法拉第效应实验报告
法拉第效应实验报告
法拉第效应一.实验目的1.初步了解法拉第效应的经典理论。
2.初步掌握进行磁光测量的方法。
二.实验原理1.法拉第效应实验表明,偏振面的磁致偏转可以这样定量描述:当磁场不是很强时,振动面旋转的角度F θ与光波在介质中走过的路程l 及介质中的磁感应强度在光的传播方向上的分量H B 成正比,这个规律又叫法拉第一费尔得定律,即F H VB l θ=()1比例系数V 由物质和工作波长决定,表征着物质的磁光特性,这个系数称为费尔得常数,它与光频和温度有关。
几乎所有的物质都有法拉第效应,但一般都很不显著。
不同物质的振动面旋转的方向可能不同。
一般规定:旋转方向与产生磁场的螺线管中电流方向一致的,叫正旋(0V >)反之叫负旋(0V <)。
法拉第效应与自然旋光不同,在法拉第效应中,对于给定的物质,偏振面相对于实验室坐标的旋转方向,只由B 的方向决定和光的传播方向无关,这个光学过程是不可逆的。
光线往返一周,旋光角将倍增。
而自然旋光则是可逆的,光线往返一周,累积旋光角为零。
与自然旋光类似,法拉第效应也有色散。
含有三价稀土离子的玻璃,费尔德常数可近似表示为:()122t V K λλ-=-()2这里K 是透射光波长t λ,有效的电偶极矩阵元,温度和浓度等物理量的函数,但是与入射波长λ无关。
这种V 值随波长而变的现象称为旋光色散。
2.法拉第效应的经典理论从光波在介质中传播的图像看,法拉第效应可以这样理解:一束平行于磁场方向传播的平面偏振光,可以看作是两柬等幅的左旋和右旋偏振光的叠加,左旋和右旋是相对于磁场方向而言的。
介质中受原子核束缚的电子在人射光的两旋转电矢量作用下,作稳态的圆周运动。
在与电子轨道平面相垂直的方向上加一个磁场B ,则在电子上将引起径向力M F ,力的方向决定于光的旋转方向和磁场方向。
因此,电子所受的总径向力可以有两个不同的值。
轨道半径也可以有两个不同的值。
结果,对于一个给定的磁场就会有两个电偶极矩,两个电极化率。
法拉第效应实验报告
法拉第效应实验报告法拉第效应一.实验目的1.初步了解法拉第效应的经典理论。
2.初步掌握进行磁光测量的方法。
二.实验原理1.法拉第效应实验表明,偏振面的磁致偏转可以这样定量描述:当磁场不是很强时,振动面旋转的角度Fθ与光波在介质中走过的路程l 及介质中的磁感应强度在光的传播方向上的分量HB 成正比,这个规律又叫法拉第一费尔得定律,即FHVB l θ=()1比例系数V 由物质和工作波长决定,表征着物质的磁光特性,这个系数称为费尔得常数,它与光频和温度有关。
几乎所有的物质都有法拉第效应,但一般都很不显著。
不同物质的振动面旋转的方向可能不同。
一般规定:旋转方向与产生磁场的螺线管中电流方向一致的,叫正旋(0V >)反之叫负旋(0V <)。
法拉第效应与自然旋光不同,在法拉第效应中,对于给定的物质,偏振面相对于实验室坐标的旋转方向,只由B 的方向决定和光的传播方向无关,这个光学过程是不可逆的。
光线往返一周,旋光角将倍增。
而自然旋光则是可逆的,光线往返一周,累积旋光角为零。
与自然旋光类似,法拉第效应也有色散。
含有三价稀土离子的玻璃,费尔德常数可近似表示为:()122tV K λλ-=-()2这里K 是透射光波长tλ,有效的电偶极矩阵元,温度和浓度等物理量的函数,但是与入射波长λ无关。
这种V 值随波长而变的现象称为旋光色散。
2.法拉第效应的经典理论从光波在介质中传播的图像看,法拉第效应可以这样理解:一束平行于磁场方向传播的平面偏振光,可以看作是两柬等幅的左旋和右旋偏振光的叠加,左旋和右旋是相对于磁场方向而言的。
介质中受原子核束缚的电子在人射光的两旋转电矢量作用下,作稳态的圆周运动。
在与电子轨道平面相垂直的方向上加一个磁场B ,则在电子上将引起径向力MF ,力的方向决定于光的旋转方向和磁场方向。
因此,电子所受的总径向力可以有两个不同的值。
轨道半径也可以有两个不同的值。
结果,对于一个给定的磁场就会有两个电偶极矩,两个电极化率。
法拉第效应实验报告
法拉第效应0810290 赵志强————实验报告一、实验目的1.了解磁光效应现象和法拉第效应的机理2.测量磁致旋光角,验证法拉第—费尔德定律θ=VBL3.法拉第效应与自然旋光的区别4.了解磁光调制原理二、实验原理1845年,法拉第在探索电磁现象和光学现象之间的联系时发现,当平面偏振光穿透某种介质时,若在沿平行于光的传播方向施加一磁场,光波的偏振面会发生旋转,实验表明其旋转角θ正比于外加的磁场强度B,这种现象称为法拉第(Faraday)效应,也称磁致旋光效应或磁光效应。
法拉第效应的定量描述是法拉第—费尔德定律θ=VBl (1)式中θ为旋光角,B为磁场磁感强度,L为光波在介质中的路径,V为表征磁致旋光效应特征的比例系数,称为维尔德(Verdet)常数。
三、实验装置1、光源系统:白炽灯光源,单色仪,聚光灯筒,起偏镜;2、磁场系统:电磁铁,激磁电源,高斯计;3、样品介质系统:样品介质,样品盒;4、旋光角监测系统:检偏测角仪,光电倍增管,直流复射式检流计,高压电源;四、实验内容测量法拉第旋光角,并记录数据五、数据记录六、数据处理1、λ~ϕ关系曲线B=2000Gauss765432B=4000Gauss2、不同波长下,磁场与偏转角的关系λ=4600nm λ=5000nmλ=5400nmλ=5800nm七、注意事项1.当励磁电流较高时(2A以上),螺线管会发热,属正常现象。
但如果工作时间较长,应断电冷却后再继续工作。
2.螺线管两端有挡片,玻璃样品只能从螺线管有活动挡片的一端放入/取出。
实验中注意不要打碎样品。
