数字图像处理实验报告实验一图像增强实验(精)

合集下载

matlab 数字图像处理实验报告(五份)

matlab 数字图像处理实验报告(五份)

《数字图像处理实验报告》实验一图像的增强一.实验目的1.熟悉图像在MATLAB下的读写、输出;2.熟悉直方图;3.熟悉图像的线性指数等;4.熟悉图像的算术运算和几何变换。

二.实验仪器计算机、MATLAB软件三.实验原理图像增强是指根据特定的需要突出图像中的重要信息,同时减弱或去除不需要的信息。

从不同的途径获取的图像,通过进行适当的增强处理,可以将原本模糊不清甚至根本无法分辨的原始图像处理成清晰的富含大量有用信息的可使用图像。

其基本原理是:对一幅图像的灰度直方图,经过一定的变换之后,使其成为均匀或基本均匀的,即使得分布在每一个灰度等级上的像素个数.f=H等或基本相等。

此方法是典刑的图像空间域技术处理,但是由于灰度直方图只是近似的概率密度函数,因此,当用离散的灰度等级做变换时,很难得到完全平坦均匀的结果。

频率域增强技术频率域增强是首先将图像从空间与变换到频域,然后进行各种各样的处理,再将所得到的结果进行反变换,从而达到图像处理的目的。

常用的变换方法有傅里叶变换、DCT变换、沃尔什-哈达玛变换、小波变换等。

假定原图像为f(x,y),经傅立叶变换为F(u,v)。

频率域增强就是选择合适的滤波器H(u,v)对F(u,v)的频谱成分进行处理,然后经逆傅立叶变换得到增强的图像。

四.实验内容及步骤1.图像在MATLAB下的读写、输出;实验过程:>> I = imread('F:\image\624baf9dbcc4910a.jpg');figure;imshow(I);title('Original Image');text(size(I,2),size(I,1)+15, ...'IMG_20170929_130307.jpg', ...'FontSize',7,'HorizontalAlignment','right');Warning: Image is too big to fit on screen; displaying at 25% > In imuitools\private\initSize at 86In imshow at 196Original Image2.给定函数的累积直方图。

数字图像处理实验报告 实验一 图像增强实验

数字图像处理实验报告 实验一 图像增强实验

实验一图像增强实验一、实验目标:掌握图像增强的算法。

二、实验目的:1. 了解灰度变换增强和空域滤波增强的Matlab实现方法2. 掌握直方图灰度变换方法3. 掌握噪声模拟和图像滤波函数的使用方法三、实验内容:(1)图像的点操作、邻域操作算法。

(2)图像的直方图处理算法。

四、实验设备:1.PIII以上微机; 2.MATLAB6.5;五、实验步骤:(1)读入图像:用matlab函数实现图像读入(可读入Matlab中的标准测试图像)(原始图像)(2)实现图像点操作运算(如gamma校正,对数校正等)(3)实现图像的邻域处理(实现均值滤波,拉普拉斯滤波)(4)实现直方图均衡处理matlab 源程序clear all;clc;f=imread('girl_noise.jpg');figure,imshow(f),title('原始图像');[m,n]=size(f);f0= im2double(f); % 整型转换为double 类f1=f0;std_i=zeros(1,m-2);%灰线处理for i=2:m-1%灰线处理std_i(i-1)=std(f0(i,:));if(std_i(i-1)<0.1)for j=1:mf0(i,j)=(f0(i-1,j)+f0(i+1,j))/2;endendendfigure,imshow(f0),title('滤除灰线后的图像');fz=f0-f1;[r,c]=find(fz~=0);%寻找灰线噪声的位置f2=f0;change=0;count=0;for i=3:m-2%白线处理for j=1:mif(abs(f0(i,j)-f0(i-1,j))>0.2&&abs(f0(i,j)-f0(i+1,j))>0.2) count=count+1;endif(count>n*0.8)count=0;change=1;break;endendif(change==1)for k=1:mf0(i,k)=(f0(i-1,k)+f0(i+1,k))/2;endchange=0;count=0;endendfigure,imshow(f0),title('滤除白线后的图像');fz1=f2-f0;[r1,c1]=find(fz1~=0); %寻找白线噪声的位置fn = medfilt2(f0); %反射对称填充figure, imshow(fn),title('中值滤波后的图像');f0 = im2double(fn); % 整型转换为double 类g =2*f0- imfilter(f0,w4, 'replicate'); % 增强后的图像figure, imshow(g),title('高提升滤波图像(A=2)');图像处理结果六、结果分析从上面结果可以看出,带状噪声处理部分,已经基本将带状噪声去除。

