n −×=−+=−+++; (3)解:由(2)知第n ()11111111n n n n n n −×=−+=−+++;则111111112233420222023−×+−×+−×+⋅⋅⋅⋅⋅⋅+−×111111112233420222023=−++−++−++⋅⋅⋅⋅⋅⋅+−+111111112022202322334=−+−+−++⋅⋅⋅⋅⋅⋅−+112023=−+ 20222023=−27.(本题8分)阅读下列材料:计算111503412÷−+.解法一:原式11150505050350450125503412=÷−÷+÷=×−×+×=.解法二:原式4312505050630012121212÷−+÷×.解法三:原式的倒数为111503412−+÷111111111113412503504501250300=−+×=×−×+×= . 故原式300=.(1)上述得出的结果不同,肯定有错误的解法,你认为哪个解法是错误的. (2)请你选择两种合适的解法解答下列问题:计算:113224261437−÷−+−【答案】(1)没有除法分配律,故解法一错误; (2)过程见解析,114−.【分析】本题考查了有理数的除法乘法分配律; (1)根据有理数的运算法则进行判断,可得答案;(2)根据有理数的运算顺序,计算原式的倒数,和按照先计算括号内的,最后计算除法,两种方法求解,即可得出答案.【详解】(1)解:没有除法分配律,故解法一错误; (2)解法一:原式的倒数为: 132216143742 −+−÷− , ()132********=−+−×−()()()()13224242424261437=×−−×−+×−−×− 14=−;所以原式114=−; 解法二:原式=17928124242424242 −÷−+−17928124242−+− =−÷1424214=−×114=−. 28.(本题10分)【概念学习】定义新运算:求若干个相同的有理数(均不等于0)的商的运算叫做除方.比加222÷÷,()()()()3333−÷−÷−÷−等,类比有理数的乘方,我们把222÷÷写作2③,读作“2的圈3次方”,()()()()3333−÷−÷−÷−写作()3−④,读作“()3−的圈4次方”.一般地,把n aa a a a ÷÷÷ 个记作:a ⓝ,读作“a 的圈n 次方”.特别地,规定:a a =①.【初步探究】(1)直接写出计算结果:2023=② ;(2)若n 为任意正整数,下列关于除方的说法中,正确的有 ;(横线上填写序号) A .任何非零数的圈2次方都等于1B .任何非零数的圈3次方都等于它的倒数C .圈n 次方等于它本身的数是1或1−D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?(3)请把有理数()0a a ≠的圈n (3n ≥)次方写成幂的形式:a =ⓝ ;(4)计算:()2111472 −−÷−×− ④⑥⑧. 【答案】(1)1;(2)ABD ;(3)21n a − ;(4)1149− 【分析】(1)根据题意,计算出所求式子的值即可;(2(3)根据题意,可以计算出所求式子的值.(4)根据题意,可以计算出所求式子的值.【详解】解:(1)由题意可得,2023202320231=÷=②,故答案为:1;(2)A .因为()10a a a a =÷=≠②,所以任何非零数的圈2次方都等于1,正确;B .因为()10a a a a a a=÷÷=≠③,所以任何非零数的圈3次方都等于它的倒数,正确; C .圈n 次方等于它本身的数是1或1−,说法错误,()11−=②;D .根据新定义以及有理数的乘除法法则可知,负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数,正确;故答案为:ABD ;(3)21111n a a a a a a a a a a − =÷÷÷÷=⋅⋅= ⓝ,故答案为:21n a −; (4)解:()2114172 −−÷−×− ④⑥⑧ ()()()()711111111967772222− =−÷÷⋅⋅⋅÷−÷−÷−÷−÷−×−÷−÷⋅⋅⋅÷−8个16个 41119647=−−÷×1149=−−4950=−.。

人教版数学七年级上学期第一次月考数学试卷(含答案)(1)

人教版数学七年级上学期第一次月考数学试卷(含答案)(1)

