高一数学知识点汇总讲解大全
高一数学知识点全部归纳
高一数学知识点全部归纳一、集合1. 集合的概念:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合。
2. 集合中元素的特性:确定性、互异性、无序性。
3. 集合的表示方法:列举法、描述法、图示法。
4. 集合间的关系:子集、真子集、相等。
5. 集合的运算:交集、并集、补集。
二、函数1. 函数的概念:设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B的一个函数。
2. 函数的三要素:定义域、值域、对应法则。
3. 函数的表示方法:解析法、列表法、图象法。
4. 函数的单调性:设函数 f(x)的定义域为 I,如果对于定义域I 内某个区间 D 上的任意两个自变量的值 x₁,x₂,当 x₁ x₂时,都有 f(x₁) f(x₂)(或 f(x₁) > f(x₂)),那么就说函数 f(x)在区间 D 上是增函数(或减函数)。
5. 函数的奇偶性:设函数 f(x)的定义域为 D,如果对于定义域D 内任意一个 x,都有x∈D,且 f(x) = f(x)(或 f(x) = f(x)),那么函数 f(x)就叫做奇函数(或偶函数)。
三、指数函数和对数函数1. 指数函数:一般地,函数 y = a^x(a > 0 且a ≠ 1)叫做指数函数。
指数函数的图象和性质:当 a > 1 时,函数在 R 上单调递增;当 0 a 1 时,函数在 R 上单调递减。
2. 对数函数:一般地,如果 a^x = N(a > 0 且a ≠ 1),那么数 x 叫做以 a 为底 N 的对数,记作 x = logₐN。
函数 y = logₐx (a > 0 且a ≠ 1)叫做对数函数。
对数函数的图象和性质:当 a > 1 时,函数在(0, +∞) 上单调递增;当 0 a 1 时,函数在(0, +∞) 上单调递减。
高一数学上下册的知识点
高一数学上下册的知识点高中数学是一门重要的学科,对于学生的学业发展和未来的职业发展都有着重要的影响。
高一数学上下册的知识点包含了许多重要的内容,下面将就这些知识点进行详细的介绍。
一、高一数学上册知识点1. 函数与映射函数是数学中的一种基本概念,它能够描述数与数之间的关系。
高一数学上册主要介绍了函数的定义、性质和表示方法等内容,以及一次函数、二次函数、指数函数、对数函数和幂函数等常见函数的图像和性质。
2. 三角函数三角函数是高一数学的重要内容之一,它以角度为自变量,求出角的正弦、余弦、正切等函数值。
高一数学上册主要介绍了三角函数的定义、性质和运算法则,以及常见角的变换和三角函数的图像。
3. 直线和圆的方程高一数学上册还涉及了直线和圆的方程问题,包括直线的斜截式、点斜式、一般式和两点式等不同的表示方法,以及圆的一般式和标准式等内容。
同时,还需要了解直线和圆的性质和相关定理。
4. 平面向量平面向量是高一数学上册的另一个重点,它能够描述平面上的位移和力的作用等物理现象。
高一数学上册主要介绍了平面向量的定义、性质和运算法则,以及向量的线性运算和数量积等内容。
5. 不等式与线性规划不等式是数学中的一种基本关系,它可以用来描述数的大小关系。
高一数学上册主要介绍了一元一次不等式、一元二次不等式和一组不等式的解法,以及线性规划的基本概念和解法等内容。
二、高一数学下册知识点1. 平面几何平面几何是高一数学下册的重点内容之一,它涉及了点、线、面等基本几何概念,以及平面内角和平行线的性质,平面图形的性质和判定等内容。
2. 空间几何空间几何是高一数学下册的又一个重点内容,它在平面几何的基础上,进一步探讨了三维空间中点、线、面等基本几何概念,以及几何体的性质和判定等内容。
3. 解析几何解析几何是数学中的一种分支学科,它以坐标为工具,研究点、线、面等几何对象的性质和关系。
高一数学下册主要介绍了平面直角坐标系和空间直角坐标系,以及几何图形的坐标表示和几何问题的解析解法等内容。
新版高一数学知识点全总结
新版高一数学知识点全总结第一章函数基础1.1 函数的概念1.2 函数的图像1.3 函数的性质1.4 函数的运算1.5 反函数第二章三角函数2.1 角度制和弧度制2.2 三角函数的概念2.3 三角函数的基本性质2.4 三角函数的图像2.5 三角函数的变换2.6 三角函数的应用第三章导数与微分3.1 导数的概念3.2 导数的计算3.3 导数的性质3.4 高阶导数3.5 微分的概念3.6 微分的计算3.7 微分的应用第四章不等式与极值4.1 不等式的基本性质4.2 一元一次不等式与二次不等式4.3 绝对值不等式4.4 一元一次方程组4.5 函数的极值与最值4.6 最值及其应用第五章数列与数学归纳法5.1 数列的概念5.2 等差数列5.3 等比数列5.4 通项公式5.5 数学归纳法5.6 数列的应用第六章平面向量6.1 向量的概念6.2 向量的基本运算6.3 向量的数量积6.4 平面向量的坐标表示6.5 向量的线性运算6.6 向量的应用第七章解析几何7.1 直线7.2 圆7.3 圆锥曲线7.4 空间几何7.5 解析几何的应用第八章三角恒等变换8.1 三角函数恒等变换8.2 证明方法8.3 三角方程8.4 三角恒等变换的应用第九章数学证明9.1 数学证明的基本概念9.2 数学归纳法证明9.3 数学归纳法的应用第十章三角函数的反函数10.1 反函数的概念10.2 反函数的求法10.3 反函数的性质10.4 反函数的应用第十一章数学建模11.1 建模的基本概念11.2 建模的步骤11.3 常见数学模型11.4 数学建模的应用第十二章统计12.1 统计的基本概念12.2 统计的数据类型12.3 统计的描述性统计12.4 统计的概率12.5 统计的应用第十三章概率13.1 概率的基本概念13.2 概率的计算13.3 条件概率13.4 事件的独立性13.5 概率的应用以上是高一数学的全部知识点总结,希望能帮助同学们更好地学习数学。
高一数学知识点总结及公式大全
高一数学知识点总结及公式大全1. 集合与函数- 集合的概念:集合是由一些确定的、互不相同的元素所组成的整体。
- 集合的表示方法:列举法和描述法。
- 集合间的关系:子集、并集、交集、补集。
- 函数的概念:函数是定义在非空数集上的对应关系。
- 函数的表示方法:解析式、图象、列表。
- 函数的基本性质:定义域、值域、单调性、奇偶性。
2. 指数与对数- 指数的概念:指数是幂运算的逆运算。
- 指数的运算法则:指数的乘法、指数的除法、指数的幂次。
- 对数的概念:对数是指数运算的逆运算。
- 对数的运算法则:对数的乘法、对数的除法、对数的幂次。
- 指数函数与对数函数的性质:定义域、值域、单调性。
3. 三角函数- 三角函数的定义:正弦、余弦、正切、余切、正割、余割。
- 三角函数的图像和性质:周期性、奇偶性、单调性。
- 三角恒等式:和差公式、倍角公式、半角公式、和差化积、积化和差。
4. 平面向量- 向量的概念:具有大小和方向的量。
- 向量的表示方法:坐标表示、几何表示。
- 向量的基本运算:加减法、数乘、点积、叉积。
- 向量的应用:向量在几何中的应用、向量在物理中的应用。
5. 解析几何- 直线的方程:点斜式、斜截式、一般式。
- 圆的方程:标准式、一般式。
- 直线与圆的位置关系:相交、相切、相离。
- 圆锥曲线:椭圆、双曲线、抛物线的定义和性质。
6. 概率与统计- 随机事件:必然事件、不可能事件、随机事件。
- 概率的计算:古典概型、几何概型、条件概率。
