置信区间的概念
置信区间(详细定义及计算)-42
22
已知总体
X ~ N(, 2)
下面我们将根据样本找出σ2 的置信区间,
这在研究
生产的稳定性与精度问题是需要的。 我们利用样本方差对σ2进行估计,
由于不知道S2与
σ2差多少?
容易看出把
S 2 看成随机变量,又能找到
2
它的概率分布,则问题可以迎刃而解了。
S 2 的概率分布是难以计算的,而
2
p y
2
(n 1)S 2
1.96]
[6
0.392]
所求为 [5.608, 6.392].
17
已知幼儿身高
X ~ N (, 2 ), 现从5~6岁的幼儿
中随机地抽查了9人,其高度分别为:
115, 120, 131, 115, 109, 115, 115, 105, 110cm;
假设标准差 0 7,置信度为 95%;
试求总体均值 的置信区间。
n
z
2 ]
[105
5 1.96] 40
20
用某仪器间接测量温度,重复测量5次得
12500 12650 12450 12600 12750
求温度真值的置信度为 0.99 的置信区间。
解 设μ为温度的真值,
X表示测量值,通常是一个
正态随机变量
EX .
问题是在未知方差的条件下求μ的置信区间。
由公式
[13 1.96 0.3 , 13 1.96 0.3] 2
2
2
得到μ的一个区间估计为
. [12.706,13.294]
注:该区间不一定包含μ. 13
0.05 可以取标准正态分布上
α分位点-z0.04 和 z0.01 ,则又有
0.04
置信区间(详细定义及计算)
2
z } 1
2
n
2
2
P{ z 2
X 2
z 2} 1 Fra bibliotekzzn
2
2
P{
n
z 2 X
n
z
2}
1
P{X
n
z
2
X
n
z
2} 1
这就是说随机区间
[ X n z 2 , X n z 2 ]
[1,2 ] 为常数区间。
3
设 是总体X的 一个未知参数,
若存在随机区间 [1,2 ], 对于给定的 0 1,
若满足 P{1 2} 1 则称区间 [1,是2 ] 的置信水平(置信度)为 1
的置信区间.1 和2 分别称为置信下限和置信上限
4,
代入样本值算 x 13 z z0.025 1.96
得
[13
1.96
0.3
,
,
13
1.96
0.3]
2
2
2
得到μ的一个区间估计为 [12.706,13.294].
注:该区间不一定包含μ. 13
0.05 可以取标准正态分布上
α分位点-z0.04 和 z0.01 ,则又有
0.04
2 2 (X1, X 2,, X n )
(1 2 )
则称 [1,2 ] 为随机区间。
随机区间与常数区间 (a, b) 不同,其长度与在数轴上
的位置与样本 X1, X 2 ,, X n 有关。
当一旦获得样本值 x1 , x2 , xn 那么, 1(x1, x2 , xn ), 2 (x1, x2 , xn ) 都是常数。
置信区间(详细定义及计算)
5 1.96] [X z 2 ] [105 40 n 20
[96.05 , 113.95]
用某仪器间接测量温度,重复测量5次得 1250 0 12650 12450 1260 0 12750 求温度真值的置信度为 0.99 的置信区间。 解 设μ为温度的真值,X表示测量值,通常是一个 正态随机变量 EX .
我们称其为置信度为0.95的μ的置信区间。 其含义是: 若反复抽样多次,每个样本值(n =16) 按公式
1.96 1.96 (x ,x )即 4 4
( x 0.49) 确定一个区间。
10
( x 0.49, x 0.49) 确定一个区间。
在这么多的区间内包含μ的占0.95, 不包含μ的占0.05。
试求总体均值 的置信区间。 解:已知 0 7, n 9, 0.05. 由样本值算得: 1 x (115 120 110 ) 115 . 9 查正态分布表得临界值 Z 1.96,由此得置信区间:
18
当总体X的方差未知时, 容易想到用样本方差Ѕ 2代替σ2。 X T ~ t (n 1) 已知 2 S n X t (n 1)} 1 则对给定的α,令 P{ S 2 2 n 查t 分布表,可得 t (n 1) 的值。 2 S S P{ X t 2 ( n 1) X t 2 ( n 1)} 1 n n
问题是在未知方差的条件下求μ的置信区间。 由公式 1 x 1250 [0 15 5 10 25] 1259 5 1 570 2 2 2 s [(1250 1259) (1275 1259) ] 5 1 4 2 s n 1 4 0.01 28.5 5.339 5 S [X t 2 ( n 1)] t ( 4 ) t ( 4 ) 4 . 6041 查表 0.01 0.005 n
置信区间(详细定义及计算)
可见,对参数 作区间估计,就是要设法找出两个 只依赖于样本的界限(构造统计量) (ˆ1 ˆ2 )
[ˆ1 ,ˆ2 ] 内.