七年级(上)第一次月考数学试卷一、选择题(本大题共10小题,每小题2分,共20分,每小题的四个选项中,有且只有一个符合题意,请将正确的选项填涂到答题卡上)1.下列各数中,为负数的是()A.0 B.﹣2 C.1 D.2.图中所画的数轴,正确的是()A.B.C.D.3.下列几组数中互为相反数的是()A.﹣和0.7 B.和﹣0.333 C.﹣(﹣6)和6 D.﹣和0.254.计算2×(﹣)的结果是()A.﹣1 B.1 C.﹣2 D.25.|﹣|等于()A.2 B.﹣2 C.D.﹣6.北方某地9月1日早晨的气温是﹣1℃,到中午上升了6℃,那么中午的气温是()A.5℃B.7℃C.﹣5℃D.﹣7℃7.下列说法中正确的是()A.非负有理数就是正有理数B.零表示没有,不是自然数C.正整数和负整数统称为整数 D.整数和分数统称为有理数8.下列运算错误的是()A.(﹣2)×(﹣3)=6 B.C.(﹣5)×(﹣2)×(﹣4)=﹣40 D.(﹣3)×(﹣2)×(﹣4)=﹣249.如图,数轴上一点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则点A表示的数()A.7 B.3 C.﹣3 D.﹣210.下列结论正确的是()A.若|x|=|y|,则x=﹣y B.若x=﹣y,则|x|=|y| C.若|a|<|b|,则a<b D.若a<b,则|a|<|b|二、填空题(本大题共7小题,每小题3分,共21分,请将答案填涂到答题卡上)11.1的倒数是.12.计算:6÷(﹣3)= .13.计算(﹣5)+3的结果是.14.计算:﹣1﹣2= .15.若|x+2|+|y﹣3|=0,则xy= .16.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则= .17.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c= .三、解答题(共7小题,计59分)18.计算:(1)(﹣12)+(﹣13)﹣(﹣14)﹣(+15)+(+16)(2)(﹣)﹣(﹣)+(﹣0.75)+﹣(+).19.计算:(1)﹣0.75×(﹣0.4 )×1;(2)0.6×(﹣)•(﹣)•(﹣2)20.计算:(1)﹣5÷(﹣1);(2)(﹣)÷(﹣)÷(﹣1).21.已知|a|=7,|b|=3,求a+b的值.22.已知x,y为有理数,如果规定一种运算“*”,即x*y=xy+1,试根据这种运算完成下列各题.(1)求2*4;(2)求(2*5)*(﹣3);(3)任意选择两个有理数x,y,分别计算x*y和y*x,并比较两个运算结果,你有何发现?23.某自行车厂计划每天生产200辆自行车,但由于种种原因,实际每天生产量与计划量相比有出入.表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减+6 ﹣2 ﹣4 +12 ﹣10 +16 ﹣8(1)根据记录的数据可知该厂星期四生产自行车辆;(2)产量最多的一天比产量最少的一天多生产自行车辆;(4)该厂实行每周计件工资制,每生产一辆车可得30元,若超额完成任务,则超过部分每辆另奖20元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少元?24.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.回答下列问题:(1)数轴上表示2和5两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)数轴上表示x和﹣2的两点之间的距离表示为;(3)若x表示一个有理数,则|x﹣1|+|x+3|有最小值吗?若有,请求出最小值;若没有,请说明理由.七年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分,每小题的四个选项中,有且只有一个符合题意,请将正确的选项填涂到答题卡上)1.下列各数中,为负数的是()A.0 B.﹣2 C.1 D.【考点】正数和负数.【分析】根据负数就是正数前面带负号的数即可判断.【解答】解:A、既不是正数,也不是负数,故选项错误;B、是负数,故选项正确;C、是正数,故选项错误;D、是正数,故选项错误.故选B.【点评】本题主要考查了负数的定义,是基础题.2.图中所画的数轴,正确的是()A.B.C.D.【考点】数轴.【分析】数轴的三要素:原点,单位长度,正方向.缺一不可.【解答】解:A、没有正方向,故错误;B、没有原点,故错误;C、单位长度不统一,故错误;D、正确.故选 D.【点评】此题考查数轴的画法,属基础题.3.下列几组数中互为相反数的是()A.﹣和0.7 B.和﹣0.333 C.﹣(﹣6)和6 D.﹣和0.25【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:A 符号不同,数也不同,故A不是相反数;B 数的绝对值不同,故B不是相反数;C 符号相同,故C不是相反数;D 只有符号不同,故D是相反数;故选:D.【点评】本题考查了相反数,只有符号不同的两个数互为相反数.4.计算2×(﹣)的结果是()A.﹣1 B.1 C.﹣2 D.2【考点】有理数的乘法.【分析】根据异号两数相乘,结果为负,且2与﹣的绝对值互为倒数得出.【解答】解:2×(﹣)=﹣1.故选A.【点评】本题考查有理数中基本的乘法运算.5.|﹣|等于()A.2 B.﹣2 C.D.﹣【考点】绝对值.【分析】根据负数的绝对值等于它的相反数,可得负数的绝对值.【解答】解:|﹣|=,故选:C.【点评】本题考查了绝对值,负数的绝对值是它的相反数.6.北方某地9月1日早晨的气温是﹣1℃,到中午上升了6℃,那么中午的气温是()A.5℃B.7℃C.﹣5℃D.﹣7℃【考点】有理数的加法.【分析】根据9月1日早晨的气温是﹣1℃,到中午上升了6℃,可以求得中午的气温.【解答】解:∵9月1日早晨的气温是﹣1℃,到中午上升了6℃,∴中午的温度是:﹣1+6=5℃,故选A.【点评】本题考查有理数的加法,解题的关键是明确有理数加法的计算方法.7.下列说法中正确的是()A.非负有理数就是正有理数B.零表示没有,不是自然数C.正整数和负整数统称为整数 D.整数和分数统称为有理数【考点】有理数.【分析】根据有理数的分类,可得答案.【解答】解:A、非负有理数就是正有理数和零,故A错误;B、零表示没有,是自然数,故B错误;C、整正数、零、负整数统称为整数,故C错误;D、整数和分数统称有理数,故D正确;故选:D.【点评】本题考查了有理数,利用了有理数的分类.8.下列运算错误的是()A.(﹣2)×(﹣3)=6 B.C.(﹣5)×(﹣2)×(﹣4)=﹣40 D.(﹣3)×(﹣2)×(﹣4)=﹣24【考点】有理数的乘法.【分析】根据有理数的乘法法则计算.【解答】解:A、C、D显然正确;B、(﹣)×(﹣6)=3,错误.故选B.【点评】解答此题只需牢记有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.9.如图,数轴上一点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则点A表示的数()A.7 B.3 C.﹣3 D.﹣2【考点】数轴.【专题】图表型.【分析】首先设点A所表示的数是x,再根据平移时坐标的变化规律:左减右加,以及点C的坐标列方程求解.【解答】解:设A点表示的数为x.列方程为:x﹣2+5=1,x=﹣2.故选:D.【点评】本题考查数轴上点的坐标变化和平移规律:左减右加.10.下列结论正确的是()A.若|x|=|y|,则x=﹣y B.若x=﹣y,则|x|=|y| C.若|a|<|b|,则a<b D.若a<b,则|a|<|b|【考点】绝对值;相反数.【专题】计算题.【分析】根据绝对值和相反数的性质对各个选项逐一分析,排除错误答案.【解答】解:A、若|x|=|y|,则x=﹣y或x=y;故错误;B、互为相反数的两个数的绝对值相等,故正确;C、若a=2,b=﹣3,则|a|<|b|,但a>b,故错误;D、若a=﹣2,b=1,则a<b,但|a|>|b|,故错误.故选B.【点评】熟练掌握绝对值的性质是解题的关键.二、填空题(本大题共7小题,每小题3分,共21分,请将答案填涂到答题卡上)11.1的倒数是.【考点】倒数.【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:1的倒数是,故答案为:.【点评】本题考查了倒数,把带分数化成假分数再求倒数是解题关键.12.计算:6÷(﹣3)= ﹣2 .【考点】有理数的除法.【专题】计算题.【分析】原式利用异号两数相除的法则计算即可得到结果.【解答】解:原式=﹣(6÷3)=﹣2.故答案为:﹣2【点评】此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.13.计算(﹣5)+3的结果是﹣2 .【考点】有理数的加法.【分析】根据有理数的加法法则:绝对值不等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.【解答】解:(﹣5)+3=﹣(5﹣3)=﹣2.故答案为:﹣2.【点评】此题主要考查了有理数的加法,关键是掌握异号两数相加的计算法则,注意结果符号的判断.14.计算:﹣1﹣2= ﹣3 .【考点】有理数的减法.【专题】计算题.【分析】根据有理数的减法运算法则,减去一个是等于加上这个数的相反数进行计算.【解答】解:﹣1﹣2=﹣1+(﹣2)=﹣3.故答案为﹣3.【点评】本题考查了有理数的减法,熟记减去一个是等于加上这个数的相反数是解题的关键.15.若|x+2|+|y﹣3|=0,则xy= ﹣6 .【考点】非负数的性质:绝对值.【分析】根据非负数的性质列出方程组求出x、y的值,代入代数式求值即可.【解答】解|x+2|+|y﹣3|=0,∴x+2=0,解得x=﹣2;y﹣3=0,解得y=3.∴xy=﹣2×3=﹣6.故答案为:6.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.16.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则= 9900 .【考点】有理数的混合运算.【专题】规律型.【分析】100!=100×99×98×97×...×1,98!=98×97× (1)【解答】解:∵100!=100×99×98×97×...×1,98!=98×97× (1)∴==100×99=9900.【点评】此题是定义新运算题型.直接把对应的数字代入所给的式子可求出所要的结果.解题关键是对号入座不要找错对应关系.17.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c= 110 .【考点】规律型:数字的变化类.【分析】观察不难发现,左上角+4=左下角,左上角+3=右上角,右下角的数为左下和右上的积加上1的和,根据此规律列式进行计算即可得解.【解答】解:根据左上角+4=左下角,左上角+3=右上角,右下角的数为左下和右上的积加上1的和,可得6+4=a,6+3=c,ac+1=b,可得:a=10,c=9,b=91,所以a+b+c=10+9+91=110,故答案为:110【点评】本题是对数字变化规律的考查,仔细观察前三个图形,找出四个数之间的变化规律是解题的关键.三、解答题(共7小题,计59分)18.计算:(1)(﹣12)+(﹣13)﹣(﹣14)﹣(+15)+(+16)(2)(﹣)﹣(﹣)+(﹣0.75)+﹣(+).【考点】有理数的加减混合运算.【分析】(1)先化简,再算加减法;(2)先算同分母分数,再算加减法.【解答】解:(1)(﹣12)+(﹣13)﹣(﹣14)﹣(+15)+(+16)=﹣12﹣13+14﹣15+16=﹣40+30=﹣10;(2)(﹣)﹣(﹣)+(﹣0.75)+﹣(+)=(﹣﹣0.75)+(+)﹣=﹣1+1﹣=﹣.【点评】考查了有理数加减混合运算,方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.②转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.19.计算:(1)﹣0.75×(﹣0.4 )×1;(2)0.6×(﹣)•(﹣)•(﹣2)【考点】有理数的乘法.【分析】根据有理数的乘法,即可解答.【解答】解:(1)﹣0.75×(﹣0.4 )×1==.(2)0.6×(﹣)•(﹣)•(﹣2)=﹣=1【点评】本题考查了有理数的乘法,解决本题的关键是熟记有理数的乘法.20.计算:(1)﹣5÷(﹣1);(2)(﹣)÷(﹣)÷(﹣1).【考点】有理数的除法.【分析】根据有理数的除法:除以一个数等于乘以这个数的倒数,即可解答.【解答】解:(1)﹣5÷(﹣1)=5×=1.(2)(﹣)÷(﹣)÷(﹣1)=﹣=﹣.【点评】本题考查了有理数的除法,解决本题的关键是熟记除以一个数等于乘以这个数的倒数.21.已知|a|=7,|b|=3,求a+b的值.【考点】绝对值.【专题】计算题.【分析】根据绝对值的意义进行分析:互为相反数的两个数的绝对值相等.然后a,b搭配的时候,注意考虑四种情况.【解答】解:∵|a|=7,|b|=3.∴a=±7,b=±3.①当a=7,b=3时,a+b=7+3=10;②当a=7,b=﹣3时,a+b=7﹣3=4;③当a=﹣7,b=3时,a+b=﹣7+3=﹣4;④当a=﹣7,b=﹣3时,a+b=﹣7﹣3=﹣10.【点评】考查了绝对值的性质和有理数的运算.此题要特别注意a和b结合起来分析,有四种情况.22.已知x,y为有理数,如果规定一种运算“*”,即x*y=xy+1,试根据这种运算完成下列各题.(1)求2*4;(2)求(2*5)*(﹣3);(3)任意选择两个有理数x,y,分别计算x*y和y*x,并比较两个运算结果,你有何发现?【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用题中的新定义计算即可得到结果;(2)原式利用题中的新定义计算即可得到结果;(3)两数利用新定义化简得到结果,即可作出判断.【解答】解:(1)根据题中的新定义得:2*4=8+1=9;(2)根据题中的新定义得:(2*5)*(﹣3)=11*(﹣3)=﹣33+1=﹣32;(3)根据题中的新定义得:x*y=xy+1,y*x=yx+1,则x*y=y*x.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.某自行车厂计划每天生产200辆自行车,但由于种种原因,实际每天生产量与计划量相比有出入.表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减+6 ﹣2 ﹣4 +12 ﹣10 +16 ﹣8(1)根据记录的数据可知该厂星期四生产自行车212 辆;(2)产量最多的一天比产量最少的一天多生产自行车26 辆;(4)该厂实行每周计件工资制,每生产一辆车可得30元,若超额完成任务,则超过部分每辆另奖20元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少元?【考点】正数和负数.【分析】(1)该厂星期四生产自行车200+12=212辆;(2)产量最多的一天比产量最少的一天多生产自行车16﹣(﹣10)=26辆;(3)这一周的工资总额是200×7×30+(6﹣2﹣4+12﹣10+16﹣8)×(30+20)=42500元.【解答】解:(1)超产记为正、减产记为负,所以星期四生产自行车200+12=212辆,故该厂星期四生产自行车212辆.故答案为212;(2)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆.故答案为26;(3)根据图示本周工人工资总额=200×7×30+(6﹣2﹣4+12﹣10+16﹣8)×(30+20)=42500元,故该厂工人这一周的工资总额是42500元.【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.24.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.回答下列问题:(1)数轴上表示2和5两点之间的距离是 3 ,数轴上表示1和﹣3的两点之间的距离是 4 ;(2)数轴上表示x和﹣2的两点之间的距离表示为|x+2| ;(3)若x表示一个有理数,则|x﹣1|+|x+3|有最小值吗?若有,请求出最小值;若没有,请说明理由.【考点】绝对值;数轴.【分析】本题应从绝对值在数轴上的定义(绝对值定义是坐标轴上的点到原点的距离)下手,分别解出答案.【解答】解:(1)数轴上表示2和5两点之间的距离是|5﹣2|=3,数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4;(2)根据绝对值的定义有:数轴上表示x和﹣2的两点之间的距离表示为|x﹣(﹣2)|=|x+2|或|﹣2﹣x|=|x+2|;(3)根据绝对值的定义有:|x﹣1|+|x+3|可表示为点x到1与﹣3两点距离之和,根据几何意义分析可知:当x在﹣3与1之间时,|x﹣1|+|x+3|有最小值4.【点评】本题考查学生的阅读理解能力及知识的迁移能力.七年级上期第一次月考数学试题一、选择题(每小题3分,共36分)1、在下列各数:(2)-+,23-,41()3-,225-,2013(1)--,3--中,负数有( )A.2个B.3个C.4个D.5个2、水池中的水位在某天八个不同时间测得的记录如下:(规定与前一天相比上升为正,单位:cm )+3,-6,-1,+5,-4,+2,-3,-2,那么这天水池中水位的最终变化情况是( ) A.上升6cm B.下降6cm C.没升没降 D.下降26cm3、下列各式中,一定成立的是( )A.222(2)=-B.2222-=-C.33(2)2--=--D.332(2)=-4、下列说法正确的是( )A.有理数包括正整数、零和负分数B.a -不一定是整数C.-5和+(-5)互为相反数D.两个有理数的和一定大于每一个加数 5、如图,数轴上一动点A 向左移动2个单位长度 到达点B ,再向右移动5个单位长度到达点C ,若 点C 表示的数为1,则点A 表示的数是( ) A.7 B.3 C.-3 D.-2 6、下列结论正确的是( )A.若x y =-,则x y =-B.若x y =-,则x y =C.若0a <,则()0a -->D.a -一定是负数 7、若m 是有理数,则m m -一定是( )A.零B.非负数C.正数D.负数 8、小于2014且不小于-2013的所有整数的和是( ) A.0 B.1 C.2013 D.20149、下列计算:①0-(-5)=-5;②(-3)+(-9)=-12;③293()342⨯-=-;④(-36)÷(-9)=-4. 其中正确的个数是( )A.1个B.2个C.3个D.4个 10、下列各式中的大小关系成立的是( ) A.10.33-<- B.6756->- C.32(2)(2)->- D.910109->- 11、按下面的程序计算,若开始输入的值为正数,最后输出的结果为656,则满足条件的的不同值最多有( )A.2个B.3个C.4个D.5个12、在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( )A.1,2B.1,3C.4,2D.4,3 二、填空题(每小题3分,共21分) 13、1(1)3--的绝对值的倒数是 . 14、20122013(0.125)(8)-⨯-= .15、若21x +是-9的相反数,则x = .16、若21(2)0x y ++-=,则()()y x x y --= .17、若2a =-,则在3a -,4a ,24a,2a ,0这五个数中,最大的数是 . 18、已知a a =-,化简12a a ---= . 19、绝对值比2大并且比6小的整数共有 个.20、已知5a =,3b =,且a b b a -=-,那么a b += . 21、如图是一个由六个小正方体堆积而成的几何体,每个小正方体 的六个面上都分别写着-1,2,3,-4,5,-6六个数字,那么图中所 有看不见的面上的数字和是 .22、从-3,-2,-1,4,5中取3个不同的数相乘,可得到的最大乘积为a ,最小乘积为b , 则()a b --÷= .23、在计算机程序中,二叉树是一种表示数据结构的方法.如图,一层二叉树的结点总数为1,二层二叉树的结点的总数为3,三层二叉树的结点总数为7,四层二叉树的结点总数为15…,照此规律,七层二叉树的结点总数为 .三、解答题24、计算(每小题5分,共15分)(1)2152(0.6)33-÷-⨯ (2)232211(3)(5)(2)18()23--+-÷--⨯--(3)2211113()()(24)(1)()324362⎡⎤⎡⎤-+-+-⨯---÷--⎢⎥⎢⎥⎣⎦⎣⎦25、(6分)把(1)--,112--,4,-3,5分别表示在数轴上,并用“<”号把它们连接起来. 26、(4分)(探究题)①若数轴上点AB 对应的数分别是-1、-4,则线段AB 的中点C 对应的数是 ; ②若数轴上点AB 对应的数分别是2、4,则线段AB 的中点C 对应的数是 ; ③若数轴上点AB 对应的数分别是-2、3,则线段AB 的中点C 对应的数是 ; ④若数轴上点AB 对应的数分别是a 、b ,则线段AB 的中点C 对应的数是 . 27、(6分)阅读下列材料并解决有关问题.参考答案13、3414、-8 15、4 16、-27 17、6 18、-1 19、620、-2或-8 21、-13 22、12- 23、127 三、解答题24、(1)6 (2)-31 (3)518- 25、-3<112--<(1)--<4<5 26、①-2.5 ②3 ③0.5 ④2a b+ 27、(1)|x+3|和|x-5|的零点值分别为-3、5. (2)当x <-3时,原式=2x+2; 当-3≤x <5时,原式=8; 当x ≥5时,原式=2x-2.。

