在代数系统

合集下载

代数系统在计算机科学中的应用(new)

代数系统在计算机科学中的应用(new)

查出一个错误。这种方法在计算机中是使用
很普遍的一种纠错码,它的优点是所付出的
代价较小(只增加一位附加的奇偶校验位),
而且这种码的生成与检查也很简单,它的缺
点是不能纠正错误。
26
代数系统的应用
三、纠错码的选择
前面分析,我们发现S2无纠错能力,但 在S2中选取C2后,C2具有发现单错的能力。 同样,S3无纠错能力,但在S3中选取C3后, C3具有纠正单错的能力。从这里可以看出, 如何从一些编码中选取一些码字组成新码, 使其具有一定的纠错能力是一个很重要的课 题。 下面我们介绍一种很重要的编码——汉 明编码,这种编码能发现并纠正单个错误。
min
例如, dmin(S2)= dmin(S3)=1, dmin(C2)=2, dmin(C3)=3。
利用编码C的最小距离,可以刻画编码方式与 纠错能力之间的关系,我们有以下两定理:
22
代数ห้องสมุดไป่ตู้统的应用
〖定理2.1〗一个码C能检查出不超过k个错误 的充分必要条件为dmin(C)≥ k+1。
〖定理2.2〗 一个码C能纠正k个错误的充分必 要条件是dmin(C)≥ 2k+1。
24
代数系统的应用
例子2.4 奇偶校验码(Parity code)的编码
我们知道,编码S2={00,01,10,11}没有抗 干扰能力。但我们可以在S2的每个码字后增加一 位(叫奇偶校验位),这一位是这样安排的,它 使每个码字所含1的个数为偶数,按这种方法编码 后S2就变为 S2′={000,011,101,110}
18
代数系统的应用
定义2.2 Sn的任一非空子集C,如果是<C,ο>群,
即C是Sn的子群,则称码C是群码(Group Code)。

第五章 1代数系统的概念

第五章 1代数系统的概念

5-1 代数系统的引入
例2 下面均是二元运算的例子。 (1) A为集合,2A为其幂集。f : 2A×2A →2A 。f 可以 是∩、∪、-、。 (2) A={0,1}。f:AAA。f 可以是∧、∨、、 。
一般地,二元运算用符号“”、“◦”、“•”、 “△”、“◇”、“☆”等等表示,并将其写于 两个元素之间,如Z×Z→Z的加法:
定义5-2.1 设“”,“◦”均为集合A上的二元运 算。 (1) 若x, y∈A,都有xyA,则称“”运算在A 上是封闭的(Closed) 。即
xy( x A y A x y A) 在A上封闭
(2) 若x, y∈A,都有xy=yx,则称“”运算在A 上满足交换律(Commutativity) 。即
离散数学
(Discrete Mathematics)
第五章 代数结构(Algebraic Structure)
❖ 以具体代数为研究对象的经典代数,其研究内容、 基本理论和方法,主要反映在初等代数和高等代数 (工科的线性代数)两部分的现代教育中。
❖ 从19世纪早期由法国数学家Galois(1811-1832)创始, 近200年来经历起伏、逐渐成熟的代数系统,常被 人们冠以代数结构、抽象代数及近世代数(Modern Algebra)等美称。
xy(x A y A x y y x)
在A上可交换
5-2 运算及其性质
(3) 若x, y, z∈A,都有x(yz)=(xy)z,则称“” 运算在A上满足结合律(Associativity) 。即
在A上可结合 xyz( x A y A z A
x(y z) (x y) z)
(4) 若x, y, z∈A,都有x(y◦z)=(xy)◦(xz) ,则称 “”运算对“◦”运算满足左分配律; 若x, y, z∈A,都有(x◦y)z=(xz)◦(yz) ,则称“” 运算对“◦”运算满足右分配律。若二者均成立, 则称“”运算对“◦”运算满足分配律 (Distributivity) 。

用mathematica计算机代数系统求解数理方程

用mathematica计算机代数系统求解数理方程

用mathematica计算机代数系统求解数理方

要使用Mathematica计算机代数系统来求解数理方程,可以按照以下步骤进行:
1. 打开Mathematica软件。

2. 在计算机代数系统中,数理方程可以通过解方程的函数 `Solve` 或 `Reduce`来求解。

`Solve`函数会给出方程的明确解,而`Reduce`函数会给出方程的一般解。

3. 输入待求解的数理方程,例如:
```mathematica
Solve[x^2 + 2x + 1 == 0, x]
```
或者
```mathematica
Reduce[x^2 + 2x + 1 == 0, x]
```
4. 按下"Shift" + "Enter"执行代码。

5. Mathematica将输出方程的解,例如:
```mathematica
{{x -> -1}}
```
或者
```mathematica
x == -1
```
这表示方程的解为x=-1。

在Mathematica中还有一些其他的函数可以求解数理方程,如`NSolve`用于求解数值解,
`FindRoot`用于求解数值近似解等。

根据具体的数理方程类型和求解需求,可以选择适合的函数来求解数理方程。

代数系统简介

代数系统简介

代数系统简介一、代数系统的基本概念代数系统,也称为代数结构或代数系统,是数学中一个重要的概念,它由集合和定义在这个集合上的运算组成。

代数系统是代数学的基本研究对象,也是泛代数、抽象代数、代数学等领域中重要的研究对象。

代数系统通常由两个部分组成:一个是非空元素集合,称为代数系统的论域或标量域;另一个是定义在论域上的运算,这些运算需满足一定的性质或公理。

根据所涉及的运算不同,代数系统可分为不同类型,如群、环、域、格等。

代数系统的概念来源于对数学中不同分支中抽象概念的概括和总结,其研究范围包括数学中不同领域的许多分支。

例如,集合论、抽象代数、泛代数、拓扑学等都是研究代数系统的重要领域。

二、代数系统的分类根据所涉及的运算和性质的不同,代数系统有多种分类方式。

以下是其中几种常见的分类方式:1.根据所涉及的运算的性质,可以将代数系统分为有交换律和结合律的代数系统(如群、环、域)和没有交换律和结合律的代数系统(如格、布尔代数)。