1. 要求 很大的可能被包含在区间 [ˆ1 , ˆ2 ] 内,
就是说,概率 P {ˆ1 ˆ2 } 要尽可能大. 即要求估计尽量可靠.
ˆ ˆ 2. 估计的精度要尽可能的高.如要求区间长度 2 1 尽可能短,或能体现该要求的其它准则.
查正态分布表得临界值 Z 1.96,由此得置信区间:
18
当总体X的方差未知时, 容易想到用样本方差Ѕ 2代替σ2。 X T ~ t (n 1) 已知 2 S n X t (n 1)} 1 则对给定的α,令 P{ S 2 2 n 查t 分布表,可得 t (n 1) 的值。 2 S S P{ X t 2 ( n 1) X t 2 ( n 1)} 1 n n
有时我们嫌置信度0.95偏低或偏高, 也可采用0.99或
0.9. 对于 1- α不同的值, 可以得到不同的置信区间。
15
ˆ1 ˆ1 ( X 1 , X 2 , X n ) ˆ2 ˆ2 ( X 1 , X 2 , X n )
一旦有了样本,就把 估计在区间 这里有两个要求:
[96.05 , 113.95]
用某仪器间接测量温度,重复测量5次得 1250 0 12650 1245 0 1260 0 12750 求温度真值的置信度为 0.99 的置信区间。
解
设μ为温度的真值,X表示测量值,通常是一个 正态随机变量 EX .
问题是在未知方差的条件下求μ的置信区间。 由公式 1 x 1250 [0 15 5 10 25] 1259 5 1 570 2 2 2 s [(1250 1259) (1275 1259) ] 5 1 4 2 s n 1 4 0.01 28.5 5.339 5 S [X t 2 ( n 1)] t ( 4 ) t ( 4 ) 4 . 6041 查表 0.01 0.005 n 则所求μ的置信区间为 [1259 24 .58 , 1259 24 .58]
统计推断中的置信区间构造原理
统计推断中的置信区间构造原理统计推断是指通过对样本数据进行统计分析,从而对总体参数进行估计或者进行假设检验。
而置信区间作为统计推断的一种重要工具,可以帮助我们对总体参数的真实值进行估计,并给出一个可信的范围。
本文将介绍置信区间的构造原理及其应用。
一、置信区间的概念置信区间是指通过对样本数据进行分析,得到总体参数的一个区间估计值。
通常用来表达该参数估计的不确定性范围,也就是说,置信区间有一定的概率包含真实的总体参数。
二、置信水平置信水平是指在统计推断中,我们对总体参数的估计所给出的置信区间包含真实总体参数的概率。
通常用1-α来表示,其中α称为显著性水平,也即是我们允许犯错的概率。
常见的置信水平有90%、95%和99%等。
三、置信区间的构造原理构造置信区间的方法主要有以下两种:1. 样本分布方法当总体的分布已知或者近似已知时,我们可以使用样本分布对总体参数进行估计。
根据中心极限定理,当样本容量足够大时,样本均值的抽样分布将近似服从正态分布。
在这种情况下,我们可以通过计算样本均值与样本标准差的标准误差,并结合正态分布的特性,得到置信区间的估计。
2. 中心极限定理当总体的分布未知或者不易假设时,我们可以使用中心极限定理来进行置信区间的构造。
中心极限定理指出,当样本容量足够大时,样本均值的分布将近似服从正态分布。
在这种情况下,我们可以使用样本均值的分布来构造置信区间。
四、置信区间的应用置信区间的应用非常广泛,特别是在调查研究、市场调研以及医学实验等领域。
通过构造置信区间,我们可以从样本数据中获得总体参数的估计值,并给出一个可信的范围。
这样一来,我们不仅可以了解总体参数的大致取值,还可以评估该估计的不确定性。
在实际应用中,我们通常会根据需求来选择适当的置信水平。
如果我们对总体参数的估计要求较高,可以选择较高的置信水平,例如95%或99%。
而如果对估计的精度要求不高,也可以选择较低的置信水平,例如90%。
总之,置信区间是统计推断中一种重要的工具,可以帮助我们对总体参数进行估计,并给出一个可信的范围。
置信区间和置信度
置信区间和置信度1. 介绍置信区间和置信度是统计学中常用的概念,用于描述估计值的不确定性程度。