七年级上册数学第一次月考试题及答案

七年级上册数学第一次月考试题及答案

第一学期七年级数学第一次月考试卷一、选择题(每小题3分,共36分)1. –5的绝对值是( ).A.5B.–5C.51D.51- 2.在–2,+3.5,0,32-,–0.7,11中.负分数有( ). A.l 个 B.2个 C.3个 D.4个3.下列各组数中,相等的是( ).A.–1与(–4)+(–3)B.3-与–(–3)C.432与169 D.2)4(-与–16 4. 下面说法正确的有( ).① π的相反数是-3.14;②符号相反的数互为相反数;③ -(-3.8)的相反数是3.8;④ 一个数和它的相反数不可能相等;⑤正数与负数互为相反数.A.0个B.1个 C.2个 D.3个 5.在x 2+2, +4, ab 2, -1, -5x , 0这6个式子中,整式有( )A.6个B.5个C.4个D.3个6.下列结论正确的是( )A.单项式的系数是,次数是4B.单项式-xy 2z 的系数是-1,次数是4C.单项式m 的次数是1,没有系数D.多项式2x 2+xy 2+3是二次三项式 7.单项式x m-1y 3与4xy n 的和是单项式,则n m 的值是( )A.3B.6C.8D.98.已知a+b=4,c-d=-3,则(b-c )-(-d-a )的值为( )A.7B.-7C.1D.-1 9.下列方程中,是一元一次方程的是( )A.x2﹣4x=3 B.x=0 C.x+2y=1 D.x﹣1=10.已知等式3a=2b+5,则下列等式中不一定成立的是()A.3a﹣5=2b B.3a+1=2b+6 C.3ac=2bc+5 D.a=11.一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程()A.x﹣1=(26﹣x)+2 B.x﹣1=(13﹣x)+2 C.x+1=(26﹣x)﹣2 D.x+1=(13﹣x)﹣2 12.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店()A.不赔不赚 B.赚了10元C.赔了10元D.赚了50元二、填空题(每题3分,共15分)13.最大的负整数是,绝对值最小的有理数是.14.用科学记数法表示:2 450 000 000 000=15.如果x=2是关于x的方程2x+3m-1=0的解,那么m的值是.16.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/小时,水速为2千米/时,则A港和B港相距千米.17.平移小菱形◇可以得到美丽的“中国结”图案,下面四个图案是由◇平移后得到的类似“中国结”的图案,按图中规律,第20个图案中,小菱形的个数是________.三、解答题(共69分)18.计算1. (-10)+8×(-2)2-(-4)×(-3) (每小题5共10分)1122(1)(1)x x x x ⎡⎤---=-⎢⎥2.19.化简:(每小题6共12分)1. (5a -3a 2+1)-(4a 3-3a 2);2. -2(ab -3a 2)-[2b 2-(5ab +a 2)+2ab].20先化简,再求值:3(2x 2-3xy -5x -1)+6(-x 2+xy -1),其中x 、y 满足(x +2)2+|y -23|=0 (8分)21.解方程:(每小题5共20分)1. 76163x x +=-;2. )5(4)3(2+-=-x x3 . . 4.22.用白铁皮做罐头盒,每张铁片可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?(9分)23.公园门票价格规定如下表:(10分)购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?参考答案一、选择题1. A 2 .B 3 .B 4 .A 5. C 6. B 7. D 8 .A 9. B 10 .C 11 . B 12 . C二、填空题13 -1 0 14. 2.45×101215 , -1 16 , 504 17 , 800三、解答题18 (1)(-10)+8×(-2)2-(-4)×(-3)=(-10)+8×4-12=-10+32-12=10.20(1)原式=5a -3a 2+1-4a 3+3a 2=-4a 3+5a +1.(2)原式=-2ab +6a 2-2b 2+5ab +a 22ab =7a 2+ab -2b 2.21.原式=6x 2-9xy -15x -3-6x 2+6xy -6=-3xy -15x -9.由(x +2)2+|y -23|=0,得x =-2,y =23.当x =-2,y =23时,原式=-3×(-2)×23-15×(-2)-9=4+30-9=25.22.解方程(1)x=-2 (2)y=2/3(3).解:(1)去分母,得18x ﹣6﹣20x+28=24,移项、合并同类项,得﹣2x=2,化未知数的系数为1,得x=﹣1;(4)x=12/2322.用白铁皮做罐头盒,每张铁片可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?解:设x张制盒身,则可用(150﹣x)张制盒底,列方程得:2×16x=43(150﹣x),解方程得:x=86.答:用86张制盒身,64张制盒底,可以正好制成整套罐头盒.23.解:(1)设初一(1)班有x人,则有13x+11(104﹣x)=1240或13x+9(104﹣x)=1240,解得:x=48或x=76(不合题意,舍去).即初一(1)班48人,初一(2)班56人;(2)1240﹣104×9=304,∴可省304元钱;(3)要想享受优惠,由(1)可知初一(1)班48人,只需多买3张,51×11=561,48×13=624>561∴48人买51人的票可以更省钱.附赠材料:考试做题技巧会学习,还要会考试时间分配法:决定考场胜利的重要因素科学分配答题时间,是决定考场能否胜利的重要因素。

24-25七年级数学第一次月考卷(广州专用,人教版七上第1~2章:有理数+有理数的运算)(全解全析)

24-25七年级数学第一次月考卷(广州专用,人教版七上第1~2章:有理数+有理数的运算)(全解全析)

2024-2025学年七年级数学上学期第一次月考卷(广州专用)(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:第一章:有理数、第二章:有理数的运算。

5.难度系数:0.68。

第Ⅰ卷一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.中国是最早使用正负数表示具有相反意义的量的国家.若向东走60米记作60+米,则向西走100米可记作( )A .40-米B .40米C .100-米D .100米【答案】C【详解】解:若向东走60米记作60+米,则向西走100米可记作100-米,故选:C .2.下列各组数中,值相等的一组是( )A .()3-+和()3++B .()3+-和3+-C .()3--和3--D .()3+-和3--3.当a 比b 小22,c 比b 小18时,下面正确的是( )A .b 比c 小4B .b 最大C .c 比a 小4D .a b c<<【答案】B【详解】解:22a b =-,18c b =-,∴a c b <<,4c a -=,∴b 最大,故选B .4.物理是上帝的游戏,而数学是上帝的游戏规则.不管多大或多小的数,都得靠数学来表示呢!来自2024年综合运输春运工作专班的数据显示,2月10日~17日(农历正月初一至初八),全社会跨区域人员流动量累计22.93亿人次.客流量大已成为2024年春运的最显著特征,铁路、公路、民航等客运频频刷新纪录.用科学记数法表示22.93亿,正确的是( ).A .822.9310´B .922.9310´C .82.29310´D .92.29310´A .a b >-B .0a b +>C .0b <D .0ab <6.如果()2a b-+-=,则b a的值为()120A.1B.2C.1-D.2-7.数轴上点A表示的数是1-,数轴上的另一点B与点A距离3个单位长度,则点B表示的数是()A.4-B.2或4-C.4D.2-或48.下列说法正确的个数为( )①有理数与无理数的差都是有理数;②无限小数都是无理数;③无理数都是无限小数;④两个无理数的和不一定是无理数;⑤无理数分为正无理数、零、负无理数.A.2个B.3个C.4个D.5个9.如图,圆的直径为2个单位长度,该圆上的点A 与数轴上表示1-的点重合,将圆沿数轴向左无滑动地滚动一周,点A 到达点A ¢的位置,则点A ¢表示的数是( )A .21p -B .21p --C .1p -D .1p --A .74B .104C .126D .144【答案】D 【详解】分析前三个正方形中的数据发现其包含两点规律:(1)从左上到左下到右上是三个连续的偶数;(2)右下的数等于左下的数与右上的数的积加上左上数的3倍.由此可知101283144m =´+´=.故选D.第Ⅱ卷二、填空题(本大题共6小题,每小题3分,满分18分)11.比较大小:347-- 347æö--ç÷(填“<”或“>”或“=”).12.在数轴上,把表示1的点沿着数轴向负方向移动5个单位,则与此位置相对应的数是.【答案】4-【详解】解:根据题意,作出数轴如图:则与此位置相对应的数是;4-,故答案为:4-.13.若m 、n 互为相反数,a 、b 互为倒数,则4ab m n -+-= .14.有理数,,a b c 在数轴上的位置如图所示,化简11a b b a c c +------= .故答案为:2-.15.求|2||7|x x -+-的最小值是 .【答案】5【详解】解:当2x <时,原代数式2792x x x -+-=-①;当27x ££时,原代数式275x x -+-=②;当7x >时,原代数式2729x x x -+-=-③;据以上可得>①②,且>③②;所以当27x ££时,原代数式取得最小值为5,故答案为:5.16.有理数a b 、在数轴上的表示如图所示,则下列结论中:①0ab <;②0a b +<;③0a b -<;④0a b a b+=;⑤11b b -=- ,正确的有 (只要填写序号).三、解答题(本大题共9小题,满分72分.解答应写出文字说明,证明过程或演算步骤)17.(4分)把下列各数分别填在相应的大括号里.6113,,31,0.21, 3.14,0,21%,,202073----.整数:{ …};正整数:{ …};负分数:{ …};负整数:{ …}.18.(4分)画出数轴,在数轴上表示下列各数,然后用“<”号把这些数连接起来.93,1,3, 2.5,42---. 932.51342-<-<-<<.------------(4分)19.(6分)计算.(1)3571()491236--+¸(2)2211|7|()(4)353-¸--´-20.(6分)出租车司机小李某天下午在东西走向的人民大道上开车.如果规定向东为正,向西为负,这天下午他的行车里程(单位:千米)如下:15+,―2,5+,1-,10+,3-,―2,12+,4+,5-,6+.(1)将最后一名乘客送到目的地时,小李距下午出车时的出发点多远?(2)若汽车耗油量为每千米耗油0.06升,这天下午小李共耗油多少升?21.(8分)小明同学在学习完有理数的运算后,对运算产生了浓厚的兴趣,她借助有理数的运算,定义了一种新运算“⊕”,运算规则为:a b a b a b Å=´--.(1)计算()22-Å的值;(2)填空:()53Å- ()35-Å(填“>”或“=”或“<”);(3)求()1342æö-ÅÅç÷的值.22.(10分)阅读以下材料,完成相关的填空和计算.(1)根据倒数的定义我们知道,若()2a b c +¸=-,则()c a b ¸+=________.(2)计算:5721129336æö-+¸ç÷èø.(3)根据以上信息可知:1572361293æöæö-¸-+=ç÷ç÷________.23.(10分)已知,a b 互为相反数,,c d 互为倒数,2x =,1y =,x y <,计算:()22221a b x cdy x y xy++++-的值【详解】解:由题意可得:0a b +=,1cd =,2x =±,1y =±,------------(2分)x y <Q ,2x \=-,1y =±,------------(4分)当2,1x y =-=时,()22221a b x cdy x y xy ++++-2222x y x y xy =++-()()()2222212121=-++-´--´------------(6分)4142=+++11=,------------(7分)当2,1x y =-=-时,()22221a b x cdy x y xy ++++-2222x y x y xy =++-()()()()()()2222212121=-+-+-´---´------------(9分)4142=+-+3=;------------(10分)24.(12分)a ,b 分别是数轴上两个不同点A ,B 所表示的有理数,且|a |=5,|b |=2,A ,B 两点在数轴上的位置如图所示:(1)试确定数a ,b ;(2)若C 点在数轴上,C 点到B 点的距离是C 点到A 点距离的13,求C 点表示的数;(3)点P 从A 点出发,先向左移动一个单位长度,再向右移动2个单位长度,再向左移动3个单位长度,再向右移动4个单位长度,依次操作2020次后,求P 点表示的数.25.(12分)【背景知识】数轴上A 、B 两点在对应的数为a ,b ,则A 、B 两点之间的距离定义为:AB b a =-.【问题情境】已知点A 、B 、O 在数轴上表示的数分别为4-、10和0,点M 、N 分别从O 、B 出发,同时向左匀速运动,点M 的速度是每秒1个单位长度,点N 的速度是每秒3个单位长度,设运动的时间为t 秒()0t >.(1)填空:①OA =_____,OB =_____;②用含t 的式子表示:AM =_____;AN =_____;(2)当t 为何值时,恰好有2AN AM =;(3)如图,直线l 上有A ,B 两点,18cm AB =,点O 是线段AB 上的一点,2OA OB =.若动点P ,Q 分别从A ,B 同时出发,向右运动,点P 的速度为3cm /s ,点Q 的速度为2cm /s ,当点P 与点Q 重合时,P ,Q 两点停止运动.设运动时间为()s t ,求当t 为何值时,()26cm OP OQ -=?。