2.根据运算是否涉及单位元和逆元,可以将代数系统分为有单位元的代数系统和无单位元的代数系统。

前者如群、环、域等,后者如格等。

3.根据所涉及的元素是否具有可交换性,可以将代数系统分为可交换的代数系统和不可交换的代数系统。

前者如交换群等,后者如李群等。

4.根据所涉及的元素是否具有无限性,可以将代数系统分为有限代数系统和无限代数系统。

前者如有限群等,后者如无限群等。

此外,还可以根据其他性质和特征对代数系统进行分类。

通过不同的分类方式,我们可以更好地了解和研究不同类型代数系统的特性和性质。

三、代数系统的性质代数系统的性质是指代数系统中元素之间通过运算所表现出来的关系和性质。

以下是几个常见的代数系统的性质:1.封闭性:如果对于代数系统中的任意两个元素x和y,它们的运算结果仍属于该集合,则称该运算满足封闭性。

封闭性是代数系统中一个重要的性质,它保证了运算结果的元素仍属于该系统。

2.结合律:如果对于代数系统中的任意三个元素x、y和z,有(x·y)·z=x·(y·z),则称该运算满足结合律。

400浅谈代数系统上的同态与同构

400浅谈代数系统上的同态与同构

400浅谈代数系统上的同态与同构何东东(陕西理工学院数学与计算机科学学院数教专业11级1班,陕西 汉中 723000)指导教师:郑红梅[摘要] 同态与同构是代数学中最重要,最基本的概念之一.本文通过总结同态与同构在各个代数系统上的一些应用,说明它们在代数学中的重要性.[关键词] 半群;群;环;格;同态;同构1 预备知识同态、同构是代数学中的重要概念,它们是研究群、环等代数系统的重要手段.同态是保持代数系统结构的映射,同态是同构的推广.同态与同构是代数学中最重要,最基本的概念之一.本文通过总结同态与同构在各个代数系统上的一些应用,说明它们在代数学中的重要性.下面首先对同态与同构的相关概念进行简单介绍.定义1.1]1[设集合A 到A 各有代数运算 和 ,且ϕ是A 到A 的一个映射.如果ϕ保持运算,即对A 中任意元素a ,b ,在ϕ之下由a a →,b b →总可得b a b a →,亦即b a b a =或)()()(b a b a ϕϕϕ =,则称ϕ为代数系统A 到A 的一个同态映射,若ϕ又是满射,则称ϕ为同态满射.如果A 到A 存在同态满射,则简称A 与A 同态,记为A A ~.定义 1.2]1[设ϕ是A 到A 的一个(关于代数运算 及 )同态满射.如果ϕ又是单射(即ϕ是双射),则称ϕ是A 到A 的一个同构映射.如果A 到A 存在同构映射,就说A 与A 同构,记为A A ≅.否则,即若A 到A 不存在任何同构映射,则称A 与A 不同构.A 到自身的同态映射,称为A 的自同态映射,简称A 的自同态.同样,A 到自身的同构映射,叫做A 的自同构映射,简称A 的自同构.定义1.3]2[设(S ,≤)是序列集,S T ⊆.如果存在S u ∈,使得)(T t u t ∈∀≤,则称u 为T 的一个上界.如果T 的一个上界u 具有如下的性质:对于T 的任一上界u ',都有u u '≤,则称u 为T 的一个最小上界,记为lub T .如果存在S l ∈使得)(T t T l ∈∀≤,则称l 为T 的一个下界.如果T 的一个下界l 具有以下性质:对于T 的任一个下界l ',都有l l ≤',则称l 为T 的一个最大下界,记为glb T .S 的上界和下界(如果存在,显然唯一)分别称为幺元和零元,记为1和0.由偏序的反对称性可知:偏序集中任意指定的两个元素的最小上界和最大下界有唯一性(如果它们存在).设),(≤L 是一个偏序集,如果L 中的任意两个元素都有最小上界和最大下界,则称),(≤L 是一个格.只含有有限多个元素的格称为有限格,否则称为无限格.定义 1.4]2[设R 是幺环,M 是一个交换群,如果映射(称R 在M 上的作用)M M R →⨯,ax x a ),(.满足下列条件:(1);,,,)(M y x R a ay ax y x a ∈∈∀+=+(2);,,,)(M x R b a bx ax x b a ∈∈∀+=+(3);,,),()(M x R b a bx a x ab ∈∈∀=(4),,1M x x x ∈∀=则称M 为环R 上的一个左模,或左R 模.如果将(3)改为;,,),()(R b a M x ax b x ab ∈∈∀=其余条件不变,则称M 为环R 上的一个右模,或右R 模.理论上讲,右模和左模没有本质的区别.如果M 为环R 上的一个右模,令R '为R 的反同构的环,则M 构成R '上的左模,当然,若R 是交换环,则R 上的左模和右模没有区别.定理1.1]3[设代数系统),( A 和)( ,A 同态,则(1)若 适合结合律, 也适合结合律;(2)若 适合交换律, 也适合交换律.定理 1.2]3[设⊗,⊕为集合A 的代数运算,⊗,⊕为集合A 的代数运算,且存在A 到A 的满射φ,使得A 与A 对于代数运算⊗,⊗来说同态,对于代数运算⊕,⊕来说也同态,那么(1)若⊗,⊕适合第一分配律,⊗,⊕也适合左分配律;(2)若⊗,⊕适合右分配律,⊗,⊕也适合右分配律. 2 主要内容下面将分别讨论群,环,格,模上同态同构在其中的应用以及比较它们在同态同构中的不同.2.1 群同态与同构定义2.1.1]4[设G 是一个非空集合, 是它的一个代数运算,如果满足以下条件:(1)结合律成立,即对G 中任意元素c b a ,,都有)()(c b a c b a =;(2)G 中有元素e ,叫做G 的左单位元,它对G 中每一个元素a 都有a a e = ;(3)对G 中每一个元素a ,在G 中都有元素1-a ,叫做a 的左逆元,使e a a =- 1;则称G 对代数运算 为一个群.定义 2.1.2]4[设G 和1G 是群,映射1:G G →ϕ称为由G 到1G 的群同态,如果ϕ保持群运算,即∀G b a ∈,,都有)()()(b a ab ϕϕϕ=.如果ϕ为单(满)射,则称ϕ为单(满)同态.定义 2.1.3]4[既单又满的同态称为同构.如果存在由G 到1G 的一个同构,则称G 同构于1G ,也说G 和1G 是同构的,记为1G G ≅.群G 到自身的同态及同构具有重要的意义,称之为群G 的自同态和自同构.)(End G 表示G 的全体自同态构成的集合,)(Aut G 表示G 的全体自同构构成的集合.对于映射的乘法,)(End G 构成一个有幺元的半群,而)(Aut G 构成一个群,称为G 的自同构群.定义2.1.4]4[像通常的映射一样,)(G ϕ称为ϕ的像,记为ϕim .又将1e 的原像称为ϕ的核,记为ϕker ,即})(|{ker 1e a G a =∈=ϕϕ.定理2.1.1]4[设1:G G →ϕ是群同态.则ϕϕim G ≅ker /.证明 记H =ϕker ,定义映射,im /:ϕψ→H G ).(a aH ϕ验证ψ是良定义的,即)(aH ψ与陪集代表a 的选取无关.如果bH aH =,即aH b ∈,则存在H h ∈使得ah b =.故)()()()()()()(aH a h a ah b bH ψϕϕϕϕϕψ=====,即ψ良定义.下面证明ψ是群同构,也就是证明ψ是单射,并且ψ也是满射. )()()()()()()))(((bH aH b a ab abH bH aH ψψϕϕϕψψ====,所以ψ是群同态.又设1)(e aH =ψ(1G 的幺元),即1)(e a =ϕ,故H a ∈,即)/(的幺元H G H aH =,所以ψ是单射.最后设ϕim g ∈,则存在G a ∈使得g a =)(ϕ.于是g a aH ==)()(ϕψ,这说明ψ必是满射.所以ψ同构.定理 2.1.2]3[设G 是一个群,G 是一个代数运算(也称为乘法)的集合.如果G G ~,那么G 也是一个群. 证明 因为G G ~,G 是群,其乘法满足结合律,故由定理1.1得,G 的乘法也满足结合律.设e 是群G 的单位元,a 是G 的任一元素,又设ϕ是G 到G 的满同态,且在ϕ之下e e →,a a → 于是a a e =,但是a ea =,故a a e = ,即e 是G 的单位元.又设1-a →1-a,则a a a a 11--→.但是e a a =-1,故e a a =-1,即1-a 是a 的逆元.因此,G 也是一个群. 本定理的意义在于,要验证一个集合G 对所指的代数运算作成群时,可找到一个已知群,并通过同态来实现.定理 2.1.3]4[设ϕ是群G 到群G 的一个同态映射(不一定是满射),则群G 的单位元的像是群G 的单位元,G 的元素a 的逆元的像是a 的像的逆元,即11--=a a 或11)()(--=a a ϕϕ.应该注意,如果集合G 与G 各有一个代数运算,且G G ~,则当G 为群时,G 却不一定是群.例 1 令G ={全体正负奇数},代数运算为数的普通乘法;又}1,1{-=G 关于数的普通乘法作成群,令ϕ:正奇数1→,负奇数-1→.则易知ϕ是G 到G 的一个同态满射,故G G ~.G 是群,但G 却不是群.当然,若G 与G 为各有一个代数运算的代数系统,且G G ≅,则当G 与G 中有一个是群时,另一个必然是群.例2 设G 是一个群,N 是G 的正规子群.令G a aN a f ∈∀=,)(.显然f 是群G 到商群N G 的满同态,这个满同态称为群G 到商群N G 的自然同态.定理2.1.4]4[设是G 到G 的同态映射(不一定是满映射),则1)当G H ≤时,有G H ≤)(ϕ且H ~)(H ϕ;2)当G H ≤时,有ϕG H ≤)(-1ϕ,且在ϕ之下诱导出)(-1H ϕ到H 的一个同态映射.证明 1)任取a ,b )(H ϕ∈且在ϕ之下令a a →,b b →.其中H b a ∈,.由于G H ≤,故H ab ∈,且b a ab →. 从而)(H b a ϕ∈,即)(H ϕ对G 的乘法封闭,且 )(~H H ϕ.但H 是子群,从而)(H ϕ也是群且是G 的子群.2)当G H ≤时,由于)(-1H ϕ显然非空,任取)(,1H b a -∈ϕ,且在ϕ之下令a a →,b b →则11--→b a ab ,其中,H b a ∈,.而G H ≤,故H b a ∈-1,从而1-b a )(-1H ϕ→,即G H ≤)(-1ϕ且显然ϕ诱导出)(-1H ϕ到H 的一个同态映射.定理2.1.5]3[群G 到群G 的同态映射ϕ是单射的充要条件,群G 的单位元e 的逆象只有e .证明 必要性显然,下证充分性.设ϕ是群G 到群G 的任一同态映射,且在ϕ之下e 的逆象只有e .又设在ϕ之下a a →,b b →,当b a ≠时,必有b a ≠:又若b a =,则由于e b a ab =→--11,故b a e ab ==-,1,矛盾.因此,ϕ是单射.定理 2.1.6]3[设f 是群G 到G '的一个满同态.若N 是G 的正规子群,则)(N f 是G '的正规子群.证明 设N 是G 的正规子群,可得,)(N f 是G '的子群.对于任意的)(N f n ∈'和任意的G a '∈',去N n ∈和G a ∈,使得n n f '=)(,a a f '=)(. 于是,有 )()())()(()()(111N f ana f a f n f a f a n a ∈=='''---,所以)(N f 是G '的正规子群.性质1]4[任何群G 与自身同构;证明 首先,对于任何群G ,单位变换G I 就是G 到自身的一个同构,因此G G ≅.所以性质成立.性质2]4[若群1G 与群2G 同构,则群2G 与群1G 同构;证明 1G 和2G 是两个群,并且1G 2G ≅,我们有b a b a f f ''=''-))((1,b a b f f a f f b fa f f ''=''=''----))(())(())()((1111,从而)()()(111b f a f b a f''=''---.因此1-f 是群2G 到群1G 的同构,从而12G G ≅,所以性质成立. 性质3]4[若群1G 与群2G 同构,群2G 与群3G 同构,则群1G 与群3G 同构;证明 假设1G ,2G 和3G 都是群,并且21G G ≅,32G G ≅,不妨设f 是群1G 到2G 的同构,g 是群2G 到3G 的同构.容易验证,gf 是群1G 到3G 的同构,因此31G G ≅,所以性质成立.定理2.1.7]2[设G 是一个群,N 是G 的正规子群.(1) 若H 是G 的子群,则 N HN N H H )()(≅ .(2) 若H 是G 的正规子群且H N ⊆,则H G N H H G ≅)()(.推论2.1.8]4[设1:G G →ϕ是群同态,则ϕϕim G ≅ker /. 定理2.1.9]4[(Cayley 定理)任何一个群都与某个变换群同构.证明 设G 是群.对与每一个G a ∈,定义G 的变换a σ如下: G x ax x a ∈∀=,)(σ.显而易见,a σ是G 的一一变换. 令{}G a G a ∈='σ.下面我们来阐明G '是G 上的一个变换群. 事实上,显然,我们有G I e G '∈=σ.此外对于任意的a σ,G b '∈σ,我们有)())((x abx x ab b a σσσ==,)())((11x I x x aa x G a a ===--σσ, )())((11x I x ax a x G a a ===--σσ,G x ∈∀,从而,G ab b a '∈=σσσ,G a a a a I ==--σσσσ11,所以,G '是G 上的一个变换群.