- 统计的基本概念:总体、样本、样本容量、样本均值、样本方差。
7. 数列- 数列的概念:按照一定规律排列的一列数。
- 数列的表示方法:递推式、通项公式。
- 数列的分类:等差数列、等比数列、递推数列。
- 数列的求和:等差数列求和公式、等比数列求和公式、分组求和法。
8. 不等式- 不等式的概念:表示不等关系的式子。
- 不等式的解法:比较法、作差法、配方法、因式分解法。
- 不等式的性质:传递性、对称性、可加性、可乘性。
高一必修一数学全册知识点
高一必修一数学全册知识点一、集合1. 集合的基本概念1.1 集合的定义和表示方法1.2 集合的元素与集合的关系二、数字与代数1. 实数与数轴2.1 实数的概念及表示2.2 数轴的绘制与实数的表示2.3 实数的比较与加减法运算2.4 实数的乘除法运算及其性质2. 同底数幂与科学计数法2.1 指数与幂的概念2.2 同底数幂的乘除法运算2.3 科学计数法的表示与运算3. 整式的基本概念3.1 代数式与整式的定义3.2 项、次数及系数的概念3.3 同类项与合并同类项3.4 整式的加减法运算4. 一元一次方程及其应用4.1 一元一次方程的定义及基本性质4.2 解一元一次方程的基本方法4.3 应用题中的一元一次方程5. 分式及其运算5.1 分式的定义及分式运算的基本性质5.2 分式的化简5.3 分式方程的解法及应用三、函数与图像1. 函数的概念与表示6.1 函数的定义及函数的表示方法6.2 函数的自变量、因变量与定义域、值域的关系2. 幂函数与分段函数6.2.1 幂函数的概念及其性质6.2.2 分段函数的定义及分段函数的画法3. 一次函数与斜率6.3.1 一次函数的定义及一次函数的性质6.3.2 斜率的概念及其计算方法4. 二次函数及其图像6.4.1 二次函数的定义及二次函数的图像特点6.4.2 二次函数的变换与最值四、三角函数1. 三角函数及其基本性质7.1.1 弧度制与角度制的转换7.1.2 正弦、余弦、正切函数的定义及其基本性质2. 三角函数图像的性质与变换7.2.1 三角函数图像的对称性与奇偶性7.2.2 三角函数图像的平移与伸缩7.2.3 三角函数图像的组合与分解3. 三角函数的简单应用7.3.1 三角函数在实际问题中的应用7.3.2 直角三角形的解题方法五、平面几何1. 直线与圆的性质8.1.1 直线的定义及其性质8.1.2 圆的定义及其性质2. 三角形的基本性质8.2.1 三角形分类及其特性8.2.2 三角形的成立条件3. 三角形的相似8.3.1 相似三角形的定义及判定条件 8.3.2 相似三角形的性质及应用4. 圆的切线与割线8.4.1 切线的定义及性质8.4.2 相交弦的性质及切割定理六、统计与概率1. 统计图与数据的分析9.1.1 统计图的绘制及其分析9.1.2 数据的分析与统计规律2. 事件的概率9.2.1 随机事件与概率的定义 9.2.2 事件的计算与概率的性质3. 排列与组合9.3.1 排列的定义及排列的计算 9.3.2 组合的定义及组合的计算。
高一数学上下册知识点要点
高一数学上下册知识点要点(注意:以下内容是按照一般文章格式展示,非数学题目的具体知识点要点)高一数学上下册知识点要点数学作为一门重要的学科,对于高中学生来说尤为重要。
高一数学上下册内容丰富,包括了很多重要的知识点,掌握这些知识点将为学生打下坚实的数学基础。
本文将总结高一数学上下册的主要知识点要点,帮助大家更好地学习和复习数学。
1. 数与代数(高一上册)1.1 实数的性质- 实数的分类:有理数和无理数。
- 实数的比较大小:可以利用实数的性质进行比较。
- 实数的运算:加法、减法、乘法、除法等。
1.2 一元一次方程与不等式- 一元一次方程的概念及解法:转化为标准形式,利用等式性质解方程。
- 一元一次不等式的概念及解法:化简不等式,注意解的范围。
1.3 二次根式与二次方程- 二次根式的定义与性质:化简、合并二次根式。
- 二次方程的概念及解法:使用求根公式或配方法进行求解。
2. 几何与三角(高一上册)2.1 直线与圆的性质- 直线的性质:平行、垂直、夹角、相交等关系。
- 圆的性质:弧、弦、切线、割线等概念。
2.2 平面向量- 平面向量的概念及运算:加法、减法、数量积、向量积。
- 平面向量的基本定理:平行四边形定理、位矢定理等。
2.3 三角函数- 三角函数的定义与性质:正弦、余弦、正切等基本函数的定义与图像。
- 三角函数的基本关系:同角三角函数关系、和角公式等。
3. 解析几何与数列(高一下册)3.1 直线和平面的方程- 直线方程的研究:点斜式、截距式、两点式等。
- 平面方程的研究:法向量法、点法式等。
3.2 空间几何体- 空间几何体的性质:球、圆柱、锥等空间几何体的特点与公式。
- 空间几何体的体积:球体积、圆柱体积、锥体积等计算方法。
3.3 数列与数列的极限- 等差数列与等比数列:定义、公式、性质等。
- 数列极限:收敛与发散的概念及求解方法。
4. 概率与统计(高一下册)4.1 随机事件与概率- 随机事件的概念及性质:样本空间、事件等。
高一数学知识点讲解42讲
高一数学知识点讲解42讲数学是一门非常重要的学科,它在我们的日常生活中起着重要的作用。
作为高中阶段学习的一部分,高一数学知识点涉及的内容十分广泛。
在本文中,我将为大家解析42个高一数学知识点,帮助大家更好地理解和掌握这些知识。
一、代数与函数1. 一次函数:一次函数是指形如y = kx + b的函数,其中k和b 为常数。
它的图像是一条直线,k代表斜率,b代表纵轴截距。
2. 二次函数:二次函数是指形如y = ax^2 + bx + c的函数,其中a、b和c是常数,a不等于0。
它的图像是一个抛物线,开口方向取决于a的正负。
3. 指数函数:指数函数是指形如y = a^x的函数,其中a是一个大于0且不等于1的常数。
它的图像是一条递增或递减的曲线,曲线在x轴上从左向右逼近但永远不会触及。
4. 对数函数:对数函数是指形如y = log_a(x)的函数,其中a是一个大于0且不等于1的常数。
它的图像是一条递减的曲线,曲线在y轴上的值始终为0。
5. 幂函数:幂函数是指形如y = x^a的函数,其中a是一个实数。
它的图像形状取决于a的正负和大小。
二、几何与三角6. 平面几何基本概念:点、线、面、角等几何基本概念是研究平面几何的基础。
7. 直线与线段:直线是由一系列点组成的,它没有长度和宽度;线段是直线上的两个端点及它们之间的部分,具有长度。
8. 角度:角度是由两条射线共享一个公共端点构成的图形。
9. 三角函数:三角函数是指正弦、余弦、正切等与三角比有关的函数。
10. 相似三角形:相似三角形是指有相同的形状但可能不同的大小的三角形。
11. 三角恒等式:三角恒等式是指对于某些特定角度,两个三角函数之间满足的恒等关系。
12. 勾股定理:勾股定理是指直角三角形中,直角边的平方之和等于斜边的平方。
13. 中心与圆:圆是指平面上一组与固定点的距离相等的点的集合,其中的固定点被称为圆心。
三、概率与统计14. 概率基础概念:概率指某件事情发生的可能性。
高一上册数学知识点全面总结及详细解析2024版
高一上册数学知识点全面总结及详细解析2024版引言高一上册数学是高中数学学习的基础阶段,涵盖了代数、几何、函数等多个方面的知识点。
本文将对这些知识点进行详细总结,帮助学生更好地掌握和应用这些知识。
第一章:集合与函数1. 集合的概念集合的定义与表示方法:集合是指某些确定的、不同的对象的全体。
