毛细管电泳技术及应用
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1981年,Jorgenson和Luckas,用75μm内径石英毛细 管进行电泳分析,柱效高达40万/m,促进电泳技术发生了根 本变革,迅速发展成为可与GC、HPLC相媲美的崭新的分离 分析技术——毛细管电泳。
毛细管电泳(Capillary Electrophoresis, CE)
高效毛细管电泳在技术上采取了两项重要改进: 1. 采用了25-100μm内径的毛细管; 2. 采用了高达数千伏的电压。 • 毛细管的采用使产生的热量能够较快散发,大大减小了
4.应用范围极广
有机物、无机物、生物、中性分子;生物大分子等; 分子生物学、医学、药学、化学、环境保护、材料等;
毛细管电泳理论基础
一、CE基本原理 二、电渗现象与电渗流electroosmotic flow 三、影响电渗流的因素 四、淌度mobility 五、CE中的参数与关系式 六、影响分离效率的因素
ν电渗流 = μ E
电渗淌度取决于电泳介质及双电层的Zeta电势,即
μ = ε0εξ
ε0—真空介电常数;ε—介电常数;ξ—毛细管壁的Zeta电势。
ν电渗流 = ε0εξ E
实际电泳分析,可在实验测定相应参数后,按下式计算
ν电渗流 = Lef/teo
Lef —毛细管有效长度; teo—电渗流标记物(中性物质)的迁移时间。
Winj= (24D t )1/2 实际操作时进样塞长度小于或等于毛细管总长度的1%~2%。
3.焦耳热与温度梯度的影响
电泳过程产生的焦耳热可由下式计算:
Q
VI π r2L
Λm cb
E
2
m—电解质溶液的摩尔电导;I—工作电流:cm—电解质浓度;
散热过程中,在毛细管内形成温度梯度(中心温度高), 破坏了塞流,导致区带展宽。
在CE中,控制电渗流非常重要。
CE中影响电渗流的因素
1.电场强度的影响
电渗流速度和电场强度成正比,当毛细管长度一定时, 电渗流速度正比于工作电压。
2.毛细管材料的影响
不同材料毛细管的表面电 荷特性不同,产生的电渗流大 小不同;
3. 电解质溶液性质的影响
(1)溶液pH的影响
对于石英毛细管,溶液pH增高时,表面电离多,电荷密 度增加,管壁zeta电势增大,电渗流增大,pH=7,达到最大; pH<3,完全被氢离子中和,表面电中性,电渗流为零。分析 时,采用缓冲溶液来保持pH稳定。
(2)阴离子的影响
在其他条件相同,浓度相同而阴离子不同时,毛细管中 的电流有较大差别,产生的焦耳热不同。
缓冲溶液离子强度,影响双电层的厚度、溶液黏度和工 作电流,明显影响电渗流大小。缓冲溶液离子强度增加,电 渗流下降。
4. 温度的影响
毛细管内温度的升高,使溶液的黏度下降,电渗流增大。 温度变化来自于“焦耳热”;
ai —溶质i 的解离度;μi —溶i 在解离状态下的绝对淌度
CE中的参数与关系式
1.迁移时间(保留时间)
CE兼具有电化学的特性和色谱分析的特性。有关色谱理论也
适用。
t Lef Lef Lef L
ap ap E ap V
V—外加电压;L—毛细管总长度;
2.分离效率(塔板数)
在CE中,仅存在纵向扩散,σ2=2Dt
离子在负极最后流出
除中性粒子外,同种类离子由于受到的电场力大小不一样也
同时被相互分离。
毛细管电泳的特点
1.仪器简单、易自动化
电源、毛细管、检测器、溶液瓶
2.分析速度快、分离效率高
在3.1min内分离36种无机及有机阴离子,4.1min内分 离了24种阳离子;
3.操作方便、消耗少
进样量极少,水介质中进行;
焦耳热:毛细管溶液中有电流通过时,产生的热量; CE中的焦耳热与背景电解质的摩尔电导、浓度及电场强 度成正比。温度每变化1,将引起背景电解质溶液黏度变化 2%~3%;