图像增强原理的应用实验报告

图像增强原理的应用实验报告

图像增强原理的应用实验报告1. 引言图像增强是数字图像处理中的一项重要技术,通过改善图像质量,使图像在视觉上更加清晰、鲜明和易于解析。

本实验旨在探究图像增强原理的应用,并对不同的图像增强算法进行评估和比较。

2. 实验方法本实验使用Python编程语言,在Jupyter Notebook环境下进行实验,主要使用了以下几个库: - OpenCV:用于图像的读取和处理。

- NumPy:用于数组和矩阵的处理。

- Matplotlib:用于图像的显示和绘图。

实验步骤如下: 1. 导入所需的库。

2. 读取待处理的图像。

3. 实现不同的图像增强算法,包括直方图均衡化、自适应直方图均衡化等。

4. 比较不同算法的效果,包括图像的对比度、亮度和细节增强等方面。

5. 对实验结果进行分析和总结。

3. 实验结果实验中使用了一张室外风景照片作为待处理图像。

下面列出了不同图像增强算法的实验结果:3.1 直方图均衡化直方图均衡化是一种常用的图像增强算法,通过重新分布图像像素的灰度级来增强图像的对比度。

实验结果显示,直方图均衡化可以有效地增强图像的对比度,使暗部和亮部细节更加清晰。

3.2 自适应直方图均衡化自适应直方图均衡化是对传统直方图均衡化算法的改进,它根据图像局部的统计信息进行直方图均衡化,避免了全局均衡化带来的图像过度增强的问题。

实验结果表明,自适应直方图均衡化能够更好地保留图像的细节,并且对于不均匀光照的图像效果更好。

3.3 其他图像增强算法除了直方图均衡化和自适应直方图均衡化,还有许多其他图像增强算法可以应用于不同的图像处理任务,如图像去噪、边缘增强等。

这些算法的实验结果因具体应用场景而异,需要根据实际需要进行选择和评估。

4. 分析与讨论根据实验结果,可以看出不同的图像增强算法对图像的处理效果有所不同。

直方图均衡化能够提高图像的对比度,但对于光照不均匀的图像可能产生过度增强的效果。

自适应直方图均衡化通过局部统计信息进行直方图均衡化,能够更好地保留图像的细节。

图像增强实验报告

图像增强实验报告

图像增强实验报告图像增强实验报告引言:图像增强是数字图像处理中的重要技术之一,它可以通过改变图像的亮度、对比度、色彩等参数,使图像更加清晰、细节更加突出。

本实验旨在探究不同图像增强方法对图像质量的影响,并比较它们的效果。

一、实验目的通过实验比较不同的图像增强方法,包括直方图均衡化、拉普拉斯算子增强、灰度变换等,对图像质量的影响,了解各种方法的优缺点,为实际应用提供参考。

二、实验步骤1. 实验准备:准备一组包含不同场景、不同光照条件下的图像样本,以及实验所需的图像处理软件。

2. 直方图均衡化:将图像的直方图进行均衡化,使得图像的像素值分布更加均匀,从而提高图像的对比度和亮度。

3. 拉普拉斯算子增强:使用拉普拉斯算子对图像进行边缘增强,突出图像的细节和纹理。

4. 灰度变换:通过调整图像的灰度级别,改变图像的亮度和对比度,使图像更加清晰明亮。

5. 实验结果分析:对比不同图像增强方法处理后的图像,分析它们在视觉效果上的差异,并根据实验结果评估各种方法的优劣。

三、实验结果与讨论在本次实验中,我们选择了一张室内拍摄的暗淡图像作为样本进行增强处理。

首先,我们对该图像进行了直方图均衡化处理。

结果显示,通过直方图均衡化,图像的亮度和对比度得到了明显的提升,细节也更加清晰可见。

然而,由于直方图均衡化是全局处理,可能会导致图像的局部细节过于突出,从而影响整体视觉效果。

接下来,我们采用了拉普拉斯算子增强方法。

通过对图像进行边缘增强,图像的纹理和细节得到了突出展示。

然而,拉普拉斯算子增强也存在一定的局限性,对于噪声较多的图像,可能会导致边缘增强过程中出现伪影和锯齿现象。

最后,我们尝试了灰度变换方法。

通过调整图像的灰度级别,我们改变了图像的亮度和对比度,使图像的细节更加突出。

与直方图均衡化相比,灰度变换方法更加灵活,可以根据实际需求对图像进行个性化的调整。

综合对比三种图像增强方法的实验结果,我们可以得出以下结论:直方图均衡化适用于对整体亮度和对比度进行提升的场景;拉普拉斯算子增强适用于突出图像的边缘和纹理;灰度变换方法可以根据实际需求对图像进行个性化调整。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告数字图像处理实验报告(一)实验目的1.理解数字图像处理的基本概念与原理。

2.掌握数字图像处理的基本方法。

3.掌握常用数字滤波器的性质和使用方法。

4.熟练应用数字图像处理软件进行图像处理。

实验器材计算机、MATLAB软件实验内容1.图像的读写与显示首先,我们需要在MATLAB中读入一幅图像,并进行显示。

% 导入图像文件I = imread('myimage.jpg');% 显示图像imshow(I);2.图像的分辨率与色彩空间转换数字图像处理中的一个重要概念是图像的分辨率,通常用像素数量表示。

图像的分辨率越高,代表着图像包含更多的像素,从而更具细节和清晰度。

在数字图像处理中,常常需要将一幅图像从一种色彩空间转换为另一种色彩空间。

RGB色彩空间是最常见的图像色彩空间之一,并且常常作为其他色彩空间的基础。

% 转换图像色彩空间J = rgb2gray(I);% 显示转换后的图像imshow(J);3.图像的增强与滤波图像的增强通常指的是对图像的对比度、亮度和清晰度等方面进行调整,以改善图像的质量和可读性。

数字图像处理中的滤波是一种常用的图像增强方法。

滤波器是一个能够对图像进行局部操作的矩阵,它能够提取或抑制特定的图像特征。

% 对图像进行平滑滤波K = imgaussfilt(J, 1);% 显示滤波后的图像imshow(K);4.数字图像处理在实际应用中的例子数字图像处理在很多实际应用中被广泛应用。

这些应用包括医疗成像、计算机视觉、人脸识别、安防监控等。

下面是数字图像处理在人脸识别应用中的一个简单例子。

% 导入图像文件I = imread('face.jpg');% 进行人脸检测faceDetector = vision.CascadeObjectDetector;bbox = step(faceDetector, I);% 在图像上标记人脸位置IFaces = insertObjectAnnotation(I, 'rectangle', bbox, 'Face');imshow(IFaces);实验结论通过本次实验,我已经能够理解数字图像处理的基本概念与原理,掌握数字图像处理的基本方法,熟练应用数字图像处理软件进行图像处理。

《数字图像处理》实验报告

《数字图像处理》实验报告

《数字图像处理》实验报告数字图像处理是一门将图像进行数字化处理的学科,它通过计算机算法和技术手段对图像进行分析、增强、压缩和重建等操作。

在本次实验中,我们学习了数字图像处理的基本概念和常用算法,并通过实验来探索其应用和效果。

首先,我们进行了图像的读取和显示实验。

通过使用Python中的OpenCV库,我们能够轻松地读取图像文件,并将其显示在屏幕上。

这为我们后续的实验奠定了基础。

同时,我们还学习了图像的像素表示方法,了解了图像由像素点组成的原理。

这使我们能够更好地理解后续实验中的算法和操作。

接下来,我们进行了图像的灰度化实验。

灰度化是将彩色图像转换为灰度图像的过程。

在实验中,我们使用了不同的算法来实现灰度化操作,包括平均值法、最大值法和加权平均法等。

通过比较不同算法得到的灰度图像,我们发现不同算法对图像的处理效果有所差异,这使我们深入理解了灰度化的原理和应用。

随后,我们进行了图像的直方图均衡化实验。

直方图均衡化是一种用于增强图像对比度的方法。

在实验中,我们使用了直方图均衡化算法来对图像进行处理,并观察了处理前后的效果变化。

通过实验,我们发现直方图均衡化能够显著提高图像的对比度,使图像更加清晰和鲜明。

在进一步探索图像处理技术的过程中,我们进行了图像的滤波实验。

滤波是一种常用的图像处理操作,它通过对图像进行卷积操作来实现。

在实验中,我们学习了不同类型的滤波器,包括均值滤波器、高斯滤波器和中值滤波器等。

通过比较不同滤波器对图像的处理效果,我们发现每种滤波器都有其适用的场景和效果。

此外,我们还进行了图像的边缘检测实验。

边缘检测是一种用于提取图像边缘信息的方法。

在实验中,我们学习了不同的边缘检测算法,包括Sobel算子、Canny算子和Laplacian算子等。

通过比较不同算法对图像的处理效果,我们发现每种算法都有其独特的特点和应用。

最后,我们进行了图像的压缩实验。

图像压缩是一种将图像数据进行压缩以减小文件大小的方法。

数字图像处理实验报告——图像增强实验

数字图像处理实验报告——图像增强实验

实验报告课程名称数字图像处‎理导论专业班级_____‎_____‎_____‎姓名_____‎_____‎_____‎学号_____‎_____‎_____‎电气与信息‎学院和谐勤奋求是创新‎2.编写函数w‎ = genla‎p laci‎a n(n),自动产生任‎一奇数尺寸‎n的拉普拉‎斯算子,如5×5的拉普拉‎斯算子w = [ 1 1 1 1 11 1 1 1 11 1 -24 1 11 1 1 1 14.采用不同的‎梯度算子对‎b lurr‎y_moo‎n.tif进行‎锐化滤波,并比较其效‎果。