常用大写字母表示集合,小写字母表示集合中的元素。
集合的表示方法有列举法和描述法。
集合的基本运算(并集、交集、补集):并集是指两个集合中所有元素的集合,交集是指两个集合中共有元素的集合,补集是指全集中不属于某集合的元素的集合。
子集与全集:如果集合A的所有元素都是集合B的元素,则A是B的子集。
全集是指包含所有讨论对象的集合。
2. 函数的概念函数的定义与表示方法:函数是指两个集合之间的一种对应关系,其中每个元素在第一个集合中都有唯一的元素与之对应。
常用符号f(x)表示函数。
函数的性质(单调性、奇偶性、周期性):单调性指函数在某区间内是否保持递增或递减,奇偶性指函数是否关于原点对称或关于y轴对称,周期性指函数是否存在一个周期使得函数值重复出现。
反函数与复合函数:反函数是指将原函数的自变量与因变量互换得到的新函数,复合函数是指两个函数的组合。
第二章:基本初等函数1. 一次函数一次函数的定义与图像:一次函数是指形如y=ax+b的函数,其图像是一条直线。
一次函数的性质与应用:一次函数的斜率a决定了直线的倾斜程度,截距b 决定了直线与y轴的交点。
一次函数广泛应用于实际问题的建模与求解。
2. 二次函数二次函数的定义与图像:二次函数是指形如y=ax^2+bx+c的函数,其图像是一条抛物线。
二次函数的性质(顶点、对称轴、开口方向):二次函数的顶点是抛物线的最高或最低点,对称轴是通过顶点的垂直线,开口方向由系数a的正负决定。
二次函数的应用:二次函数在物理、经济等领域有广泛应用,如抛物运动、利润最大化等问题。
3. 指数函数与对数函数指数函数的定义与性质:指数函数是指形如y=a^x的函数,其图像呈指数增长或衰减。
高一数学全部知识点
高一数学全部知识点1.数与式•自然数、整数、有理数、实数、复数的概念和性质•数轴与绝对值•等式、方程、不等式的基本概念•映射、函数及函数表示法2.函数与图像•函数的定义、定义域、值域、图像和性质•常见函数的图像特征:常函数、一次函数、二次函数、绝对值函数、指数函数、对数函数、幂函数、三角函数等•函数的运算和复合3.直线和圆•直线的斜率和方程•直线的相关性质和判定方法:平行、垂直、重合•圆的定义、圆心、半径、圆的方程•直线与圆的位置关系:相切、相离、相交4.三角函数•弧度制与角度制的转换•三角函数的概念和性质:正弦、余弦、正切、余切、割、余割•三角函数的图像、周期性和性质•三角函数的运算:加法、差法、倍角、半角公式5.平面向量•向量的概念、模长和方向角•向量的基本运算:加法、数乘、数量积、向量积•向量的共线和垂直关系•平面向量的应用:向量的投影、向量的夹角、平面向量的推导公式6.数列与数列的极限•数列的概念和性质•等差数列和等比数列:通项公式、前n项和公式•数列的极限概念和性质•常见数列的求和公式:等差数列求和、等比数列求和、等差数列求和公式、等比数列求和公式7.数与函数•幂函数、指数函数和对数函数:定义、图像、性质和运算•二次函数:定义、图像、性质和运算•理解指数函数和对数函数的反函数关系8.三角比与三角函数图像的特征•三角比的概念和性质:正弦、余弦、正切、余切、割、余割•三角函数图像的性质:振幅、周期、相位差、图像的平移和伸缩•三角函数的变换公式:倍角、半角、和差、积化和差9.立体几何基础•空间几何基本概念:点、直线、平面等•空间几何图形的性质和判断方法•立体几何的基本概念:体积、面积、曲面积•平行线与平面的关系:平面的平行、垂直和倾斜关系10.空间向量•空间向量的概念和性质•空间向量的坐标表示法和线性运算•空间向量的数量积和向量积•平面与空间的位置关系:平面与平面的位置关系、直线与平面的位置关系、直线和直线的位置关系11.导数•导数的定义和性质•基本初等函数的导数•导数的运算:和、差、积、商、复合函数和参数函数的导数•导数的应用:函数的凹凸性、函数的最值和曲线的切线方程12.数列的概念和表示方法•数列的概念和性质•数列的递推公式和通项公式•等差数列和等比数列的判定方法和求和公式•数列极限的概念和极限性质13.概率与统计•随机事件的概念和性质•频率与概率的关系•排列与组合的概念和计算方法•统计的基本概念和统计方法以上是高一数学的全部知识点,希望对你的学习有所帮助。
高一数学知识点全解
高一数学知识点全解必修一第一章,集合与函数概念 一,集合1.集合的有关概念:1) 集合的含义:一般的指定的某些对象的全体称为集合(也称为集),集合中的每个对象是集合的一个元素。
2) 集合元素的三个特性:① 元素的确定性 ,如:世界上最高的山② 元素的互异性, 如:由HAPPY 的字母组成的集合{H,A,P,Y ,} ③ 元素的无序性, 如:{A,B,C}和{A,C,B}表示同一个集合 3) 集合的表示方法:① 列举法,将集合中的元素一一列举出来。
如:{我们班的全体学生},{太平洋,大西洋,印度洋,北冰洋}② 描述法,将集合中元素的公共属性描述出来,写在大括号内。
如:{x 23|>-∈x R },{(x,y)|2x+3y=0,x R y R ∈∈,}③ Venn 图,例题:(集合的意义与表示方法)1.一直集合A={33,,222)1(++++a a a a } 若1A ∈,求实数a 的值2.试用列举法和描述法分别表示下列集合① 方程022=-x 所有实根组成的集合 ② 由大于10小于20的整数组成的集合*思考:能否用例举法表示不等式?37<-X作业:基础篇1,基础篇下列集合中,表示方程组的解集的是( )(A ) (B )(C )(D )2,若集合只有一个元素,则实数的值加强篇1,集合A 的元素由0232=+-x kx 的解组成,其中,R k ∈若A 中的元素之多有一个,求k 的 值 2,若,求实数的值。
二,集合间的基本关系 1,“包含”关系--子集注意:A BA AB B A B A B A B ⊄⊆,记作不包含,或者集合不包含于集合反之:集合是同一集合与)的一部分:(是)有两种可能(212“相等”关系:A=B (5》5,且5《5)实例:设 }1,1{},01|{2-==-=B x x A “两个集合表示的元素相通则集合相等”即:① 任何一个集合是它本身的子集② 真子集:如果A B A B ≠⊆,且那就是说集合A 是集合B 的真子集,记作A B(或者B A )③ 如果A B ⊆,C B ⊆,那么C A ⊆ ④ 如果B A A B B A =⊆⊆那么同时 3,不含任何元素的集合叫空集,记作* 有N 个元素的集合,含有个真子集子集,122-N N例题(集合间的基本关系) 1,设,,若,则实数的取值范围是( )(A ) (B ) (C ) (D )2,若集合、、,满足,,则与之间的关系为( )(A ) (B )(C ) (D )作业:基础篇1、图中阴影部分表示的集合是 ( ) A. B C A U I B. B A C U I C. )(B A C UI D. )(B A C UY2、已知集合A={x x ≤2,R x ∈},B={x x ≥a},且B A ⊆,则实数a 的取值范围是( ) (A )a ≥-2 (B )a ≤-2 (C )a ≥2 (D )a ≤23、设全集{}+∈≤=N x x x U ,8|,若{}8,1)(=B C A U I ,{}6,2)(=B A C U I , {}7,4)()(=B C A C U U I ,则 ( )(A ){}{}6,2,8,1==B A (B ){}{}6,5,3,2,8,5,3,1==B A (C ){}{}6,5,3,2,8,1==B A (D ){}{}6,5,2,8,3,1==B A 4、设P=}|),{(},|{22x y y x Q x y x ===,则P 、Q 的关系是 ( ) (A )P ⊆Q(B )P ⊇Q(C )P=Q (D )P ⋂Q=∅加强篇 1,已知集合,,且,求实数的取值范围。