现在考察由下式定义的G 到G '的映射fa a f σ=)(,G a ∈∀.显而易见,f 是满射.对于任意的G b a ∈,我们有b a b f a f σσ=⇒=)()( b a e e b a =⇒=⇒)()(σσ.因此f 是单射,从而,f 是双射.此外,我们有)()()(b f a f ab f b a ab ===σσσ,G b a ∈∀,.所以f 是G 到G '的同构,从而G G '≅.推论2.1.10]4[任何一个有限群都与某个置换群同构.2.2 环同态与同构由于环是有加,乘两种运算的代数系统,因此,定义同态映射时必须同时保持加,乘的同态性.定义2.2.1]5[设R 是一个环,S 是有加法和乘法的两种运算的代数系统,称R 到S 中的一个映射σ是环R 到S 中的一个同态映射,如果 )()()(b a b a σσσ+=+,)()()(b a ab σσσ=.若R 到R '上有一个同态映射,则称R 到R '同态,记为R ~R '.定义 2.2.2]5[如果σ是环R 到R '的一个同态映射,并且σ又是双射时,则称σ为环R 到R '的一个同构映射,当R 与R '之间存在同构映射时,称环R 与R '同构,记为R R ≅,特别的,当R R =时,称σ为环的一个自同构.定理2.2.1]5[设R 是一个环,S 是一个有加法和乘法的运算系统,若σ是R 到S 中的同态映射,则)(R R σ='也是一个环;)0(σ为R '的零元0';)()(a a σσ-=-;若R 有幺元而R '不止有一个元素,则R '有幺元且,σ(1)就是R '的壹1';若R a ∈可逆,则)(a σ在R '中可逆而且)(1-a σ就是1)(-a σ.设σ是R 到R '上的同态映射,R '的零0'的逆映像)0(1'-σ叫σ的核. 定理2.2.2]5[(环同态基本定理)设R 和R 是两个环,且R R ~.则1)这个同态的核N ,即零元的全体逆像,是R 的一个理想;2)R N R ≅/证明 设ϕ是环R 到环R 的一个同态满射.1)易知,核N 首先是环R 的一个子加群;其次,设R r N a ∈∈,,则r r a →→,0.于是在ϕ之下有00,00=→=→r ar r ra ,故N ar ra ∈,,即N 是R 的理想.2)令)(:a N a ϕσ→+,则由群同态基本定理知,作为加群,σ是N R /到R 的一个同构映射.又由于N ab N b N a +=++))((,而)()()(b a ab ϕϕϕ=,因此σ是N R /到环R 的一个同构映射,从而R N R ≅/.此定理表明,在同构意义下,每个环能而且只能与商环同态.推论2.2.3]6[设1:R R →ϕ是环同态,则1ker /R R ≅ϕ.定理 2.2.4]6[同态映射σ的核N 是R 的理想,设a '是R '的任意元素,则a '的逆映像})({)(1a a R a a '=∈='-σσ是N 的一个剩余类. 证明 因为σ是R 的加法群到R '的加法群上面的一个同态映射,所以σ的核)0(1'=-σN 是R的一个子群,且a '的逆映象)(1a '-σ是模N 的一个剩余类.现在再证N 做成理想.即证:若N a ∈,R x ∈,则N ax ∈,N xa ∈,事实上,0)()()('==x a ax σσσ,故N ax ∈,同样可证N xa ∈.对于R 的任意理想N ,是否有一个环R '而且有R 到R '的一个同态映射σ使N 刚好就是σ的核呢?答案也是肯定的.由群中已证的结果,模N 的所有剩余类按照剩余类的加法作成一个加法群,就是R 对于N 的商群N R ,规定N a a +=)(σ,即N a a +→:σ这样规定的σ便是群R 到群N R 上的一个同态映射,其核为N .规定剩余类的乘法,以使σ成为环R 到系统N R 上的同态映射.设A ,B 是N 的两个剩余类,任取A a ∈,B b ∈,规定包含ab 的剩余类N ab C +=为A 与B 的积,而AB C =,))((N b N a N ab ++=+.若另取A a ∈',B b ∈',则包含a 'b '的剩余类和包含ab 的剩余类是一样的,可见上面的乘法规定由A ,B 完全确定,与b a ,的选择无关.由σ的定义,N a a +=)(σ,N b b +=)(σ,N ab ab +=)(σ.但由上面的剩余类乘法的定义,))((N b N a N ab ++=+,故)()()(b a ab σσσ=.所以,σ是环R 到运算系统N R 上的一个同态映射.因此,N R 是一个环,于是有:定理 2.2.5]7[按照上述剩余类的加法和乘法,R 对于理想N 的所有剩余类的集合N R 是一个环,规定N a a +=)(σ,则σ是R 到N R 上的一个同态映射,其核为N .N R 叫做R 对于N 的剩余环,前面定理所说的加法和乘法的同态性,其实是说剩余环N R 中的加法和乘法运算可由剩余类中的任意元素来确定,剩余类的运算与其中元素的特殊选择无关.剩余环N R 有了这加法和乘法两种运算,就与环R 同态.定理 2.2.6]7[(第一同构定理)设R 是环,是R 的理想,则在自然同态I R R /:→π,I r r + .下,(1)R 的包含I 的子环与I R /的子环一一对应.(2)在此对应下,理想对应理想.(3)若J 是R 的理想且I J ⊇,则)/)(/(/I J I R J R ≅.定理 2.2.7]7[(第二同构定理)设R 是环,I 是R 的理想,S 是R 的子环,则(1)I S ⋂是S 的理想.(2))(/)(I S S I S I ⋂≅+.定理 2.2.8]8[若σ是环R 到R '上的一个同态映射,其核为N ,则R '与N R 同构:R '≅N R . 证明 设a '是R '的任意元素,则)(-1a 'σ是N 的一个剩余类A .规定R '的a '和这个N R 的A 对应.这样,我们规定了R '到N R 上的一个一对一映射τ,τ:N R R /→',a ' A .下面证明τ是同构,即证明:若R b a '∈'',,则)()()(b a b a '+'='+'τττ,)()()(b a b a ''=''τττ.事实上,若A a =')(σ,B b =')(τ,即N a A a +=='-)(1τ,N b B b +=='-)(1σ,其中,A a ∈B b ∈,则因b a b a '+'=+)(σ,b a ab ''=)(σ,故N b a b a ++='+'-)(1σ,N ab b a +=''-)(1σ,B A b a +='+'-)(1σ,AB b a =''-)(1σ.于是)()()(b a B A b a '+'=+=''ττσ,)()()(b a AB b a ''==''τττ.故τ是R '到N R 上的一个同构对应.定理 2.2.9]8[设环R 同态于R ':R R '~于是R 与N 间的子环与R '的子环一一对应,大环对应大环,小环对应小环,理想对应理想.2.3 其他代数系统上的同态与同构定义 2.3.1]9[(模同态与同构)设M 和T 都是R 模,T M →:ϕ是映射.如果ϕ满足下述两个条件:(1)M y x y x y x ∈∀+=+,),()()(ϕϕϕ.(2)M x R a x a ax ∈∈∀=,),()(ϕϕ.则称ϕ为M 到T 的一个R 模同态.如果ϕ又是单(满)射,则称ϕ为R 模的单(满)同态.定义 2.3.2]9[如果,ϕ既单又满,则称ϕ为模同构.此时,也称为M 和T 是同构的,记作T M ≅,由M 到T 的所有R 模同态构成的集合记为),(Hom T M R ;如果M T =,记),(Hom T M R 为)(End M R ,其元素称为M 的自同态.定义 2.3.3]10[(格同态与同构)设21:L L f →,1,L y x ∈∀有)()()(y f x f y x f ∧=∧,)()()(y f x f y x f ∨=∨则称f 为1L 到2L 的同态.如果f 是双射的,就称f 是1L <,1∨,>∧1到>∧∨<222,,L 的格同构,也称格>≤<11,L 和>≤<22,L 同构. 定理2.3.4]9[(同态基本定理)设T M →:ϕ是模同态.ϕϕim ker /→M ,)(x x ϕ是模同构,其中ϕker +=x x 是x 所代表的陪集.定理2.3.5]9[(第一同构定理)设N 为M 的子模,N M M /:→π是典范同态,则在π下的包含N 的子模与N M /一一对应,对于M 的包含N 的子模H ,有同构 )//()/(/N H N M H M →,)/()(N H x H x ++π .定理2.3.6]9[(第二同构定理)设H 和N 为M 的子模,则有同构)(/)(N H H N N H ⋂→+,)()(N H h N n h ⋂+++ ),(N n H h ∈∈∀.可以想象:环上的模的性质依赖与环的性质.环的性质越丰富,其上的模的结构就越简单.定理2.3.7]10[f 是格1L 到2L 的同态,则1,L b a ∈,)()(b f a f b a ≤⇒≤.证明 b a ≤)()()()()()()(b f a f a f b f a f a f b a f a b a ≤⇒=∧⇒=∧⇒=∧⇒.注意 )()(b f a f ≤不一定推出b a ≤.定理3.2.8]10[f 为双射.f 为格1L 到2L 的同构当且仅当)()(,,1b f a f b a L b a ≤⇔≤∈∀. 证明 必要性:)()(b f a f b a ≤⇒≤显然成立,若)()(b f a f ≤成立,则)()()(a f b f a f =∧,因为f 是同构,有)()(a f b a f =∧,由单射性a b a =∧,所以b a ≤.充分性:只须证明f 是同态映射,即:)()()(b a f b f a f ∧=∧,)()()(b a f b f a f ∨=∨.b a b b a a ∨≤∨≤,)()(),()(a f b f b a f a f ≤∨≤⇒)()()(b a f b f a f ∨≤∨⇒,2)()(L b f a f ∈∨))()()((1b f a f d f L d ∨=∈∃⇒,d b d a d f b f d f a f ≤≤⇒≤≤,)()(),()()()()(b f a f b a f d b a ∨≤∨⇒≤∨⇒)()()(b a f b f a f ∨=∨∴同理)()()(b a f b f a f ∧=∧.3 小结同态只保持两个代数系统的部分性质,而同构却能使两个代数系统的结构完全相同.但同态关系比同构易建立.虽然同态比起同构有其不足,但它的确是比同构应用更广泛也更灵活的一种研究代数系统的有效方法.在我们学习的过程中应该加强它们之间的联系与区别,这对于技术人员,工程人员,高等理工科院校本科生,研究生是必不可少的基础数学知识,有着重要的学习意义以及应用价值.参考文献[1].杨子胥.近世代数[M].北京:高等教育出版社.2011.21-107.[2].赵春来,徐明曜.抽象代数Ⅰ[M].北京:北京大学出版社.2008.143-153.[3].张禾瑞.近世代数基础(修订本)[M].高等教育出版社.1978.31-48.[4] 崔亚琼.浅谈同构在代数中的应用[J].大同职业技术学院学报,2005,1(19):75-76.[5].杨子胥.近世代数(第二版)[M].北京:高等教育出版社.2003.81-105.[6].张禾瑞,郝炳新.近世代数基础[M].高等教育出版社.1988.30-42.[7].刘绍学.近世代数基础[M].北京:高等教育出版社.1999.45-52.[8] 杨树生.代数系统的同态与同构[J].内蒙古民族大学学报,2004,6(19):1-2.[9] J.M.Howie:An Introduction to semigroup theory[M].London:Published for the London Mathematical Society by Academic prees Inc,1975.1-156.[10] 崔亚琼.浅谈同构在代数中的应用[J].大同职业技术学院学报,2005,1(19):75-76.A Tentative Discussion on the Homomorphism and Isomorphism of the Algebraic SystemDongdong He(Grade11,Class1, Major in Mathematics Education Speciality, School of Mathematics and ComputerScience, Shaanxi University of Technology, Hanzhong 723000,Shaanxi)Tutor: Hongmei ZhengAbstract : One of the most important and elementary concept in algebra is homomorphism and isomorphism.The application of the homomorphism and isomorphism on several algebraic systems is summarized in this paper,which shows the importance on the algebra.Key words: Semigroup; Group; Ring; Lattic; Homomorphism; Isomorphism。