5. 添加剂的影响
(1)加入浓度较大的中性盐,如K2SO4,溶液离子强度增大, 使溶液的黏度增大,电渗流减小。
(2)加入有机溶剂如甲醇、乙腈, 使电渗流增大。
2.HPCE中的电渗现象与电渗流
石英毛细管柱,内充液pH>3时,表面电离成-SiO-,管 内壁带负电荷,形成双电层。
在高电场的作用下,带正电荷的溶液表面及扩散层向阴 极移动,由于这些阳离子实际上是溶剂化的,故将引起柱中
的溶液整体向负极移动,速度ν电渗流。
3. CE中电渗流的大小与方向
电渗流的大小用电渗流速度ν电渗流表示,取决于电渗淌 度μ和电场强度E。即
R 2(t2 t1) W2 W1
影响分离效率的因素—区带展宽
1.纵向扩散的影响
在HPCE中,纵向扩散引起的峰展宽:σ2=2Dt
由扩散系数和迁移时间决定。大分子的扩散系数小,可 获得更高的分离效率,大分子生物试样分离的依据。
2.进样的影响
当进样塞长度太大时,引起的峰展宽大于纵向扩散。分 离效率明显下降;理想情况下,进样塞长度:
温度效应,使电场电压可以很高。 • 电压升高,电场推动力大,又可进一步使柱径变小,柱
长增加, • 毛细管电泳的柱效远高于HPLC,理论塔板数高达几十万
块/米,特殊柱子可以达到数百万。
分离过程
电场作用下,毛细
管柱中出现:电泳现 象和电渗流现象。
带电粒子的迁移速度=电泳+电渗流;两种速度的矢量和。 阳离子:两种效应的运动方向一致,在负极最先流出; 中性粒子无电泳现象,受电渗流影响,在阳离子后流出; 阴离子:两种效应的运动方向相反。ν电渗流 >ν电泳时,阴
n apVLef apELef ;
2DL
2D
n
5.54
tR Y1/ 2
2
扩散系数小的溶质比扩散系数大的分离效率高,分离生
物大分子的依据。
3.分离度
R 0.177 apVLef 平均 DL
平均
ap1
ap2
2
影响分离度的主要因素;工作电压V;毛细管有效长度
与总长度比;有效淌度差。分离度可按谱图直接由下式计算:
2. 毛细管柱
(1)材料:石英:各项 性能好;玻璃:光学、机 械性能差;
(2)规格:内径20~ 75μm,外径350~400μm; 长度<=1m
3.缓冲液池
化学惰性,机械稳定性好;
4. 检测器
要求:具有极高灵敏度,可柱端检测; 检测器、数据采集与计算机数据处理一体化;
类型 紫外-可见 荧光 激光诱导荧光 电导
1.电渗流现象
当固体与液体接触时,固体表面由于某种原因带一种电 荷,则因静电引力使其周围液体带有相反电荷,在液-固界 面形成双电层,二者之间存在电位差。
当液体两端施加电压时, 就会发生液体相对于固体表面 的移动,这种液体相对于固体 表面的移动的现象叫电渗现象。
电渗现象中整体移动着的 液体叫电渗流(electroosmotic flow ,简称EOF)。
CE中电渗流的方向
电渗流的方向取决于毛细管内表面电荷的性质: 内表面带负电荷,溶液带正电荷,电渗流流向负极; 内表面带正负电荷,溶液带负电荷,电渗流流向正极; 石英毛细管;带负电荷,电渗流流向阴极; 改变电渗流方向的方法: (1)毛细管改性 表面键合阳离子基团; (2)加电渗流反转剂 内充液中加入大量的阳离子表面活性剂,将使石英毛细 管壁带正电荷,溶液表面带负电荷。电渗流流向正极。
ν+ =ν电渗流 + ν+ef 阳离子运动方向与电渗流一致;
ν- =ν电渗流 - ν-ef 阴离子运动方向与电渗流相反;
ν0 =ν电渗流
中性粒子运动方向与电渗流一致;
(1)可一次完成阳离子、阴离子、中性粒子的分离;
(2)改变电渗流的大小和方向可改变分离效率和选择性,如 同改变LC中的流速;
(3)电渗流的微小变化影响结果的重现性;
毛细管电泳(CE)基本原理
电泳是指带电离子在电场中的定向移动,不同离子具有 不同的迁移速度,迁移速度与哪些因素有关?