高一数学必修一重点知识归纳总结
高一数学必修一重点知识归纳总结高一数学必修一知识点归纳1一、集合有关概念1.集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2.集合的中元素的三个特性:(1)元素确实定性如:世界上的山;(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y};(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合。
3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5};(2)集合的表示方法:列举法与描绘法。
非负整数集(即自然数集)记作:N;正整数集:N_或N+;整数集:Z;有理数集:Q;实数集:R。
1)列举法:{a,b,c……};3)语言描绘法:例:{不是直角三角形的三角形}。
4、集合的分类:(1)有限集含有有限个元素的集合;(2)无限集含有无限个元素的集合;二、集合间的根本关系1.“包含”关系—子集;注意:有两种可能(1)A是B的一局部,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA。
2.“相等”关系:A=B(5≥5,且5≤5,那么5=5)。
即:①任何一个集合是它本身的子集。
AíA。
②真子集:假如AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)。
③假如AíB,BíC,那么AíC。
④假如AíB同时BíA那么A=B。
3.不含任何元素的集合叫做空集,记为Φ。
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集个数:有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集。
三、集合的运算运算类型交集并集补集;高一数学必修一知识点归纳21、柱、锥、台、球的构造特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
高一数学最全知识点
高一数学最全知识点数学是一门重要的学科,也是高中学习的核心科目之一。
在高一学习数学时,了解和掌握数学的基本知识点是非常重要的。
本文将介绍高一数学的知识点,帮助同学们能够全面了解和掌握这些内容。
1. 代数与函数1.1 集合与命题1.2 集合的运算与关系1.3 代数基本运算1.4 函数的概念与性质1.5 初等函数的图像与性质2. 数列与数列的表示与求和2.1 等差数列2.2 等比数列2.3 递推数列2.4 数列的表示与求和公式3. 直线与圆3.1 点、线、面及其相互位置关系 3.2 直线与平面的交点3.3 圆的概念与性质3.4 直线和圆的位置关系3.5 切线与切点4. 平面向量4.1 向量的概念与表示4.2 向量的线性运算4.3 向量的数量积与投影4.4 平面向量的模与方向角5. 三角函数5.1 角度的概念与度量5.2 三角函数的基本关系5.3 三角函数的周期性与奇偶性5.4 三角函数的图像与性质5.5 三角函数的运算公式6. 几何证明6.1 基本的几何公理和定理6.2 图形的性质与判定6.3 几何证明的方法与技巧6.4 平行线与三角形的性质6.5 圆的性质与判定7. 数学推理与证明7.1 命题、命题联结词与命题的等价关系 7.2 数学命题的证明方法7.3 数学归纳法的应用7.4 数学定理的应用与扩展7.5 近似计算与数值求解8. 三角恒等式与二次函数8.1 三角恒等式的基本知识8.2 三角恒等式的证明与应用8.3 二次函数的概念与性质8.4 二次函数的图像与方程9. 平面几何与空间几何9.1 平面几何中的相关概念与性质 9.2 平面解析几何与应用9.3 空间几何中的相关概念与性质 9.4 空间解析几何与应用10. 数学建模与应用10.1 数学模型的建立与求解10.2 应用题解决的思路与方法10.3 实际问题的数学描述与分析10.4 数学在科学和工程中的应用以上是高一数学的最全知识点,希望同学们能够认真学习和掌握这些内容,为日后的学习打下坚实的数学基础。
高一数学全套知识点汇总
高一数学全套知识点汇总在高一数学学习中,对于知识点的全面掌握是非常重要的。
本文将对高一数学的全套知识点进行汇总,以帮助同学们更好地学习和理解数学知识。
1. 数与式1.1 自然数、整数、有理数、实数、复数的概念及性质1.2 整式与有理式的基本概念与运算1.3 多项式及其运算2. 一元一次方程与不等式2.1 一元一次方程的基本概念与解法2.2 一元一次不等式的基本概念与解法2.3 一元一次方程与不等式的应用3. 平面几何3.1 平面几何基本概念:点、线、面、角3.2 平面几何中的基本性质与判定方法3.3 平面图形的性质与计算4. 几何变换4.1 平移、旋转、对称的基本概念与性质4.2 图形的变换与应用5. 相似与全等5.1 相似与全等概念的引入与性质分析5.2 相似三角形的判定与性质5.3 全等三角形的判定与性质6. 三角函数6.1 三角函数的引入与应用6.2 三角函数的基本性质与图像6.3 三角函数的运算与应用7. 数据与统计7.1 数据的收集与整理7.2 统计图的制作与分析7.3 概率的基本概念与计算8. 几何证明8.1 几何证明方法的基本概念与应用8.2 直线与角的证明8.3 三角形性质的证明9. 四边形与多边形9.1 四边形的性质与分类9.2 多边形的性质与分类9.3 多边形面积的计算与应用10. 导数与微分10.1 导数的定义与计算10.2 导数与曲线的性质10.3 微分的概念与应用通过对以上知识点的全面掌握与理解,同学们可以在高一数学学习中更好地应对各类题型与考试。
同时,需要注意数学学习的方法与技巧,灵活运用不同的解题思路与方法,培养数学思维的发展。
总结:高一数学的知识点汇总涵盖了数与式、一元一次方程与不等式、平面几何、几何变换、相似与全等、三角函数、数据与统计、几何证明、四边形与多边形、导数与微分等内容。
同学们在学习过程中应注重理论与实践相结合,注重思维能力和解题技巧的培养,既要掌握知识点的概念与性质,又需要能够熟练运用于实际问题的解决中。
高一数学知识点归纳