七年级数学上学期第一次月考试卷含答案

七年级数学上学期第一次月考试卷含答案

七年级数学第一学期第一次学科检测(时间:120分钟 总分:150分)第一部分基础题(100分)一.选择题(每题3分,共12分)1 .(午练10T1变式)计算-X (-3)的结果是()32A. -1B. -2C. 2D.--32 .(课本P28习题T4变式)下列化简错误的是()A. - (-5) =5B. -|-4|=4C. - (-3.2) =3.2D. + (+7) =75 53 .(课本P36练一练T1变式)下列各式中,计算结果为正确的是( )A. 6- (-11) =-5B. 6-11=5C. -6-11=-17 4 .(课本P29习题T7变式)下列比较大小结果正确的是(二.填空题(每题3分,共18分) 5 .(午练4T4变式)-1的倒数是 .6 .(课本P14习题T4变式)在一次军事训练中,一架直升机“停”在离海面 80m 的低空,一艘潜水艇潜在水下50m.若直升机的高度记作+80m 则潜水艇的高度记作. 7 .(午练2T8变式)正常人行走时的步长大约是 50(填单位). 8 .(午练 5T12 变式)若|m|=|-5|,则 m=.9 .(午练6T10变式)绝对值大于2且不大于4的整数有 个.10 .(午练10T10变式)从-3, -4, 0, 5中取出两个数,所得的最大乘积是 . 三.解答题(共70分)11. (8分)(课本P17练一练变式)把下列各数填入相应的集合中:-6, 9.3, - 1,15, 0, -0.33, -0.333--, 1.41421356, -3 , 3.3030030003 …,-3.1415926. 6 正数集合:{ 日|}负数集合:{ …} 有理数集合:{ …} 无理数集合:{ …}12. (10分)(午练6T11变式)在数轴上表示下列各数,并用“V”号连接起来-(-5), -|2|, -1 1 , 0.5, -(-3), -[-4|, 3.5.213. (12分)(课本习题2.5-2.6)计算:⑴(-73)-41D. (-6) -(-11)=17 )A. 3V-7B. -5.3 V-5.4C.D. -|-3.71|>-(-0.84)(2)(-1)¥-8)166(3)(- 5)-(-0.2)+114. (12分)(午练10,11变式)计算: (1)( 1 +A- 5)x ( -60)4 12 6⑶(-5)X(-3 6)+ (-7) X ( -3-) +12X (-36) (4) 199 X (-8)7 7 7 1615. (8分)(午练11T12变式)根据下列语句列式并计算:1(2) 32与6的商减去-I 所得的差.3I 40加上-25的和与-3所得的积16. (8 分)果.(2)(-— ) x(-3 —) + (-1—) + 3;2 2 417. (12分)(午练8T13变式)高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正, 向西为负,当天的行驶记录如下(单位:千米)+17, -9, +7, -17, -3, +12, -6, -8, +5, +16.(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远? (2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为 8升/千米,则这次养护共耗油多少升?18 .下列说法中,正确的有()①两个有理数的和不小于每个加数 ③相反数等于本身的数为零A. 0个B. 1个C. 2个19 .计算:1-2+3-4+ • • +99-100 的值为()A. 5050B. 100C. 50D. -5020 .小红在写作业时,不慎将一滴墨水滴在数轴上,根据图中的数据,请确定墨迹遮盖住的整数的和为 .21 .若|a|=3, |b|=5, abv0,贝U a+b=.22 .有三个互不相等的整数 a, b, c,如果abc=3,那么a+b+c=23 .将一列有理数-1, 2,-3, 4,-5, 6,……,如图所示有序排列.根据图中的排列规律可知, “峰 1”中峰顶的位置(C 的位置)是有理数 4,那么,“峰6”中C 的位置是有理数②两个有理数的差不大于被减数④多个不为零的有理数相乘,当负因数有奇数个时积为负.D. 3个三.解答题(共32分)24. (10分)如图,小明有5张写着不同数的卡片,请你按照题目要求抽出卡片,完成下列问题(1)从中取出3张卡片,使这3张卡片上数字的乘积最大,如何抽取?最大值是多少?(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?25. (12分)(1)已知十(-a) ]=5,求a的相反数(2)已知x的相反数是2,且2x+3a=5,求a的值.26.(10分)已知点A, B是数轴上的点,且点A表示数-3,请参照图并思考,完成下列各题:I - ।।- .....................-5 -4 -3 -2 -1 0 1 2 3 4 5(1)将A点向右移动4个单位长度,那么终点B表示的数是 ,此时A, B两点间的距离是.(2)若把数轴绕点A对折,则对折后,点B落在数轴上的位置所表示的数为.(3)若(1)中点B以每秒2个单位长度沿数轴向左运动,A不动,多长时间后,点B与点A距离为2个单位长度?试列式计算.七年级数学答案第一部分1.A2.B3.C4.C5.-76. -50m7.厘米.8. ±5.9.4 10.12…}6无理数集合:{-3 , 3.3030030003…,… }12.图略1c / C 、 C , 、—V0.5V- (-3) v 3.5V- (-5) 2(2) 7 (3)0 (4)-12 2(2)-7 (3)0 (4)-159 152(-3户 15 (-3)=-45(2) 32 +6-(- 1)=16 + : =173 3 3 316 .解:输入-1, -1+4-(-3)-5=3+3-5=1<2重新输入1, 1+4-(-3)-5=5+3-5=3>2,可以^^出.输出的结果为 3.17 . (1 )根据题意可得:向东走为“ +”,向西走为“-”;则收工时距离等于 +17-9+7-17-3+12-6-8+5+16=+14 (千米), 所以最后到达出发点正东方向移动 14千米处.(2)最远处离出发点有 17千米; (3)从开始出发,一共走的路程为 |+17|+|-9|+|+7|+|-17|+|-3|+|+12|+|-6|+|-8|+|+5|+|+16|=100 (千米),故从出发开始到结束油耗为 100X 8=800 (升).第二部分18 .C19.D20.-521. ±222.-323.-2924 . (1)抽取的3张卡片是-7、-5、+4,乘积的最大值为140. (2)抽取的2张卡片是-7、1,商的最小值-7.25 .(1)由-[-(-a) ]=5,得-a=5,则 a=-5.,a 的相反数是 8. (2)由x 的相反数是2,知x=-2,则-4+3a=5,有3a=9,解得:a=3 26.(1)1,4. (2)-7(3)[ 1-(-3)-2] 2=1,+1-(-3)+2] 2=3,+所以,1或3秒钟后,点B 与点A 距离为2个单位长度.-|-4|<-|2|<-1 13.(1)-11414.(1)10 15.(1)(40-25)。