[I,m ap]=im rea‎d('trees‎.tif');I=doubl‎e(I);subpl‎o t(2,3,1)imsho‎w(I,m ap);title‎(' Origi‎nal Im age‎');[Gx,Gy]=gradi‎e nt(I); % gradi‎e n t calcu‎l atio‎nG=sqrt(Gx.*Gx+Gy.*Gy); % matri‎xJ1=G; % gradi‎e nt1subpl‎o t(2,3,2)imsho‎w(J1,m ap);title‎(' Opera‎tor1 Im age‎');J2=I; % gradi‎e nt2 K=find(G>=7);J2(K)=G(K);subpl‎o t(2,3,3)im sho‎w(J2,m ap);title‎(' Opera‎tor2 Im age‎');J3=I; % gradi‎e n t3 K=find(G>=7);J3(K)=255;subpl‎o t(2,3,4)im sho‎w(J3,m ap);title‎(' Opera‎tor3 Im age‎');J4=I; % gradi‎e n t4 K=find(G<=7);J4(K)=255;subpl‎o t(2,3,5)im sho‎w(J4,m ap);title‎(' Opera‎tor4 Im age‎');J5=I; % gradi‎e nt5 K=find(G<=7);J5(K)=0;Q=find(G>=7);J5(Q)=255;subpl‎o t(2,3,6)im sho‎w(J5,m ap);title‎(' Opera‎tor5 Im age‎');5.自己设计锐‎化空间滤波‎器,并将其对噪‎声图像进行‎处理,显示处理后‎的图像;附录:可能用到的‎函数和参考‎结果**************报告里不能‎用参考结果‎中的图像1)采用3×3的拉普拉‎斯算子w = [ 1, 1, 1; 1 – 8 1; 1, 1, 1]滤波I=im rea‎d('moon.tif');T=doubl‎e(I);subpl‎o t(1,2,1),im sho‎w(T,[]);title‎('Origi‎n al Im age‎');w =[1,1,1;1,-8,1;1,1,1];K=conv2‎(T,w,'sam e');subpl‎o t(1,2,2)im sho‎w(K);title‎('Lapla‎cian Trans‎f orm a‎tion');图2.9 初始图像与‎拉普拉斯算‎子锐化图像‎2)编写函数w‎ = genla‎p laci‎a n(n),自动产生任‎一奇数尺寸‎n的拉普拉‎斯算子,如5×5的拉普拉‎斯算子:w = [ 1 1 1 1 11 1 1 1 11 1 -24 1 11 1 1 1 11 1 1 1 1]funct‎i on w = genla‎p laci‎a n(5)%Com pu‎t es the Lapla‎c ian opera‎t orw = ones(n);x = ceil(n/2);w(x, x) = -1 * (n * n - 1);3)分别采用5‎×5,9×9,15×15和25‎×25大小的‎拉普拉斯算‎子对blu‎rry_m‎o on.tif进行‎锐化滤波,并利用式完‎成图像的锐‎化增强,观察其有何‎不同,要求在同一‎窗口中显示‎。

数字图像实验报告图像增强实验

数字图像实验报告图像增强实验

数字图像实验报告图像增强实验一、实验目的熟悉并掌握MATLAB图像处理工具箱的使用;理解并掌握常用的图像的空域增强技术。

二、实验内容对一幅图像分别添加高斯、椒盐和斑点噪声,并分别进行均值和中值滤波处理,显示处理前后的图像。

三、实验方法及程序学生自行编程实现提示:1.加入高斯噪声的函数调用。

I_noise =imnoise(I,’gaussian’,0,0.1)2.加入椒盐噪声的函数调用。

I_noise = imnoise(I,’salt&pepper’,0.06)3.加入斑点噪声的函数调用。

I_noise= imnoise(I,’speckle’,0.1)4.均值滤波的函数调用。

I_smooth=imfilter(I_noise,fspecial(‘average’,5))5.中值滤波的函数调用。

I_smooth=medfilt2(I_noise,[3 3])A=imread('toyobjects.png');B=imnoise(A,'gaussian',0,0.1);%加入高斯噪声C=imnoise(A,'salt & pepper',0.05);%加入椒盐噪声D=imnoise(A,'speckle',0.05);%加入斑点噪声I1=imfilter(B,fspecial('average',5));I2= medfilt2(B);%高斯中值处理K1=imfilter(C,fspecial('average',5));K2= medfilt2(C);%椒盐中值处理G1=imfilter(D,fspecial('average',5));G2= medfilt2(D);%斑点噪声中值处理figure(1);imshow(A);title('原图像');figure(2);subplot(1,3,1);imshow(B);title('高斯噪声'); subplot(1,3,2);imshow(I1);title('高斯均值滤波处理'); subplot(1,3,3);imshow(I2);title('高斯中值滤波处理'); figure(3);subplot(1,3,1);imshow(C);title('椒盐噪声'); subplot(1,3,2);imshow(K1);title('椒盐均值处理'); subplot(1,3,3);imshow(K2);title('椒盐中值处理'); figure(4);subplot(1,3,1);imshow(D);title('斑点噪声'); subplot(1,3,2);imshow(G1);title('斑点噪声均值处理'); subplot(1,3,3);imshow(G2);title('斑点噪声中值处理');四、实验结果与分析分别运用B=imnoise(A,'gaussian',0,0.1)C=imnoise(A,'salt & pepper',0.05)D=imnoise(A,'speckle',0.05);三个函数啊加入不同的噪声,再用I_smooth=imfilter(I_noise,fspecial(‘average’,5))I_smooth=medfilt2(I_noise,[3 3])对加入噪声的图像进行处理,比较不同的处理方式对加入噪声后的图像处理后的清晰度。

数字图像(图像增强)实验报告

数字图像(图像增强)实验报告

实验:图像增强1.实验目的(1)熟悉并学会使用MA TLAB中图像增强的相关函数(2)了解图像增强的办法、去噪的方法和效果。

2.实验主要仪器设备(1)微型计算机:Intel Pentium及更高。

(2)MATLAB软件(含图像处理工具箱)。

(3)典型的灰度、彩色图像文件。

3.实验原理(1)将一副图像视为一个二维矩阵,用MATLAB进行图像增强。

(2)利用MATLAB图像处理工具箱中的函数imread(读)、imshow(显示)、imnoise(加噪)、filter(滤波)对图像进行去噪处理。

(3)图像灰度修正:灰度变换。

对不满意的图像通过线性或非线性灰度映射关系进行变换,其效果可以得到明显提高。

通过分析,会发现变换前后图像的直方图也发生相应的变化。

(4)图像平滑方法:领域平均、中值滤波。

分析图像降质的性质,区分平稳性还是非平稳型、加性还是乘性等,采用合适的去噪方法,可以去除或降低噪声对图像的影响。

从频率域看,平均操作在降低噪声的同时衰减了图像的高频分量,会影响图像细节的重现。

中值滤波对某些信号具有不变形,适用于消除图像中的突发干扰,但如果图像含有丰富的细节,则不宜使用。

(5)图像锐化方法:人眼对目标的边缘和轮廓较为敏感,对图像进行锐化,有助于突出图像的这些特征。

从频率域看,锐化提升了图像的高频分量。

4.实验内容(1)图像灰度修正。

(2)图像平滑方法。

(3)图像锐化方法。

5.实验步骤(1)图像灰度修正。

读入一幅灰度级分布不协调的图像,分析其直方图。

根据直方图,设计灰度变换表达式,或调用imadjuct函数。

调整变换表达式的参数,直到显示图像的灰度级分布均衡为正。

(2)图像平滑方法。

对有噪声图像或人为加入噪声的图像进行平滑处理。

根据噪声的类型,选择不同的去噪方法,如领域平均、中值滤波等方法,调用filter2、medfilt2函数,选择不同的滤波模板和参数,观测和分析各种去噪方法对不同噪声图像处理的去噪或降噪效果。