3.实验结束时要将磁场电流减小到0,关掉仪器电源,整理好仪器,填写好仪器记录。
法拉第效应测量实验报告
一、实验目的1. 了解和掌握法拉第效应的原理及其在光学和电磁学中的应用。
2. 熟悉法拉第效应实验装置的结构和操作方法。
3. 测量法拉第效应产生的偏振面旋转角度,验证法拉第效应的基本规律。
4. 计算法拉第效应的费尔德常数,了解其与样品材料、磁场强度和光波波长之间的关系。
二、实验原理法拉第效应是指当一束平面偏振光通过含有重金属或稀土离子的光学介质时,在介质中沿光的传播方向加上一个强磁场,偏振面会发生旋转的现象。
这种现象与磁场强度、光波波长和样品材料有关。
法拉第效应的基本原理如下:1. 当光波通过介质时,光波的电场会使介质中的电子发生受迫振动,产生感应电流。
2. 感应电流产生的磁场与外加磁场相互作用,使得光波在介质中的传播速度发生变化。
3. 由于左旋圆偏振光和右旋圆偏振光的传播速度不同,从而导致偏振面发生旋转。
法拉第效应的旋转角度θ与磁场强度B、光波波长λ、介质厚度d和费尔德常数V的关系为:θ = V B d λ三、实验装置1. 光源系统:包括白炽灯、透镜组、单色仪和斩光器。
2. 磁场系统:包括电磁铁、供电电源和特斯拉计。
3. 样品介质:选择含重金属或稀土离子的光学玻璃,制成圆柱状。
4. 旋光角检测系统:包括检偏测角仪、前置放大器、锁相放大器和光电倍增管。
四、实验步骤1. 连接实验装置,确保各部分连接正确。
2. 打开电源,调整光电倍增管电压至650V,观察输出指示,确保不过载。
3. 记录消光角,即法拉第转角的零点。
4. 逐渐增大磁场强度,分别在0、10、20、30、40、50、60、70、80、90、100、110、120、130、140、150、160、170、180、190、200、210、220、230、240、250、260、270、280、290、300、310、320、330、340、350、360、370、380、390、400、410、420、430、440、450、460、470、480、490、500、510、520、530、540、550、560、570、580、590、600、610、620、630、640、650、660、670、680、690、700、710、720、730、740、750、760、770、780、790、800、810、820、830、840、850、860、870、880、890、900、910、920、930、940、950、960、970、980、990、1000Oe时测量检偏角。
法拉第效应实验报告
(五)最小偏向角测量系统
1. 2. 白炽光源; 单色仪;
3.
分光仪:用来测量样品介质对应不同波长λ和最小偏向角θ的对应关 系。
三、实验内容
(一)法拉第旋光角的测量 1.旋光角测量方法 (1)平面偏振光偏振方位的测定
消光位置附近,光强变化曲率小,难以直接测量, 需利用对称测量法。
(2)旋光角的测量
(二)法拉第旋光角的计算:
根据量子理论,法拉第旋光角大小为:
或 其中 为费德尔常数
二、实验装置
(一)光源系统
1.白炽光源:用来提供白光; 2.单色仪:用来产生单色光; 3.聚光镜筒:产生平行光; 4.起偏镜:用来产生平面偏振光。
(ቤተ መጻሕፍቲ ባይዱ)磁场系统
1.电磁铁:圆柱型磁头,中心有通光孔; 2.激磁电源:10A,60V,输出连续可调; 3.高斯计:用来测量电磁铁所产生的磁场强度。
计算出电子荷质比来。 (二)计算样品介质费德尔常数:
V
DB
五、参考文献
[1]高立模等. 《近代物理实验》. 南开大学出版社,2006.
(三)样品介质系统 1. 样品介质:选用光学玻璃,做成三棱镜形状,四面抛成光学面; 既可以放在磁场中做旋光样品,也可以放在分光仪上测样品介质 的色散关系λ~dn/dλ; 2. 样品盒和支架:铜材料做成。 (四)旋光角检测系统 1. 检偏测角仪:用来检测偏振光的偏振方位; 2. 光电倍增管:用来接收检偏后出射的光信号,转换成电信号输出 给直流复射式检流计; 3. 直流复射式检流计:用来接收光电倍增管输出的电流信号; 4. 高压电源:用来提供光电倍增管工作电压。
实验4-6 法拉第效应
实验目的和要求
1.了解磁光效应现象和法拉第效应的作用机制;
法拉第效应实验报告完整版-法拉效应实验报告
南昌大学物理实验报告学生姓名:学号:5502210039 专业班级:应物101班实验时间:教师编号:T017成绩:法拉第效应一、实验目的1.了解和掌握法拉第效应的原理;2.了解和掌握法拉第效应的实验装置结构及实验原理;3.测量法拉第效应偏振面旋转角 与外加磁场电流I的关系曲线二、实验仪器本实验采用FD-FZ-I型法拉第-塞满效应综合试验仪,仪器结构示意图如下:三、实验原理1.法拉第效应1845年法拉第发现磁场会引起磁性介质折射率变化而产生旋光现象,即加在介质上的磁场引起了平行于磁场方向传播的线偏振光偏振面的旋转,且光波偏振面偏转角(磁致旋光角)与光在介质中通过的长度D及介质中磁感应强度在光传播方向上的分量B成正比。
此即为法拉第效应。
法拉第效应在固体、液体和气体中都存在。
大部分物质的法拉第效应很弱,掺稀土离子玻璃的法拉第效应稍明显些,而有些晶体如YIG等的法拉第效应较强。
同时,由于法拉第效应弛豫时间极短,对温度稳定性要求低。
故法拉第效应有许多重用的应用,如光纤通讯中的磁光隔离器、单通器,激光通讯,激光雷达等技术中的光频环行器、调制器等,以及磁场测量的磁强计等。
磁光隔离器可减少光纤中器件表面反射光对光源的干扰;磁光隔离器也被广泛用于激光多级放大技术和高分辨的激光光谱技术,激光选模等技术中。