在许多实际问题中,我们经常需要对一个未知的总体参数进行估计,例如总体均值、总体比例等。
而由于抽样误差的存在,我们得到的样本统计量可能会与真实的总体参数有所偏差。
因此,我们希望通过估计值的周围范围给出一个合理的区间,来描述总体参数的可能取值范围。
2. 置信区间置信区间是统计学中用来估计总体参数的一种方法。
它给出了一个包含真实总体参数的区间,称为置信区间。
置信区间通常由样本统计量的一个下限和上限组成,表示对总体参数的估计范围。
常见的置信区间有均值置信区间和比例置信区间。
2.1 均值置信区间均值置信区间用于估计总体均值的范围。
它的计算依赖于样本均值和样本大小,以及对总体分布的假设。
假设总体服从正态分布,当样本大小较大时,根据中心极限定理,可以使用标准正态分布来计算置信区间。
均值置信区间的计算公式为:其中,是样本均值,是样本标准差,是样本大小,是由置信水平和样本大小确定的数值。
常用的置信水平有90%、95%和99%。
2.2 比例置信区间比例置信区间用于估计总体比例的范围。
它的计算依赖于样本比例和样本大小,以及对总体分布的假设。
假设总体服从二项分布,当样本大小较大时,可以使用正态分布来计算置信区间。
比例置信区间的计算公式为:其中,是样本比例,是样本大小,是由置信水平和样本大小确定的数值。
常用的置信水平有90%、95%和99%。
3. 置信度置信度是用来度量置信区间的可靠程度。
它表示对总体参数的估计能够包含真实总体参数的程度。
常见的置信度有90%、95%和99%。
置信度的大小与置信区间的宽度有关。
置信度越高,置信区间就越宽,因为我们需要更加保守地估计总体参数的范围,以提高估计的准确性。
相反,置信度越低,置信区间就越窄,因为我们可以更加自信地给出总体参数的估计范围。
4. 示例4.1 均值置信区间的计算假设某电商公司想要估计其在线销售的平均订单金额。
置信区间知识
s125 试由试验结果求EX的置信水平为99%的近似置信
区间
解 由题设x17.84 s125 n100 给定001
查附表u/22.56 计算可得
x u /2
s 17.840.32 n
故的置信水平为99%的近似置信区间为(1752 1816)
由
P12 / 2(2n)
2n
X
2/2(2n)
1
经不等式变形得
P
2nX
2/2(2n)
2nX
2 1
/2(2n)
1
于是
2nX
2/2(2n)
,
2nX
2 1
/2(2n)
为所求置信区间
11
三、正态总体参数的置信区间
1 均值的置信区间 (1)方差 2已知的情形
根据例512 在 2已知的条件下 的1置信区间为
T X
S/ n
渐近服从N(0 1) 于是的近似置信区间为
X u/2
S n
,
X
u /2
S n
26
例519 某厂新研究开发了某类设备所需的关键部件,
现无法确定此部件的的连续使用寿命X(单位 kh)所服从的
分布类型 通过加速失效试验法 测试100个此类部件的连
续使用寿命 测得样本平均值为x17.84 样本标准差为
P|
Xp p(1 p)/n
|
u
/
2
1
经不等式变形得 P{ap2bpc0}1 其中
a n(u/2)2 b 2nX (u/2)2 c n(X )2
又由a0知ap2bpc0等价于p1pp2 其中
p1
1 2a
(b
b2
4ac
解释置信区间的含义模板
解释置信区间的含义模板示例1:题目:解释置信区间的含义引言:在统计学中,置信区间是一种量化统计数据不确定性的方法。
当进行样本调查或实验研究时,我们通常不能得到完整的总体数据,而只能通过采样得到一部分样本数据。
置信区间就是基于样本数据,根据统计推断方法得出的一个数值范围,用于估计总体某个参数的取值范围,并表明这个估计的可信程度。
本文将详细解释置信区间的含义及其模板。
主体:1. 置信区间的基本概念- 定义:置信区间是对总体参数的一个区间估计。
通常以估计值加减一个误差范围来表示,这个误差范围就是置信区间。
- 含义:置信区间表示了对总体参数估计的不确定性,它告诉我们有多大的置信度认为总体参数落在该区间内。
- 置信水平:是一个数值,代表置信区间的可信程度。
常见的置信水平有95和99,表示我们有95或99的信心认为总体参数落在该区间内。