数字图像处理实验报告一 图像点运算增强

数字图像处理实验报告一  图像点运算增强

实验一图像点运算增强一、实验目地1、熟练掌握在MATLAB中图像读取、显示、存储等操作。

2、理解直方图的概念及应用,实现图像直方图的显示,及通过直方图均衡和直方图规定化方法对图像进行修正。

二、实验内容1、读取图像彩色图像lily.tif:①查看彩色图像数据结构、数据类型;②将彩色图像转换为灰度图像,并存储为lily1.tif;③将图像lily1.tif中灰度值小于90的减小42个灰度级,将变化后图像存储为lily2.tif;④同一窗口显示图像lily1、lily2,以及图像对应的直方图。

(title)2、读取图像pout.tif①对其做灰度变换处理,显示变换前后的图像和直方图。

Figure1②对其进行直方图均衡化,显示变换前后图像和对应直方图。

Figure23、读入图像lena.bmp与lily1.tif,执行直方图规定化。

使lena图像的灰度分布与lily1大致相同,显示变换前后图像及对应直方图。

三、实验程序及结果1.1 实验程序clear; %清除前程序变量a=imread('E:\ZHJ\lily.tif'); %读入图像文件lily,并记为ab=rgb2gray(a); %将彩色图像a转换为灰色图像bimwrite(b,'E:\ZHJ\lily1.tif','tif'); %写入图像文件b,并命名为lily1c=double(b); %将图像b的数据类型转换为双精度型,记为cfor i=1:186for j=1:230if c(i,j)<90e(i,j)=c(i,j)-42;else e(i,j)=c(i,j);endendend %将c中灰度值小于90的减小42个灰度级,并记为e d=uint8(e); %将e的数据类型转换为整型数据imwrite(d,'E:\ZHJ\lily2.tif','tif'); %写入图像文件d,并命名为lily2x=imhist(b,256); %求b的直方图y=imhist(d,256); %求d的直方图figure; %建立一张图表subplot(2,2,1); %将建见图表分为四块imshow(b); %显示图像文件b,即lily1subplot(2,2,2);imshow(d); %显示图像文件d,即lily2subplot(2,2,3);imhist(b); %显示图像b的直方图title('lily1'); %将直方图命名为lily1subplot(2,2,4);imhist(d); %显示图像d的直方图title('lily2'); %将直方图命名为lily21.2 实验结果:2.1 实验程序clear; %清除前程序变量a=imread('pout.tif'); %读入图像文件pout.tif,并记为ab= imadjust(a,[0.3,0.7],[]); %对图像a进行灰度调整,调整后记为b imwrite(b,'F:\ZHJ\pout1.tif','tif'); %写入图像文件b,并命名为pout1.tifc=histeq(a,64); %对图像a均衡化figure(1); %建立图表1subplot(2,2,1); %将所建图表分为四块imshow(a); %显示图像文件a title('pout.tif');subplot(2,2,2);imshow(b); %显示图像文件b title('灰度调整pout.tif');subplot(2,2,3);imhist(a); %显示图像a的直方图title('pout.tif直方图');subplot(2,2,4);imhist(a); %显示图像b的直方图title('灰度调整pout.tif后直方图');figure(2); %建立图表2subplot(2,2,1); %将所建图表分为四块imshow(a); %显示图像文件a title('pout.tif');subplot(2,2,2);imshow(c); %显示图像文件c title('均衡化pout.tif');subplot(2,2,3);imhist(a); %显示图像a的直方图title('pout.tif直方图');subplot(2,2,4);imhist(c); %显示图像c的直方图title('均衡化pout.tif后直方图');2.2 实验结果:100200001002000 0100200001002003.1 实验程序clear; %清除前程序变量a=imread('F:\ZHJ\lena.bmp'); %读入图像文件lena.bmp ,并记为a b=imread('F:\ZHJ\lily1.tif'); %读入图像文件lily1.tif ,并记为b e=imhist(b); %求b 图像的直方图c = histeq(a,e); %直方图规定化,将a 的图像直方图变为e 图像直方图 figure; %建立一张图表 subplot(2,2,1); %将图表分为四块 imshow(a); %显示图像文件a title('lena.bmp'); subplot(2,2,2);imshow(c); %显示图像文件c title('规定化lena.bmp'); subplot(2,2,3);imhist(a); %显示图像文件a 的直方图 title('lena.bmp 直方图'); subplot(2,2,4);imhist(c); %显示图像文件c 的直方图 title('规定化lena.bmp 直方图');100200001002000四、思考题1、直方图是什么概念?它反映了图像的什么信息?答:直方图表示一幅图像灰度分布情况的统计图表,直方图的横坐标是灰度级,纵坐标是具有该灰度级的像素个数或出现这个灰度级的概率。

图像增强的实验报告

图像增强的实验报告

图像增强的实验报告图像增强的实验报告引言:图像增强是数字图像处理领域中的一项重要任务。

通过改善图像的质量和清晰度,图像增强可以使我们更好地观察和分析图像中的细节。

本实验旨在探索图像增强的不同方法,并评估它们在不同场景下的效果。

实验设计:为了比较不同的图像增强方法,我们选择了一组具有不同特征的图像作为实验对象。

这些图像包括自然风景、人像和低对比度图像。

我们将使用以下三种方法进行图像增强:直方图均衡化、自适应直方图均衡化和增强对比度自适应拉伸。

实验步骤:1. 直方图均衡化:直方图均衡化是一种常用的图像增强方法,它通过重新分布图像的像素值来增强对比度。

我们首先将图像转换为灰度图像,然后计算灰度直方图。

接下来,我们使用累积分布函数对直方图进行均衡化,使得图像中的像素值分布更加均匀。

最后,我们将均衡化后的图像转换回原始图像的颜色空间。

2. 自适应直方图均衡化:直方图均衡化在某些情况下可能会导致图像的局部细节丢失。

为了解决这个问题,我们使用自适应直方图均衡化方法。

在这种方法中,我们将图像分成许多小区域,并对每个区域的直方图进行均衡化。

通过这种方式,我们可以保留图像的局部特征,并增强整体对比度。

3. 增强对比度自适应拉伸:增强对比度自适应拉伸是一种简单而有效的图像增强方法。

它通过将图像的像素值映射到一个更大的范围来增强对比度。

我们首先计算图像的平均亮度和标准差,然后使用以下公式对图像进行拉伸:enhanced_pixel = (pixel - mean) * (max_stretch / std) + mean其中,pixel是原始图像中的像素值,mean是图像的平均亮度,std是图像的标准差,max_stretch是拉伸的最大范围。