第三部分 代数系统

第三部分  代数系统

(4) 如果V1=V2,则称作自同态
第八章
代数系统
第九章
半群与群
广群

定义9.1 广群(groupoid)仅有一个二元运 算的代数系统称之为广群。
半群
定义9.2 半群(semigroup):设有代数系统<S, *>, 其中S是非空集合, *是S上的可结合的二元运算, 则称<S, *>为半群。 由定义, 半群中的二元运算 *应满足下面两个条件: 1) *在S上封闭; 2) *在S上可结合。
唯一性定理
定理8.1 设◦为S上的二元运算,el和er分别为S中关于运算的 左和右单位元,则el = er = e为S上关于◦运算的惟一的单位元.
证: el = el◦er r为右单位元) (e r = er l为左单位元) el◦e (e
所以el = er , 将这个单位元记作e. 假设e也是 S 中的单位元,则有 e=e◦e = e. 惟一性得证. 类似地可以证明关于零元的惟一性定理. 注意:
f 2={(1, 3), (2, 4), (3, 1), (4, 2)} f 3={(1, 4), (2, 1), (3, 2), (4, 3)}
例题
还可求得 f 4={(1, 1), (2, 2), (3, 3), (4, 4)}=f 0 f 5=f, f 6=f 2, …, 一般的有
f 1=f res4 (i) (i∈N)
二元运算的性质
定义8.9 设◦为S上的二元运算, (1) 若对任意x,y,z∈S有 z◦x=z◦y,且z ≠0,则x=y, 则称◦ 满足左消去律. (2)若对任意x,y,z∈S有 x◦z=y◦z,且z ≠0,则x=y, 则称◦ 满足右消去律. 左消去律和右消去律都称为消去律,又称为可约律。

第5章 代数系统的基本概念(1)

第5章   代数系统的基本概念(1)

→、 。
第5章
代数系统的基本概念
(4)AA={f | f:A→A}。“ (复合)”是AA上的二元
运算。
当A是有穷集合时,运算可以用运算表给出。如
A={0,1,2,3,4,5},二元运算“ ” 的定义见表
5.1.1。
表 5.1.1
0
1
2
第5章
代数系统的基本概念
事实上,对于表5.1.1,我们可观察看出其运算 为 y (〈x,y〉)=x · (mod3)
第5章
代数系统的基本概念
【例5.1.7】
在实数集 R 中,对加法"+"运算,没有零元;
在实数集 R 中,对乘法"×"运算,0是零元;
对于全集E的子集的并"∪"运算,E是零元;
对于全集E的子集的交“∩”运算, 是零元;
在命题集合中,对于吸取"∨"运算,重言式是零元;
在命题集合中,对于合取"∧"运算,矛盾式是零元。
(2)若 x y(x,y∈S→x*y=y*x),则称*运算满足交换律。 (3)若 x y z(x,y,z∈S→x*(y z)=(x*y) (x*z)),则称* 运算对 运算满足左分配律; 若 x y z(x,y,z∈S→(y z)*x=(y*x) (z*x)), 则称*运算对 运算满足右分配律。 若二者均成立,则称*运算对 运算满足分配律。
有理数集、实数集上的二元运算,除法却仍不
是。加法、乘法满足结合律、交换律,乘法对 加法、减法满足分配律,减法不满足这些定律。 乘法“
” 对加法“+” 运算满足分配律(对
“-” 也满足)。但加法“+” 对乘法“ ” 运算