人教版七年级数学上学期第一次月考试题及答案

人教版七年级数学上学期第一次月考试题及答案

七年级上学期第一次月考数学试卷一、选择题1.2的相反数是()A.﹣B.C.2D.﹣22.设a为最小的正整数,b是最大的负整数,c是绝对值最小的数,d是倒数等于自身的有理数,则a﹣b+c ﹣d的值为()A.1B.3C.1或3 D.2或﹣13.已知数轴上三点A、B、C分别表示有理数a、1、﹣1,那么|a+1|表示()A.A与B两点的距离B.A与C两点的距离C.A与B两点到原点的距离之和D.A与C两点到原点的距离之和4.1339000000用科学记数法表示为()A.1.339×108B.13.39×108C.1.339×109D.1.339×10105.在﹣(﹣2011),﹣|﹣2012|,(﹣2013)2,﹣20142这4个数中,属于负数的个数是()A.1B.2C.3D.46.若|﹣a|+a=0,则()A.a>0 B.a≤0 C.a<0 D.a≥07.对于有理数a、b,如果ab<0,a+b<0.则下列各式成立的是()A.a<0,b<0 B.a>0,b<0且|b|<a C.a<0,b>0且|a|<b D.a>0,b<0且|b|>a 8.如果四个互不相同的正整数m,n,p,q满足(6﹣m)(6﹣n)(6﹣p)(6﹣q)=4,那么m+n+p+q=()A.24 B.25 C.26 D.289.如图,数轴上的A、B、C三点所表示的数分别为a、b、c,AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在()A.点A的左边B.点A与点B之间C.点B与点C之间D.点C的右边10.若x是不等于1的实数,我们把称为x的差倒数,如2的差倒数是=﹣1,﹣1的差倒数为.现已知,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2014的值为()A.B.C.D.4二、填空题11.若m、n满足|m﹣2|+(n+3)2=0,则n m=.12.对于任意非零有理数a、b,定义运算如下:a*b=(a﹣2b)÷(2a﹣b),(﹣3)*5=.13.按照如图所示的操作步骤,若输入的值为3,则输出的值为.14.观察下列运算:81=8,82=64,83=512,84=4096,85=32768,86=262144,…,则81+82+83+84+…+82014的和的个位数字是.三、计算题15.计算:(1)﹣4﹣28﹣(﹣29)+(﹣24);(2)|﹣1|﹣2÷+(﹣2)2.16.计算:(1)(﹣+)×(﹣42);(2)﹣14+[4﹣(+﹣)×24]÷5.17.计算:(1)4×(﹣3)2﹣5×(﹣2)+6;(2)﹣14﹣×[3﹣(﹣3)2].四、解答题18.若m>0,n<0,|n|>|m|,用“<”号连接m,n,|n|,﹣m,请结合数轴解答.19.已知|a|=3,|b|=5,且a<b,求a﹣b的值.20.已知:有理数m所表示的点与﹣1表示的点距离4个单位,a,b互为相反数,且都不为零,c,d互为倒数.求:2a+2b+(﹣3cd)﹣m的值.21.某人用400元购买了8套儿童服装,准备以一定价格出售.如果以每套儿童服装55元的价格为标准,超出的记作正数,不足的记作负数,记录如下:+2,﹣4,+2,+1,﹣2,﹣1,0,﹣2 (单位:元)(1)当他卖完这八套儿童服装后盈利(或亏损)了多少元?(2)每套儿童服装的平均售价是多少元?22.已知a、b、c在数轴上的对应点如图所示,化简|a|﹣|a+b|+|c﹣a|+|b+c|.23.已知|ab﹣2|与|a﹣1|互为相互数,试求下式的值:+++…+.一、选择题1.考点:相反数.分析:根据相反数的概念作答即可.解答:解:根据相反数的定义可知:2的相反数是﹣2.故选:D.点评:此题主要考查了相反数的定义:只有符号相反的两个数互为相反数.0的相反数是其本身.2.考点:倒数;有理数;绝对值.专题:计算题.分析:根据最小的正整数是1,最大的负整数是﹣1,绝对值最小的数是0,倒数等于自身的有理数±1,分别求出a,b,c及d的值,由d的值有两解,故分两种情况代入所求式子,即可求出值.解答:解:∵设a为最小的正整数,∴a=1;∵b是最大的负整数,∴b=﹣1;∵c是绝对值最小的数,∴c=0;∵d是倒数等于自身的有理数,∴d=±1.∴当d=1时,a﹣b+c﹣d=1﹣(﹣1)+0﹣1=1+1﹣1=1;当d=﹣1时,a﹣b+c﹣d=1﹣(﹣1)+0﹣(﹣1)=1+1+1=3,则a﹣b+c﹣d的值1或3.故选C.点评:此题的关键是弄清:最小的正整数是1,最大的负整数是﹣1,绝对值最小的数是0,倒数等于自身的有理数±1.这些知识是初中数学的基础,同时也是20XX届中考常考的内容.3.考点:数轴;绝对值.分析:此题可借助数轴用数形结合的方法求解、分析.解答:解:|a+1|=|a﹣(﹣1)|即:该绝对值表示A点与C点之间的距离;所以答案选B.点评:此题综合考查了数轴、绝对值的有关内容.4.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将1339000000用科学记数法表示为:1.339×109.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.考点:正数和负数;相反数;绝对值;有理数的乘方.分析:求出每个式子的值,再根据正数和负数的定义判断即可.解答:解:﹣(﹣2011)=2011,是正数,﹣|﹣2012|=﹣2012,是负数,(﹣2013)2=20132,是正数,﹣20142是负数,即负数有2个,故选B.点评:本题考查了正数和负数,相反数,绝对值,有理数的乘方和化简等知识点的应用.6.考点:绝对值.分析:根据互为相反数的和为0,可得a与|a|的关系,根据负数的绝对值是它的相反数,可得绝对值表示的数.解答:解:|﹣a|+a=0,∴|a|=﹣a≥0,a≤0,故选:B.点评:本题考查了绝对值,先求出绝对值,再求出a的值,注意﹣a不一定是负数.7.考点:有理数的乘法;有理数的加法.分析:根据有理数的乘法法则,由ab<0,得a,b异号;根据有理数的加法法则,由a+b<0,得a、b 同负或异号,且负数的绝对值较大,综合两者,得出结论.解答:解:∵ab<0,∴a,b异号.∵a+b<0,∴a、b同负或异号,且负数的绝对值较大.综上所述,知a、b异号,且负数的绝对值较大.故选D.点评:此题考查了有理数的乘法法则和加法法则,能够根据法则判断字母的符号.8.考点:代数式求值;多项式乘多项式.专题:计算题.分析:由题意m,n,p,q是四个互不相同的正整数,又(6﹣m)(6﹣n)(6﹣p)(6﹣q)=4,因为4=﹣1×2×(﹣2)×1,然后对应求解出m、n、p、q,从而求解.解答:解:∵m,n,p,q互不相同的是正整数,又(6﹣m)(6﹣n)(6﹣p)(6﹣q)=4,∵4=1×4=2×2,∴4=﹣1×2×(﹣2)×1,∴(6﹣m)(6﹣n)(6﹣p)(6﹣q)=﹣1×2×(﹣2)×1,∴可设6﹣m=﹣1,6﹣n=2,6﹣p=﹣2,6﹣q=1,∴m=7,n=4,p=8,q=5,∴m+n+p+q=7+4+8+5=24,故选A.点评:此题是一道竞赛题,难度较大,不能硬解,要学会分析,把4进行分解因式,此题主要考查多项式的乘积,是一道好题.9.考点:实数与数轴.分析:根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.解答:解:∵|a|>|c|>|b|,∴点A到原点的距离最大,点C其次,点B最小,又∵AB=B C,∴原点O的位置是在点B、C之间且靠近点B的地方.故选C.点评:本题考查了实数与数轴,理解绝对值的定义是解题的关键.10.考点:规律型:数字的变化类;倒数.分析:根据差倒数的定义分别计算出x1=﹣,x2==,x3==4,x4=﹣=﹣,…则得到从x1开始每3个值就循环,而2014=3×671+1,所以x2014=x1=﹣.解答:解:x 1=﹣,x 2==,x3==4,x4=﹣=﹣,…2014=3×671+1,所以x2014=x1=﹣.故选:A.点评:此题考查了数字的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.二、填空题11.考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质可求出m、n的值,再将它们代入n m中求解即可.解答:解:∵m、n满足|m﹣2|+(n+3)2=0,∴m﹣2=0,m=2;n+3=0,n=﹣3;则n m=(﹣3)2=9.故答案为:9.点评:本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.12.考点:有理数的混合运算.专题:新定义.分析:利用题中的新定义计算即可得到结果.解答:解:根据题意得:(﹣3)*5=(﹣3﹣10)÷(﹣6﹣5)=.故答案为:.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.13.考点:代数式求值.专题:图表型.分析:根据运算程序列式计算即可得解.解答:解:由图可知,输入的值为3时,(32+2)×5=(9+2)×5=55.故答案为:55.点评:本题考查了代数式求值,读懂题目运算程序是解题的关键.14考点:尾数特征;规律型:数字的变化类.分析:易得底数为8的幂的个位数字依次为8,4,2,6,以4个为周期,个位数字相加为0,呈周期性循环.那么让2014除以4看余数是几,得到相和的个位数字即可.解答:解:2014÷4=503…2,循环了503次,还有两个个位数字为8,4,所以81+82+83+84+…+82014的和的个位数字是503×0+8+4=12,故答案为:2.点评:本题主要考查了数字的变化类﹣尾数的特征,得到底数为8的幂的个位数字的循环规律是解决本题的突破点.三、计算题15.考点:有理数的混合运算.专题:计算题.分析:(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算除法运算,最后算加减运算即可得到结果.解答:解:(1)原式=﹣4﹣28+29﹣24=﹣27;(2)原式=1﹣6+4=﹣1.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.考点:有理数的混合运算.专题:计算题.分析:(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.解答:解:(1)原式=﹣7+30﹣28=﹣5;(2)原式=﹣1+(4﹣9﹣4+18)÷5=﹣1+=.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.考点:有理数的混合运算.专题:计算题.分析:(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.解答:解:(1)原式=4×9+10+6=36+10+6=52;(2)原式=﹣1﹣×(﹣6)=﹣1+1=0.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、考点:有理数大小比较;数轴;绝对值.分析:根据已知得出n<﹣m<0,|n|>|m|>0,在数轴上表示出来,再比较即可.解答:解:因为n<0,m>0,|n|>|m|>0,∴n<﹣m<0,将m,n,﹣m,|n|在数轴上表示如图所示:用“<”号连接为:n<﹣m<m<|n|.点评:本题考查了有理数的大小比较,绝对值的应用,注意:在数轴上表示的数,右边的数总比左边的数大.19.考点:绝对值.分析:计算绝对值要根据绝对值的定义求解,注意在条件的限制下a,b的值剩下2组.a=3时,b=5或a=﹣3时,b=5,所以a﹣b=﹣2或a﹣b=﹣8.解答:解:∵|a|=3,|b|=5,∴a=±3,b=±5.∵a<b,∴当a=3时,b=5,则a﹣b=﹣2.当a=﹣3时,b=5,则a﹣b=﹣8.点评:本题是绝对值性质的逆向运用,此类题要注意答案一般有2个.两个绝对值条件得出的数据有4组,再添上a,b大小关系的条件,一般剩下两组答案符合要求,解此类题目要仔细,看清条件,以免漏掉答案或写错.20.考点:代数式求值;数轴;相反数;倒数.分析:根据数轴求出m,再根据互为相反数的两个数的和等于0可得a+b=0,互为倒数的两个数的乘积是1可得cd=1,然后代入代数式进行计算即可得解.解答:解:∵有理数m所表示的点与﹣1表示的点距离4个单位,∴m=﹣5或3,∵a,b互为相反数,且都不为零,c,d互为倒数,∴a+b=0,cd=1,当m=﹣5时,原式=2a+2b+(﹣3cd)﹣m,=﹣1﹣3×1﹣(﹣5),=﹣1﹣3+5,=1,当m=3时,原式=2a+2b+(﹣3cd)﹣m,=﹣1﹣3﹣3,=﹣7,综上所述,代数式的值为1或﹣7.点评:本题考查了代数式求值,主要利用了数轴,相反数的定义,倒数的定义,整体思想的利用是解题的关键.21.考点:正数和负数.专题:计算题.分析:(1)所得的正负数相加,再加上预计销售的总价,减去总进价即可得到是盈利还是亏损.(2)用销售总价除以8即可.解答:解:(1)售价:55×8+(2﹣4+2+1﹣2﹣1+0﹣2)=440﹣4=436,盈利:436﹣400=36(元);(2)平均售价:436÷8=54.5(元),答:盈利36元;平均售价是54.5元.点评:此题考查正数和负数;得到总售价是解决本题的突破点.22.考点:整式的加减;数轴;绝对值.分析:本题涉及数轴、绝对值,解答时根据绝对值定义分别求出绝对值,再根据整式的加减,去括号、合并同类项即可化简.解答:解:由图可知,a>0,a+b<0,c﹣a<0,b+c<0,∴原式=a+(a+b)﹣(c﹣a)﹣(b+c)=a+a+b﹣c+a﹣b﹣c=3a﹣2c.点评:解决此类问题,应熟练掌握绝对值的代数定义,正数的绝对值等于它本身,负数的绝对值等于它的相反数.注意化简即去括号、合并同类项.23.考点:代数式求值;非负数的性质:绝对值.分析:根据互为相反数的两个数的和等于0列方程,再根据非负数的性质列式求出a、b,然后代入代数式并裂项解答即可.解答:解:∵|ab﹣2|与|a﹣1|互为相互数,∴|ab﹣2|+|a﹣1|=0,∴ab﹣2=0,a﹣1=0,解得a=1,b=2,因此,原式=+++…+,=1﹣+﹣+﹣+…+﹣,=1﹣,=.点评:本题考查了代数式求值,绝对值非负数的性质,难点再利用裂项.。

河北省沧州市青县第二中学2024-2025学年七年级上学期第一次月考数学试卷

河北省沧州市青县第二中学2024-2025学年七年级上学期第一次月考数学试卷

河北省沧州市青县第二中学2024-2025学年七年级上学期第一次月考数学试卷一、单选题1.计算32-+的值是()A .1-B .1C .2-D .02.下列各数中:+5、-2.5、43-、2、75、-(-7)、0、3-+,负有理数有()A .2个B .3个C .4个D .5个3.若23x y -与m x y 是同类项,则m 的值为()A .3-B .1C .2D .34.若()(3010)5--+=-,则括号内的数是()A .15B .15-C .25-D .45-5.一种面粉的质量标识为“250.25kg ±”,则下列面粉中合格的是()A .25.30kgB .24.80kgC .25.51kgD .24.70kg 6.用科学记数法表示:208000-是()A .52.810⨯B .52.0810-⨯C .62.0810-⨯D .62.0810⨯7.若定义新运算:*23a b a b =-⨯,请利用此定义计算()()1*2*3-的值为()A .116B .116-C .216D .216-8.有理数a 、b 在数轴上的对应点的位置如图所示,下列结论中错误的是()A .0b a ->B .a b>C .0ab <D .0a b +>9.下列四个选项中,为负整数的是()A .0B .﹣0.5CD .﹣310.在平面直角坐标系xOy 中,对于任意一点(,)P x y ,规定:,(,),x x y f x y y x y ⎧≥⎪=⎨<⎪⎩;比如34,4,(2,3)32f f ⎛⎫-=--= ⎪⎝⎭.当(,)2f x y =时,所有满足该条件的点P 组成的图形为()A.B.C.D.11.某种型号的变速自行车的主动轴上有三个齿轮,齿数分别是48,36,24;后轴上有四个齿轮,齿数分别是36,24,16,12,则这种变速车共有多少档不同的车速()A.4B.8C.12D.1612.若实数,,a b c满足条件1111a b c a b c++=++,则,,a b c中()A.必有两个数相等B.必有两个数互为相反的数C.必有两个数互为倒数D.每两个数都不等二、填空题13.在比例尺为1:8000000的地图上,量得,A B两地在地图上的距离为3.5厘米,即实际距离为28000000厘米.数据28000000用科学记数法可表示为.14.《易经》中记载,远古时期人们通过结绳记数.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,示例:图①表示的数量为2342063626161838+⨯+⨯+⨯+⨯=(个).则图②表示的数量为个.15.计算器上有一个倒数键,能求出输入的不为零的数的倒数(注:有时需先按或键,才能实现此功能,下面不再说明).例如,输入2,按下键,则得0.5.现在计算器上输入某数,再依下列顺序按键:,在显示屏上的结果是0.75-,则原来输入的某数是.16.《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特殊的自然数——“纯数”.定义:对于自然数n ,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n 为“纯数”,例如:32是“纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.那么,小于100的自然数中,“纯数”的个数为个.三、解答题17.初一年级学生在5名教师的带领下去公园秋游,公园的门票为每人30元.现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都7.5折收费.(1)若有m 名学生,用代数式表示两种优惠方案各需多少元?(2)当60m =时,采用哪种方案优惠?(3)当105m =时,采用哪种方案优惠?18.下列用科学记数法表示的数,原来各是什么数?(1)5210⨯;(2)35.1810⨯;(3)67.0410⨯.19.计算:(﹣2)3÷4﹣(﹣1)2021+|﹣6|.20.观察下列每对数在数轴上的对应点间的距离:4与2-,3与5,2-与6-,4-与3.回答问题:(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?(2)若数轴上的点A 表示的数为x ,点B 表示的数为1-,则A 与B 两点间的距离可以表示为_____;(3)结合数轴可得23x x -++的最小值为_____;(4)结合数轴可得237x x -++=时x 的值为_____.21.我们知道:在实数体系中,一个实数的平方不可能为负数,即20a ≥,但是,在复数体系中,我们规定:2i 1=-,这个数i 叫做虚数单位,形如i a b +(a ,b 为实数)的数就叫做复数,a 叫这个复数的实部,b 叫这个复数的虚部.请阅读以下材料,解决问题.它有如下特点:①它的加,减,乘法运算与整式的加,减,乘法运算类似.例如:2i i i 1=⨯=-,3i i i i 1i i =⨯⨯=-⨯=-;又如:()23i i 3i i 3i 1+=+=-;再如:()()()()2i 34i 2314i 53i ++-=++-=-.②若它们的实部和虚部分别相等,则称这两个复数相等;若它们的实部相等,虚部且为相反数,则称这两个复数共轭,如12i +的共轭复数为12i -.根据材料回答:(1)填空:4i =______,2345i i i i +++=______,32i -的共轭复数为______.(2)()2i a b +的运算符合实数运算中的完全平方公式,求()223i +的值:(3)已知()()i i 25i a b ++=-,求()()222342023i i i i a b +++++ 的值.22.定义:若6a b +=,则称a 与b 是关于3的平衡数.(1)8与______是关于3的平衡数,5x -与_____是关于3的平衡数.(用含x 的代数式表示)(2)若()22234a x x x =-++,()22342b x x x x ⎡⎤=--+-⎣⎦,判断a 与b 是否是关于3的平衡数,并说明理由.23.把关于x 的二次三项式()20ax bx c a ++≠(或其一部分)配成完全平方式的方法叫做配方法,配方法在代数式求值,最值问题,解方程等问题中都有着广泛的应用.配方法的本质是完全平方公式的逆运用,即:()2222a ab b a b ±+=±.(1)292416m m -+=(_____)2;若多项式241P a a =+-,则P 的最小值为_____.(2)已知x ,y ,z 是ABC V 的边长,其中x ,y 满足2222816x y xy x +=+-,且z 为方程||82z -=的解,求ABC V 的周长.24.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起了对应关系,揭示了数与点之间的内在联系.操作一:-表示的点与______表示的点重(1)折叠纸面,若使1表示的点与1-表示的点重合,则3合;操作二:(2)折叠纸面,若使1表示的点与3表示的点重合,回答以下问题:-表示的点与数______表示的点重合;①3②若数轴上A、B两点之间距离为9(A在B的左侧),且A、B两点经折叠后重合,则A、B两点表示的数分别是______,______;操作三:(3)在数轴上剪下9个单位长度(从1-到8)的一条线段,并把这条线段沿某点折叠(如图所示).若得到的这三条线段的长度之比为1:1:2,则折痕处对应的点所表示的数可能是多少?。