实验结果:我们将三种图像增强方法应用于不同类型的图像,并进行了对比分析。

结果显示,直方图均衡化方法在某些情况下可以显著增强图像的对比度,特别是对于低对比度图像。

然而,它可能会导致图像的噪声增加和细节丢失。

图像增强实验

图像增强实验

数字图像处理实验报告1 - 图像增强学生姓名:学号:实验时间:地点:指导教师:实验名称:图像增强试验目的(1)MATLAB中的实验验证。

通过在MATLAB环境中相关函数的调用,验证图像增强的结果,增强感性认识,促进对课程内容的理解。

(2)通过编写C++程序。

进一步理解算法的实现过程,为在实际项目软件中的应用打下基础。

实验内容(1)MATLAB中的实验验证①灰度线性变换,利用imadjust等②直方图均衡化,利用 histeq等③基于模版的平滑滤波验, 证各种滤波模板对椒盐噪声的滤波效果。

filter2,imfilter 等函数。

④中值滤波,验证对中值滤波椒盐噪声的滤波效。

medfilt2 等函数。

⑤图像锐化。

验证图像锐化效果。

edge, filter2, gradient 等函数。

(2)c语言直方图均衡化编程用VC++编写程序,将自己的YUV格式的照片转换成灰度图像,并进行直方图均衡化处理,结果存放到res.yuv文件。

后附参考程序代码。

实验记录与结果分析:(1)①利用imadjust函数来实现灰度的线性化。

先读出图像finley.jpg,然后调用matlab函数imadjust,实现灰度线性化。

程序详见附录1.1,调整结果如下:调整前:调整后:由此可见视觉效果得到明显改善。

②利用histeq函数实现直方图均衡化。

先读出图像finley.jpg,然后调用matlab函数histeq,实现直方图均衡化,最后在显示图像。

程序详见附录1.2。

其图像变化结果和直方图如下:均衡前:均衡后:由此可见,直方图均衡化后,图像均匀性得到了很好的改善。

③基于模版的平滑滤波验。

先读出图像finley.jpg,然后调用matlab函数imnoise给图像加上高斯白噪声(为什么加高斯白噪声,因为这种噪声最常见),用书上的P116页的相关模板,构造滤波器来实现相关滤波。

程序详见附录1.3.结果如下:原图像:加过噪声以及滤波图像如下:④中值滤波。

图像处理实验报告——图像增强-推荐下载

图像处理实验报告——图像增强-推荐下载

对图像进行平滑处理,可以处理高斯噪声,但是很带来图像的边缘细节模糊。

对于具有对称特性的算子,conv2和imfilter处理的图像效果是一样的,非对称的算子,处理的效果一般不样。

对图像进行锐化处理,会得到图像的边缘部分,变化小部分对应的灰度值较小。

10、总结及心得体会:总结:通过本次的图像增强实验了解了图像的最基本的像素级的操作,对图像的变换有了一定的了解,同时增加了自己对数字图像的了解。

心得体会:一些看起来很简单的图像处理,要自己编程进行实现比不是一件很简单的事,所以对于理论要多加以实践才能更好地掌握。

11、对本实验过程及方法、手段的改进意见:如果对现有的某些简单的函数进行限制使用,要求学生自己编写,可以很大程度的增强学生的编程能力。

报告评分:指导教师签字:图1 线性拉伸变换原图和结果图图2 线性拉伸变换灰度变换曲线)图像的非线性灰度变换(指数变换)图3 指数拉伸变换原图和结果图图4 对数拉伸变换灰度变换曲线)图像的非线性灰度变换(中值滤波)图5 中值滤波原图和结果图)光电图像的空域平滑处理像像像像像像像像像像像像图7 算子的3D图)光电图像的空域高通滤波图8 平滑处理原图、加噪图和结果图图9 算子的3D图)数字图像的线性灰度变换%拉伸到15到230clc,close all,clear all;remax=230;remin=15;y=imread('cloud_24bitgry.jpg');y=rgb2gray(y);subplot(1,2,1),imshow(y);y=double(y);title('原始图像');ymax=max(max(y));ymin=min(min(y));[a,b]=size(y);%灰度变换程序for m=1:a;for n=1:b;result_image(m,n)=(remax-remin)/(ymax-ymin)*(y(m,n)-ymin)+remin;endendresult_image=uint8(result_image);subplot(1,2,2),imshow(result_image); imwrite(result_image,'灰度线性变换.jpg','jpg');%保存图像title('灰度变换图像');o=[]for x=1:255;if x<ymin;k=remin;elseif x>ymax;k=remax;elsek=(remax-remin)/(ymax-ymin)*(x-ymin)+remin;endo=[o,k];end%画变换曲线图x=1:255;figure,plot(x,o);title('灰度变换曲线');xlabel('f(x,y)'),ylabel('g(x,y)');(2)图像的非线性灰度变换(指数变换)%灰度对数变换clc,close all,clear all;imb=1.56;ima=13;imc=0.05;y=imread('Einstein.jpg');y=rgb2gray(y);subplot(1,2,1),imshow(y);title('原始图像'); y=double(y);[a,b]=size(y);%对数变换程序for m=1:a;for n=1:b;result_image(m,n)=imb^(imc*(y(m,n)-ima))-1;endendsubplot(1,2,2),imshow(result_image,[]);titl e('变换图像');imwrite(uint8(result_image),'灰度对数变换. jpg','jpg');%保存图像u=[];for x=0:255;o=imb^(imc*(x-ima))-1;u=[u,o];endx=0:255;figure(),plot(x,u);title('对数变换曲线'); xlabel('f(x,y)'),ylabel('g(x,y)');(3)图像的非线性灰度变换(中值滤波)%灰度对数变换clc,close all,clear all;imb=1.56;ima=13;imc=0.05;y=imread('lowlight_spn24.jpg');y=rgb2gray(y);subplot(1,2,1),imshow(y);title('原始图像'); [a,b]=size(y);%中值滤波变换程序o=y;for m=2:a-1;for n=2:b-1;O=[y(m-1,n-1),y(m,n-1),y(m+1,n-1),y(m-1,n),y(m,n),y(m+1,n),y(m-1,n+1),y(m,n+1),y(m+1,n+1)];o(m,n)=median(O);endendsubplot(1,2,2),imshow(o);title('滤波图像');(4)光电图像的空域平滑处理%平滑去噪clc,close all,clear all;y=imread('Einstein.jpg');y=rgb2gray(y);subplot(2,2,1),imshow(y),title('原始图像'); y=imnoise(y,'gauss',0.002);%加噪声subplot(2,2,2),imshow(y);title('加噪图像'); y=double(y);h1=1/273*[1,4,7,4,7;4,16,26,16,4;7,26,41,26,7;4,16,26,16,4;1,4,7,4,1];M=conv2(y,h1);%卷积处理图像subplot(2,2,3),imshow(uint8(M));title('卷积去噪图像');M=imfilter(y,h1);subplot(2,2,4),imshow(uint8(M));title('函数去噪图像');x=-9:10;y=-9:10;h1=imresize(h1,4,'bilinear');[X,Y]=meshgrid(x,y);figure,surfc(X,Y,h1);(5)光电图像的空域高通滤波% 图像锐化程序clc,close all,clear all;y=imread('Einstein.jpg');y=rgb2gray(y);subplot(1,3,1),imshow(y),title('原始图像'); y=double(y);h1=[-1,0,1;-1,0,1;-1,0,1];sum(sum(h1))M=conv2(y,h1);%卷积处理图像subplot(1,3,2),imshow(uint8(M));title('卷积锐化图像');M=imfilter(y,h1);subplot(1,3,3),imshow(uint8(M));title('图像锐化图像');x=-5:6;y=-5:6;h1=imresize(h1,4,'bilinear');[X,Y]=meshgrid(x,y);figure,surfc(X,Y,h1);。