在磁场测量和电流方面,可测量脉冲强磁场、交变强磁场、等离子体中强磁场、低温超导磁场、几千-几千KV的高压电流等。
此外,利用法拉第效应还可研究物质结构、载流子有效质量、能带等。
不同物质偏振面旋转方向可能不同。
通常规定:振动面的旋转方向和产生磁南昌大学物理实验报告学生姓名: 刘惠文 学号: 5502210039 专业班级:应物101班实验时间: 教师编号:T017 成绩:场的螺旋线圈中电流方向一致,称为正旋(V >0);反之,叫做负旋(V <0)。
对于给定物质,其固有旋光效应沿顺光线和逆光线方向观察时线偏振光的振动面的旋向完全相反,因此,当光波往返两次穿过固有旋光物质时振动面复位。
法拉第效应实验报告(2021年整理)
法拉第效应实验报告(2021年整理)
二极管现象是电流电压特性表明的一种现象,在1905年,德国物理学家布拉班尼斯·法拉第发现了二极管的原理。
法拉第实验的目的是从物理学的角度研究了电子束的限制,当空气中的气体受到高压线圈轴的电离时,电子束就会流动,当这些活动的电子束遇到其他可以加以阻止的障碍时,就会形成二极管现象从而改变电流的流向。
法拉第的实验设备主要由电源、燃料池和电流测量仪组成,电源用来为被试设备提供电源,燃料池用来装配气体放电和离子发射。
实验中,法拉第发现,在一个实验装置内,当普通气体放电中,电压波形是有一个上升后随着电流增加减少到基线的趋势,当电压到达一定水平时,气体就会发出能量例如紫外线,这被称作“离子发生”。
实验结果表明,在无加热的情况下,电流集中在一个方向并抵消了另一个方向的电流。
法拉第的实验结果也为后来电子设计奠定了基础,由于法拉第发现的“离子发生”现象,可以反映整个电路中电流的方向,在电子电路中,用二极管就可以实现开关功能。
同时,这也将对阻抗、容性和电容的应用产生了重大影响。
因此,法拉第的实验结果对我们在电子设计中的使用和理解电子学和电子技术有着至关重要的作用,他在研究电子学方面作出的贡献有力地推动了电子技术的发展,也使我们可以更加深入地理解和研究电子学,从而用于制作999种有用的电子产品。
磁致旋光法拉第效应实验报告
磁致旋光法拉第效应实验报告在做这个磁致旋光法拉第效应实验的时候呀,那可真是一段超级有趣又有点小波折的经历呢。
刚进实验室的时候,就看到那些实验仪器摆在那儿,感觉它们都在等着我去探索呢。
那些仪器看起来就很神秘,心里就特别好奇它们到底是怎么展现磁致旋光法拉第效应的。
我就先去摆弄那些仪器,按照之前老师大概讲过的样子去连接线路啥的。
哎呀,可别小看这连接线路,感觉就像在给一堆小零件做拼图一样,一不小心就可能接错了。
我就这么小心翼翼地弄着,心里还在想这实验要是成功了得多酷啊。
然后开始调整仪器的参数,这时候就有点像在和仪器对话一样,我调整一点,就看看它有啥反应。
有时候调整了半天没反应,心里就特别着急,就像你满心期待地等一个好朋友的回应,结果啥都没有。
不过我可没放弃,又重新检查线路和参数,一点点排查问题。
当我看到光真的因为磁场而发生旋光现象的时候,那种兴奋感简直没法形容。
就像发现了一个超级大宝藏一样。
我当时就在想,这小小的磁场和光之间居然有这么神奇的联系,大自然真的是太神奇啦。
在这个实验里,我还发现了一些特别的地方呢。
比如说,磁场强度不同的时候,光的旋光角度也不一样。
这就像是在玩一个很神秘的游戏,不同的规则会有不同的结果。
我就不停地改变磁场强度,然后记录光的旋光角度,感觉自己就像一个小科学家在探索未知的世界。
这个实验也让我明白了很多东西。
以前在课本上看到这些理论的时候,感觉就像是在看一些干巴巴的文字,但是真正自己做了这个实验之后,就觉得这些理论都活了起来。
就像磁致旋光法拉第效应,以前只是知道有这么个事儿,但是现在我能清楚地看到它是怎么发生的,能感受到这个效应背后的奇妙之处。
而且在做实验的过程中,和同学们的交流也特别有意思。
大家会分享自己遇到的问题,然后一起想办法解决。
这感觉就像一群探险家在共同探索一个神秘的岛屿一样,大家互相帮助,互相学习。
我觉得这个实验不仅仅是让我学会了关于磁致旋光法拉第效应的知识,更重要的是让我体验到了探索科学的乐趣,还有那种遇到困难不放弃,一点点去解决的感觉。
法拉第效应实验报告
实验报告法拉第效应学号:1010239 姓名:黄万通实验时间:2013年3月19日下午一、实验背景在磁场中,光与物质的电磁作用成为磁光效应,有三种表现:(1)塞曼效应把具有光辐射的原子在磁场中,原子光谱发生分裂的现象;(2)法拉第效应在磁场作用下,平面偏振光沿着磁场方向通过放在此磁场中的透明介质时,光的偏振面发生旋转的现象;(3)弗埃特效应在磁场作用下,平面偏振光沿着垂直磁场方向通过放在此磁场中的透明介质时,光便产生双折射的现象;二、实验目的(1)了解磁光效应现象和法拉第效应的作用机制;(2)掌握旋光角的测量方法,学会使用有关仪器;(3)学会用重要物理量的经典值验证实验原理和实验精度。
三、实验原理把样品(任何透明固体和液体)介质放在均匀磁场中,使一束平面偏振光沿着磁场方向透过该样品,结果其透射光仍为平面偏振光,但偏振角却旋转了一个角度,旋转角度的大小正比于磁场强度。
(1)在磁场作用下的旋光作用在磁场作用下,处于磁场中的介质呈现各向异性,其光轴方向为沿着磁场的方向。
把电矢量E 看成两个圆偏光成分(左旋偏振光E L 和右旋偏振光E R )的矢量合成。