初一数学上册第一次月考试卷四套

初一数学上册第一次月考试卷四套

初一数学上册第一次月考试卷1一、选择题 1、—3的相反数是 ( )A 、13 B 、-3 C 、—13D 、32、 下列式子中,正确的是 ( ) A 、∣-5∣ =5 B 、-∣-5∣ = 5 C 、215.0-=- D 、2121=--3、下列算式正确的是 ( )A 、(—14)—5= —9B 、0 —(—3)=3C 、(—3)—(—3)=—6D 、∣5—3∣= —(5—3) 4、下列说法正确的是 ( ) A .整数包括正整数和负整数; B.零是整数,但不是正数,也不是负数; C.分数包括正分数、负分数和零; D.有理数不是正数就是负数 5、下列各数中互为相反数的是( )A 、12-与0.2B 、13与-0.33C 、-2.25与124D 、5与-(-5)6、在0,-1,∣-2∣,-(-3),5,3.8,215-,16中,正整数的个数是( )A 、1个B 、2个C 、3个D 、4个7、一潜水艇所在的海拔高度是-60米,一条海豚在潜水艇上方20米,则海豚所在的高度是海拔 ( ) A. -60米 B. -80米 C.-40米 D.40米8、下列说法正确的是 ( )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小 A ①② B ①③ C ①②③ D ①②③④9、一个数的相反数比它的本身大,则这个数是 ( )A.正数B.负数C.0D.负数和010、若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,则mba cd m ++-2 值为 ( )A 、3- B 、3 C 、5- D 、3或5- 11、比较—2.4,—0.5,—(—2),—3的大小,下列正确的是 ( )A 、—3>—2.4>—(—2)>—0.5B 、—(—2)>—3>—2.4>—0.5C 、—(—2)>—0.5>—2.4>—3D 、—3>—(—2)>—2.4>—0.5二、填空题:12、321-的倒数是321-的相反数是的倒数是___________。

长郡外国语实验中学2024-2025学年七年级上学期第一次月考数学试题(解析版)

长郡外国语实验中学2024-2025学年七年级上学期第一次月考数学试题(解析版)