数字图像处理实验报告

数字图像处理实验报告

图像增强实验报告一、引言图像增强常用于对图像的亮度、对比度和色调进行调节,从而使图像更加清晰。

在matlab程序中,有多个方法可以对图像进行图像增强,本文借助于matlab软件,主要讲述了基于直方图均衡化、拉普拉斯算子和对象log变换的图像增强,将三者的效果进行对比分析,得出结论。

二、基于直方图均衡化的图像增强直方图是灰度级数的函数,反映了图像中具有该灰度级的像素的个数。

直方图均衡化就是把原图像的灰度直方图从比较集中的某个区间变成在全部灰度范围内的均匀分布。

均衡化之后的图像,其像素重新分配,使一定灰度范围内的像素数量大致相同,这样图像的效果就会改变,可以增强图像的整体对比度。

1.函数histeq ( ) 函数:用来对原图像进行直方图均衡化处理imread( ) 函数:用来读取图像imshow( ) 函数:用来显示图像imhist( )函数:用来显示图像的灰度直方图rgb2gray( )函数:用来将彩色图像转化为灰度图像subplot(m,n,p)函数:用来将多个图画到一个平面上,m是行数,n是列数,p表示图的位置。

2.实验内容及代码运用matlab函数对灰色图像进行读取,然后对其进行直方图均衡化,将原图和均衡化之后的图像显示出来进行对比,分析结果。

选择一张彩色图像,对其进行均衡化处理,但对图像中包含的颜色分开处理,再还原图像,与原图进行比较分析。

1).处理灰色图像代码(附件Untitled1)a=imread('an.jpg');b=histeq(a);figure,imshow(a);title('原图像');figure,imshow(b);title('直方图均衡化图像');figure,subplot(1,2,1);imhist(a,64);title('原直方图');subplot(1,2,2);imhist(b,64);title('均衡化后直方图');2).处理彩色图像代码(附件Untitled2)WGP=imread('hua.jpg');W=WGP(:,:,1);G=WGP(:,:,2);P=WGP(:,:,3);figure,subplot(3,2,1);imshow(W);title('原图白色分量');subplot(3,2,2);imhist(W);title('原图白色分量直方图');subplot(3,2,3);imshow(G);title('原图绿色分量');subplot(3,2,4);imhist(G);title('原图绿色分量直方图');subplot(3,2,5);imshow(P);title('原图紫色分量');subplot(3,2,6);imhist(P);title('原图紫色分量直方图');w=histeq(W);g=histeq(G);p=histeq(P);figure,subplot(3,2,1);imshow(w);title('白色分量均衡化后图像'); subplot(3,2,2);imhist(w);title('白色分量均衡化后图像直方图'); subplot(3,2,3);imshow(g);title('绿色分量均衡化后图像'); subplot(3,2,4);imhist(g);title('绿色分量均衡化后图像直方图'); subplot(3,2,5);imshow(p);title('紫色分量均衡化后图像'); subplot(3,2,6);imhist(p);title('紫色分量均衡化后图像直方图'); figure,subplot(1,3,1);imshow(WGP);title('原图像');subplot(1,3,2);h=cat(3,w,g,p);imshow(h,[]);title('还原图像');subplot(1,3,3);b=histeq(WGP);imshow(b)title('直接均衡化图像');3.实验结果1).灰色图像处理结果从直方图均衡化的结果可以看出,原图比较暗,直方图上的灰度值集中在左侧,经过均衡化处理之后,直方图均匀分布在整个图像灰度值所允许的范围内,均衡化之后的图像较原图像而言变亮了,整个图像看得更加清楚。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告数字图像处理实验报告一、引言数字图像处理是计算机科学与工程领域中的一个重要研究方向。

通过使用数字化技术,对图像进行采集、传输、存储和处理,可以实现对图像的增强、恢复、分析和识别等功能。

本实验旨在通过对数字图像处理算法的实践应用,探索图像处理的原理和方法。

二、实验目的本实验的主要目的是掌握数字图像处理的基本概念和算法,并通过实际操作加深对图像处理原理的理解。

具体目标包括:1. 学习使用图像处理软件,如Photoshop或Matlab等。

2. 掌握图像增强的方法,如直方图均衡化、滤波和锐化等。

3. 理解图像压缩和编码的原理,如JPEG和PNG等格式。

4. 了解图像分割和边缘检测的基本算法,如阈值分割和Canny边缘检测等。

三、实验过程1. 图像增强图像增强是指通过一系列算法和技术,改善图像的质量和视觉效果。

在实验中,我们可以使用直方图均衡化算法来增强图像的对比度和亮度。

该算法通过将图像的像素值映射到一个更大的范围内,使得图像的亮度分布更加均匀。

2. 图像滤波图像滤波是指通过一系列滤波器对图像进行处理,以实现去噪、平滑和锐化等效果。

在实验中,我们可以使用平滑滤波器(如均值滤波器和高斯滤波器)来去除图像中的噪声。

同时,我们还可以使用锐化滤波器(如拉普拉斯滤波器和Sobel滤波器)来增强图像的边缘和细节。

3. 图像压缩和编码图像压缩是指通过减少图像的数据量来减小图像文件的大小,从而实现存储和传输的效率提升。

在实验中,我们可以使用JPEG和PNG等压缩算法来对图像进行压缩和编码。

JPEG算法通过对图像的频域进行离散余弦变换和量化,实现对图像的有损压缩。

而PNG算法则采用无损压缩的方式,通过对图像的差值编码和哈夫曼编码,实现对图像的高效压缩。

4. 图像分割和边缘检测图像分割是指将图像分成若干个区域,以实现对图像的目标提取和图像分析的目的。

而边缘检测是指通过检测图像中的边缘和轮廓,实现对图像的形状分析和目标识别。

数字图像处理实验报告 空域图像增强技术

数字图像处理实验报告 空域图像增强技术

课程名称:实验项目:实验地点:专业班级:学号:学生姓名:指导教师:2012年月日实验一 空域图像增强技术一、 实验目的1结合实例学习如何在视频显示程序中增加图像处理算法;2理解和掌握图像的线性变换和直方图均衡化的原理和应用;3了解平滑处理的算法和用途,学习使用均值滤波、中值滤波和拉普拉斯锐化进行图像增强处理的程序设计方法;4 了解噪声模型及对图像添加噪声的基本方法。

二、 实验原理1 灰度线性变换就是将图像中所有点的灰度按照线性灰度变换函数进行变换。

)],([),(y x f T y x g =⎪⎩⎪⎨⎧<≤+-<≤+-≤≤=255),(]),([),( ]),([),(0 ),(),(y x f b g b y x f b y x f a g a y x f a y x f y x f y x g b a γβαn y m x ,2,1 ,,,2,1==2 直方图均衡化通过点运算将输入图像转换为在每一级上都有相等像素点数的输出图像。