则在磁场作用下通过介质时,由于E R 比E L 慢,通过介质后的E L 和E R 之间将产生位相差θ,合成矢量E 将旋转一个角度φ=θ2,有:()D D =R L R L Dn n V V c ωθω⎛⎫-=-⎪⎝⎭()=2R L Dn n cωϕ-其中D 为介质厚度,n R 为在磁场作用下,右旋偏光通过介质的折射率,n L 为在磁场作用下,左旋偏光通过介质的折射率。
(2)法拉第旋光角的计算介质中原子的轨道电子具有磁偶极矩和势能V 有:平面偏振光通过介质时,光子与轨道电子发生交互作用,使轨道电子发生能级跃迁,势能增加。
介质对光的折射率为:()n n ω=在磁场作用下,具有能量ℏω的左旋光子所遇到的轨道电子能级结构,等价于不加磁场时能量为ℏω−∆U L 的左旋光子所遇到的轨道电子能级结构。
法拉第实验报告
4600 0.00029 1082
4800 0.00025 618
5000 0.00023 2411
5200 0.00020 9849
5400 0.00019 1787
5600 0.00017 3741
5800 0.00016 1329
6000 0.00014 8918
作出样品介质的波长~费德尔常数关系图如下图所示
4800 7.075 13.4 20.95
5000 6.05 12.125 17.675
法拉第效应实验报告
法拉第效应实验报告法拉第效应是指当导体在磁场中运动时,会在导体两端产生感应电动势的现象。
这一现象是由英国物理学家迈克尔·法拉第在19世纪首次发现并描述的。
在本次实验中,我们将通过简单的实验装置来观察和验证法拉第效应的存在,并对其产生的原理进行分析和探讨。
实验材料和装置:1. 直流电源。
2. 导线。
3. 磁铁。
4. 电压表。
实验步骤:1. 将直流电源连接好,接通电源。
2. 将导线绕制成一个小圈,将磁铁放入圈内。
3. 将电压表连接到导线两端,观察电压表的读数。
实验结果:在实验进行过程中,我们观察到了明显的电压表读数变化。
当磁铁在导线圈内运动时,电压表的读数随之发生变化,表明在导线两端产生了感应电动势。
这一现象正是法拉第效应的典型表现。
实验分析:根据法拉第效应的原理,当导体在磁场中运动时,导体内的自由电子将受到磁场力的作用,从而在导体两端产生感应电动势。
这一感应电动势的大小与导体的速度、磁场的强度以及导体的长度等因素有关。
在本次实验中,磁铁在导线圈内运动,导致导线内的自由电子受到磁场力的作用,从而产生了感应电动势,表现为电压表的读数变化。
结论:通过本次实验,我们验证了法拉第效应的存在,并对其产生的原理进行了分析和探讨。
法拉第效应在现代电磁学中具有重要的理论和实际应用价值,对于理解电磁感应现象和设计电磁设备具有重要意义。
综上所述,法拉第效应是电磁学中的重要现象,通过本次实验,我们对其有了更深入的理解。
希望本次实验能够对大家对法拉第效应有所帮助,也希望大家能够继续对电磁学知识进行深入学习和探索。
近代物理实验报告—法拉第效应
法拉第效应一、引言1845年英国物理学家法拉第发现原本没有旋光性的铅玻璃在磁场中出现了旋光性,这种磁致旋光现象即法拉第效应。
随后费尔德的研究发现法拉第效应普遍存在于固体、液体、和气体中,只是大部分物质的法拉第效应很弱。
法拉第效应只是磁光效应中的一种。
磁光效应是描述在磁场的作用下,具有固有磁矩的介质中传播的光气无力性质发生变化的现象,比如光的频率,偏振面,相位等性质发生了变化。
法拉第效应的应用领域极其广泛,可用于物质结构的研究、光谱学和电工测量等领域。
此外利用法拉第效应原理制成的各种可快速控制激光参数的元器件也已广泛地应用于激光雷达、激光测距、激光陀螺、光纤通信中。
本实验的目的是通过实验理解法拉第效应的本质,掌握测量旋光角的基本方法,学会计算费尔德常数。
二、实验原理法拉第效应就是,当线偏振光穿过介质时,若在介质中加一平行于光的传播方向的磁场,则光的振动面将发生旋转,振动面转过的角度称为法拉第效应旋光角。
实验发现θ=VBL (1)其中θ为法拉第效应旋光角,L 为介质的厚度,B 为平行与光传播方向的磁感强度分量,V 称为费尔德常数,它由材料本身的性质和工作波长决定的,表征物质的磁光特性。
一般约定,当光的旋转方向与产生磁场的电流的方向一致时,称法拉第旋转是左旋,V>0;反之则叫右旋,V<0。
法拉第效应与自然旋光不同在于:法拉第效应对于给定的物质,偏振面的旋转方向只由磁场的方向决定而与光的传播方向无关,光线往返一周,旋光角将倍增,这叫做法拉第效应的“旋光非互易性”。
而自然旋光过程是可逆的。
1、法拉第效应原理的菲涅尔唯象理论一束平面偏振光可以分解为两个不同频率等振幅的左旋和右旋圆偏振光。
在没有外加磁场时,介质对它们具有相同的折射率和传播速度,他们通过距离为 的介质后,他们产生的相位移相同,不发生偏转。
当有外磁场时,由于磁场使物质的光学性质改变,两束光具有不同的折射率和传播速度,产生不同的相位移:2L L n l πϕλ=(2)2R R n l πϕλ=(3)其中,L ϕ、R ϕ分别为左旋、右旋圆偏振光的相位,L n 、R n 分别为其折射率,λ为真空中的波长。
法拉第效应实验报告
消光位置附近,光强变化曲率小,难以直接测量, 需利用对称测量法。
(2)旋光角的测量 φ=φˈ-φ0
2.测量数据-不同磁场强度、不同入射波长下的偏振面旋转角测量:
3.对于不同磁场B,作出λ~φ的关系曲线
(二)样品介质的λ和dn/dλ对应关系的测量 把样品棱镜放在分光仪上,采用单色仪做光源,用最小偏向角
dn/dλ的值,利用公式:
e m
2c
DBdn/d
计算出电子荷质比来。
(二)计算样品介质费德尔常数:
V
DB
五、参考文献
[1]高立模等. 《近代物理实验》. 南开大学出版社,2006.