离散数学章节练习4

离散数学章节练习4

离散数学章节练习4K E Y(总5页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除离散数学 章节练习 4范围:代数系统一、单项选择题 1. <G,*>是群,则对* ( A ) A 、有单位元,可结合 B 、满足结合律、交换律 C 、有单位元、可交换 D 、有逆元、可交换2. 设N 和Z 分别表示自然数和整数集合,则对减法运算封闭的是 ( B )A 、NB 、{x ÷2|x ∈Z}C 、{x|x ∈N 且x 是素数}D 、{2x+1| x ∈Z }3. 设Z 为整数集,A 为集合,A 的幂集为P(A),+、-、/为数的加、减、除运算,∩为集合的交运算,下列系统中是群的代数系统的有 ( B ) A.〈Z ,+,÷〉 B.〈Z ,÷〉 C.〈Z ,-,÷〉 D.〈P(A),⋂〉 4. 设S={0,1},*为普通乘法,则< S , * >是 ( B ) A 、半群,但不是独异点; B 、只是独异点,但不是群; C 、群; D 、环,但不是群。

5. 设f 是由群<G,☆>到群<G ',*>的同态映射,则ker (f)是 ( B ) A 、G '的子群 B 、G 的子群 C 、包含G ' D 、包含G 6. 在整数集Z 上,下列哪种运算不是封闭的 ( C ) A + B - C ÷ D X 7. 设S={0,1},*为普通乘法,则< S , * >是 ( B )A 、半群,但不是独异点;B 、只是独异点,但不是群;C 、群;D 、环,但不是群。

8. 设R 是实数集合,“⨯”为普通乘法,则代数系统<R ,×> 是( A )。

A .群; B .环; C .半群 D.都不是 9. 设︒是集合S 上的二元运算,如果集合S 中的某元素eL,对∀x ∈S 都有 eL ︒x=x ,则称eL 为 ( C ) A 、右单位元 B 、右零元 C 、左单位元 D 、左零元 10. <Z,+> 整数集上的加法系统中0是 ( A ) A 单位元 B 逆元 C 零元 D 陪集 11. 若V=<S,︒>是半群,则它具有下列那些性质 ( A ) A 、封闭性、结合性 B 、封闭性、交换性 C 、有单位元 D 、有零元 二、判断题 1.若半群<S,*>含有零元,则称为独异点。

第五章代数系统关于集合是否封闭?

第五章代数系统关于集合是否封闭?

第五章代数系统5-1代数系统的引入5.1.1设集合{1,2,3,…,10},问下面定义的映射*关于集合是否封闭?a) x*y=max(x,y);b) x*y=min(x,y);c) x*y=GCD(x,y);d) x*y=LCM(x,y);e) x*y=素数p的个数,其中x≤p≤y。

解:a)封闭。

b)封闭。

c)封闭。

d)不封闭。

e)不封闭。

5.1.2在下表所列出的集合和映射中,请根据映射是否在相应集合上封闭,在相应位置上填写“是”或“否”,I表示整数集,N表示自然数集合。

5.1.3设B={0,a,b,1},S1={ a,1}, S2={ 0,1}, S3={ a,b},二元运算⊕和*定义如下表:⊕0 a b 1 * 0 a b 10 0 a b 1 0 0 0 0 0a a a 1 1 a 0 a 0 ab b 1 b 1 b 0 0 b b1 1 1 1 1 1 0 a b 1试问(S1,*,,⊕)是代数系统吗?是(B,*,⊕,1,0)的子代数系统吗?(S2,*,,⊕,1,0)是(B,*,⊕,1,0)的子代数系统吗?(S3,*,,⊕)是代数系统吗?解:⊕ a 1 * a 1a a 1 a a a1 1 1 1 a 1因此(S1,*,,⊕)是代数系统。

它不是(B,*,⊕,1,0)的子代数系统。

因为S1中缺少0。

(S2,*,,⊕,1,0)是(B,*,⊕,1,0)的子代数系统。

⊕ a b * a ba a 1 a a 0b 1 b b 0 b因为⊕和*在{a,b}上不封闭,所以(S3,*,,⊕)不是代数系统。

5-2运算及其性质5.2.1对于实数集合R,下表所列的二元运算是否具有左边一列中那些性质,请在相应位置上填写“是”或“否”。

∣-y∣max min x-+*结合律交换律有单位元有零元解:max min x∣-y∣-+*结合律是否是是是否交换律是否是是是是有单位元是否是否否否有零元否否是否否否5.2.2设代数系统({a,b,c},*)中,*是{a,b,c}上二元运算,下面运算表中分别讨论交换性,等幂性,问有否单位元?若有,问每个元素有否逆元?有否零元?a)b)c)d)* a b c * a b c*a b c* a b ca abc a a b c a a b c a a b cb bc a b b a c b a b c b b b cc c a b c c c c c a b c c c c b解:a)可交换,不等幂,a为单位元,a 的逆元是a,b和c互为逆元。

5-1-2 代数系统

5-1-2 代数系统

(yΔz)*x=(y*x)Δ(z*x)
则称运算*对于运算Δ是可分配的。
例题1 设A={x|x=2n,n∈N},问乘法运算是否封 闭?对加法运算呢?
解:对于任意的2r,2sA; r,sN;
2r.2s= 2r+s A(因为r+sN)
所以乘法运算是封闭的。 而对于加法运算是不封闭 的,因为至少 有2+22=6A。
定义5-1.1 [ n元运算] 对于集合A,一个从An到B的映射,称为集 合A上的一个n元运算。如果BA,则称该 n元运算是封闭的。
定义5-1.2[代数系统] 一个非空集合A连同若干个定义在该集合上 的运算f1,f2,…,fk所组成的系统就称为一个 代数系统,记作<A,f1,f2,…,fk>。
例题8: 设集合S={α,β,γ,δ,},定义在S上的一个 二元运算*如表所示。试指出代数系统<S,*>中 各个元素的左、右逆元情况。
* α β γ δ
α β γ δ α β β δ α γ δ γ γ α β α β δ δ α γ δ γ δ α γ 解:α 是幺元;β 的左逆元和右逆元都是γ ;即β 和γ 互为逆元;δ 的左逆元是γ 而右逆元是β ;β 有两个左逆元γ 和δ ; 的右逆元是γ ,但没有左 逆元。
例题 6: 设集合S={α,β,γ,δ},在S上定 义的两个二元运算*和★如表示。试指出 左幺元或右幺元。
*
α β γ δ α δ α α α β α β β β γ β γ γ γ δ γ δ γ δ

α α β γ δ
β β α δ δ
γ δ γ α β
δ γ δ β γ
α β γ δ
解:由表可知:β,δ都是S中关于运算*的左幺元,

代数系统定义

代数系统定义

代数系统定义代数系统定义代数系统是一个数学概念,是指一组对象和操作符号的集合,这些对象和操作符号遵循一定的规则进行运算。

代数系统可以是有限或无限的,可以包含不同类型的对象和操作符号。

代数系统包括了多个子概念,下面将分别介绍。

集合在代数系统中,最基本的概念是集合。

集合是一个无序的元素组成的集合体。

在代数系统中,我们通常用大写字母表示一个集合。

例如:A、B、C等。

元素在一个集合中,每个单独的对象都被称为元素。

元素可以是任何东西——数字、字母、字符串等等。

在代数系统中,我们通常用小写字母表示一个元素。

例如:a、b、c等。

二元运算二元运算是指一个由两个元素构成的表达式,并返回另一个元素作为结果。

在代数系统中,二元运算通常用符号表示。

例如:加法“+”、减法“-”、乘法“×”等。

封闭性如果对于一个二元运算,在某个给定的集合内进行操作时,其结果仍然属于该集合,则称该集合对于该二元运算是封闭的。

例如,在整数集内进行加法和乘法时,其结果仍然是整数,因此整数集对于加法和乘法是封闭的。

群群是指一个代数系统,其中包含一个二元运算,满足以下四个条件:1. 封闭性:对于该二元运算,在该代数系统中进行操作时,其结果仍然属于该代数系统。

2. 结合律:对于该二元运算,无论操作的顺序如何,其结果都相同。

3. 单位元素:存在一个特殊的元素(称为单位元素),使得任何其他元素与该单位元素进行运算后不会改变原来的值。

4. 逆元素:对于每个元素,都存在一个逆元素使得它们进行运算后等于单位元素。

环环是指一个代数系统,其中包含两个二元运算(加法和乘法),满足以下四个条件:1. 封闭性:对于加法和乘法,在该代数系统中进行操作时,其结果仍然属于该代数系统。

2. 加法结合律:对于加法,无论操作的顺序如何,其结果都相同。

3. 加法单位元素:存在一个特殊的元素(称为加法单位元素),使得任何其他元素与该单位元素进行加法运算后不会改变原来的值。

4. 乘法分配律:对于任意三个在该代数系统中的元素a、b和c,有a×(b+c) = a×b + a×c和(b+c)×a = b×a + c×a。

第三章 代数系统(2)