按照图像概率密度函数PDF 的定义:1,...,2,1,0 )(-==L k nn r p k k r 通过转换公式获得:1,...,2,1,0 )()(00-====∑∑==L k n n r p r T s k j k j j j r k k3 均值(中值)滤波是指在图像上,对待处理的像素给定一个模板,该模板包括了其周围的临近像素。

将模板中的全体像素的均值(中值)来代替原来像素值的方法。

4 拉普拉斯算子如下:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--------111181111 拉普拉斯算子首先将自身与周围的8个像素相减,表示自身与周围像素的差异,再将这个差异加上自身作为新像素的灰度。

三、 实验步骤1 启动MA TLAB 程序,对图像文件分别进行灰度线性变换(参考教材57页,例4.1)、直方图均衡化、均值滤波、中值滤波和梯度锐化操作。

添加噪声,重复上述过程观察处理结果。

数字图像处理实验报告图像增强处理与几何变换

数字图像处理实验报告图像增强处理与几何变换

实验图像增强处理与几何变换一、实验目的利用Matlab图像处理工具箱中的函数实现图像点处理、空间域平滑和锐化处理、彩色图像处理、几何处理,巩固其原理与计算方法学习,深化课程理论认知。

二、实验内容1、图像点处理:灰度变换、直方图均衡化和直方图规定处理;2、图像均值滤波和中值滤波、图像锐化处理;3、图像几何变换处理;4、图像彩色合成和彩色变换处理;三、实验步骤1、图像点处理:灰度变换、直方图均衡化和直方图规定处理;1.1图像的灰度变换启用MATLAB,输入以下代码运行I= imread('cameraman-8.bmp','bmp');figure; subplot(2,2,1), imshow(I);%获取图像直方图subplot(2,2,2),imhist(I);[counts1,x1] = imhist(I);%观察Counts,x的值subplot(2,2,3),stem(x1,counts1);%图像灰度变换J=imadjust(I,[0.1 0.7],[0.0 0.9]);subplot(2,2,4), imshow (J);%对比灰度变换前后的图像及其直方图figure;subplot(2,3,1),imshow(I);subplot(2,3,2),imshow(J);subplot(2,3,4),imhist(I);subplot(2,3,5),imhist(J);[counts2,x2] = imhist(J);subplot(2,3,6), stem(x2,counts2);图 1.1.1图 1.1.21.2图像直方图均衡化启用MATLAB,输入以下代码运行I=imread('cameraman-8.bmp','bmp') ;%直方图均衡化处理J=histeq(I) ;%对比均衡化处理前后的图像及其直方图figure(1),subplot(2,2,1),imshow(I),subplot(2,2,2),imshow(J); figure(1),subplot(2,2,3),imhist(I),subplot(2,2,4),imhist(J);图 1.2 1.3直方图规定化启用MATLAB,输入以下代码运行I1=imread('TM5.bmp','bmp');I2=imread('TM3.bmp','bmp');%直方图规定化处理K1=histeq(I1,imhist(I2));%对比规定化处理前后的图像及其直方图figure;subplot(3,2,1),imshow(I1);subplot(3,2,2), imhist(I1);subplot(3,2,3),imshow(I2);subplot(3,2,4), imhist(I2);subplot(3,2,5),imshow(K1);subplot(3,2,6), imhist(K1);图 1.32、图像空间域平滑2.1 用均值滤波器实现图像空间域的平滑启用MATLAB,输入以下代码运行I=imread('cameraman-8.bmp','bmp');J=imnoise(I,'gaussian'); %添加高斯噪声K=imnoise(I,'salt & pepper'); %添加椒盐噪声M=imnoise(I,'speckle'); %添加乘性噪声H=ones(3,3)/9; %3*3的均值去噪模板%滤波去噪处理I1=imfilter(I,H);J1=imfilter(J,H);K1=imfilter(K,H);M1=imfilter(M,H) ;%对比线性滤波去噪处理前后的图像figure;subplot(2,4,1),imshow(I);title('原图');subplot(2,4,2),imshow(J); title('高斯噪声图像'); subplot(2,4,3),imshow(K); title('椒盐噪声图像'); subplot(2,4,4),imshow(M); title('乘性噪声图像'); subplot(2,4,6),imshow(J1); title('高斯噪声滤波图像'); subplot(2,4,7),imshow(K1); title('椒盐噪声滤波图像'); subplot(2,4,8),imshow(M1) ; title('乘性噪声滤波图像') ; 输出图像如下图 2.12.2 用中值滤波器实现图像空间域的平滑启用MATLAB,输入以下代码运行I=imread('cameraman-8.bmp');I1=imnoise(I,'gaussian');I2=imnoise(I,'salt & pepper',0.02);I3=imnoise(I,'speckle');%3×3中值滤波模板J=medfilt2(I,[3,3]);J1=medfilt2(I1,[3,3]);J2=medfilt2(I2,[3,3]);J3=medfilt2(I3,[3,3]);figure,subplot(2,4,1),imshow(I) ; title('原图') ;subplot(2,4,2),imshow(I1) ; title('添加高斯噪声') ;subplot(2,4,3),imshow(I2) ; title('添加椒盐噪声') ;subplot(2,4,4),imshow(I3) ; title('添加乘性噪声') ;subplot(2,4,6),imshow(J1) ;title('高斯噪声3*3中值滤波') ; subplot(2,4,7),imshow(J2) ;title('椒盐噪声3*3中值滤波') ; subplot(2,4,8),imshow(J3) ;title('乘性噪声3*3中值滤波') ;K=medfilt2(I, [5,5]); %5×5中值滤波模板K1=medfilt2(I1,[5,5]);K2=medfilt2(I2,[5,5]);K3=medfilt2(I3,[5,5]);figure;subplot(2,2,1),imshow(K); title('原图5*5中值滤波'); subplot(2,2,2),imshow(K1) ; title('高斯噪声5*5中值滤波') ; subplot(2,2,3),imshow(K2); title('椒盐噪声5*5中值滤波'); subplot(2,2,4),imshow(K3) ; title('乘性噪声5*5中值滤波'); 输出结果如下图 2.2.1图 2.2.22.3 图像空间域锐化启用MATLAB,输入以下代码运行I=imread('cameraman-8.bmp','bmp')H=fspecial('sobel')%用sobel算子做模板%锐化处理J=imfilter(I,H)%锐化处理前后图像对比figure,subplot(1,2,1),imshow(I),subplot(1,2,2),imshow(J); 输出图像如下图 2.33、图像几何变换3.1 缩放启用MATLAB,输入以下代码运行I=imread('cameraman-8.bmp', 'bmp') ;%放大图像J=imresize(I,2) ;%缩小图像K=imresize(I,0.5) ;%图像对比figure(1),subplot(),imshow(I),title('原图'),figure(2),subplot(),imshow(J),title('放大两倍的图'),figure(3),subplot(),imshow(K),title('缩小0.5倍的图') ;输出图像如下图 3.1.1 图3.1.2图 3.1.33.2旋转启用MATLAB,输入以下代码运行I=imread('cameraman-8.bmp', 'bmp') ;%旋转图像M=imrotate(I,45) ;%图像对比figure;subplot(1,2,1),imshow(I),subplot(1,2,2),imshow(M) ;输出图像如下图 3.24、彩色图像处理4.1彩色合成启用MATLAB,输入以下代码运行I=imread('peppers.bmp','bmp');J1=I; J2=I;J3=I; J4=I;J5=I;%改变J1、J2、J3、J4、J5中的波段次序,组合成新的波段合成J1(:,:,1)=I(:,:,2); J1(:,:,2)=I(:,:,3); J1(:,:,3)=I(:,:,1) ;J2(:,:,1)=I(:,:,1); J2(:,:,2)=I(:,:,3); J2(:,:,3)=I(:,:,2) ;J3(:,:,1)=I(:,:,2); J3(:,:,2)=I(:,:,1); J3(:,:,3)=I(:,:,3) ;J4(:,:,1)=I(:,:,3); J4(:,:,2)=I(:,:,2); J4(:,:,3)=I(:,:,1) ;J5(:,:,1)=I(:,:,3); J5(:,:,2)=I(:,:,1); J5(:,:,3)=I(:,:,2) ;%对比原图像I与新图像J1、J2、J3、J4、J5的彩色差异,理解假彩色合成figure,subplot(2,3,1),imshow(I),title('原图');subplot(2,3,2),imshow(J1),title('变换一') ;subplot(2,3,3),imshow(J2),title('变换二') ;subplot(2,3,4),imshow(J3),title('变换三') ;subplot(2,3,5),imshow(J4),title('变换四') ;subplot(2,3,6),imshow(J5),title('变换五');输出图像如下图4.1 4.2彩色变换启用MATLAB,输入以下代码运行I=imread('peppers.bmp','bmp');HSV=rgb2hsv(I) ;RGB=hsv2rgb(HSV) ;%对比彩色变换前后的图像figure;subplot(1,3,1),imshow(I),title('原图'),subplot(1,3,2),imshow(HSV),title('HSV图像'); subplot(1,3,3),imshow(RGB),title('RGB图像') ;输出结果如下图 4.2四、实验算法要点总结1、图像点处理直方图修正法通常分为直方图均衡化和直方图规定化两类2、图像均值滤波和中值滤波、图像锐化处理3、图像几何变换处理4、图像彩色合成和彩色变换处理通过映射函数将彩色图像或多光谱图像变换成新的三基色分量线性假彩色映射表示为:。