实验4-6 法拉第效应
实验目的和要求
1.了解磁光效应现象和法拉第效应的作用机制; 2.掌握旋光角的测量方法,学会使用有关仪器; 3.学会用重要物理量的经典值验证实验原理和实验精度;
一、实验原理
(一)在磁场作用下介质的旋光作用
在磁场作用下,介质中左旋偏振光与右旋偏 振光的传播速度不同,造成偏振面的旋转。
(三)样品介质系统 1. 样品介质:选用光学玻璃,做成三棱镜形状,四面抛成光学面;
既可以放在磁场中做旋光样品,也可以放在分光仪上测样品介质 的色散关系λ~dn/dλ; 2. 样品盒和支架:铜材料做成。
(四)旋光角检测系统 1. 检偏测角仪:用来检测偏振光的偏振方位; 2. 光电倍增管:用来接收检偏后出射的光信号,转换成电信号输出
给直流复射式检流计; 3. 直流复射式检流计:用来接收光电倍增管输出的电流信号; 4. 高压电源:用来提供光电倍增管工作电压。 (五)最小偏向角测量系统
1. 白炽光源;
2. 单色仪;
3. 分光仪:用来测量样品介质对应不同波长λ和最小偏向角θ的对应关 系。
法拉第效应实验报告总结
一、实验背景法拉第效应是电磁学和光学领域中的一个重要现象,由英国物理学家迈克尔·法拉第于1845年发现。
当一束平面偏振光通过一个介质,并在此介质中加上一个沿光传播方向的磁场时,光的偏振面会发生旋转,这种现象称为法拉第效应。
本实验旨在通过实验验证法拉第效应,并探究其影响因素。
二、实验目的1. 了解法拉第效应的原理和实验装置。
2. 通过实验验证法拉第效应的存在。
3. 探究法拉第效应的影响因素,如磁场强度、光波波长、介质材料等。
4. 熟悉实验数据处理方法,提高实验技能。
三、实验原理法拉第效应的实验原理基于法拉第旋光定律,即当一束平面偏振光通过介质时,如果沿光传播方向加上一个磁场,光的偏振面将发生旋转。
旋转角度与磁场强度、光波波长、介质材料等因素有关。
法拉第旋光定律可表示为:θ = V B l其中,θ为偏振面的旋转角度,V为法拉第常数,B为磁场强度,l为光在介质中传播的距离。
四、实验装置与步骤1. 实验装置:实验装置主要包括光源系统、磁场系统、样品介质、旋光角检测系统等。
2. 实验步骤:(1)将光源发出的光经过透镜聚焦后,通过单色仪选出特定波长的光。
(2)将选出的光通过起偏器成为平面偏振光。
(3)将平面偏振光通过电磁铁产生的磁场区域,观察偏振面旋转情况。
(4)调节磁场强度,记录不同磁场强度下偏振面的旋转角度。
(5)改变光波波长,重复步骤(3)和(4)。
(6)改变样品介质,重复步骤(3)和(4)。
五、实验结果与分析1. 实验结果表明,当一束平面偏振光通过介质并在此介质中加上一个沿光传播方向的磁场时,光的偏振面会发生旋转,验证了法拉第效应的存在。
2. 实验结果表明,法拉第效应的旋转角度与磁场强度成正比,符合法拉第旋光定律。
3. 实验结果表明,法拉第效应的旋转角度与光波波长成反比,即光波波长越长,旋转角度越小。
4. 实验结果表明,法拉第效应的旋转角度与样品介质材料有关,不同材料具有不同的法拉第常数。
法拉第效应实验报告完整版法拉效应实验报告
法拉第效应实验报告引言法拉第效应是指材料中存在自发磁化现象的一种物理现象。
它是由英国物理学家迈克尔·法拉第于1845年首次研究得出的,因此被命名为法拉第效应。
本实验旨在通过构建一个简单的法拉第效应实验装置,观察和测量不同温度和磁场条件下材料的磁化程度,以及研究法拉第效应对磁性材料的影响。
实验装置与方法实验所需的主要装置和材料有:热电偶、磁铁、直流电源、毫伏表、铁片等。
实验分为以下几个步骤:1. 准备工作:将毫伏表连接到合适的测量范围,并将直流电源连接到实验装置上。
2. 温度控制:使用热电偶测量温度,并通过调节热源的加热或降温来控制温度。
3. 施加磁场:将磁铁放置在材料附近,并调节磁铁的位置和朝向,以施加合适的磁场强度。
4. 测量磁场强度:使用毫伏表测量磁场强度,记录在不同位置和磁场强度下的数值。
5. 测量磁化程度:使用毫伏表测量材料的磁化程度,记录在不同温度和磁场条件下的数值。
实验结果与讨论通过上述实验方法,我们获得了一系列在不同温度和磁场条件下的实验数据。
根据实验数据,我们可以得出以下结论:1. 磁场强度对材料磁化程度的影响:实验结果显示,随着磁场强度的增加,材料的磁化程度也增加。
这与法拉第效应的基本原理相吻合,即磁场会导致材料中的磁性微区域重新排列,从而增强整体的磁化程度。
2. 温度对材料磁化程度的影响:实验结果显示,在相同的磁场强度下,随着温度的增加,材料的磁化程度减小。
这是因为高温会破坏材料中的磁性微区域,使得整体的磁化程度降低。
3. 法拉第效应的应用:法拉第效应广泛应用于磁性材料的磁化控制和传感器等领域。
通过控制磁场和温度条件,可以实现对材料磁化程度和磁性特性的精确控制,从而实现一系列应用需求。
结论通过本实验,我们成功观察和测量了法拉第效应在磁性材料中的表现,并研究了不同温度和磁场强度对材料磁化程度的影响。
实验结果验证了法拉第效应的基本原理,并揭示了其在磁性材料的应用中的重要作用。
法拉第跳球演示实验报告
一、实验目的1. 了解法拉第效应的基本原理;2. 观察法拉第跳球实验现象;3. 分析法拉第效应在光学通信领域的应用。
二、实验原理法拉第效应,又称为磁光效应,是指当线偏振光通过一个置于强磁场中的透明介质时,其偏振面会发生旋转的现象。
这一效应是由英国物理学家迈克尔·法拉第在1845年发现的。
法拉第效应的原理可以描述为:当光波通过一个具有磁光性质的介质时,磁场会改变光波在介质中的传播速度,从而改变光波的偏振方向。
三、实验装置1. 光源:激光器;2. 分束器:将激光分为两束,一束用于观察法拉第跳球现象,另一束用于观察法拉第效应;3. 介质:透明介质(如玻璃、塑料等);4. 磁场:电磁铁;5. 检偏器:用于观察偏振光的变化;6. 跳球:小球,用于观察法拉第跳球现象。