2. 置信区间的计算方法- 样本均值的置信区间:当我们要估计总体均值时,可以使用样本均值的置信区间。
根据中心极限定理,样本均值的分布接近正态分布,从而可以使用正态分布的性质计算置信区间。
- 样本比例的置信区间:当我们要估计总体比例时,可以使用样本比例的置信区间。
根据二项分布的性质,可以通过估计样本比例的标准误差来计算置信区间。
- 其他参数的置信区间:对于其他的总体参数(如总体方差、总体差异等),也有相应的统计方法计算置信区间。
3. 置信区间的解释- 一个例子:假设我们想估计某个产品的平均寿命。
通过抽取一部分产品进行寿命测试,我们得到了样本的平均寿命及其标准差。
根据样本数据,我们可以计算出95的置信区间为[10, 15]。
这意味着我们有95的信心认为总体的平均寿命落在10到15之间。
- 置信区间的解读:置信区间并不是单个数值,而是一个范围。
置信区间越宽,表示估计的不确定性越高;置信区间越窄,表示估计的不确定性越低。
同时,置信水平越高,置信区间越宽;置信水平越低,置信区间越窄。
结论:置信区间是统计学中十分重要的概念,通过估计总体参数的范围和可信程度,使得我们能够更准确地进行决策和推断。
置信区间概念
置信区间概念
置信区间是用来估计一个参数真实值的范围。
在统计推断中,通常无法直接获得总体参数的准确值,而只能通过样本来进行估计。
为了确定估计结果的可信程度,需要给出估计范围。
置信区间由两个值组成:下限和上限。
它表示了给定置信水平下,参数真实值有一定概率落在这个范围内。
通常使用的置信水平是95%或90%。
置信区间的计算通常依赖于样本的统计量和总体分布的假设。
对于平均值的置信区间,常常使用样本均值和标准差来进行计算。
对于比例的置信区间,常使用样本比例和二项分布进行计算。
置信区间的宽度与样本大小和置信水平有关。
较大的样本大小通常会导致更窄的置信区间,而较高的置信水平会导致更宽的置信区间。
总体均值的置信区间
利用置信区间进行假设检验步骤
构造置信区间
首先根据样本数据构造出总体 均值的置信区间。
计算p值
为了进一步量化检验结果,可 以计算p值,即观察到的样本结 果或更极端结果出现的概率。
判断原假设是否成立
如果置信区间完全位于原假设 的拒绝域内,则可以拒绝原假 设;否则,不能拒绝原假设。
中心极限定理
即使原始数据不服从正态分布,只要 样本量足够大,样本均值的分布也会 趋近于正态分布,从而可以使用Z分 布法。
小样本情况下构建方法
t分布法
当样本量较小且总体方差未知时,样本均值的分布将服从t分布。此时,可以使用t分布法来构建总体 均值的置信区间。
Welch修正
当两个样本的方差不同或样本量不相等时,可以使用Welch修正的t检验来构建总体均值的置信区间。
样本量增加到一定程度后,置信区间收窄速度减缓
当样本量已经足够大时,再增加样本量对置信区间宽度的减小作用将变得有限。
如何确定合适样本量
根据预期效应大小确定样本量
考虑可接受的误差范围
如果预期效应较大,则所需样本量相对较 小;反之,如果预期效应较小,则需要更 大的样本量来检测这种效应。
在确定样本量时,还需要考虑可接受的误 差范围。较小的误差范围需要更大的样本 量来保证估计的精度。
总体均值估计方法
点估计
点估计是用样本统计量直接作为总体参数的估计值,例如用样本均值估计总体 均值。
区间估计
区间估计是在点估计的基础上,给出总体参数的一个估计区间,即置信区间。 通过构造合适的统计量,并利用抽样分布理论,可以确定置信区间的上下限。
置信区间(详细定义及计算)
18
2.未知σ2时,μ的置信区间
当总体X的方差未知时, 容易想到用样本方差Ѕ 2代替σ2。
已知 T X ~ t(n 1)
S2
n X
则对给定的α, 令
P{ S2
n
t (n 1)} 1
2
查t 分布表, 可得 t (n 1) 的值。
P{X
S n
t
2 (n
2
1)
X
S n
t
2
(n
1)}
1
则μ的置信度为1- α的置信区间为
S
2
的概率分布是难以计算的,
2
而
p
y
2
(n 1)S 2
2
~
2 (n 1)
2
2
对于给定的 (0 1).