七年级数学素养能力初赛一、单选题(每题3分,共30分)1. 龙年春晚分会场,“长沙元素”吸引八方来客,春节假日接待旅游人数278.94万人次,同比增长109.25%,其中数据278.94万用科学记数法表示为( )A. 62.789410×B. 70.2789410×C. 72.789410×D. 527.89410× 【答案】A【解析】【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ×的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值1<时,n 是负整数.【详解】解:278.94万62789400 2.789410=×,故选:A .2. 刘徽在《九章算术注》中有“今两算得失相反,要令正负以名之.”可翻译为“今有两数若 其意义相反,则分别叫做正数和负数.”如果气温为“零上20℃”记作20+℃,那么气温为“零下10℃”应表示为( ) A. 20℃B. 10℃C. 10−℃D. 20−℃【答案】C【解析】【分析】此题主要用正负数来表示具有意义相反的两种量:零上温度记作“+”,零下温度记作“−”,由此求解.【详解】解:气温为“零上20℃”记作20+℃,那么气温为“零下10℃”应表示为10−℃,故选:C .3. 0.8,()4−−, 1.5−−,20%,0,()26−,26−,()24−−这八个数中,非负数有( ) A. 7个B. 6个C. 5个D. 4个【答案】C【解析】 【分析】本题主要考查了有理数的分类.解题的关键是熟练掌握绝对值的化简,符号化简,乘方运算法则,有理数的分类.化简符号,根据有理数的分类进行解答即可.【详解】解:∵()44−−=, 1.5 1.5−−=−,()2636−=,2636−=−,()2416−−−,∴这八个数中,非负数有:0.8,()4−−,20%,0,()26−, 共5个.故答案为:C .4. 备受瞩目的郡外篮球社团即将开始招新,为保证后续社团活动的顺利开展,该社团负责人采购了一批篮球备用,现随机检测了4个篮球,其中质量超过标准的克数记为正数,不足的克数记为负数,从轻重的角度看,最接近标准的篮球是( )A. B. C. D.【答案】D【解析】【分析】本题考查了绝对值的意义和性质,先计算各选项的绝对值,然后比较即可,熟练掌握绝对值的意义是解题的关键. 【详解】解:∵1010+=,1212−=,+88=,55−=, ∴581012<<<,∴最接近标准的篮球是标记5g −球,故选:D .5. 有理数a 、b 在数轴上的位置如图所示,则下列各式的符号为正的是( )A. a b +B. a bC. abD. a b −【答案】D【解析】 【分析】本题主要考查了有理数与数轴,有理数的四则运算,先根据数轴得到0b a <<,b a >,再根据有理数的四则运算法则求解即可.【详解】解;由题意得,0b a <<,b a >,∴0000aa b ab a b b+<<<−>,,,,∴四个选项中只有D 选项中式子符号为正,故选:D .6. 现规定一种新运算“*”:1*a b b a =−,如145*1155=−=−,计算(2)*3−=( ) A. 5−B. 1−C. 72−D. 52【答案】C【解析】 【分析】此题考查了新定义运算,有理数的减法,根据新定义运算列式求解即可. 【详解】17(2)*3322−=−−=−. 故选:C . 7. 下列说法中,正确的有( )①任何数乘以0,其积为零;②0除以任何一个数,其商为零;③任何有理数的绝对值都是正数;④两个有理数相比较,绝对值大的反而小.A. 2个B. 3个C. 4个D. 1个【答案】D【解析】【分析】有理数的除法法则,绝对值的性质,有理数的大小比较法则等知识点,能熟记知识点是解此题的关键,①0乘以任何数都等于0,0除以任何一个不等于0的数都得0,③两个负数比较大小,其绝对值大的反而小,④正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值等于0.根据有理数的乘法法则即可判断①;根据有理数的除法法则即可判断②;根据绝对值的性质即可判断③;根据有理数的大小比较法则即可判断④.【详解】解:任何数乘以0,其积为零,故①正确;0除以任何一个不等于0的数,其商为零,故②错误;0的绝对值是0,不是正数,故③错误; 如2200||==,, ∵20>,∴20>,即两个有理数比较大小,绝对值大的反而小不对,故④错误;所以正确的有1个,故选:D的8. 若9,4x y ==,且0x y +<,那么x y −的值是( ) A. 5或1B. 5或13−C. 5−或13D. 5−或13−【答案】D【解析】 【分析】本题考查了绝对值的化简计算,有理数的加减运算;根据9x =,4y =,且0x y +<,得到9x =−,4y =±,代入计算即可. 【详解】∵9x =,4y =,且0x y +<,∴9x =−,4y =±,∴9413x y −=−−=−或()945x y −=−−−=− 故选D .9. 已知非零实数a ,b ,c ,满足1b a c a b c ++=−,则||abc abc等于( ) A. ±1B. ﹣1C. 0D. 1 【答案】D【解析】 【详解】1b a c a b c++=− ,∴a,b,c 两个是负数,一个是正数,0abc ∴>, 1abcabc ∴=.选D.点睛:(1)b a c a b c++需要分类讨论,a,b,c 同正,同负,两正一负,两负一正. (2)化简绝对值公式:|x |,0,0x x x x −< = ≥ . 10. 如图,圆的周长为4个单位长度,在该圆的4等分点处分别标上0,1,2,3,先让圆周上表示数字0的点与数轴上表示1−的点重合,再将圆沿着数轴向右滚动,则数轴上表示100的点与圆周上表示( )的点重合.A. 0B. 1C. 2D. 3【答案】B【解析】【分析】本题考查数轴,有理数的减法与除法,圆周上表示数字0的点与数轴上表示1−的点重合,滚动到100时,滚动了101个单位长度,用101除以4,余数即为重合点.【详解】解:圆周上表示数字0的点与数轴上表示1−的点重合,()1001101−−=,1014251÷= ,∴数轴上表示100的点与圆周上表示1的点重合.故选:B二、填空题(每题3分,共18分)11. 比较大小:23−____34−(填“>”“<”或“=”) 【答案】>【解析】【分析】本题考查了有理数的大小比较,根据两个负数,绝对值大的反而小即可判断求解,掌握有理数的大小比较法则是解题的关键. 【详解】解:2233−=,3344−=, ∵2334<, ∴2334−>−, 故答案为:>.12. a 的相反数是23−,则a 的倒数是______. 【答案】32【解析】【分析】本题考查了相反数和倒数的概念,先根据相反数的概念求出a 的值,再求倒数即可.熟练掌握概念是解题的关键. 【详解】解: a 的相反数是23−, 23a ∴=,a ∴的倒数是32. 故答案为:32. 13. 近似数46.1510×精确到______位.【答案】百【解析】【分析】本题考查了近似数,将数字46.1510×进行还原,然后再判断精确到的位数即可求解,正确还原数字是解题的关键.【详解】解:∵46.151061500×=,∴近似数46.1510×精确到百位,故答案为:百.14. 在-1,2,-3,0,5这五个数中,任取两个数相除,其中商最小是________.【答案】-5【解析】【分析】所给的五个数中,最大的数是5,绝对值最小的负数是-1,所以取两个相除,其中商最小的是:5÷(-1)=-5.【详解】∵-3<-1<0<2<5,所给的五个数中,最大的数是5,绝对值最小的负数是-1,∴任取两个相除,其中商最小的是:5÷(-1)=-5,故答案为:-5.【点睛】本题主要考查有理数的大小比较和有理数除法,解决本题的关键是要熟练掌握有理数大小比较和有理数除法法则.15. 在(-1)3,(-1)2,-22,(-2)3这四个数中,最大的数与最小的数的和等于_________.【答案】-7【解析】【详解】解:(-1)3=-1,(-1)2=1,-22=-4,(-2)3=-8,最大的数为1,最小的数为-8,故最大的数与最小的数的和=1+(-8)=-7.故答案为-7.16. 已知满足2a 3(ab 5)0−+−−=,则a b =________. 【答案】-8【分析】根据偶次幂具有非负性,绝对值具有非负性可得a -3=0,a -b -5=0,再解即可.【详解】解:由题意得:a -3=0,a -b -5=0,解得:a =3,b =-2,b a =-8,故答案为:-8.【点睛】此题主要考查了非负数的性质,关键是掌握偶次幂和绝对值具有非负性.三、解答题17. 计算:(1)()()()()7192315++−+++−;(2)313217524528−−+−+−; (3)111135532114×−×÷ ; (4)753719641836 −+−÷. 【答案】(1)4−(2)98−(3)225− (4)11【解析】【分析】本题考查了有理数的四则混合运算,有理数的乘法简便运算,掌握有理数的运算法则与运算律是解题的关键.(1)根据有理数的加减混合运算进行计算即可;(2)根据有理数的加减混合运算进行计算即可;(3)根据有理数的四则混合运算进行计算即可;(4)根据有理数的乘法分配律进行简便运算.【小问1详解】解:原式7192315=−+−7231519=+−−【小问2详解】 解:原式323711554822=−−+−−+ 118=−− 98=−; 【小问3详解】 解:原式1113456115=−××× 225=−; 【小问4详解】 解:原式75373696418 −+−× 75373636363696418=×−×+×−× 28302714=−+−11=.18(6分).已知m 的绝对值为1,a 和b 互为倒数,c 和d 互为相反数,求()()202450ab c d m −++−的值.18. 如图,数轴上每个刻度为1个单位长度上点A 表示的数是3−.(1)在数轴上标出原点,并指出点B 所表示的数是 ;(2)在数轴上找一点C ,使它与点B 的距离为2个单位长度,那么点C 表示的数为 ;(3)在数轴上表示下列各数,并用“<”号把这些数按从小到大连接起来.2.5,4−,152,122−,| 1.5|−,( 1.6)−+. 【答案】(1)见解析,4 (2)2或6 (3)数轴表示见解析,()11421.6 1.52.5522−<−<−+<−<< 【解析】【分析】本题主要考查了在数轴上表示有理数以及有理数的比较大小:(1)根据点A 表示3−即可得原点位置,进一步得到点B 所表示的数;(2)分两种情况讨论即可求解;(3)首先在数轴上确定表示各数的点的位置,再根据在数轴上表示的有理数,右边的数总比左边的数大用“<”号把这些数连接起来即可.【小问1详解】如图,O 为原点,点B 所表示的数是4,故答案为:4;【小问2详解】点C 表示的数为422−=或426+=. 故答案为:2或6;【小问3详解】| 1.5| 1.5 ,()1.6 1.6−+=−,在数轴上表示,如图所示:由数轴可知:()1142 1.6 1.5 2.5522−<−<−+<−<< 19. 今年“十•一”黄金周是7天的长假,梅花山虎园在7天假期中每天旅游人数变化如表(正号表示人数比前一天多,负号表示比前一天少) 日期 1日2日3日 4日 5日 6日 7日人数变化单位:万人 +1.8﹣0.6 +0.2 ﹣07 ﹣0.3 +0.5 ﹣0.7若9月30日的游客人数为0.2万人,问:(1)10月4日的旅客人数为 万人;(2)七天中旅客人数最多的一天比最少的一天多 万人?(3)如果每万人带来的经济收入约为150万元,则黄金周七天的旅游总收入约为多少万元?【答案】(1)0.9;(2)1.6;(3)1200万元.【解析】的.【分析】(1)根据题意列得算式,计算即可得到结果;(2)根据表格找出旅客人数最多的与最少的,相减计算即可得到结果;(3)根据表格得出1日到7日每天的人数,相加后再乘以100即可得到结果.【详解】解:(1)根据题意列得:0.2+(+1.8﹣0.6+0.2﹣0.7)=0.9;故答案是:0.9;(2)根据表格得:7天中旅客最多的是1日为2万人,最少的是7日为0.4万人,则七天中旅客人数最多的一天比最少的一天多2﹣0.4=1.6(万人);故答案是:1.6;(3)10月1日有游客:0.2+1.8=2 (万);10月2日有游客:2﹣0.6=1.4(万);10月3日有游客:1.4+0.2=1.6(万);10月4日有游客:1.6﹣0.7=0.9 (万);10月5日有游客:0.9﹣0.3=0.6 (万);10月6日有游客:0.6+0.5=1.1 (万);10月7日有游客:1.1﹣0.7=0.4 (万);黄金周七天游客:2+1.4+1.6+0.9+0.6+1.1+0.4=8(万),8×150=1200(万元),答:黄金周七天旅游总收入约为1200万元.【点睛】此题考查了有理数的混合运算的应用,弄清题意是解本题的关键.20. 观察下列三列数:1−、3+、5−、+7、9−、11+、…①-3、1+、7−、5+、11−、9+、…②3+、9−、15+、21−、27+、33−、…③(1)第①行第10个数是 ,第②行第15个数是 ;(2)在②行中,是否存在三个连续数,其和为1001?若存在,求这三个数;若不存在,说明理由; (3)若在每行取第k 个数,这三个数的和正好为599,求k 的值.【答案】(1)19+,31−(2)不存在,见解析 (3)301k =【解析】【分析】本题主要考查了数字规律,一元一次方程的应用,关键是找出数字规律.(1)根据规律进行计算即可;(2)设三个连续整数为()()11232n n −−−−,()()1212n n −−−,()()11212n n +−+−,根据题意分n 为奇数和偶数分别列出方程,根据方程的解的情况进行判断即可;的(3)分k 为奇数和偶数,分别列出方程,解方程即可求解.【小问1详解】解:根据规律可得,第①行第10个数是210119×−=;第②行第15个数是()215131−×+=−; 故答案为:19+;31−.【小问2详解】解:不存在.理由如下:由(1)可知,第②行数的第n 个数是()()1212n n −−−, 设三个连续整数为()()11232n n −−−−,()()1212n n −−−,()()11212n n +−+−, 当n 为奇数时,则2322122121001n n n −−−+−++−=,化简得,271001n −=,解得,504n =(舍)当n 为偶数时,则()()()2322122121001n n n −−−+−−−+−=, 化简得,251001n −−=,解得,503n =−(不合题意,舍去), 综上,不存在三个连续数,其和为1001.【小问3详解】解:当k 为奇数时,根据题意得,()()()2121321599k k k −−−++×−=, 解得,301k =,当k 为偶数时,根据题意得,()()()2123321599k k k ++−−−=, 解得,299k =−(舍去), 综上,301k =.21. 【概念学习】定义新运算:求若干个相同的有理数(均不等于0)的商的运算叫做除方、比加222÷÷,()()()()3333−÷−÷−÷−等,类比有理数的乘方,我们把222÷÷写作2③,读作“2的圈3次方”,()()()()3333−÷−÷−÷−写作()3−④,读作“()3−的圈4次方”.一般地,把n aa a a a÷÷÷ 个记作:a ⓝ,读作“a 的n 次方”,特别地,规定:a a =①.【初步探究】(1)直接写出计算结果:2023=②______;(2)若n 为任意正整数,下列关于除方的说法中,正确的有______:(横线上填写序号)A .任何非零数的圈2次方都等于1B .任何非零数的圈3次方都等于它的倒数C .圈n 次方等于它本身的数是1或1−D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?(3)请把有理数(0)a a ≠的圈()3n n ≥次方写成幂的形式:a =ⓝ______;(4)计算:()2111472 −−÷−×− ④⑧⑨. 【答案】(1)1;(2)ABD ;(3)21n a − ;(4)24022401− 【解析】【分析】本题考查有理数的混合运算、新定义,解答本题的关键是明确新定义的内容,计算出所求式子的值.(1)根据题意,计算出所求式子的值即可;(2)根据题意,可以分别判断各个选项中的说法是否正确,从而可以解答本题;(3)根据题意,可以计算出所求式子的值.(4)根据题意,可以计算出所求式子的值.【详解】解:(1)由题意可得,2023202320231=÷=②,故答案为:1;(2)A .因为()10aa a a =÷=≠②,所以任何非零数的圈2次方都等于1,正确; B .因为()10a a a a a a =÷÷=≠③,所以任何非零数的圈3次方都等于它的倒数,正确; C .如()11−=②,则圈n 次方等于它本身的数是1或1−,说法错误;D .根据新定义以及有理数的乘除法法则可知,负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数,正确;故答案为:ABD ;(3)21111n a a a a a a a a a a − =÷÷÷÷=⋅⋅= ⓝ, 故答案为:21n a −; (4)解:()2111472 −−÷−×− ④⑧⑨ ()()()()918711111111967772222− =−÷÷⋅⋅⋅÷−÷−÷−÷−÷−×−÷−÷⋅⋅⋅÷−个个 61119647=−−÷× 112401=−− 24022401=−. 22. 定义:若A ,B ,C 为数轴上三点,若点C 到点A 的距离是点C 到点B 的距离2倍,我们就称点C 是[],A B 的美好点.例如;如图1,点A 表示数为1−,点B 表示的数为2,表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是[],A B 的美好点;又如,表示0的点D 到点A 的距离是1,到点B 的距离是2,那么点D 就不是[],A B 的美好点,但点D 是[],B A 的美好点.如图2,M ,N 为数轴上两点,点M 所表示的数为7−,点N 所表示的数为2.(1)点E ,F ,G 表示的数分别是3−,6.5,11,其中是[],M N 美好点的是________;写出[],N M 美好点H 所表示的数是___________.(2)现有一只电子蚂蚁P 从点N 开始出发,以2个单位每秒的速度向左运动.当t 为何值时,点P 恰好为M 和N 的美好点?【答案】(1)G ,4−或16−(2)1.5或3或9【解析】的【分析】(1)根据美好点的定义即可求解;(2)根据美好点的定义,分三种情况分别确定P 点的位置,进而可确定t 的值.【小问1详解】解:根据题意得∶()()()374,235EM EN =−−−==−−=,此时2EM EN ≠,故点E 不是[,]M N 美好点;()6.5713.5, 6.52 4.5FM FN =−−==−=,此时2FM FN ≠,故点F 不是[,]M N 美好点;()11718,1129GM GN =−−==−=,此时2GM GN =,故点G 是[,]M N 美好点;故答案是:G .设点H 所表示的数是x ,则7,2HM x HN x =+=−, ∵点H 为[],N M 美好点,∴2HN HM =, ∴227x x −=+,解得:4x =−或16−;故答案是:4−或16−.【小问2详解】解:第一情况:当P 为[],M N 的美好点,点P 在M ,N 之间,如图1,∵2MP PN =,()279MN =−−=,∴3PN =, ∴3 1.52t ==秒; 第二种情况,当P 为[],N M 的美好点,点P 在M ,N 之间,如图2,∵2PM PN =,()279MN =−−=,∴6PN =, ∴632t ==秒; 第三种情况,P 为[],N M 的美好点,点P 在M 左侧,如图3,∵22PN PM MN ==,()279MN =−−=,∴18PN =, ∴1892t ==秒; 综上所述,t 的值为:1.5或3或9.【点睛】本题考查实数与数轴、美好点的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考创新题目.。