当带电离子以速度ν 在电场中移动时,受到大小相等、
方向相反的电场推动力和平动摩擦阻力的作用。 电场力:FE = qE
阻 力:F = fν 故: qE = fν
q—离子所带的有效电荷; E —电场强度; ν—离子在电场中的迁移速度; f —平动摩擦系数 ( 对于球形离子: f =6πηγ;γ —离子的表观液态动力 学半径;η —介质的粘度; )
毛细管电泳技术及应用
电泳
在电解质溶液中,位于电场中的带电离子在电场力的作 用下,以不同的速度向其所带电荷相反的电极方向迁移的现 象,称之为电泳。由于不同离子所带电荷及性质的不同,迁 移速率不同,可实现分离。
1808年,Reuss(俄国)首次发现电泳现象。 1937年,Tiselius(瑞典)用于人血清蛋白质混合液的 分离: 发现样品的迁移速度和方向由其电荷和淌度决定;
第一次的自由溶液电泳;第一台电泳仪; 1948年,获诺贝尔化学奖;
经典电泳
利用电泳现象对某些化学或生物物质进行分离分析的方 法和技术叫电泳法或电泳技术。
按形状分类:U型管电泳、柱状电泳、板电泳;
按载体分类:滤纸电泳、琼脂电泳、聚丙烯酰胺电泳、 自由电泳;
传统电泳分析:操作烦琐,分离效率低,定量困难,无 法与其他分析相比。
5.其他影响因素
(1)电分散作用对谱带展宽的影响 当溶质区带与缓冲溶液区带的电导不同时,也造成谱带
展宽;尽量选择与试样淌度相匹配的背景电解质溶液。 (2)“层流”现象对谱带展宽的影响
一般情况下,CE中不存在层流,但当毛细管两端存在压 力差时,出现抛物线形的层流;
产生的原因:毛细管两端液面高度不同。 实际操作时,保持毛细管两端缓冲溶液平面高度相同。
(3)加入表面活性剂,可改变电 渗流的大小和方向;
加入阴离子表面活性剂,如十 二烷基硫酸钠(SDS),可以使壁 表面负电荷增加,zeta电势增大, 电渗流增大;
加入不同阳离子表面活性剂来 控制电渗流。
淌度 Mobility
淌度:带电离子在单位电场下的迁移速度; 淌度不同是电泳分离的基础。 1.绝对淌度(absolute mobility)μab 无限稀释溶液中带电离子在单位电场强度下的平均迁移 速度,简称淌度。可在手册中查阅。 2.有效淌度(effective mobility)μef 实际溶液中的淌度(实验中测定的)。 μef=∑aiμi
4. CE中电渗流的流形
电荷均匀分布,整体移动,电渗流的流动为平流,塞式 流动(谱带展宽很小);
液相色谱中的溶液流动为层流,抛物线流型,管壁处流 速为零,管中心处的速度为平均速度的2倍(引起谱带展宽 较大)。
5. CE中电渗流的作用
电渗流的速度约等于一般离子电泳速度的5~7倍;
各种电性离子在毛细管柱中的迁移速度为:
所以,迁移速度:
qE q E (球形离子) f 6π
物质离子在电场中差速迁移是电泳分离的基础。
淌度μ :单位电场强度下的平均电泳速度。
q E 6π
q—离子所带的有效电荷; E —电场强度; γ —离子的表观液态动力学半径 η —介质的粘度;
电渗现象与电渗流
electroosmosis and electroosmotic flow
1).清洗毛细管
毛细管电泳仪
一、高效毛细管电泳仪 二、流程与主要部件 三、进样方式 四、检测器
仪器流程与主要部件
• 电压:0~30kV; • 分离柱不涂敷任何固定液; • 紫外或激光诱导荧光检测器; (可检测到:10-19~10-21 mol/L)
1.高压电源
(1)0~30 kV 稳定、连续可调的直流电源; (2)具有恒压、恒流、恒功率输出; (3)电场强度程序控制系统; (4)电压稳定性:0.1%; (5)电源极性易转换;
检测限/mol 10-13~10-15 10-15~10-17 10-18~10-20 10-18~10-19
特点 加二极管阵列,光谱信息 灵敏度高,样品需衍生 灵敏度极高,样品需衍生 离子灵敏,需专用的装置;
CE具体操作步骤:
毛细管电泳的基本步骤包括清洗毛细管、更换电泳 缓冲液、进样、电泳并同时在线检测。
改善方法:
(1)减小毛细管内径;
(2)控制散热;
4.溶质与管壁间的相互作用
存在吸附与疏水作用,造成谱带展宽;
蛋白质、多肽带电荷数多,有较多的疏水基,吸附问题 特别严重,是目前分离分析该类物质的一大难题。
细内径毛细管柱,一方面有利于散热,另一方面比表面 积大,又增加了溶质吸附的机会。
减小吸附的方法和途径:加入两性离子代替强电解质, 两性离子一端带正电,另一端带负电,带正电一端与管壁负 电中心作用,浓度约为溶质的100-1000倍时,抑制对蛋白质 吸附,又不增加溶液电导,对电渗流影响不大。
毛细管电泳(Capillary Electrophoresis, CE)
高效毛细管电泳在技术上采取了两项重要改进: 1. 采用了25-100μm内径的毛细管; 2. 采用了高达数千伏的电压。 • 毛细管的采用使产生的热量能够较快散发,大大减小了
4.应用范围极广
有机物、无机物、生物、中性分子;生物大分子等; 分子生物学、医学、药学、化学、环境保护、材料等;
毛细管电泳理论基础
一、CE基本原理 二、电渗现象与电渗流electroosmotic flow 三、影响电渗流的因素 四、淌度mobility 五、CE中的参数与关系式 六、影响分离效率的因素
ν电渗流 = μ E
电渗淌度取决于电泳介质及双电层的Zeta电势,即
μ = ε0εξ
ε0—真空介电常数;ε—介电常数;ξ—毛细管壁的Zeta电势。
ν电渗流 = ε0εξ E
实际电泳分析,可在实验测定相应参数后,按下式计算
ν电渗流 = Lef/teo
Lef —毛细管有效长度; teo—电渗流标记物(中性物质)的迁移时间。
Winj= (24D t )1/2 实际操作时进样塞长度小于或等于毛细管总长度的1%~2%。
3.焦耳热与温度梯度的影响
电泳过程产生的焦耳热可由下式计算:
Q
VI π r2L
Λm cb
E
2
m—电解质溶液的摩尔电导;I—工作电流:cm—电解质浓度;
散热过程中,在毛细管内形成温度梯度(中心温度高), 破坏了塞流,导致区带展宽。
在CE中,控制电渗流非常重要。
CE中影响电渗流的因素
1.电场强度的影响
电渗流速度和电场强度成正比,当毛细管长度一定时, 电渗流速度正比于工作电压。
2.毛细管材料的影响
不同材料毛细管的表面电 荷特性不同,产生的电渗流大 小不同;
3. 电解质溶液性质的影响
(1)溶液pH的影响
对于石英毛细管,溶液pH增高时,表面电离多,电荷密 度增加,管壁zeta电势增大,电渗流增大,pH=7,达到最大; pH<3,完全被氢离子中和,表面电中性,电渗流为零。分析 时,采用缓冲溶液来保持pH稳定。
(2)阴离子的影响
在其他条件相同,浓度相同而阴离子不同时,毛细管中 的电流有较大差别,产生的焦耳热不同。
缓冲溶液离子强度,影响双电层的厚度、溶液黏度和工 作电流,明显影响电渗流大小。缓冲溶液离子强度增加,电 渗流下降。
4. 温度的影响
毛细管内温度的升高,使溶液的黏度下降,电渗流增大。 温度变化来自于“焦耳热”;
ai —溶质i 的解离度;μi —溶i 在解离状态下的绝对淌度
CE中的参数与关系式
1.迁移时间(保留时间)
CE兼具有电化学的特性和色谱分析的特性。有关色谱理论也
适用。
t Lef Lef Lef L
ap ap E ap V
V—外加电压;L—毛细管总长度;
2.分离效率(塔板数)
在CE中,仅存在纵向扩散,σ2=2Dt
离子在负极最后流出
除中性粒子外,同种类离子由于受到的电场力大小不一样也
同时被相互分离。
毛细管电泳的特点
1.仪器简单、易自动化
电源、毛细管、检测器、溶液瓶
2.分析速度快、分离效率高
在3.1min内分离36种无机及有机阴离子,4.1min内分 离了24种阳离子;
3.操作方便、消耗少
进样量极少,水介质中进行;