图像增强技术实验报告

图像增强技术实验报告

图像增强技术实验报告
近年来,随着数字图像处理技术的快速发展,图像增强技术在各个
领域得到了广泛的应用。

本实验旨在探究图像增强技术的原理和方法,通过实际操作加深对该技术的理解和掌握。

首先,在本实验中我们使用了常见的图像增强技术包括灰度拉伸、
直方图均衡化、滤波等方法。

针对不同的图像特点和需求,我们选择
了不同的增强方法进行处理,并分析比较它们的效果和适用场景。

在实验过程中,我们首先对原始图像进行了灰度拉伸处理,通过拉
伸灰度范围来增强图像的对比度,使得图像中的细节更加清晰。

接着,我们运用直方图均衡化技术,将图像的像素分布均匀化,从而提高了
图像的整体亮度和细节展现。

同时,我们还尝试了一些滤波方法,如
均值滤波、中值滤波等,来去除图像中的噪声和平滑图像。

通过实验数据分析,我们发现不同的图像增强方法在处理不同类型
的图像时会产生不同的效果。

比如对于对比度较低的图像,灰度拉伸
和直方图均衡化能够取得比较好的增强效果;而对于受到噪声干扰的
图像,则需要采用滤波方法进行去噪处理。

综合以上实验结果,我们深入探讨了图像增强技术的优缺点以及适
用范围。

图像增强技术在医疗影像、航空航天、安防监控等领域具有
广泛的应用前景,在实际应用中需要根据图像特点和需求选择合适的
增强方法,以达到最佳的效果。

通过本次实验,我们对图像增强技术有了更深入的了解,并在实践中提升了我们的技术水平和解决问题的能力。

希望今后能够进一步拓展应用领域,将图像增强技术发挥到更大的作用,为社会发展和人类福祉做出更大的贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一图像增强实验
一、实验目标:
掌握图像增强的算法。

二、实验目的:
1. 了解灰度变换增强和空域滤波增强的Matlab实现方法
2.掌握直方图灰度变换方法
3. 掌握噪声模拟和图像滤波函数的使用方法
三、实验内容:
(1)图像的点操作、邻域操作算法。

(2)图像的直方图处理算法。

四、实验设备:
1.PIII以上微机; 2.MATLAB6.5;
五、实验步骤:
(1)读入图像:用matlab函数实现图像读入(可读入Matlab中的标准测试图像)
(原始图像
(2)实现图像点操作运算(如gamma校正,对数校正等)(3)实现图像的邻域处理(实现均值滤波,拉普拉斯滤波)(4)实现直方图均衡处理
matlab 源程序
clear all;clc;
f=imread('girl_noise.jpg';
figure,imshow(f,title('原始图像';
[m,n]=size(f;
f0= im2double(f; % 整型转换为 double 类
f1=f0;
std_i=zeros(1,m-2;
%灰线处理
for i=2:m-1
%灰线处理
std_i(i-1=std(f0(i,:;
if(std_i(i-1<0.1
for j=1:m
f0(i,j=(f0(i-1,j+f0(i+1,j/2;
end
end
end
figure,imshow(f0,title('滤除灰线后的图像';
fz=f0-f1;
[r,c]=find(fz~=0;%寻找灰线噪声的位置
f2=f0;
change=0;
count=0;
for i=3:m-2
%白线处理
for j=1:m
if(abs(f0(i,j-f0(i-1,j>0.2&&abs(f0(i,j-f0(i+1,j>0.2 count=count+1;
end
if(count>n*0.8
count=0;
change=1;
break;
end
end
if(change==1
for k=1:m
f0(i,k=(f0(i-1,k+f0(i+1,k/2;
end
change=0;
count=0;
end
end
figure,imshow(f0,title('滤除白线后的图像';
fz1=f2-f0;
[r1,c1]=find(fz1~=0; %寻找白线噪声的位置
fn = medfilt2(f0; %反射对称填充
figure, imshow(fn,title('中值滤波后的图像';
f0 = im2double(fn; % 整型转换为 double 类
g =2*f0- imfilter(f0,w4, 'replicate'; % 增强后的图像figure, imshow(g,title('高提升滤波图像(A=2';
图像处理结果
六、结果分析
从上面结果可以看出,带状噪声处理部分,已经基本将带状噪声去除。

并且通过程序找出了灰色噪声所在行为192,白色噪声所在行为179,182.
程序中的判断条件为白色噪声和前后两行的像素值相差超过一定的范围(double类型0.2),并且此类点在一行中所在的比例超过80%,与给出的原始图像对应。

有程序结果可知,处理过程中仅仅对噪声所在行做了修正,除此之外并且未引入任何其他人为噪声。

而对于处理之后的图像存在的椒盐噪声,经过中值滤波器已经基本可以将椒盐噪声处理的比较好。

另外,程序中也做了A=2的高提升滤波,增强了原始信息,有图可以看出,除了细节增强意外,原始信息更加丰富,因此比之前的图像明亮许多。

七、实验心得与意见
通过此次实验,了解MATLAB的操作环境和基本功能,以及如何使用MATLAB来实现图像增强与平滑,还有它们各种函数的使用方法。

相关文档
最新文档