初一月考数学试题

初一月考数学试题

七年级第一学期第一次月考数学试题时间:100分钟 满分120一、选择题(每小题3分,共36分) 1、下列图形中是圆柱的是( )A B C D2.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“友”相对的面上的汉字是( ) A.爱 B.国 C.善 D.诚3.下列说法中,正确的是( )A.直线比射线长B.两条直线也能进行度量和比较大小C.线段不可以测量D.射线只有一个端点,不可测量 4.如图,AB=8cm ,AD=BC=5cm ,则CD 等于( ) A.1cm B.2cm C.3cm D.4cm5.如果向北走6步记作+6步,那么向南走8步记作( ) A.+8步 B.-8步 C.+14步 D.-2步6.如图,数轴上两点A 、B 表示的数可能是( ) A. -2.5和2.5 B.-1.5和2.5 C.-1.5和3.5 D.-2.5和3.57.一个数的相反数等于这个数本身,这样的数有( ) A 、1个 B 、2个 C 、3个 D 、4个8、某山上的温度是8℃,山下的温度是-4℃,那么山上的温度比山下高( )℃. A.12 B.4 C.-4 D.-129.已知a 是最小的正整数,b 的绝对值是2,c 和d 互为相反数,则a+b+c+d=( ) A.3 B.8 -3 C.-1 D.3或-1 10.下列说法不正确的个数是( )①两个有理数的和可能等于零; ②两个有理数的和可能等于其中一个加数; ③两个有理数的和为正数时,这两个数都是正数; ④两个有理数的和为负数时,这两个数都是正数. A.1个 B.2个 C.3个 D.4个考号: 班级: 姓名: 座号:11.若x是2的相反数,|y|=3,则x-y的值是A. -5B. 1C. -1或5D.1或-512.有理数a、b在数轴上的位置如图所示,下列结论中正确的是()A.a<bB.b-a>0C.a+b<0D.a-b<0二、填空题(每小题3分,共15分)13.农民兴修水利,开沟挖渠时,先在两端立桩拉线,然后开挖,其中的道理是_____________。

初一数学第一次月考试卷

初一数学第一次月考试卷

上期第一次月考试题七年级 数学A 卷(100分)题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 答案C ;如果某温度高于0C ;那么高出的部分记为正;如果温度低于0C 0C 应记为( ) A .+0C B.+ C.- 0C D.2..一个数的倒数等于这个数本身;这个数是 ( )(A )1 (B )1- (C )1或1- (D )0 3.下列各计算题中;结果是零的是( ) (A )()|3|3--+ (B )|3||3|-++ (C )()[]33---- (D ))23(32-+ 4.. 下列说法正确的是 ( )(A)一个数的绝对值一定是正数 (B)任何正数一定大于它的倒数(C)-a 一定是负数 (D)零与任何一个数相乘;其积一定是零5.数轴上点A 表示-4;点B 表示2;则表示A 、B 两点间的距离的算式是 A.-4+2 B.-4-2 C. 2―(―4) D.2-46.若a =a ;则( ) A .a >0 B .a ≥0 C .a <0 D .a ≤07. 为迎接即将开幕的广州亚运会;亚组委共投入了2198000000元人民币建造各项体育设施;用科学记数法表示该数据是( )A 10100.2198⨯元B 6102198⨯元C 910198.2⨯元D 1010198.2⨯元8. 下列计算中;错误的是( )。

A.3662-=-B.161)41(2=± C.64)4(3-=- D.0)1()1(1000100=-+-9..一个月内;小丽的体重增长-1千克;意思就是这个月内 ( ) A 、小丽的体重减少-1千克 B 、小丽的体重增长1千克 C 、小丽的体重减少1千克 D 、小丽的体重没变化135;则这个数为 ( ) A .165 B .516C .165-D .516-a ;b 互为相反数;则下面四个等式中一定成立的是 ( )A .a +b =1B .a +b =0C .0a b +=D .0a b +=12.有理数a 、b 在数轴上的表示如图所示;那么( )A.-b >aB.-a <bC.b >aD.∣a ∣>∣b ∣ 13.下列各组数中;相等的一组是( )A .23和32B .|-2|3和|2|3C .-(+2)和|-2| D.(-2)2和-22 14.如果一个有理数的绝对值是8;那么这个数一定是( ) A.-8 8 C.8 D.以上都不对15. 如图是一个正方形盒的展开图;若在其中的三个正方形A 、B 、C 、内分别填入适当的数;使得它们折成正方形后相对的面上的两个数互为相反数;则 填入正方形A 、B 、C 内的三个数依次为( )(A) 1; -2; 0 (B) 0; -2; 1 (C) -2; 0; 1 (D) -2; 1; 0二、填空题(每小题3分;共21分)1.-2的倒数是 ; 绝对值等于5的数是 ;(第15题)CA B -1 022.计算 :=-÷)21(5 ;=-⨯-)()(72213 =-⨯-4)3( ; -(-2)4= . -23+(-3)2= . 3.14-π=3.根据语句列式计算: ⑴-6加上-3与2的积 ;⑵-2与3的和除以-3 ;4.比较大小: 4____3-- ;)21(+- +|21-|; -212 -313。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011初一上学期第一次月考题
:___________ 班级:___________ 得分:___________ (注意:本试卷满分100分共四页,时间120分钟)
一、选择题(每题3分、计30分)
1,一瓶矿泉水的标准质量500g ,如果比标准质量少5g 记为-5g,说明这瓶饮料的实际质量是495g ,那么508g 记为( )
A -8g B+8g C +2g D 0g
2,下列说法中正确的是( )
A 不是负数的数一定是正数
B 两个符号不同的数互为相反数
C 互为相反数的两个数一定不相等
D 带“-”号的数不一定是负数
3,下列各对数中,互为相反数的是 ( )
A .
()2.5-+与2.5-; B.()2.5++与2.5- ; C.()2.5--与2.5; D.2.5与()2.5++
4,在数轴上与A 点对应的数为-2,现在把A 点移动3个单位长度后得到点B ,则点B 所对应的数为( )
A 1
B -5
C 1或-5
D 无法确定
5,a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是 ( )
(A)a+b<0 (B)a+c<0
(C)a -b>0 (D)b -c< 0 a b 0 c
6,下列交换加数的位置的变形中,正确的是( ) A 、14541445-+-=-+- B 、1311131134644436
-
+--=+-- C.12342143-+-=-+- D 、4.5 1.7 2.5 1.8 4.5 2.5 1.8 1.7--+=-+- 7,如果|a|=-a ,那么一定有( )
A a>0
B a 大于等于0
C a 小于0 Da 小于等于0
8,10.0是有四舍五入得来的近似数,则下列各数中不可能的真值是( )
A 9.95
B 10. 019
C 10.05
D 9.99
9 x ,y 表示有理数,那么下列各数中一定为正值的是( )
A|x-6| B(x+y)的平方
C x 的平方+6
D (x+y )的三次方
10,有1000个数排一行,其中任意相邻的三个数中,中间的数等于它前后两数的和,若第一个数和第二个数都是1,则第1000个数的和等于( )
(A)1000 (B)1 (C)0 (D)-1
二.填空题(每题2分,计18分)
11,向南走—35米表示的实际意义是___________。

12,绝对值等于7的有理数是___________。

1
14,—(—0.25)^2的倒数是___________。

15,如果|x +8|=5,那么x = 。

16,一小商店一周的利润是1400元,平均每天的利润是___________。

17,630500保留三个有效数字的近似数是___________。

18、观察等式:1+3=4=2 2,1+3+5=9=3 2 ,1+3+5+7=16=4 2 ,1+3+5+7+9=25=5 2 ,……
猜想:(1) 1+3+5+7…+99 = ;
(2) 1+3+5+7+…+(2n-1)= _____________ 。

(结果用含n 的式子表示,其中n =1,2,3,……)。

19、规定图形表示运算a –b + c,图形表示运算w y z x --
+. 则 + =_______(直接写出答案).
三,计算题:(每题5分,计20分)(解答每一题时应写出过程!)
20、(1)15+(―
41)―15―(―0.25) (2) )32(9449)81(-÷⨯÷-
(3)(-1)^3-(-2)^2-{3+0.2(-1-0.5)} (4)25×
43―(―25)×2
1+25
四、解答题(共计22分)
21,在数轴上表示下列各数,并按从小到大的顺序用“ < ”把这些数连结起来。

(7分)
3.5 ,-3.5 ,0 , 2 ,-2 ,-
3
1 , 0.5
22,,若a ,b 互为相反数,c ,d 互为倒数,|M|=6,计算5cd —3a —3b+M 的值。

(7分)
23,已知:
4)2(,412=+=+y x ,求y x +的值。

(8分)
五、学以致用(数学来源于生活,数学服务于生活,希望数学使我们的生活更美好!)(共计10分) 24,(请你帮忙算一算)在“十·一”黄金周期间,市风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):
(1)请判断七天游客人数最多的是哪天?最少的是哪天?它们相差多少万人?(3分)
(2)若9月30日的游客人数为2万人,求这7天的游客总人数是多少万人?(2分)
25,王大爷家今年粮食丰收了,他一共收获了30袋稻谷,每袋重量如下(单位千克)
58 55 50 49 49 48 52 51 51 50 47 48 49 49 51 51 55 55 56 50 46 48 49 49 49 51 53 54 56 51
由于王大爷读书不多,要把这30袋稻谷的重量算出实不容易,你能用最科学的办法帮王大爷算出他家稻谷的总重量来吗?(方法科学记5分,不科学记3分)
2011初一第一次月考试题答案
一,选择题。

(每题3分,共计30分)
1~5:BDBCC 6~10: DBCCB
二,填空题。

(每题2分,共计18分)
11,向北走了3 5 米
12,7或-7 …………….. (只写一个不给分)
13,-1
14,-16
15,-3或-13…………….. (只写一个不给分)
16, 200
17, 6.31*10^5(6.31乘以10的5次方)
18,(1)50^2(或写成2500) (2)n^2(n的平方)
19,1
三,计算题。

(每题5分,共计20分)
注意本题没写过程只写对答案给3分,过程答案全对给5分,答案对了过程错了不给分,过程对了答案不对给2分
(1)0 (2)1|2 (或者可写为0.5)(3)-7.7 (4)225|4(或写成56又四分之一)
四,简答题。

(共计22分)
21,-3.5小于-2小于-1|3小于0小于0.5小于2小于3.5(本题7分,在数轴上标对的给3分,大小比较对的给4分)
22, 11或-1(可看具体情况酌情给分)
解:由题目知 a + b=0 ………………………(写出给1分) C d=1 …………………………… (写出给1分)
因为5cd - 3a-3b+M=5cd-3(a + b)+M
把已知条件带入上式则有:5cd-3a-3b+M=5+M
又因为 |M| =6 所以M=6或-6 …………… (写出给1分)
(1)当M=6时
原式=5+6=11 ………………………….(写出给2分)
(2)当M=-6时
原式=5+(-6)=-1……………………….(写出给2分)
综合(1)(2)知5cd- 3 a-3b+M=11或-1
23,(看情况酌情给分)共计8分
解:因为|x+1|=4
所以x=3或-5…………… .. (写出一个给1分,两个写出给2分)
又因为(y+2)^2=4
所以y=0或-4…………… .. (写出一个给1分,两个写出给2分)
(1)当x= 3 y= 0时 x +y=3+0=3…………(写出给1分)
(2)当x=3 y=-4 时 x +y=3+(-4)=-1………(写出给1分)
(3)当x=-5 y= 0时 x +y=-5+0=-5…………(写出给1分)
(4)当x=-5 y=-4时 x +y=-5+(-4)=-9………(写出给1分)
24,解:由题目知(正数表示比前一天多的人数,负数表示比前一天少的人数)因为不是对比同一天所以由表无法直接比较,现在选定9月30为参照日,则(正数表示比9月30多的人数,
(1)由表看出10月 3日游客人数最多………(答对给1分)
1 0月7 日游客人数最少………(答对给1
分)
相差2.2万人………(答对给1分)
(2)7天游客增长总人数为:
14+13.2=27.2(万人)………(写出给2分)
【如果没做的上诉答案的按下述给分】
7天游客增长总数:
1.6+
2.4+2.8+2.4+1.6+1.8+0.6=1
3.2…… (只写出给
1分)
7天标准人数为 2*7=14………(只写出给1分) 25,总重1530千克(看情况酌情给分,满分5分)。

相关文档
最新文档