焦耳热:毛细管溶液中有电流通过时,产生的热量; CE中的焦耳热与背景电解质的摩尔电导、浓度及电场强 度成正比。温度每变化1,将引起背景电解质溶液黏度变化 2%~3%;
5. 添加剂的影响
(1)加入浓度较大的中性盐,如K2SO4,溶液离子强度增大, 使溶液的黏度增大,电渗流减小。
(2)加入有机溶剂如甲醇、乙腈, 使电渗流增大。
2.HPCE中的电渗现象与电渗流
石英毛细管柱,内充液pH>3时,表面电离成-SiO-,管 内壁带负电荷,形成双电层。
在高电场的作用下,带正电荷的溶液表面及扩散层向阴 极移动,由于这些阳离子实际上是溶剂化的,故将引起柱中
的溶液整体向负极移动,速度ν电渗流。
3. CE中电渗流的大小与方向
电渗流的大小用电渗流速度ν电渗流表示,取决于电渗淌 度μ和电场强度E。即
R 2(t2 t1) W2 W1
影响分离效率的因素—区带展宽
1.纵向扩散的影响
在HPCE中,纵向扩散引起的峰展宽:σ2=2Dt
由扩散系数和迁移时间决定。大分子的扩散系数小,可 获得更高的分离效率,大分子生物试样分离的依据。
2.进样的影响
当进样塞长度太大时,引起的峰展宽大于纵向扩散。分 离效率明显下降;理想情况下,进样塞长度:
温度效应,使电场电压可以很高。 • 电压升高,电场推动力大,又可进一步使柱径变小,柱
长增加, • 毛细管电泳的柱效远高于HPLC,理论塔板数高达几十万
块/米,特殊柱子可以达到数百万。
分离过程
电场作用下,毛细
管柱中出现:电泳现 象和电渗流现象。
带电粒子的迁移速度=电泳+电渗流;两种速度的矢量和。 阳离子:两种效应的运动方向一致,在负极最先流出; 中性粒子无电泳现象,受电渗流影响,在阳离子后流出; 阴离子:两种效应的运动方向相反。ν电渗流 >ν电泳时,阴
n apVLef apELef ;
2DL
2D
n
5.54
tR Y1/ 2
2
扩散系数小的溶质比扩散系数大的分离效率高,分离生
物大分子的依据。
3.分离度
R 0.177 apVLef 平均 DL
平均
ap1
ap2
2
影响分离度的主要因素;工作电压V;毛细管有效长度
与总长度比;有效淌度差。分离度可按谱图直接由下式计算:
2. 毛细管柱
(1)材料:石英:各项 性能好;玻璃:光学、机 械性能差;
(2)规格:内径20~ 75μm,外径350~400μm; 长度<=1m
3.缓冲液池
化学惰性,机械稳定性好;
4. 检测器
要求:具有极高灵敏度,可柱端检测; 检测器、数据采集与计算机数据处理一体化;
类型 紫外-可见 荧光 激光诱导荧光 电导
1.电渗流现象
当固体与液体接触时,固体表面由于某种原因带一种电 荷,则因静电引力使其周围液体带有相反电荷,在液-固界 面形成双电层,二者之间存在电位差。
当液体两端施加电压时, 就会发生液体相对于固体表面 的移动,这种液体相对于固体 表面的移动的现象叫电渗现象。
电渗现象中整体移动着的 液体叫电渗流(electroosmotic flow ,简称EOF)。
CE中电渗流的方向
电渗流的方向取决于毛细管内表面电荷的性质: 内表面带负电荷,溶液带正电荷,电渗流流向负极; 内表面带正负电荷,溶液带负电荷,电渗流流向正极; 石英毛细管;带负电荷,电渗流流向阴极; 改变电渗流方向的方法: (1)毛细管改性 表面键合阳离子基团; (2)加电渗流反转剂 内充液中加入大量的阳离子表面活性剂,将使石英毛细 管壁带正电荷,溶液表面带负电荷。电渗流流向正极。
ν+ =ν电渗流 + ν+ef 阳离子运动方向与电渗流一致;
ν- =ν电渗流 - ν-ef 阴离子运动方向与电渗流相反;
ν0 =ν电渗流
中性粒子运动方向与电渗流一致;
(1)可一次完成阳离子、阴离子、中性粒子的分离;
(2)改变电渗流的大小和方向可改变分离效率和选择性,如 同改变LC中的流速;
(3)电渗流的微小变化影响结果的重现性;
毛细管电泳(CE)基本原理
电泳是指带电离子在电场中的定向移动,不同离子具有 不同的迁移速度,迁移速度与哪些因素有关?