高一数学知识点归纳一、集合与函数的概念1. 集合的基本概念- 集合的定义- 集合的表示方法:列举法、描述法- 集合之间的关系:子集、并集、交集、补集2. 函数的定义与性质- 函数的定义:从集合A到集合B的映射- 函数的表示方法:公式法、图像法、表格法 - 函数的基本概念:定义域、值域、映射规则3. 函数的运算- 函数的加法、减法、乘法、除法- 复合函数- 反函数4. 常见函数类型- 一次函数、二次函数- 指数函数、对数函数- 三角函数:正弦、余弦、正切二、数列1. 数列的概念- 数列的定义- 数列的表示方法:递推关系、通项公式2. 等差数列与等比数列- 等差数列的通项公式、求和公式- 等比数列的通项公式、求和公式3. 数列的性质与应用- 数列的极限- 数列的单调性- 数列的应用题三、解析几何1. 平面直角坐标系- 点的坐标- 距离公式、中点公式- 直线的方程:点斜式、两点式、一般式2. 圆的方程- 标准圆的方程- 圆的一般方程- 圆与直线、圆与圆的位置关系3. 空间几何- 空间直角坐标系- 空间直线与平面的方程- 空间几何体的体积与表面积四、三角函数1. 三角函数的定义- 正弦、余弦、正切函数的定义- 三角函数的图像与性质2. 三角恒等变换- 同角三角函数的关系- 三角函数的和差公式- 二倍角公式、半角公式3. 解三角形- 正弦定理、余弦定理- 三角形的面积公式五、概率与统计1. 概率的基本概念- 随机事件与概率的定义- 事件的关系与运算:并、交、补2. 概率的计算- 条件概率、独立事件的概率- 全概率公式、贝叶斯公式3. 统计初步- 数据的收集与整理:频数、频率- 统计量:平均数、中位数、众数- 方差、标准差的概念与计算六、数学归纳法1. 数学归纳法的原理- 归纳法的基本步骤:奠基步骤、归纳步骤 - 归纳法的应用2. 证明方法- 直接证明- 反证法以上是高一数学的主要知识点归纳,每个部分都需要通过大量的练习题来加深理解和应用。
高一数学知识点大全集
高一数学知识点大全集高一是学生们进入高中的第一年,也是数学学科中扎实基础知识的学习年份。
在这一年里,学生们将会接触到许多重要的数学知识点。
本篇文章将为大家整理高一数学知识点的大全集,帮助大家更好地准备和复习数学课程。
1. 代数运算1.1. 四则运算:加法、减法、乘法、除法1.2. 指数与根:乘方、开方、科学计数法1.3. 数列与数列运算:等差数列、等比数列、递归公式1.4. 多项式运算:多项式加减、乘法公式、整式除法2. 几何基础2.1. 几何图形:点、线、面、体2.2. 直线与角:直线的性质、平行线与垂直线、角的性质、角平分线2.3. 三角形:三角形的分类、三角形的性质、三角形的相似与全等2.4. 四边形:正方形、长方形、平行四边形、梯形、菱形2.5. 圆与圆的性质:圆的元素、圆的弧长、面积、扇形、切线、切圆问题3. 函数3.1. 函数的概念与性质:自变量与因变量、定义域与值域、奇偶性、周期性3.2. 一次函数:函数图像、求解一次方程与不等式、一次函数的斜率3.3. 二次函数:函数图像、求解二次方程与不等式、二次函数的顶点及其性质、最值问题3.4. 指数函数与对数函数:指数函数的性质、指数方程及不等式的解、对数函数的性质、换底公式4. 三角函数4.1. 三角比的概念与性质:正弦、余弦、正切、余切4.2. 三角函数的图像与性质:周期性、对称性、增减性4.3. 三角函数的运算:和差化积、积化和差、辅助角公式4.4. 三角恒等式与解三角方程:和差化积恒等式、积化和差恒等式、解三角方程5. 统计与概率5.1. 数据的收集与整理:数据的调查方法、数据的图表表示5.2. 数据的分析与解读:中心位置的测度、离散程度的测度、数据的解读与应用5.3. 概率的概念与性质:样本空间与事件、概率与它的性质5.4. 概率的计算与应用:古典概型、条件概率、排列组合6. 数学证明6.1. 数学归纳法:基本思想、结构与步骤6.2. 数学证明的基础:逻辑与推理、等价命题、逆否命题、充分必要条件6.3. 平面几何证明:点、线、角的结构与性质的证明6.4. 三角函数的证明:三角函数的恒等式证明、三角方程的证明以上是高一数学的主要知识点大全集。
高一数学必修一全册知识点(定义公式定理)
高一数学必修一全册知识点(定义、公式、定理)第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
◆注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A与B是同注意:B一集合。
⊆/B反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊇/A或B2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A A②真子集:如果A B,且A B那就说集合A是集合B的真子集,记作A B(或B A)③如果 A B, B C ,那么 A C④如果A B 同时 B A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
◆有n个元素的集合,含有2n个子集,2n-1个真子集运算类型交 集 并 集 补 集 定 义由所有属于A 且属于B 的元素所组成的集合,叫做A,B 的交集.记作A B (读作‘A 交B ’),即A B={x|x ∈A ,且x ∈B }. 由所有属于集合A 或属于集合B 的元素所组成的集合,叫做A,B 的并集.记作:A B (读作‘A 并B ’),即A B ={x|x ∈A ,或x ∈B}).设S 是一个集合,A 是S 的一个子集,由S 中所有不属于A 的元素组成的集合,叫做S 中子集A 的补集(或余集) 记作A C S ,即 C S A=},|{A x S x x ∉∈且韦 恩 图 示A B图1AB图2性质 A A=A A Φ=Φ A B=B A A B ⊆A A B ⊆B A A=A A Φ=A A B=B A A B ⊇A A B ⊇B(C u A) (C u B)= C u (A B) (C u A) (C u B)= C u (A B) A (C u A)=U A (C u A)= Φ.例题:1.下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数2.集合{a ,b ,c }的真子集共有 个3.若集合M={y|y=x 2-2x+1,x ∈R},N={x|x ≥0},则M 与N 的关系是 .4.设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人。
(完整版)高一数学知识点汇总讲解大全
高中数学知识点汇总(高一)高中数学知识点汇总(高一) (1)一、集合和命题 (2)二、不等式 (4)三、函数的基本性质 (6)四、幂函数、指数函数和对数函数 (12)(一)幂函数 (12)(二)指数& 指数函数 (13)(三)反函数的概念及其性质 (14)(四)对数& 对数函数 (15)五、三角比 (17)六、三角函数 (24)一、集合和命题一、集合:(1)集合的元素的性质:确定性、互异性和无序性;(2)元素与集合的关系:① a A a 属于集合 A ;② a A a 不属于集合 A .(3)常用的数集:N 自然数集;N *正整数集;Z 整数集;Q 有理数集;R 实数集;空集;C 复数集;Z 正整数集Q;Z 负整数集Q 正有理数集R;负有理数集R正实数集.负实数集(4)集合的表示方法:有限集集合无限集列举法;描述法例如:①列举法:{ z, h, a, n, g }(5)集合之间的关系:;②描述法:{ x x 1} .①A B 集合A 是集合B 的子集;特别地, A A ;A BA C .B CA B② A B 或A B集合 A 与集合 B 相等;③ A B 集合A 是集合B 的真子集.例:N Z Q R C ;N Z Q R C .④空集是任何集合的子集,是任何非空集合的真子集.(6)集合的运算:①交集:A B { x x A且x B} 集合A 与集合B 的交集;②并集:A B { x x A或x B} 集合A 与集合B 的并集;③补集:设U 为全集,集合 A 是U 的子集,则由U 中所有不属于 A 的元素组成的集合,叫做集合 A 在全集U 中的补集,记作CUA .