P{12 2
(n 1)
(n 1)S 2
2
2
2
(n 1)} 1
2 1
(n
1)
2
(n
1)
2
2
x
24
即 py
2
2
12 (n1) 2
p( y)d
y
0
2
2 1
(n
1)
2
(n
1)
x
2
2
p(y)d y
2
( n 1)
2
P{12 2
(n 1)
(n 1)S 2
2
2
2
(n
1)}
2
1
(n 1)S 2
P{
2
(n
1)
2
(n 1)S
2 1
(n
2
} 1)
1
数理统计中的置信区间
数理统计中的置信区间数理统计作为应用数学的一部分,研究的是随机现象的数量特征及其规律。
其中的置信区间是统计分析中的一个重要概念,用于描述样本所包含总体参数的可信程度。
本文将从置信区间的定义、构建方法和应用实例三个方面来探讨置信区间在数理统计中的意义和作用。
一、置信区间的定义置信区间是指在一定置信水平下,总体参数的一个区间估计值。
在进行样本调查或者实验研究时,我们通常无法获得整个总体数据,而仅仅是获得了一个样本数据。
这时,我们需要通过从样本中获得一定的统计量,如样本均值、标准差等,来对总体的未知参数进行概率推断。
而置信区间是一种用来评估样本统计量对总体参数的估计精度的方法。
在这个过程中,我们需要先给出一个置信水平,也就是一个事件发生的概率。
例如,我们可以以95%的置信水平来估计总体参数。
这样,我们就可以根据样本数据计算出一个置信区间,其意义是:在一百次样本调查中,有95次会得到的置信区间会覆盖总体参数真实值。
二、置信区间的构建方法置信区间的构建方法有很多种,通常使用的有以下三种方法:1. 正态分布法:当总体服从正态分布时,我们可以采用正态分布来估计总体参数,并据此构建置信区间。
具体方法是:根据样本数据计算出样本均值和标准差,使用正态分布的双侧临界值来限定置信区间。
2. 学生t分布法:当总体的方差未知时,我们需要使用学生t分布来对样本均值进行估计,并据此构建置信区间。
具体方法是:根据样本数据计算出样本均值和标准差,然后根据置信水平和样本容量来查找t分布表,并据此来构建置信区间。
3. 二项分布法:当研究对象为二项分布时,我们需要使用二项分布来估计总体参数,并据此构建置信区间。
具体方法是:根据样本数据计算出样本成功率和样本容量,使用二项分布的双侧临界值来限定置信区间。
三、置信区间的应用实例置信区间在实际应用中有很多场景。
下面就以一些常见的例子来说明:1. 产品质量检验在产品生产过程中,需要对生产线上的产品进行质量检验。
高考数学置信区间
高考数学中的置信区间:概念、计算和解题方法一、什么是置信区间在统计学中,置信区间是一种用来估计未知参数的区间。
例如,我们想要估计某个班级的平均身高,但是我们没有办法测量每一个学生的身高,那么我们可以从这个班级中随机抽取一些样本,然后根据样本的平均值和标准差,计算出一个区间,这个区间就是置信区间。
我们可以说,我们有多大的置信水平(confidence level ),这个区间就包含了真实的平均身高。
二、如何计算置信区间一般来说,置信区间的计算公式是:x ±z α/2s √n其中,x 是样本平均值,z α/2 是标准正态分布的分位数,α 是置信水平的补数(例如,如果置信水平是 95%,那么 α 就是 0.05),s 是样本标准差,n 是样本容量。
例如,假设我们从一个班级中随机抽取了 30 个学生,测量了他们的身高(单位:厘米),得到了如下数据:我们可以用 Python 的 numpy 库来计算这些数据的平均值和标准差:输出结果是:如果我们想要以 95% 的置信水平估计这个班级的平均身高,那么我们可以查表得到 z α/2 的值是 1.96。
然后代入公式,得到:181.5±1.969.574√30简化后得到:181.5±3.41也就是说,我们以 95% 的置信水平估计这个班级的平均身高在 178.09 厘米到 184.91 厘米之间。
三、如何解释置信区间有时候,人们会误解置信区间的含义,认为它表示真实参数有多大的概率落在这个区间内。
其实,这是不正确的。
因为真实参数是一个固定的值,它要么在这个区间内,要么不在这个区间内,不存在概率的问题。
正确的理解方式是:如果我们重复进行同样的抽样和计算过程,那么有多大比例的置信区间会包含真实参数。
例如,在上面的例子中,我们以 95% 的置信水平估计了这个班级的平均身高在 178.09 厘米到 184.91 厘米之间,这并不意味着这个班级的平均身高有 95% 的概率在这个区间内,而是意味着如果我们重复进行 100 次抽样和计算,那么大约有 95次的置信区间会包含这个班级的真实平均身高。