第三章 代数系统(2)


a b c
a a
b a b c
c c
解:
a b c
a c a b
b a b c
c b c a
3.1 群的定义和性质
3.2 变换群
3.3 有限群
3.4 循环群
3.5 子群
3.4 循环群
定义3. (G , )是群, G , 令 a
a0 e a n 1 a n a a n (a 1 ) n
定理1
(G , )为群, (G , )与代数系统 ,*) 同构, 若 (H 则(H ,*)也为群。
[证] 结合律,单位元,逆元性质均保持。
3.1 群的定义和性质
3.2 变换群
3.3 有限群 3.4 循环群 3.5 子群
3.2 变换群
[复习定义] 集合S上的变换:
: S S为一一映射, 为S上的 变换; 称
§2 半群与单元半群
2.1 半群
定义1. 代数系统 S , ) (其中“ ” ( 是二元运算 ) 若满足结合律, 则称为半群。 若半群满足交换律, 则称为 可换半群。
例1. 代数系统(I , +)是一个半群, 而且可换; 而(I , -)不是半群。 例2. 代数系统(R , max)为半群,且为可换。
但(S , ) 不是一个可换半群。 a b b a) (如
返回
定理1. 半群( S , )的子代数必是半群 。 (称为( S , )的 子半群 )
[证] 半群(S , )满足结合律, 则其子代数必也满足结合律, 故也是半群。
定义2. 代数系统 (S , ) 为半群, S , a n定义如下 a 1 a1 a 2 a n 1 a n a

代数系统

代数系统

代数系统一、单项选择题:1.设集合A={1,2,…,10},在集合A上定义的运算,不是封闭的为()。

(A)∀a, b∈A,a*b=lcm{a, b}(最小公倍数)(B)∀a, b∈A,a*b=gcd{a, b}(最大公约数)(C)∀a, b∈A,a*b=max{a, b}(D)∀a, b∈A,a*b=min{a, b}2.下列代数系统<G, *>(其中*是普通加法运算)中,()不是群。

(A)G为整数集合(B)G为偶数集合(C)G为有理数集合(D)G为自然数集合3.在自然数N上定义的二元运算◦,满足结合律的是()。

(A)a◦b=a- b(B)a◦b=a+4b(C)a◦b= min{a, b} (D)a◦b=| a- b|4.在布尔代数L中,表达是(a∧b)∨(a∧b∧c)∨(b∧c)的等价式是()。

(A)b∧(a∨c) (B)(a∧c)∨(a∧b)(C)(a∨b)∧(a∨b∨c)∧(b∨c) (D)(b∨c)∧(a∨c)5.设集合A={a, b, c},代数系统G=<{∅, A}, ⋃>和H=<{{a, b}, A}, ⋃>同构的映射是()。

(A)f : G→H, f (A)=∅, f ({a, b})=A(B)f : G→H, f (∅)=A, f (A)={a, b}(C)f : G→H, f ({a, b})=∅, f (A)=A(D)f : G→H, f (∅)={a, b}, f (A)=A6.同类型的代数系统不具有的特征是()。

(A)子代数的个数相同(B)运算的个数相同(C)相同的构成成分(D)相同元数的运算个数相同7.下列图表示的偏序集中,是格的为()。

(A)(B)(C)(D)8.下列各代数系统中不含有零元素的是()。

(A)<Q, *>,Q是全体有理数集,*是普通乘法运算(B)<M n(R), *>,M n(R)是全体阶n实矩阵集合,*是矩阵乘法运算(C)<Z, *>,Z是整数集,*定义为x*y=xy, x, y∈Z(D)<Z, +>,Z是整数集,+是普通加法运算9.设Z为整数集,A为集合,A的幂集为P(A),+,-,/为数的加、减、除运算,⋂为集合的交运算,下列系统中是代数系统的有()。

第5章 代数系统的基本概念

第5章   代数系统的基本概念

第5章 代数系统的基本概念 章
证明 因为er和el分别是*的右幺元和左幺元,故有 el*er=el,el*er=er,所以er=el, 令其为e,有x*e=e*x=x 设另有一幺元为右幺元e′,那么 e=e*e′=e′ 故e对*是唯一的幺元。
第5章 代数系统的基本概念 章
【例5.1.6】 在实数集R中,对加法"+"运算,0是幺元; 在实数集 R 中,对乘法"×"运算,1是幺元; 对于全集E的子集的并"∪"运算,是幺元; ∅ 对于全集E的子集的交"∩"运算,E是幺元; 在命题集合中,对于吸取"∨"运算,矛盾式是幺元; 在命题集合中,对于合取"∧"运算,重言式是幺元; 在AA={f|f:A→A}中,对于复合"。"运算,IA是幺元。
第5章 代数系统的基本概念 章
证明 因为θr和θl分别是*的右零元和左零元,故有 θl*θr=θl,θl*θr=θr,所以θr=θl。令其为θ,有 x*θ=θ*x=θ 设另有一零元为右零元θ′,那么 θ=θ*θ′=θ′ 故θ对S中的*运算是唯一的零元。 证毕 同样,需强调零元是针对于哪个运算的。
第5章 代数系统的基本概念 章
定义5.1.4 设*是集合S中的一种二元运算,如果存 在θr∈S(θl∈S)且对任意元素 x∈S均有x*θr=θr(θl(x=θl), 则称元素θr(θl)是S中关于运算*的右零元(左零元)。 定理5.1.2 设*是S中的二元运算且θr与θl分别是对于 *的右零元和左零元,则 θr=θl=θ,使对任意元素x∈S 有x*θ=θ*x=θ,称元素θ是S中关于运算*的零元(zero)且 x*θ=θ*x=θ θ S * (zero) 唯一。

代数系统在计算机科学中的应用(new)

代数系统在计算机科学中的应用(new)
i
定就与xi相等,从而产生了二进制信号的传递错误。 定就与 相等,从而产生了二进制信号的传递错误。 发送端
X=x1x2 …xn
接收端 干扰
′ 2 n X ′ = x1 x ′ ... x ′
图2.1
6
代数系统的应用
由于在计算机中和数据通信系统中的 信号传递是非常的频繁与广泛,因此, 信号传递是非常的频繁与广泛,因此,如何 防止传输错误就变得相当重要了,当然, 防止传输错误就变得相当重要了,当然,要 解决这个问题可以有不同的途径。 解决这个问题可以有不同的途径。人们所想 到的第一个途径是提高设备的抗干扰能力和 信号的抗干扰能力。但是,大家都知道, 信号的抗干扰能力。但是,大家都知道,这 种从物理角度去提高抗干扰能力并不能完全 消除错误的出现。 消除错误的出现。
2
代数系统的应用
针对某个具体问题选用适宜的数学结构去进 行较为确切的描述,这就是所谓“数学模型” 行较为确切的描述,这就是所谓“数学模型”。 可见, 可见,数学结构在数学模型中占有极为重要的位 置。而代数系统是一类特殊的数学结构——由对 而代数系统是一类特殊的数学结构 由对 象集合及运算组成的数学结构, 象集合及运算组成的数学结构,我们通常称它为 代数结构。它在计算机科学中有着广泛的应用, 代数结构。它在计算机科学中有着广泛的应用, 对计算机科学的产生和发展有重大影响;反过来, 对计算机科学的产生和发展有重大影响;反过来, 计算机科学的发展对抽象代数学又提出了新的要 求,促使抽象代数学不断涌现新概念,发展新理 促使抽象代数学不断涌现新概念, 论。
3
代数系统的应用
格与布尔代数的理论成为电子计算机硬件设 计和通讯系统设计中的重要工具。 计和通讯系统设计中的重要工具。半群理论在自 动机和形式语言研究中发挥了重要作用。 动机和形式语言研究中发挥了重要作用。关系代 数理论成为最流行的数据库的理论模型。 数理论成为最流行的数据库的理论模型。格论是 计算机语言的形式语义的理论基础。 计算机语言的形式语义的理论基础。抽象代数规 范理论和技术广泛应用于计算机软件形式说明和 开发,以及硬件体系结构设计。 开发,以及硬件体系结构设计。有限域的理论是 编码理论的数学基础,在通讯中发挥了重要作用。 编码理论的数学基础,在通讯中发挥了重要作用。 在计算机算法设计与分析中, 在计算机算法设计与分析中,代数算法研究占有 主导地位。 主导地位。

第7章 代数系统

第7章 代数系统




矩阵乘法· Mn×Mn→Mn, : M· N是二元运算,载体是Mn。 减法-:I×I→I是I上的二元运算, 但不是N上的运算; 函数求逆运算:f-1 是集合B={f|f是X上的双射函数}上的 一元运算,但不是XX上的运算。 对于具有载体S的一个代数,定义在载体S上的n元运算*是 一个从Sn到S的函数,所以一个代数的载体对于定义于其上 的运算而言总是封闭的。代数常记为<S,*>.
例3.证明<N,+>和<I+, >不同构 证:反证法 设h:N I+是<N,+>到<I+, >的一个同构映射,
设p I+为质数,p>2,p=h(x),x>=2
则: p=h(x)=h(x+0)=h(x)h(0)=1p p=h(x-1+1)=h(x-1) h(1)=1p
h(x)或h(0)为1,且h(x-1)或h(1)为1,
若xA,有x*0r=0r,称0r为运算*的右零元
若xA,有0*x=x* 0 = 0 ,称0为运算*的零元 注:零元,幺元称为代数常数
例:A={a,b,c},运算◦用下表定义:

a
b
c
a
b
a
a a
b
b b
b
c a
则b是左幺元,无右幺元; a是右零元,b是右零元,无左零元;
c
运算◦既不满足结合律,也不满足交换律。
例: k=6,e=1
k=5,e=1
逆元的性质 定理3: 对于可结合运算◦ ,如果元素x有左逆元l,右逆 元r,则l=r=x-1
推论:逆元若存在,则唯一. 证:l=l◦e=l◦(x◦ r)=(l◦ x)◦r=e◦r=r