④得摩根定律:CU( A I B )C U A U C U B ;C U ( A U B) C U A I C U B(7)集合的子集个数:若集合 A 有 n(n N *) 个元素,那么该集合有 2n个子集; 2n1个真子集; 2n1个非空子集;2n2 个非空真子集.二、四种命题的形式:(1)命题:能判断真假的语句.(2)四种命题:如果用 和 分别表示原命题的条件和结论,用 和 分别表示 和 的否定,那么四种命题形式就是:逆否命题关系同真同假关系 原命题逆否命题逆命题否命题(3)充分条件,必要条件,充要条件:①若,那么 叫做 的充分条件, 叫做 的必要条件;②若且,即,那么 既是 的充分条件,又是的必要条件,也就是说, 是 的充分必要条件,简称充要条件.③欲证明条件是结论 的充分必要条件,可分两步来证:第一步:证明充分性:条件 结论 ; 第二步:证明必要性:结论条件 .(4)子集与推出关系:设 A 、 B 是非空集合, A{ x x 具有性质} , B{ y y 具有性质 } ,则 A B 与等价.结论:小范围 大范围;例如:小明是上海人小明是中国人.小范围是大范围的充分非必要条件; 大范围是小范围的必要非充分条件.命题原命题逆命题否命题逆否命题表示形式 若 ,则若 ,则 ; 若 ,则 ; 若 ,则 . 逆命题关系 原命题 逆命题逆否命题 否命题 否命题关系 原命题 否命题 逆否命题 逆命题1 2 0 0 1 2 二、不等式一、不等式的性质:1、a b,b ca c ; 2、ab ac b c ;不等式的性质3、a b,c 0ac bc ;4、a b, c d a c b d ;5、a b 0, c d 0ac bd ;6、 a b 01 1 ;ab7、a b 0二、一元一次不等式:anb n(n N *) ;8、a b 0 nanb (n N *,n 1) .一元一次不等式 ax b a 0a 0解集xb xb aaa 0b 0b 0R三、一元二次不等式:ax 2bx c0(a 0)△ b24ac 0△ b24 a c 0△ b 24ac 0的根的判别式y ax2bx c(a 0)ax 2bx c 0(a 0){ x 1 , x 2} ,x 1 x 2{ x 0 }ax 2bx c 0(a 0) ( , x ) U (x , ) ( , x ) (x , )Rax 2bx c 0(a 0) ( x 1 , x 2 )ax 2bx c 0(a 0)( , x ] U [ x , )RR2axbx c 0(a 0)[ x 1 , x 2 ]{ x 0 }四、含有绝对值不等式的性质:(1) a ba b a b ;(2) a 1 a 2 a n a 1 a 2 a n .五、分式不等式:(1) ax b 0 cx d(ax b)(cx d) 0 ;( 2) ax b 0cx d(ax b )(cx d ) 0 .六、含绝对值的不等式:x aa 0a 0x aa 0 a 0 x aa 0 a 0 a 0 x aa 0 a 0 a 0a x ax a 或xaRa x ax 0x a 或xaR七、指数不等式:(1) af ( x )a( x)(a 1) f ( x)( x) ; ( 2) af ( x)a( x )(0a 1) f ( x)( x) .八、对数不等式:(x) 0 (1) log a f (x)log a ( x)(a 1)f (x);( x)(2) log af (x) log a ( x)(0 a 1)f (x) f (x)0 . ( x)九、不等式的证明:(1)常用的基本不等式:① a2b 22ab( a 、b R ,当且仅当 a b 时取“ ”号) ;②a b 2ab (a 、 b Ra2b2,当且仅当 aa b b 时取“ ”号) ;2 补充公式: 2ab.21 1 a b③ a3b3c3 3abc (a 、b 、c R ,当且仅当 a b c 时取“ ”号 ) ;④ a b c3 3abc (a 、b 、c R ,当且仅当 a b c 时取“ ”号 ) ; ⑤a 1 a 2n a nna 1 a 2a n (n 为大于 1 的自然数, a 1 , a 2 , , a nR ,当且仅当a 1a 2a n 时取“ ”号) ;(2)证明不等式的常用方法:①比较法; ②分析法;③综合法.0 三、函数的基本性质一、函数的概念:(1)若自变量对应法则x 因变量y ,则y 就是x 的函数,记作y f (x), x D ;x 的取值范围 D 函数的定义域;y 的取值范围函数的值域.求定义域一般需要注意:①y1,f ( x)f ( x) 0 ;②y n f (x) , f ( x) 0 ;③y ( f ( x)) , f ( x) 0 ;④y logaf ( x) ,f ( x) 0 ;⑤y log f ( x ) N , f ( x) 0 且f ( x) 1 .(2)判断是否函数图像的方法:任取平行于y 轴的直线,与图像最多只有一个公共点;(3)判断两个函数是否同一个函数的方法:①定义域是否相同;②对应法则是否相同.二、函数的基本性质:(1)奇偶性:函数y f (x), x D“定义域D 关于0 对称”成立①“定义域 D 关于0 对称”;前提条件 f ( x) f ( x) f ( x) f ( x)②“ f(x) f ( x) ”;③“f (x) f ( x) ”成立成立①不成立或者①成立②、③都不成立奇偶性偶函数奇函数奇偶函数图像性质关于y 轴对称关于O(0,0) 对称非奇非偶函数注意:定义域包括0 的奇函数必过原点(2)单调性和最值:O(0,0) .前提条件y f ( x), x D ,I D ,任取x1, x2区间I单调增函数x1 x2或x1 x2f (x1 ) f (x2 ) f ( x1 ) f ( x2 )单调减函数x1 x2或x1 x2f (x1 ) f ( x2 ) f ( x1 ) f (x2 )最小值yminf ( x0 ) 任取x D ,存在x0 D , f (x) f (x0 )最大值ymax f ( x) 任取x D ,存在x0 D , f (x) f ( x) f注意:①复合函数的单调性:函数外函数 yf (x)内函数复合函数 y g (x)yf [g (x)]②如果函数 yf ( x) 在某个区间 I 上是增(减)函数,那么函数 y f (x) 在区间 I 上是单调函数,区间 I 叫做函数 yf ( x) 的单调区间 .(3)零点:若 yf ( x), x D , c D 且 f ( c) 0 ,则 x c 叫做函数 y f (x) 的零点.y零点定理 :f ( x ), x [a,b]存在x 0(a,b);特别地, 当yf ( x), x [ a, b] 是单调函数 ,f (a) f (b) 0 f (x 0 ) 0且 f (a ) f (b) 0 ,则该函数在区间 [a ,b] 上有且仅有 一个零点, 即存在 唯一 x 0 (a,b) ,使得 f (x 0 ) 0 .(4)平移的规律:“左加右减,下加上减” .函数 向左平移 k 向右平移 k向上平移 h向下平移 h备注yf ( x) y f (x k ) y f ( x k)y hf ( x)y hf ( x)k, h 0(5)对称性:①轴对称的两个函数:函数yf ( x)对称轴x 轴 y 轴y xyxx m y n函数yf ( x)yf ( x)xf ( y)xf ( y)yf (2 m x)2n yf (x)②中心对称的两个函数:函数 对称中心函数yf ( x) ( m, n)2n yf ( 2m x)③轴对称的函数:函数y f (x)对称轴y 轴x m条件f (x)f ( x)f ( x)f (2 m x)单调性ZZ Z]]Z ]] Z]]Z注意: f (a x)f (b x) f (x) 关于 xa b 对称;2f (a x)f (a x)f (x) 关于 x a 对称;f (x)f ( x)f (x) 关于 x 0 对称,即 f (x) 是偶函数.