数学分析习题课讲义
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
Analysis
i
♦
Dedicate to Katie
创造的神秘, 有如夜间的黑暗, 是伟大的。 而知识的幻影, 不过如晨间之雾。
ii
Lecture Notes at Fudan
Contents References 1. Problems on Sets,Sequences and Limits 1.1. Elementary Technique 1.2. Applications of the Stolz theorem 2. Inequality 3. Orders Estimate of Infinitesimal 3.1. Notations and Examples 3.2. Exercises and homework 4. Application of Infinitesimal: Wallis Formula and Stirling Formula 5. Topic on the Gamma functions 5.1. Γ functions 5.2. Exercises 6. Working Technique in function theory 6.1. Iteration technique 6.2. Exercises and Homework 7. Applications of Differential 8. Treasures in Calculus 1 π2 8.1. Euler’s identification ζ (2) = 1 + 212 · · · + n 2 + ··· ≡ 6 8.2. Irrationality of π, log 2, ζ (2), ζ (3). 8.3. The properties of Tchebychev’s functions 8.4. Mertens’ Theorem and Selberg’s Inequality 8.5. An Elementary Proof of The Prime Number Theorem by Selberg and Erd¨ os 8.6. Gauss’s Proof of The Fundamental Theorem of Algebra 9. Advanced Techniques in Analysis 9.1. Preliminary Results in Analysis 9.2. Scaling Technique and Schauder Estimate 9.3. Campanato’s characterization of L2 functions to be H¨ older continuous 10. Advanced Topics in Analysis 10.1. Topic on Riemann Zeta Function(To be Continuous) 10.2. Elementary on Nevanlinna Theory(To be Continuous) 10.3. Elementary on p-adic Series(To be Continuous) ii 1 1 11 14 20 20 23 27 30 30 34 36 36 39 41 42 42 43 46 53 58 59 60 60 72 79 82 82 83 84
References
[F] [H] [HUA] [J] [P] [P-Y] Γ.M. 菲赫金哥尔茨: 微积分学教程, VOL I., II. , III. Higher Education Press. G.H. Hardy : A Course of Pure Mathematics (Tenth Edition) Combridge University Press 2002 华罗庚: 数论导引, 科学出版社1979. J.Jost: Partial Differential Equations (GTM 214), Spinger 2002. Problems Selection in The William Lowell Putnam Mathematical Competitions. 潘承洞, 于秀源: 阶的估计.
2
Lecture Notes at Fudan
Hint. a) f (0) ∈ {0, 1}, and f (0) = 0 ⇒ f ≡ 0. b) Now, we assume f (0) = 1. Then, f (−n) = f (n)∀n ∈ Z, and f (2m) = 2f (m)2 − 1, ∀m ∈ Z. If there is an integer k such that |f (k )| > 1, then |f (2k )| = |2f (k )2 − 1| = (f (k )2 − 1) + f (k )2 > |f (k )| > 1, and so we have an increasing sequence of integer |f (k )| < |f (2k )| < |f (4k )| < · · · < |f (2l k )| < · · · . But it contradict that f is a bounded function with all values in Z. Therefore f (Z) ⊂ {−1, 0, 1}. c) Let f (1) = cos θ with θ ∈ {π, by induction and the formula 2 cos α cos β = cos(α + β ) + cos(α − β ). Example 1.4. Define the function G : N ∪ {0} → Z by G(0) = 0 ; G(n) = n − G(G(n − 1)), n ∈ N. To show that G(n) = [ Proof. 1. Actually, we have 1 ≤ G(n) ≤ n and G(n − 1) ≤ G(n) ∀n ≥ 1. At first G(1) = 1, G(2) = 1.By induction, we assume 1 ≤ G(k ) ≤ k and G(k − 1) ≤ G(k ) ∀1 ≤ k ≤ n − 1. Then, we have 1 ≤ G(n − 1) ≤ n − 1, and so G(G(n − 1)) ≤ G(n − 1) ≤ n − 1, 1 = n − (n − 1) ≤ G(n) = n − G(G(n)) ≤ n − 1 < n, G(n) − G(n − 1) = 1 − [G(G(n − 1)) − G(G(n − 2))] ≥ 0 since 1 ≤ G(n − 2) ≤ G(n − 1) ≤ n − 1. 2. By induction, we can show G(n + 1) − G(n) = 1 or 0 ∀n. 3. Define F (n) = [α(n + 1)] where α =
Analysis
iii
♦
曾子曰: 大学之道,在明明德, 在亲民,在止于至善。 知止而后定,定而后能静, 静而后能安,安而后能虑, 虑而后能得。 物有本末,事有始终, 知所先后,则近道矣。
Analysis
1
1. Problems on Sets,Sequences and Limits
1.1. Elementary Technique. Exercise 1.1. Show that the set of all irrational number of R is uncountable. Proof. Sufficient to show that the set of all irrational number in [0, 1] is uncountable. Otherwise, the set of real numbers in [0, 1] is countable, ie., [0, 1] = {x1 , x2 , · · · }. Cover each xi , i = 1, · · · with the corresponding interval 1 1 1 1 Ii := [xi − ( )i , xi + ( )i ], 2 3 2 3 Then,there holds
∞
[0, 1] = {x1 , x2 , · · · } ⊂
i=1
Ii , 1 1 ( )i = . 3 2 i=1
∞百度文库
and so 1 = l([0, 1]) ≤
∞
∞
l(Ii ) =
i=1 i=1
1 1 1 1 l([xi − ( )i , xi + ( )i ]) = 2 3 2 3
It is a contradiction. Example 1.2. Let α, β ∈ R+ \ Q and 1/α + 1/β = 1. Let A = {[nα] : n ∈ N}, B = {[nβ ] : n ∈ N} be two strictly increasing sequences of positive integers. Show that A B = N ; A B = ∅. Proof. We have α > 1, β > 1. W.L.O.G., we assume α < 2. Then 1 ∈ A ∪ B. 1. If a ∩ B = ∅, then there exist two integers m, n such that [mα] = [nβ ] = q ∈ N. Hence there holds that q < m + n < q + 1. A contradiction. 2. If there is a positive integer p ∈ A ∪ B, then there exist two integers m, n such that [mα] < p < [(m + 1)α], and [nβ ] < p < [(n + 1)β ]. Therefore mα < p < p + 1 ≤ [(m + 1)α] < (m + 1)α, and nβ < p < +1 ≤ [(n + 1)β ] < (n + 1)β. Since 1/α + 1/β = 1, we have m + n < p < p + 1 < m + n + 2. A contradiction. Example 1.3. Let f : Z → Z be a bounded function. Assume for any integers m, n there is a relation: f (m + n) + f (m − n) = 2f (m)f (n). To show all such function f.
The author holds the copyright of this lecture notes. Any person(s) intending to copy a part or whole of the materials in the notes in a proposed publication must seek copyright release from the author.
数学分析习题课讲义
—分析十段天元手筋
张毅
by Dr. Yi Zhang Institute of Mathematical Sciences Fudan University Shanghai 200433 P.R.China zhangyi math@fudan.edu.cn
Lecture given at Fudan University, 2006. http://homepage.fudan.edu.cn/˜yizhang/teaching/analysis-exercise.pdf