置信区间(详细定义及计算)
若由总体X的样本 X1,X2,…Xn 确定的 两个统计量
1 1 ( X 1 , X 2 , , X n ),
2 2 ( X 1 , X 2 , , X n )
T X S
2
~ t (n 1)
由公式知μ的置信区间为 [ X S t ( n 1)] 2 n 查表 t 0.05 (39) t0.025 (39) 2.0227 则所求μ的置信区间为 即 [103 .45 , 106 .55]
2
n
若σ2=25 μ的置信区间为
5 1.96] [X z 2 ] [105 40 n 20
[96.05 , 113.95]
用某仪器间接测量温度,重复测量5次得 1250 0 12650 1245 0 1260 0 12750 求温度真值的置信度为 0.99 的置信区间。
解
设μ为温度的真值,X表示测量值,通常是一个 正态随机变量 EX .
问题是在未知方差的条件下求μ的置信区间。 由公式 1 x 1250 [0 15 5 10 25] 1259 5 1 570 2 2 2 s [(1250 1259) (1275 1259) ] 5 1 4 2 s n 1 4 0.01 28.5 5.339 5 S [X t 2 ( n 1)] t ( 4 ) t ( 4 ) 4 . 6041 查表 0.01 0.005 n 则所求μ的置信区间为 [1259 24 .58 , 1259 24 .58]
2
n
置信区间的计算与解读
置信区间的计算与解读在统计学中,置信区间是用来估计总体参数的范围,通常表示为一个区间,该区间内包含了总体参数的真实值的概率。
置信区间的计算与解读在统计学中是非常重要的,下面将详细介绍置信区间的计算方法以及如何解读置信区间的含义。
一、置信区间的计算方法1. 对于均值的置信区间计算:当总体标准差已知时,均值的置信区间计算公式为:置信区间 = 样本均值± Z值 * (总体标准差/ √样本容量)其中,Z值是置信水平对应的标准正态分布的临界值,常用的置信水平包括90%、95%、99%等。
2. 对于比例的置信区间计算:当总体比例未知时,比例的置信区间计算公式为:置信区间 = 样本比例± Z值* √(样本比例 * (1-样本比例)/ 样本容量)同样,Z值是置信水平对应的标准正态分布的临界值。
3. 对于方差的置信区间计算:当需要估计总体方差时,方差的置信区间计算公式为:置信区间 = (n-1)*样本方差/ χ²分布上分位数 - (n-1)*样本方差/ χ²分布下分位数其中,χ²分布是自由度为n-1的卡方分布,上下分位数分别对应置信水平的一半。
二、置信区间的解读方法1. 置信水平的解读:置信水平表示在重复抽样的情况下,置信区间包含总体参数真实值的概率。
例如,95%的置信水平表示在多次抽样中,有95%的置信区间会包含总体参数的真实值。
2. 置信区间的宽度:置信区间的宽度反映了估计的不确定性,置信区间越宽,估计的不确定性越大;反之,置信区间越窄,估计的不确定性越小。
3. 置信区间与假设检验的关系:置信区间可以用来进行假设检验,如果假设的值落在置信区间内,则无法拒绝原假设;反之,如果假设的值不在置信区间内,则可以拒绝原假设。
4. 置信区间的实际意义:置信区间提供了对总体参数的估计范围,可以帮助我们更好地理解样本数据与总体之间的关系,从而做出合理的推断和决策。
通过以上介绍,我们了解了置信区间的计算方法和解读技巧。
置信区间
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、置信区间的概念 二 、数学期望的置信区间 三 、方差的置信区间
第七章
1
一、置信区间的概念 前面,我们讨论了参数点估计. 它是用样本算得的 一个值去估计未知参数.但是点估计值仅仅是未知参数
的一个近似值, 它没有反映出这个近似值的误差范围, 使用起来把握不大. 范围通常用区间的形式给出的。
S n
则对给定的α,令 P{
X S
2
t (n 1)} 1
2
n
查t 分布表,可得 t (n 1) 的值。 2 S S P{ X t 2 (n 1) X t 2 (n 1)} 1 n n 则μ的置信度为1- α的置信区间为
S S S t 2 (n 1)] [X t 2 (n 1), X t 2 (n 1)] [ X n n n 19
2
n
2
n
有
1-α= 0.95,σ0= 0.3,n = 4,
代入样本值算得 x 13 ,
0.3 0.3 [13 1. 96 , 13 1.96 ] 2 2
z z0.025 1.96
2
得到μ的一个区间估计为
[12.706,13.294].