代数系统习题

代数系统习题

代数系统习题第三部分:代数系统1.在代数系统,S *中,若⼀个元素的逆元是唯⼀的,其运算*必定可结合。

( )2.每⼀个有限整环⼀定是域,反之也对。

( )3.任何循环群必定是阿贝尔群,反之亦真。

( )4.设(),A ∧∨是布尔代数,则(),A ∧∨⼀定为有补分配格。

( )5.设Q 为有理数集,Q 上运算*定义为max(,)a b a b *=,则 ,Q * 是半群。

( )6.阶数为偶数的有限群中,周期为2的元素的个数⼀定为偶数。

( )7.群中可以有零元(对阶数⼤于⼀的群)。

( )8.循环群⼀定是阿贝尔群。

( )9.每⼀个链都是分配格。

( )1. 对⾃然数集合N ,哪种运算不是可结合的,运算定义为任,a b N ∈( )A. min(,)a b a b *=B. 2a b a b *=+C. 3a b a b *=+-D. a b a b *=+ (mod3)2. 任意具有多个等幂元的半群,它 ( )A. 不能构成群B. 不⼀定能构成群C. 不能构成交换群D. 能构成交换群3. 循环群33,Z +的⽣成元为[][]1,2,它们的周期为 ( )A. 5B. 6C. 3D. 94. 设是环,则下列正确的是 ( )A. 是交换群B. 是加法群C. 对*是可分配的D. *对是可分配的5. 下⾯集合哪个关于减法运算是封闭的 ( )A. NB. {2|}x x I ∈C. {21|}x x I +∈D. {x |x 是质数}6. 具有如下定义的代数系统,G ?*?,哪个不构成群 ( )A. G={1,10},*是模11乘B. G={1,3,4,5,9},*是模11乘C. G =Q(有理数集),*是普通加法D. G =Q(有理数集),*是普通乘法7. 设G ={23|,m n m n I *∈},*为普通乘法.则代数系统,G ?*?的么元为 () A.不存在 B. e =0023? C. e =2×3 D. e =1123--?8. 任意具有多个等幂元的半群,它( A )A. 不能构成群B. 不⼀定能构成群C. 必能构成群D. 能构成交换群9. 在⾃然数集N 上,下⾯哪个运算是可结合的,对任意a,b N ∈ ( )A. a b a b *=-B. max(,)a b a b *=C. 5a b a b *=+D. ||a b a b *=-10. Q 为有理数集,Q 上定义运算*为a b a b ab *=+-,则,Q ?*?的⼳元为( )A. aB. bC. 1D. 011. 下⾯哪⼀种运算不是实数集R 上的⼆元运算?()A.数的加B.数的减C. 数的乘 (D) 数的除12. ,G ?*?是群,则对* ( )A. 满⾜结合律、交换律B. 有单位元,可结合C. 有单位元,可交换D. 每元有逆元,有零元13. 实数集R 的下列运算,哪个满⾜结合律? ( ) A. n m n m -= B. ()n m n m +=21 C. n m n m 2+= D. 22n m n m +=14. 下⾯哪⼀种运算不是实数集R 上的⼆元运算? ( )(A) 数的加 (B) 数的减(C) 数的乘 (D) 数的除15. 在代数系统中,整环和域的关系为 ( )A. 整环⼀定是域B. 域下⼀定是整环C. 域⼀定是整环D. 域⼀定不是整环16. 具有如下定义的代数系统,G *,哪个不构成群 ( )A. {1,10}G =,*是模11乘B. {1,3,4,5,9}G =, *同(1)C. G Q = (有理数集),*是普通加法D. G Q =,*是普通乘法17. Q 为有理数集,,Q ? (其中?为普通乘法)不能构成 ( )A. 群B. 独异点C. 半群D. 交换半群18.下述*运算为实数集上的运算,其中可交换且可结合的运算是 ( )(A )a*b=a+2b (B )a*b=a+b-ab(C )a*b=a (D )a*b=|a+b|19. 设I 是整数集,+,分别是普通加法和乘法,则,,I +是 ( )A. 域B. 整环和域C. 整环D. 含零因⼦环20. R 为实数集,运算*定义为:,a b R ∈,||a b a b *=,则代数系统,R *是( )A. 半群B. 独异点C. 群D. 阿贝尔群21. 对⾃然数集合N ,哪种运算不是可结合的 ( )A. min(,)a b a b *=B. 3a b a b *=++C. 2a b a b *=+D. a b a b *= (mod3)22.为有理数集,Q 上定义运算*为:a b a b ab *=+-,则,Q *的么元是( )A. aB. bC. 1D. 023. 设,H ,,K 是群,G 的⼦群,下⾯哪个代数系统仍是,G 的⼦群( )A. ,HKB. ,H KC. ,H K -D. ,K H -24. 群,R +与{0},R -? ( )A. 同态B. 同构C. 后者是的前者的⼦群D. (2)与(3)都正确25. 在⾃然数集N 上,下⾯哪种运算是可结合的 ( )A. a b a b *=-B. max(,)a b a b *=C. 2a b a b *=+D. ||a b a b *=-26. 循环群,I +的所有⽣成元为 ( )A. 1,0B. -1,2C. 1,2D. 1,-127. 任何⼀个有限群在同构的意义下可以看作是 ( )A. 循环群B. 置换群C. 变换群D. 阿贝尔群28. 下列集合关于指定的运算哪⼀个可以构成群?()(A) 给定a >0且1≠a ,集合{}Z n a G n ∈=关于数的乘法。

第六章 代数系统(复习)

第六章 代数系统(复习)

二. 域 (Field)
定义: 定义:设<F,+, ·>是个代数系统, >是个代数系统, K[F]≥2,如果F上二元运算+ 满足: K[F]≥2,如果F上二元运算+和 ·满足: 满足 F,+>是交换群 是交换群。 ⑴ <F,+>是交换群。 ⑵ <F-{0}, ·>是交换群。 >是交换群。 可分配。 ⑶ · 对+可分配。 F,+,·>是个域。 称<F,+, >是个域。 定理: 定理:6-9.2 设<F,+, ·>是域,则F中无 > 零因子。 零因子。
定理6 5.1设 是半群,如果S 定理6-5.1设<S, >是半群,如果S是有 限集合,则必存在a∈S,使得 a=a。 使得a 限集合,则必存在a∈S,使得a a=a。 定理6 5.2设 是交换独异点, 定理6-5.2设<M, >是交换独异点,A是M 中所有幂等元构成的集合, 中所有幂等元构成的集合,则<A, > 的子独异点。 是<M, >的子独异点。
同构关系≌ 同构关系≌是等价关系
1.≌有自反性:任何代数系统<X, > , .≌有自反性:任何代数系统< 有自反性 X≌X。 有X≌X。 2.≌有对称性:任何代数系统<X, > <Y, .≌有对称性:任何代数系统< 有对称性 如果有X≌Y 则必有Y≌X。 则必有Y≌X Y≌X。 ⊕>, 如果有X≌Y .≌有传递性 任何代数系统< 有传递性: 3.≌有传递性:任何代数系统<X, > <Y,⊕>,<Z,♦ 如果有X≌Y Y≌Z, <Y,⊕>,<Z,♦> 如果有X≌Y 和 Y≌Z, 则必有 X≌Z 。

离散数学 第五章:2代数系统及其子代数和积代数 3代数系统的同态与同构

离散数学 第五章:2代数系统及其子代数和积代数 3代数系统的同态与同构

0 = 0⋅ n ∈nZ,
6
三. 代数系统的积代数
定义5- 定义 -14 其中 ∗ 和 设代数系统 V =< S1,∗> 和 1
V2 =< S2 , >
积代数是一个代数系统 都是二元运算 。V和 V2 的积代数是一个代数系统 1
其中 V ×V2 即 V1 ×V2 =< S , ⊕> ,其中 1
S = S1 × S2 ={(x1, y1)| x1 ∈S1, y1 ∈S2} 是二元运算, ⊕是二元运算,定义为对任意的 ( x1, y1 ),( x2 , y2 ) ∈ S
1
, 2 ,⋯,
k
满足B S,则称 则称V >满足B⊂S,则称V’是
5
例1. 设 V =< Z , +,0 >, 令
nZ = {nz z ∈Z} , n 为自然数, 为自然数,
证明: nZ是 的子代数. 证明: nZ是V的子代数. 证明: 证明: 任取nZ中的两个元素 任取nZ中的两个元素nz1, nz2 (z1, z2 ∈Z), 则有
.
11
3个代数系统的积代数: 个代数系统的积代数:
例如 V
=< Z, +,0 >, 那么有
V ×V ×V =< Z × Z × Z,∗, 0,0,0 >, 并且对任意的 < x1, y1, z1 >, < x2 , y2 , z2 >∈Z × Z × Z, 有
< x1, y1, z1 >∗< x2 , y2 , z2 >=< x1 + x2 , y1 + y2 , z1 + z2 >
< Z , +, 0 >