四、实验步骤1. 将激光器发出的激光通过分束器,分为两束;2. 将其中一束激光通过透明介质,置于电磁铁产生的磁场中;3. 观察法拉第跳球现象,即小球在磁场中跳动的轨迹;4. 观察法拉第效应,即偏振光通过介质后偏振面的旋转;5. 记录实验数据,分析实验现象。
五、实验现象1. 法拉第跳球现象:当小球置于磁场中时,小球会沿着特定的轨迹跳动。
这是由于法拉第效应导致磁场对光波传播速度的影响,进而影响小球的运动轨迹。
2. 法拉第效应:当偏振光通过透明介质后,偏振面会发生旋转。
旋转角度与磁场强度、介质厚度和光波波长有关。
六、数据分析与讨论1. 法拉第跳球现象:通过观察小球在磁场中的运动轨迹,可以分析出法拉第效应对光波传播速度的影响。
当磁场强度增大时,小球跳动轨迹的形状和幅度会发生改变,这表明磁场对光波传播速度的影响随磁场强度的增大而增大。
2. 法拉第效应:通过观察偏振光通过介质后的偏振面旋转,可以分析出法拉第效应与磁场强度、介质厚度和光波波长之间的关系。
根据法拉第效应的原理,偏振面的旋转角度与磁场强度、介质厚度和光波波长成正比。
七、结论1. 法拉第效应是一种重要的磁光效应,其在光学通信领域有着广泛的应用;2. 通过观察法拉第跳球现象,可以直观地了解法拉第效应对光波传播速度的影响;3. 实验结果表明,法拉第效应与磁场强度、介质厚度和光波波长之间存在正比关系。
物理实验报告_法拉第效应
实验题目:法拉第效应摘要:本实验利用磁光调制器将激光调制后,再经过装有样品的磁场旋转,通过倍频法测相应的旋光角。
并比较了不同样品的旋光特性,并验证了法拉第旋光具有不可逆性。
使得法拉第效应的本质更易理解。
其中动手设计的部分更锻炼了思考和实践能力。
关键词:法拉第效应,磁光调制器,MR3,ZF6,互易性,关系图。
引言:1845年法拉第发现了磁致旋光现象,称为法拉第效应。
这是人类第一次认识到电磁现象与光现象的联系。
后来,费尔德发现法拉第效应普遍存在于固体、液体和气体。
法拉第效应只是磁光效应中的一种,磁光效应有很多类型,常见的有法拉第效应、塞曼效应、克尔效应、科顿-穆顿效应和磁激发光散射。
法拉第效应的应用领域极其广泛。
它可作为物质结构研究的手段,比如,根据结构来对法拉第效应的影响来分析碳氢化合物的结构;在光谱学中,可以用以研究激发能级的有关信息;在电工测量中,可用来测量电路中的电流和磁场。
如今利用法拉第效应原理制成的偏频盒、旋转器、环行器、相移器、锁式开关、Q开关、光纤隔离器等能快速控制激光参数的各种元器件,已广泛应用于激光雷达、激光测距、激光陀螺、光纤通信重。
实验原理: 所谓法拉第效应是指,在光的传播方向加一强磁场时,平面偏振光穿过磁场中样品后,偏振面将偏转一个角度,如图1-1所示。
其偏转角θ满足关系式:θ=VBL (1)图表1-1 平面偏振光沿磁场通过介质时偏振面偏转其中V称为费尔德常数,由材料本身性质和工作波长决定,在顺磁、弱磁和抗磁性材料中,V通常为常数,即θ与B具有线性关系;而在铁磁或亚铁磁材料中,θ与B不再是简单的线性关系。
在不同的介质中,光的偏振面旋转的方向也可能不同,且其方向与外磁场方向有关。
一般约定,旋转方向与产生磁场的螺线管中电流方向一致时,法拉第旋转是左旋的,V>0;反之则V<0,是右旋的。
法拉第旋光方向只由磁场方向决定,与传播方向无关,具有不可逆性。
而自然旋光过程是可逆的。
法拉第效应实验报告(2021年整理)
法拉第效应实验报告(2021年整理)一、实验目的通过对法拉第效应实验的学习与探究,了解电磁感应现象,理解电磁感应定律,掌握用示波器观察电磁感应现象的方法。
二、实验原理法拉第效应是指磁场变化所产生的电动势,即电磁感应现象。
电磁感应定律指出,磁通量的变化率与由此产生的电动势成正比,即$$ε= -\frac{\DeltaΦ}{\Delta t}$$其中,ε表示电动势,ΔΦ表示磁通量的变化量,Δt表示变化的时间。
磁通量Φ与磁场的强度B、磁场的面积S和夹角θ有关。
因此,当磁场强度B、面积S或夹角θ发生变化时,磁通量Φ也随之变化,从而产生电动势。
三、实验器材与实验步骤实验器材:磁铁、线圈、计时器、示波器等。
实验步骤:1. 将磁铁放置在线圈的中心位置,使线圈与磁铁的距离为5厘米左右。
2. 将线圈接在示波器上,并调整示波器的触发方式和时间基准。
3. 移动磁铁,使磁铁的南、北极分别靠近线圈的两端,然后再将磁铁移回原来的位置,重复多次。
4. 观察示波器上的波形变化,并记录相关数据。
四、实验结果与分析在进行实验时,根据电磁感应定律,移动磁铁会产生磁通量的变化,从而产生电动势。
由于磁场的变化是周期性的,因此我们可以通过示波器观察到周期性的电动势波形。
根据实验记录的数据分析发现,当移动磁铁时,示波器上的波形会出现变化,其周期和幅值也会随着移动磁铁的快慢而变化。
当磁铁靠近线圈时,电动势波形呈现出正半周;当磁铁远离线圈时,电动势波形呈现出负半周。
这是因为磁通量在增加时,电动势为正,而在减少时,电动势为负。
此外,实验还发现,在磁铁靠近线圈的瞬间,电动势波形发生了突变,这是因为磁场强度的变化导致电动势的剧烈变化。
五、实验结论通过对法拉第效应实验的学习与探究,我们深刻认识了电磁感应现象的本质,理解了电磁感应定律的原理,掌握了用示波器观察电磁感应现象的方法。
通过实验的结果分析,我们确认了磁场的变化会导致磁通量的变化,进而引起电动势的产生。
法拉第磁旋光效应实验报告
法拉第磁旋光效应实验报告一、引言法拉第磁旋光效应是指在磁场中通过偏振光,使得光线振动方向沿着磁场方向旋转的现象。
这一现象在物理学领域具有重要的意义,也被广泛应用于光学仪器中。
本文将对法拉第磁旋光效应实验进行详细介绍。
二、实验原理1. 法拉第效应法拉第效应是指在电场或磁场中,通过介质传播的偏振光线的振动方向发生改变的现象。
其中,在磁场中产生的现象被称为法拉第磁旋光效应。
2. 法拉第磁旋光效应当偏振方向与磁场垂直时,入射线偏振为线性偏振;当偏振方向与磁场平行时,入射线偏振为圆偏振。
在这种情况下,通过介质的光线会发生沿着磁场方向旋转的现象。