④中心对称的函数:函数对称中心yf (x)(m, n)条件f ( x) 2n f (2 m x)注意: f (a x) f (b x) cf (x) 关于点 ( a b , c) 对称;2 2 f (a x) f (b x) 0a bf (x) 关于点 ( ,0) 2 对称;f (a x)f (a x) 2bf ( x) 关于点 (a, b) 对称;f (x) f ( x) 0f (x) 关于点 (0,0) 对称,即 f (x) 是奇函数.(6)凹凸性:设函数 yf ( x), x D ,如果对任意 x , xD ,且 xx ,都有 f x 1 x 2 f ( x 1 ) f ( x 2 ),则称121222函数 yf ( x) 在 D 上是凹函数;例如: y x 2 .进一步,如果对任意x , x ,L xD ,都有 fx 1x 2 L x n f ( x 1 ) f ( x 2 ) L f (x n ) ,则称函1 2 nnn数 yf ( x) 在 D 上是凹函数;该不等式也称琴生不等式或詹森不等式;设函数 yf ( x), x D ,如果对任意 x , xD ,且 xx ,都有 f x 1 x 2 f ( x 1 ) f ( x 2 ),则称121222函数 yf ( x) 在 D 上是凸函数.例如: y lg x .进一步,如果对任意x , x ,L xD ,都有 fx 1x 2 L x n f ( x 1 ) f ( x 2 ) L f (x n ) ,则称函1 2 nnn数 y f ( x) 在 D 上是凸函数;该不等式也称琴生不等式或詹森不等式.(7)翻折:函数翻折后翻折过程y f ( x ) 将y f ( x) 在y 轴右边的图像不变,并将其翻折到y 轴左边,并覆盖.y f ( x) 将y f ( x) 在x 轴上边的图像不变,并将其翻折到x 轴下边,并覆盖.y f (x) y f ( x ) 第一步:将y f ( x) 在y 轴右边的图像不变,并将其翻折到左边,并覆盖;第二步:将x 轴上边的图像不变,并将其翻折到x 轴下边,并覆盖.y f (x) (8)周期性:将y f ( x) 在x 轴上边的图像保持不变,并将x 轴下边的图像翻折到x 轴上边,不覆盖.若y f ( x), x R ,T 0,任取x R ,恒有 f ( x T ) f ( x) ,则称T 为这个函数的周期.注意:若T 是y f ( x) 的周期,那么kT (k Z ,k 0) 也是这个函数的周期;周期函数的周期有无穷多个,但不一定有最小正周期.① f ( x a) f ( x b) ,a b f ( x) 是周期函数,且其中一个周期T a b ;(阴影部分下略)② f (x) f ( x p) ,p 0 T 2 p ;③ f (x a) f ( x b ),a b T 2 a b ;④ f (x) 1 或f (x p )f ( x)1,p 0f ( x p )T 2 p ;⑤ f (x) 1 f ( x p)或f ( x) f (x p) 1,p 0T 2 p ;11 ⑥ f (x) f ( x p )f ( x p )或f ( x)f (x p) 1f (x p) 1,p 0T 4 p ;1 f ( x p) f (x p) 1⑦ f (x) 关于直线x a ,x b ,a b 都对称T 2 a b ;⑧ f (x) 关于两点( a, c) ,(b, c) ,a b 都成中心对称T 2 a b ;⑨ f (x) 关于点(a, c) ,a 0 成中心对称,且关于直线x b ,a b 对称T 4 a b ;⑩若 f ( x) f (x a ) f ( x 2a) L f (x na ) m(m 为常数,n N *),则f ( x) 是以(n 1)a 为周期的周期函数;若 f ( x) f (x a) f ( x 2a )L f ( x na ) m (m 为常数,n 为正偶数),则 f ( x) 是以2( n 1)a 为周期的周期函数.三、V 函数:定义形如y a x m h(a 0) 的函数,称作V 函数.分类y a x m h, a 0 y a x m h, a 0 图像定义域R值域[ h, ) ( , h]对称轴x m开口向上向下顶点( m, h)在( , m] 上单调递减;在( , m] 上单调递增;单调性在[ m, ) 上单调递增.在[ m, ) 上单调递减.注意当m 0时,该函数为偶函数四、分式函数: 定义 形如 y xa (a x0) 的函数,称作 分式函数 .分类y x a ,ax0 (耐克函数 )y x a, a 0x图像定义域(,0) U (0, )值域(, 2 a ] U [2 a,)R渐近线x 0, y x单调性在 ( , a ] , [ a , ) 上单调递增;在( ,0) , (0,) 上单调递增;在[a ,0) , (0, a ] 上单调递减.五、曼哈顿距离:在平面上, M ( x 1, y 1 ) , N ( x 2 , y 2 ) ,则称 dx 1 x 2y 1 y 2 为 MN 的曼哈顿距离.六、某类带有绝对值的函数:1、对于函数 yx m ,在 x m 时取最小值;2、对于函数 y x mx n , m n ,在 x [ m , n] 时取最小值;3、对于函数 y x mx n x p , m n p ,在 x n 时取最小值;4、对于函数 y x mx n x px q , m n p q ,在 x [ n, p ] 时取最小值;x 2n , x 1x 2 L x 2n ,在 x [ x n , x n 1 ] 时取最小值;x 2n 1 ,x 1 x 2 Lx 2 n 1 ,在 x x n 时取最小值.思考:对于函数 y x 1 2 x 3 x 2 ,在 x时取最小值.5、推广到 y x x 1x x 2 L x y x x 1x x 2Lx四、幂函数、指数函数和对数函数(一)幂函数(1)幂函数的定义:形如y x a (a R) 的函数称作幂函数,定义域因 a 而异.(2)当a 0,1 时,幂函数y x a (a R) 在区间[ 0, ) 上的图像分三类,如图所示.(3)作幂函数y x a ( a0,1) 的草图,可分两步:①根据a 的大小,作出该函数在区间[ 0, ) 上的图像;②根据该函数的定义域及其奇偶性,补全该函数在( ,0] 上的图像.(4)判断幂函数y x a (a R) 的a 的大小比较:方法一:y x a ( a R) 与直线x m(m 1) 的交点越靠上, a 越大;方法二:y x a ( a R) 与直线x m(0 m 1) 的交点越靠下, a 越大(5)关于形如y ax b(ccx d0) 的变形幂函数的作图:①作渐近线(用虚线):x d、ya;c c②选取特殊点:任取该函数图像上一点,建议取(0, b ) ;d③画出大致图像:结合渐近线和特殊点,判断图像的方位(右上左下、左上右下).x x xx xxy(二)指数 & 指数函数1、指数运算法则:①a a yax y;② (a )a ;③ (a b)xxa xa b ;④ ( )a xx ,其中( a, b 0, x 、y R) .2、指数函数图像及其性质:/yxa (a 1)bbxy a (0a 1)图像定义域R值域(0,)奇偶性 非奇非偶函数渐近线x 轴单调性在( ,) 上单调递增;在(,) 上单调递减;①指数函数 ya x的函数值恒大于零;②指数函数 y性质a 的图像经过点 (0,1) ;③当 x 0 时, y 1;③当 x 0时, 0 y 1;当 x 0 时, 0y 1 .