第8章 代数系统1

第8章  代数系统1

第8章 代数系统
例3 在整数集合I上, 定义二元运算。为
a。b=a+b-2 请回答: (1) 集合I和运算。是否构成代数系统? (2) 运算。在I上可交换吗?
(3) 运算。在I上可结合吗?
(4) 运算。在I上有无单位元? (5) 对运算。是否所有的元素都有逆元?若有, 逆 元是什么?
第8章 代数系统
定理 8.2 ― 1 设*是定义在集合A上的二元运算 (1) 若A中有关于运算*的左单位元el和右单位元er, 则el=er=e。 且e是A中关于*的唯一单位元。 (2) 若A中有关于运算*的左零元zl和右零元zr, 则 zl=zr=z。 且z是A中关于*的唯一零元。
第8章 代数系统
因为el和er分别是A中关于运算*的左单位元和右单位元,则
定义 8.2 ― 4 设*是定义在集合A上的二元运算, (1) 若存在一个元素el∈A, 使得对一切a∈A, 都有 el*a=a, 则称el是A中关于运算*的左单位元(或左幺元); (2) 若存在一个元素er∈A, 使得对一切a∈A, 都有 a*er=a, 则称er是A中关于运算*的右单位元(或右幺元); (3) 若存在一个元素e∈A, 它既是左单位元又是右单 位元, 则称e 是A中关于运算*的单位元(或幺元)。 即对任 意a∈A, 都有a*e=e*a=a, 则e是单位元。
1有元素0i使得对任意的ii有i00iii00i02有元素1i使得对任意的ii有i11ii3对任何元素ii有ii使iiii0对于一个抽象的二元运算我们也要讨论它是否有类似的特殊性质和特殊元素
第8章 代数系统
第8章 代数系统
8.1 运算和代数系统
8.2 二元运算的性质与特殊元素
8.3 同态和同构
8.4 同余关系和商代数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020/7/10
§4.2 运算
(5)
(5)消去律
如果对任意的 a,b,cA,当 a*b=a*c,必 有 b=c,则称运算 * 满足左消去律;
如果对任意的 a,b,cA,当 b*a=c*a,必 有 b=c,则称运算 * 满足右消去律;
如果运算 * 既满足左消去律又满足右消去律, 则称运算 * 满足消去律。
§4.3 代数系统
(1)
4.3.1 代数系统的概念
定义 假设 A 是一个非空集合,f1,f2,…,fn 是 A 上
的运算(运算的元素可以是不相同的),则称 A 在运算 f1,f2,…,fn 下构成一个代数系统,记为: <A, f1,f2,…,fn>
2020/7/10
§4.3 代数系统
(2)
4.3.1 代数系统的概念
2020/7/10
§4.2 运算
(4)
(4)分配律
如果对任意的 a,b,cA,都有a*(b+c)=(a*b)+(a*c) 则称 * 对 + 运算满足左分配;
如果对任意的a,b,c A,都有(b+c)*a=(b*a)+(c*a) 则称 * 对 + 运算满足右分配。
如果运算 * 对 + 既满足左分配又满足右分配, 则称运算 * 对 + 满足分配律。
(2)零元
定理 假设 <A,*> 是代数系统,并且 A 关于运算
* 有左零元 L 和右零元 r,则 L=r= 并且 零元唯一。
2020/7/10
§4.3 代数系统
(9)
4.3.2 代数系统中的特殊元素
(3)逆元
假设 <A,*> 是一个代数系统,e 是 <A,*>的单位 元。对于元素 aA,如果存在 bA,使得 b*a=e,则 称 a 为左可逆的,b 为 a 的左逆元;如果存在 cA, 使得 a*c=e,则称元素 a 是右可逆的,c 为 a 的右逆 元。如果存在 a’ A,使得 a’*a=a*a’=e,则称 a 是 可逆的,a’ 为 a 的逆元。a 的逆元记为:a-1。
c ccc
• abc a abc b bca c cab
2020/7/10
§4.3 代数系统
(5)
4.3.2 代数系统中的特殊元素
(1)单位元(幺元)
定理 假设 <A,*> 是代数系统,并且 A 关于运
算 * 有 左 单 位 元 eL 和 右 单 位 元 er , 则 eL=er=e 并且单位元唯一。
2020/7/10
§4.3 代数系统
(12)
4.3.2 代数系统中的特殊元素
(4)幂等元
定义: 在代数系统<A,*>中,如果元素 a 满足a*a=a,那么称 a 是 A 中的幂 等元。
2020/7/10
2020/7/10
§4.3 代数系统
(10)
• a b c
2020/7/10Fra bibliotekabc abc bca cab
§4.3 代数系统
(11)
4.3.2 代数系统中的特殊元素
(3)逆元
定理 设 <A,*> 是一个代数系统,且 A 中存在
单位元 e,每个元素都存在左逆元。如果运算 * 是可结合的,那么,任何一个元素的左逆元 也一定是该元素的右逆元,且每个元素的逆元 唯一。
如果 A 中一个元素 既是左零元又是右零元,则称 为 A 中关于运算 * 的零元。
2020/7/10
§4.3 代数系统
(7)
abc
a
abc
b abc
c
abc
abc
a aaa
b bbb
c ccc
• abc a abc b bbb c cbb
2020/7/10
§4.3 代数系统
(8)
4.3.2 代数系统中的特殊元素
2020/7/10
§4.3 代数系统
(6)
4.3.2 代数系统中的特殊元素
(2)零元
假设 <A,*> 是一个代数系统,如果 LA,对于任意 元素 xA,都有 L*x=L,则称 L为 A 中关于运算 * 的 左零元;
如果 rA,对于任意元素 xA,都有 x*r=r,则称 r 为 A 中关于运算 * 的右零元;
数学的基本结构
序结构:数的大小,次序 拓扑结构:平面几何,立体几何(欧氏空 间) 代数结构:群
2020/7/10
Chapter 4
Algebra System
2020/7/10
§4.1 代数系统的引入
(1)
一个代数系统需要满足下面三个条件: (1)有一个非空集合 S; (2)有一些建立在 S 上的运算; (3)这些运算在集合 S 上是封闭的。
如果 erA,对于任意元素 xA,都有 x*er=x, 则称 er 为 A 中关于运算 * 的右单位元;
如果 A 中一个元素 e 既是左单位元又是右单位元, 则称 e 为 A 中关于运算 * 的单位元。
2020/7/10
§4.3 代数系统
(4)
abc
a
abc
b abc
c
abc
abc
a aaa
b bbb
如果 SA,对任意的 a,bS,有 a*bS,则称 S 对运算 * 是封闭的。
2020/7/10
§4.2 运算
(3)
4.2.2 运算的性质 (2)交换律
如果对任意的 a,bA,都有 a*b=b*a,则称运算 * 是可交换的。
(3)结合律
如果对任意的 a,b,cA,都有(a*b)*c=a*(b*c),则称运算 * 是可结合的。
2020/7/10
§4.2 运算
(1)
4.2.1 运算的概念
定义 假设 A 是一个集合,AA 到 A 的映射
称为 A 上的二元运算。 一般地,An 到 A 的映射称为 A 上的 n
元运算。
2020/7/10
§4.2 运算
(2)
4.2.2 运算的性质
假设 *,+ 都是集合 A 上的运算 (1)封闭性
2020/7/10
§4.2 运算
(6)
(6)吸收律
如果对任意的 a,bA,都有a*(a+b)=a,则称运算 * 关于运算 + 满足 吸收律。
(7)等幂律
如果对任意的 aA,都有 a*a=a, 则称运算 * 满足等幂律。
2020/7/10
§4.2 运算
(7)
a b c
2020/7/10
abc abc bca cab
定义
假设 <A,*> 是一个代数系统,SA,如果 S 对* 是封闭的,则称 <S,*> 为 <A,*>的子代数系统。
2020/7/10
§4.3 代数系统
(3)
4.3.2 代数系统中的特殊元素
(1)单位元(幺元)
假设 <A,*> 是一个代数系统,如果 eLA,对于 任意元素 xA,都有 eL*x=x,则称 eL为 A 中关于运 算 * 的左单位元;
相关文档
最新文档