13
注:该区间不一定包含μ.
又如,上例中同样给定 0.05 可以取标准正态分布上 α分位点-z0.04 和 z0.01 ,则又有
x 5.20
(5.20 0.49) (4.71, 5.69)
我们称其为置信度为0.95的μ的置信区间。 其含义是: 若反复抽样多次,每个样本值(n =16) 按公式
1.96 1.96 (x ,x ) 即 4 4
( x 0.49) 确定一个区间。
10
( x 0.49, x 0.49)
0.9. 对于 1- α不同的值, 可以得到不同的置信区间。
15
ˆ ˆ ˆ ˆ 1 1 ( X 1 , X 2 , X n ) 2 2 ( X 1 , X 2 , X n )
可见,对参数 作区间估计,就是要设法找出两个 只依赖于样本的界限(构造统计量) (ˆ1 ˆ2 )
1 为置信度, 为显著水平.
4
置信水平的大小是根据实际需要选定的. 例如,通常可取显著水平 0.025, 0.05, 0.1, 等. 即取置信水平 1 0.975 或 0.95,0.9 等. 由给定的置信水平,我们求出 根据一个实际样本, 一个尽可能小的区间 ,使 [1 , 2 ]
ˆ ˆ 一旦有了样本,就把 估计在区间 [1 , 2 ] 内. 这里有两个要求:
ˆ ˆ 1. 要求 很大的可能被包含在区间 [1 , 2 ] 内,
ˆ ˆ 就是说,概率 P{1 2 } 要尽可能大. 即要求估计尽量可靠.
ˆ ˆ 2. 估计的精度要尽可能的高.如要求区间长度 2 1 尽可能短,或能体现该要求的其它准则.
例4 为了调查某地旅游者的消费额为X, 随机访问了 40名旅游者。 得平均消费额为 x 105 元,样本方差 2 2 2 s 28 设 X ~ N ( , )求该地旅游者的平均消费额 μ的置信区间。 0.05 解 本题是在σ2未知的条件下求正态总体参数μ的 置信区间。选取统计量为
这种形式的估计称为区间估计.
使我们能以比 也就是说,我们希望确定一个区间, 较高的可靠程度相信它包含真参数值.
这里所说的“可靠程度”是用概率来度量的, 称为置信概率,置信度或置信水平. 习惯上把置信水平记作 1 ,这里 是一个很小 2 的正数,称为显著水平。
定义7.6 若由总体X的样本 X1,X2,…Xn 确定的
置信下限 X
n
z 2
置信上限
X
n
z 2
置信区间也可简记为
[X
n
z 2 ]
9
[X
若取 查表得
n n 0.05 1 0.95
z z0.025 1.96
2
z 2 , X
z 2 ]
1 n 16
若由一个样本值算得样本均值的观察值 则得到一个区间
确定一个区间。
在这么多的区间内包含μ的占0.95, 不包含μ的占0.05。 本题中 (4.71, 5.69) 属于那些包含μ的区间的可信 , 程度为0.95. 或“该区间包含μ”这一事实的可信程度 为0.95. 注: μ的置信水平1-α的置信区间不唯一。
11
X ~ N ( , 2 )的前提下提出的。 μ的置信区间是总体
可靠度与精度是一对矛盾, 一般是在保证可靠度的 16 条件下尽可能提高精度.