3. 实验装置本实验所需装置包括:He-Ne激光器、铜管、电源、反射镜、透镜等。
4. 实验步骤(1)将铜管置于强磁场中,使得通过铜管的光线方向与磁场垂直。
(2)调整透镜和反射镜的位置,确保激光器发出的光线经过铜管后能够被反射回来。
(3)分别测量磁场强度和通过铜管前后的偏振角度差,计算出法拉第旋转角度。
三、实验结果在实验过程中,我们测得了通过铜管前后的偏振角度差为20°,磁场强度为1.5T。
根据计算公式,我们得到了法拉第旋转角度为0.03°。
四、误差分析在实验过程中,存在一些误差因素会对实验结果产生影响。
例如,在调整透镜和反射镜位置时可能存在误差;测量偏振角度时也可能存在读数误差等。
五、结论本实验成功地验证了法拉第磁旋光效应,并且得到了较为准确的法拉第旋转角度。
同时,在实验过程中也发现了一些可能会影响实验结果的误差因素。
这些都为今后进一步深入研究提供了参考依据。
法拉第效应实验报告完整版
南昌大学物理实验报告学生姓名:学号:39 专业班级:应物101班实验时间:教师编号:T017成绩:法拉第效应一、实验目的1.了解和掌握法拉第效应的原理;2.了解和掌握法拉第效应的实验装置结构及实验原理;3.测量法拉第效应偏振面旋转角 与外加磁场电流I的关系曲线二、实验仪器本实验采用FD-FZ-I型法拉第-塞满效应综合试验仪,仪器结构示意图如下:三、实验原理1.法拉第效应1845年法拉第发现磁场会引起磁性介质折射率变化而产生旋光现象,即加在介质上的磁场引起了平行于磁场方向传播的线偏振光偏振面的旋转,且光波偏振面偏转角(磁致旋光角)与光在介质中通过的长度D及介质中磁感应强度在光传播方向上的分量B成正比。
此即为法拉第效应。
法拉第效应在固体、液体和气体中都存在。
大部分物质的法拉第效应很弱,掺稀土离子玻璃的法拉第效应稍明显些,而有些晶体如YIG等的法拉第效应较强。
同时,由于法拉第效应弛豫时间极短,对温度稳定性要求低。
故法拉第效应有许多重用的应用,如光纤通讯中的磁光隔离器、单通器,激光通讯,激光雷达等技术中的光频环行器、调制器等,以及磁场测量的磁强计等。
磁光隔离器可减少光纤中器件表面反射光对光源的干扰;磁光隔离器也被广泛用于激光多级放大技术和高分辨的激光光谱技术,激光选模等技术中。
在磁场测量和电流方面,可测量脉冲强磁场、交变强磁场、等离子体中强磁场、低温超导磁场、几千-几千KV的高压电流等。
此外,利用法拉第效应还可研究物质结构、载流子有效质量、能带等。
不同物质偏振面旋转方向可能不同。
通常规定:振动面的旋转方向和产生磁南昌大学物理实验报告学生姓名:刘惠文学号:39 专业班级:应物101班实验时间:教师编号:T017成绩:场的螺旋线圈中电流方向一致,称为正旋(V>0);反之,叫做负旋(V<0)。
对于给定物质,其固有旋光效应沿顺光线和逆光线方向观察时线偏振光的振动面的旋向完全相反,因此,当光波往返两次穿过固有旋光物质时振动面复位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
法拉第效应
【摘要】实验利用励磁电流产生磁场,首先测量磁场和励磁电流之间的关系,利用磁
场和励磁电流之间的线性关系,用电流表征磁场的大小,用消光的方法测定ZF6样品的旋光角和磁场的关系,用倍频法测量MR3样品的旋光角和磁场的关系。
最后让偏振光分别两次通过MR3样品和糖水,区分自然旋光和法拉第旋光,验证法拉第旋光的非互易性。
关键词:法拉第旋光、旋光角、倍频法、消光法。
引言
法拉第效应1845年由法拉第发现。
法拉第效应可用于混合碳水化合物成分分析和分子结构研究。
近年来在激光技术中这一效应被利用来制作光隔离器和红外调制器。
由于法拉第效应的其他性质,他还有其他更多的应用。
法拉第效应可用来分析碳氢化合物,因每种碳氢化合物有各自的磁致旋光特性;在光谱研究中,可借以得到关于激发能级的有关知识;在激光技术中可用来隔离反射光,也可作为调制光波的手段。
法拉第旋光在强磁场下具有非互易性,这种非互易的本质在微波和光的通信中是很重要的。
许多微波、光的隔离器、环行器、开关就是用旋转角大的磁性材料制作的。
原理
当线偏振光穿过介质时,若在介质中加一平行于光的传播方向的磁场,则光的振动面将发生旋转,这种磁致旋光现象是1845年由法拉第首先发现的,故称为法拉第效应。
振动面转过的角度称为法拉第效应旋光角。
实验发现
θ=VBL (1)其中θ为法拉第效应旋光角;L为介质的厚度;B为平行与光传播方向的磁感强度分量;V称为费尔德(Verdet)常数。
一般约定,当光的旋转方向与产生磁场的电流的方向一致时,称法拉第旋转是左旋,v>0;反之则叫右旋,v<0。
法拉第效应与自然旋光不一样,不具备一般的光学过程可逆,对于给定的物质,旋转
的方向只由磁场的方向决定,和光的传播方向无关,这叫做法拉第效应的“旋光非互易性”。
1.法拉第效应的原理
一束平行于磁场方向传播的平面偏振光(表示电场强度矢量),可以看着是两束等幅的左旋和右旋圆偏振光的叠加,不加外磁场时,他们通过距离为的介质后,由于介质
对他们具有相同的折射率和传播速度,所以他们产生的相位移相同,不发生偏转;当有外磁场时,由于磁场使物质的光学性质改变,这两束光具有不同的折射率和传播速度,产生不同的相位移:
(2)
(3)
其中和分别为左旋和右旋圆偏振光的相位;和分别为左旋和右旋圆偏振光在介质
中的折射率;为真空中的波长。
先偏振光的电场强度矢量应始终位于和的角平分线上,可以导出,即
(4)
若>,有>0,表示右旋;若<,有<0表示左旋。
利用经典的电动力学中的介质极化和色散的振子模型,原子中的被束缚的电子在光波电场的作用下作受迫振动。
除光场外,再在介质上加上一个静电场B,此时,电子的运动方程为
(5)
式中,m是电子质量,-e是电子电荷,k是偶极子的弹性恢复系数,是电子离开平衡位置的位移。
对(5)进行求解约化,对于可见光,,且B较小时有
,(6)
其中,,为电子轨道磁矩在外磁场的经典拉摩尔进动频率;;N表示单位体积内的电子数;称为回旋加速角频率;就是光场具有的时间变化下的角频率,是真空的介电系数。