当带电离子以速度ν 在电场中移动时,受到大小相等、
方向相反的电场推动力和平动摩擦阻力的作用。 电场力:FE = qE
阻 力:F = fν 故: qE = fν
q—离子所带的有效电荷; E —电场强度; ν—离子在电场中的迁移速度; f —平动摩擦系数 ( 对于球形离子: f =6πηγ;γ —离子的表观液态动力 学半径;η —介质的粘度; )
毛细管电泳技术及应用
电泳
在电解质溶液中,位于电场中的带电离子在电场力的作 用下,以不同的速度向其所带电荷相反的电极方向迁移的现 象,称之为电泳。由于不同离子所带电荷及性质的不同,迁 移速率不同,可实现分离。
1808年,Reuss(俄国)首次发现电泳现象。 1937年,Tiselius(瑞典)用于人血清蛋白质混合液的 分离: 发现样品的迁移速度和方向由其电荷和淌度决定;
第一次的自由溶液电泳;第一台电泳仪; 1948年,获诺贝尔化学奖;
经典电泳
利用电泳现象对某些化学或生物物质进行分离分析的方 法和技术叫电泳法或电泳技术。
按形状分类:U型管电泳、柱状电泳、板电泳;
按载体分类:滤纸电泳、琼脂电泳、聚丙烯酰胺电泳、 自由电泳;
传统电泳分析:操作烦琐,分离效率低,定量困难,无 法与其他分析相比。
5.其他影响因素
(1)电分散作用对谱带展宽的影响 当溶质区带与缓冲溶液区带的电导不同时,也造成谱带
展宽;尽量选择与试样淌度相匹配的背景电解质溶液。 (2)“层流”现象对谱带展宽的影响
一般情况下,CE中不存在层流,但当毛细管两端存在压 力差时,出现抛物线形的层流;
产生的原因:毛细管两端液面高度不同。 实际操作时,保持毛细管两端缓冲溶液平面高度相同。
(3)加入表面活性剂,可改变电 渗流的大小和方向;
加入阴离子表面活性剂,如十 二烷基硫酸钠(SDS),可以使壁 表面负电荷增加,zeta电势增大, 电渗流增大;
加入不同阳离子表面活性剂来 控制电渗流。
淌度 Mobility
淌度:带电离子在单位电场下的迁移速度; 淌度不同是电泳分离的基础。 1.绝对淌度(absolute mobility)μab 无限稀释溶液中带电离子在单位电场强度下的平均迁移 速度,简称淌度。可在手册中查阅。 2.有效淌度(effective mobility)μef 实际溶液中的淌度(实验中测定的)。 μef=∑aiμi
4. CE中电渗流的流形
电荷均匀分布,整体移动,电渗流的流动为平流,塞式 流动(谱带展宽很小);
液相色谱中的溶液流动为层流,抛物线流型,管壁处流 速为零,管中心处的速度为平均速度的2倍(引起谱带展宽 较大)。
5. CE中电渗流的作用
电渗流的速度约等于一般离子电泳速度的5~7倍;
各种电性离子在毛细管柱中的迁移速度为:
所以,迁移速度:
qE q E (球形离子) f 6π
物质离子在电场中差速迁移是电泳分离的基础。
淌度μ :单位电场强度下的平均电泳速度。
q E 6π
q—离子所带的有效电荷; E —电场强度; γ —离子的表观液态动力学半径 η —介质的粘度;
电渗现象与电渗流
electroosmosis and electroosmotic flow
1).清洗毛细管
毛细管电泳仪
一、高效毛细管电泳仪 二、流程与主要部件 三、进样方式 四、检测器
仪器流程与主要部件
• 电压:0~30kV; • 分离柱不涂敷任何固定液; • 紫外或激光诱导荧光检测器; (可检测到:10-19~10-21 mol/L)
1.高压电源
(1)0~30 kV 稳定、连续可调的直流电源; (2)具有恒压、恒流、恒功率输出; (3)电场强度程序控制系统; (4)电压稳定性:0.1%; (5)电源极性易转换;
检测限/mol 10-13~10-15 10-15~10-17 10-18~10-20 10-18~10-19
特点 加二极管阵列,光谱信息 灵敏度高,样品需衍生 灵敏度极高,样品需衍生 离子灵敏,需专用的装置;
CE具体操作步骤:
毛细管电泳的基本步骤包括清洗毛细管、更换电泳 缓冲液、进样、电泳并同时在线检测。
改善方法:
(1)减小毛细管内径;
(2)控制散热;
4.溶质与管壁间的相互作用
存在吸附与疏水作用,造成谱带展宽;
蛋白质、多肽带电荷数多,有较多的疏水基,吸附问题 特别严重,是目前分离分析该类物质的一大难题。
细内径毛细管柱,一方面有利于散热,另一方面比表面 积大,又增加了溶质吸附的机会。
减小吸附的方法和途径:加入两性离子代替强电解质, 两性离子一端带正电,另一端带负电,带正电一端与管壁负 电中心作用,浓度约为溶质的100-1000倍时,抑制对蛋白质 吸附,又不增加溶液电导,对电渗流影响不大。