例2
已知某种油漆的干燥时间X(单位:小时)
服从正态分布 X ~ N ( ,1), 其中μ未知,现在抽取 25个样品做试验, 得数据后计算得 1 n x xk 6 25 k 1
取 0.05 (1 0.95), 求μ的置信区间。
P{ X
z 2 X
n n 它以1-α的概率包含总体 X的数学期望μ。
由定义可知,此区间即为μ的置信区间。
这就是说随机区间
[X
z 2 , X
z 2 ]
8
这就是说随机区间
[X
n
z 2 , X
n
2
2
z
2
z 2 ]
z
2
它以1-α的概率包含总体X的数学期望μ。 由定义可知,此区间即为μ的置信区间。 其置信度为 1-α。
解
z z0.025 1.96 n 25 x 6
2
[x
z 2 ] [6 1 1.96] [6 0.392 ] n 5
17
所求为 [5.608, 6.392].
例3
X ~ N ( , 2 ), 现从5~6岁的幼儿 已知幼儿身高
中随机地抽查了9人,其ห้องสมุดไป่ตู้度分别为:
则所求μ的置信区间为 [1259 24.58 , 1259 24.58] 21
2
例6 为了估计一批钢索所能承受的平均张力(单位 kg/cm2), 随机选取了9个样本作试验, 由试验所得数据得
x 6720 s 2 28 2 设钢索所能承受的张力X, X ~ N ( , 2 ) 分别估计这批钢索所能承受的平均张力
115, 120, 131, 115, 109, 115, 115, 105, 110cm;
假设标准差
0 7,置信度为 95%;
试求总体均值 的置信区间。
解:已知 0 7, n 9, 0.05. 由样本值算得: 1 x (115 120 110) 115. 9 查正态分布表得临界值 Z 1.96,由此得置信区间:
n
n
置信区间短表示估计的精度高, 第一个区间为优
(单峰对称的)。 可见,像 N(0,1)分布那样概率密度
的图形是单峰且对称的情况。 当n固定时以[ X 的区间长度为最短,我们一般选择它。
n
z 2 ]
若以L为区间长度,则
2 L z 2 n
可见L随 n 的增大而减少(α 给定时),
有时我们嫌置信度0.95偏低或偏高, 也可采用0.99或
P{ z0.04 X
0.04
0.01
z0.04 n P{ X z0.01 X z0.04} 0.95 n n
则μ的置信度为0.95的置信区间为
[X z0.01 , X z0.04 ]
2
z0.01} 0.95
z0.01
与上一个置信区间比较,同样是 1 0.95 1 其区间长度不一样,上例 2 z0.025 3.92 0.98 4 n 1 1 比此例 ( z0.04 z 0.01) 4.08 1.02 短。 14 4 4
P{1 2 } 1
由于正态随机变量广泛存在, 特别是很多产品的 指标服从正态分布, 我们重点研究一个正态总体情形
和方差 2的区间估计。 数学期望
5
设 X 1 , X 2 , , X n 为总体 X ~ N ( , 2 ) 的样本,
X , S 2 分别是样本均值和样本方差。
若σ2=25 μ的置信区间为[ X
例5
用某仪器间接测量温度,重复测量5次得
1250 0 1265 0 1245 0 1260 0 1275 0
求温度真值的置信度为 0.99 的置信区间。
解
设μ为温度的真值,X表示测量值,通常是一个 正态随机变量 EX .
问题是在未知方差的条件下求μ的置信区间。 由公式 1 x 1250 [0 15 5 10 25] 1259 5
2
1 570 2 2 s [(1250 1259 ) (1275 1259 ) ] 5 1 4 n 1 4 0.01 s 2 28.5 5.339 5 S [X t 2 (n 1)] t 0.01 (4) t0.005(4) 4.6041 查表 n
对于任意给定的α,我们的任务是通过样本寻找一
个区间, 它以1-α的概率包含总体X的数学期望μ。
6
一、数学期望的置信区间
1、已知σ2时,μ的置信区间 设
X ~ N ( , 2 )
EX DX
X ~ N ( ,
2
n
)
2
n
则随机变量
令
X
Z
X
2
~ N (0,1)
2
由中心极限定理知, n 充分大时, 当 无论X服从什么 分布,都近似有