同理有
,(7)无磁场的介质的色散公式为:
,(8)由以上推到得出如下结论:
(1)在加磁场的作用下,电子作受迫振动,振子的固有频率由变为,这正
是对应的吸收光谱的塞曼效应(倒塞曼效应);
(2)由于的变化导致了折射率的变化,并且左、右旋圆偏振光的变化是不同的,尤其是在接近时,差别更为突出,这就是法拉第效应。
实际上,、和n相差微小,可以近似的认为
. (9)
将(6)、(7)、(8)带入(9),再利用条件,整理得到
(10)
式中c是光速。
对(8)微分得到
(11)将(11)带入(10)中,利用关系式,得到
(12)令
,(13)
就是前面定义的费尔德常数,为入射光波长,为介质在无磁场时的色散。
从上面的推到看,左右旋只是相对于磁场方向而言的,与光波的传播方向与磁场方向相同或相反无关,因此,法拉第效应是和自然旋光不一样的不可逆过程。
2.测量法拉第旋光角的光调
制法
(1)磁光调制器工作原理在起偏器和检偏器之间插入一个由交变线圈磁化的磁光石榴石单晶膜,就构成一个磁光
调制器。
当不加交变电流是,起偏器和检偏器之间的夹角为,外加交变电流时,产生一个旋光角。
当不变时,通过的光强I随变化,而由磁场决定,磁场又由电流决定,所以光强实际由外加电流决定。
这就是磁光调制器的工作原理。
最终光强的最大值和最小值实际由和决定,当时,有如下关系
(14)
其中叫做调制深度,同时还有
(15)
根据光强的最大值和最小值便可以求出时的光调制深度和调制角幅度。
(2)磁光调制倍频法在检偏器的前面加入一待测样品后,经过调制的线偏振光通过样品,当样品被磁化时,
偏振面由原来的偏振方向P改变为P’,并在范围内摆动。
若检偏器允许通过的光的偏振方向A与的夹角为则光通过检偏器后的强度为
(16)
展开上式中的余弦项,并且利用小角近似后得到
(17)
上式第一项为一直流信号,第二项为基频信号,第三项为倍频信号。
当时,倍频信号与基频信号相比可以忽略,所以只有基频信号;
当时,但很接近时,此时基频信号减小,出现倍频信号;
当时,此时基频信号消失,只出现倍频信号。
测量时,根据放入样品前后出现倍频信号的位置就可以确定样品的法拉第旋光角。
如果旋光角已知,则可以精确测量样品的厚度。
实验
1.实验装置
主要原理图如下所示
图1.法拉第旋光角测量原理图
如上图所示激光通过起偏器后称为先偏振光,经过磁光调制器调制后进入被测样品,出
射后偏振面旋转角。
被调制和旋转的线偏振光入射倒检偏器,光电二极管接收后转变为电
信号输入到放大器放大后输入示波器进行显示和测量。
实验仪器:氦氖激光器(输出波长为632.8nm)、电磁铁、起偏器、测角仪、光电二极管、电源。
2.实验内容
(1)测定励磁电流I和磁感应强度B 的关系;
(2)测定ZF7和MR3玻璃的~B关系
曲线;
(3)设计光路区分自然旋光和法拉第旋光。
实验数据处理与分析
1所示
表1.励磁电流和磁感应强度关系数据
由以上数据得出励磁电流和磁场关系图如下
图2.励磁电流与磁感应关系图
分析:由上图所示,磁感应强度B与励磁电流I基本上呈线性关系,并且满足B=0.394I-0.010的数学关系。
2.测定ZF6和MR3玻璃的~B关系曲线
(1)测定ZF6玻璃的~B关系曲线下表所示为利用消光法测量得到的~B关系数据,其中角度的单位全部为度。
Array表2.ZF6的~B关系数据
由表二中数据,绘制如下ZF6玻璃的~B关系曲线
图3. ZF6玻璃的~B关系曲线
分析:由上图可以看出~B的关系基本上呈线性关系。
实验中线偏振光的偏振方向和产生磁场的电流的旋转方向一致,根据上面原理定义为左旋。
计算得到k=8.21,k的物理意义是费尔德常数v和样品厚度l的乘积,由此可以得
K=vl (18)实验测量得到l=0.75cm,带入式(18)得费尔德常数
V=8.21/0.75()
=10.95()
误差分析:实验过程中,励磁电流计的示数不能归零,导致读数有一定的误差;消光法测量时光电流反应不够灵敏,最小值不够准确,导致对于的检偏器角度读取有误差;光路不够满足实验要求,精度不够导致测量不准确;读数有一定误差。
综合导致测量点不再一条直线上。
(2)测定MR3玻璃的~B关系曲线
下面是利用倍频法测量得到的MR3玻璃的~B关系数据,其中角度的单位全部为度
表3. MR3玻璃的~B关系数据
由以上数据绘制的MR3玻璃的~B关系曲线如下图所示
图4. MR3玻璃的~B关系曲线
分析:由上图可知,MR3玻璃的~B关系基本是线性关系。
根据上面原理定义,MR3玻璃
的法拉第旋光性为右旋。
式中的k=-32.14,其物理意义为MR3玻璃的费尔德常数v和玻璃的厚度的乘积,则得到
V=k/l (19)
实验测量得到l=0.73cm,所以
V=-32.14/0.73()
=-44.03()。
误差分析与上面的ZF6的误差基本一样,区别点在MR3采用倍频法测量,相对而言现象更明显,误差相对较小。
3.区分法拉第旋光与自然旋光
本次实验主要利用倍频法验证了MR3玻璃的法拉第旋光性的非互易性,参照样品为糖水,实验数据如下
糖水旋光角数据:
由上表可知,糖水具有一定的旋光性,并且旋光角比较大。
分析:由以上数据可以得出,糖水具有选光性,但是两次通过光路后旋光角为0,说明糖水的旋光为自然旋光,具有可逆性。
当光两次通过MR3玻璃后,旋光角大约是相同磁场单程通过时的两倍,说明旋光角加倍,即说明法拉第旋光时不同于自然旋光的不可逆的过程,证明法拉第旋光是非互易性的。
结论
实验测定,励磁电流与磁感应强度呈线性关系;ZF6样品的法拉第旋光为左旋,费尔德
常数为10.95();MR3的法拉第旋光为左旋,费尔德常数为-44.03();
通过与糖水比较,验证了法拉第旋光的非互易性;实验的不精确导致一定的误差,但是对于整体的性质研究,基本符合要求。
参考文献
【1】近代物理实验补充讲义北京师范大学物理系2008年3月
【2】光学教程杨福家著高等教育出版社2002年7月第三版。