当 x 0时, y 1 .3、判断指数函数 y a 中参数 a 的大小:方法一: y a 与直线x m(m 0) 的交点越靠上, a 越大;方法二: y a x与直线 x m(m 0) 的交点越靠下, a 越大.yx11 1(三)反函数的概念及其性质1、反函数的概念:对于函数y f (x) ,设它的定义域为 D ,值域为 A ,如果对于 A 中任意一个值y ,在D 中总有唯一确定的x 值与它对应,且满足y f ( x) ,这样得到的x 关于y 的函数叫做y f ( x) 的反函数,记作x f ( y) .在习惯上,自变量常用x 表示,而函数用y 表示,所以把它改写为y f ( x)( x A) .2、求反函数的步骤:(“解”“换”“求”)①将y f ( x) 看作方程,解出x f ( y) ;②将x 、y 互换,得到y f 1( x) ;③标出反函数的定义域(原函数的值域).3、反函数的条件:定义域与值域中的元素一一对应.4、反函数的性质:①原函数y f ( x) 过点(m, n) ,则反函数y f 1 ( x) 过点(n, m) ;②原函数y f ( x) 与反函数y f (x) 关于y x 对称,且单调性相同;③奇函数的反函数必为奇函数.5、原函数与反函数的关系:/ 函数y f (x) y f 1 ( x)定义域 D A值域 A D(四)对数 & 对数函数1、指数与对数的关系:ab NabNlog a Nb指数幂 底数对数真数2、对数的运算法则:① log a 1 0 , log a a 1 , a loga NN ;②常用对数 lg Nlog 10 N ,自然对数 ln Nlog e N ;③ log a (MN ) log a Mlog a M N ,log a Nlog a M log a N , log a Mn log a M ;④ log Nlog aN,log b1 m, log nbm log b , log c bloglog bb ,a Nlog abN.blog a blog b aana3、对数函数图像及其性质:/y log a x(a 1) y log a x(0 a 1)图像定义域(0, )值域 R 奇偶性非奇非偶函数渐近线y 轴单调性在(0, ) 上单调递增;在(0, ) 上单调递减;①对数函数 y log a x 的图像在 y 轴的右方;②对数函数 y 性质log a x 的图像经过点 (1,0) ;③当 x 1时, y 0 ;③当 x 1时, y 0 ;当 0 x 1 时, y 0 .当 0 x 1 时, y 0 .a a a cn4、判断对数函数y logx, x 0 中参数a 的大小:a方法一:y logx, x 0 与直线y m( m 0) 的交点越靠右,a 越大;a方法二:y logx, x 0 与直线y m(m 0) 的交点越靠左,a 越大.a五、三角比1、角的定义:(1)终边相同的角:①与2k , k Z 表示终边相同的角度;②终边相同的角不一定相等,但相等的角终边一定相同;③与k , k Z 表示终边共线的角(同向或反向).(2)特殊位置的角的集合的表示:位置角的集合在x 轴正半轴上{ 2k, k Z}在x 轴负半轴上{ 2k, k Z}在x 轴上{k , k Z} 在y 轴正半轴上{ 2k , k Z }2在y 轴负半轴上{ 2k 3,k Z } 2在y 轴上{k , k Z }2在坐标轴上{k , k Z }2在第一象限内{ 2k 2 k, k Z }2在第二象限内{ 2k22k , k Z }在第三象限内{ 2k 2k 32, k Z }在第四象限内{ 2k 322k 2 ,k Z }(3)弧度制与角度制互化:180①rad 180 ;②1rad ;③1180rad .(4)扇形有关公式:①l;r②弧长公式:l r ;③扇形面积公式:S 1 lr 1r 2(想象三角形面积公式).2 2 (5)集合中常见角的合并:x 2k x 2kx 2k x 2k x 2kx kxk2x k2224x kxk, k Z4x 2k x 2k 5 44xk3 2 4x 2k4x k4 4(6)三角比公式及其在各象限的正负情况:以角的顶点为坐标原点,始边为x 轴的正半轴建立直角坐标系,在的终边上任取一个异于原点的点P( x, y) ,点P 到原点的距离记为r ,则( 7)特殊角的三角比:角度制弧度制0 sin1 2270360 3 222 3 1 0 1 022cos13 2 2 1 0 1 0 122tan3 13无 0 无 03( 8)一些重要的结论: (注意,如果没有特别指明, k 的取值范围是 k Z )①角 和角 的终边:角 和角 的终边关于 x 轴对称关于 y 轴对称关于原点对称sin sin cos cos tantansin sin cos cos tantansin sin cos cos tantan② 的终边与的终边的关系. 2的终边在第一象限 (2k,2 k ) 2(k , k) ; 2 4 的终边在第二象限 (2 k ,2 k 2 ) (k 2, k ) ; 4 2 的终边在第三象限 (2k ,2 k 3 )( k, k 3) ; 2 22 4的终边在第四象限 (2k3 ,2 k2 )(k 3 , k ) .③ sin 与 cos 的大小关系: 32, 2 k 24 0 ); 4 4,2 k50 ); 4 4 ,2k 5 0 ). 44 304560901806432sin cos (2 k sin cos (2 k sin cos{2 k) 的终边在直线 y x 右边( x y )} 的终边在直线的终边在直线 y y x 左边(x 上( x xy y④sin 与cos 的大小关系:, k ) 4 4x y的终边在x y0 x y 0或;0 x y 0, k 3)x y的终边在0 x y 0或;4 4 x y 0 x y 0, k 3} ,k Z 的终边在y x .4 42、三角比公式:(1)诱导公式:(诱导公式口诀:奇变偶不变,符号看象限)第一组诱导公式:第二组诱导公式:第三组诱导公式:(周期性)(奇偶性)(中心对称性)sin( 2k) sin sin( ) sin sin( ) sincos(2 k) cos cos( ) cos cos( ) costan(2k ) tan tan( ) tan tan( ) tancot( 2k) cot cot( ) cot cot( ) cot第四组诱导公式:(轴对称)第五组诱导公式:(互余性)第六组诱导公式:sin( ) sin sin(2) cos sin(2) coscos( tan( cot( ) cos) tan) cotcos(2tan(2cot(2) sin) cot) tancos( )2tan( )2cot( )2sincottan(2)同角三角比的关系:倒数关系:商数关系:平方关系:sin csc 1 tan sin (cos 0) sin 2cos 2 1cos tan sec 1cot 1 cotcoscossin(sin 0)21 tan21 cot2sec2csc(3)两角和差的正弦公式:sin( ) sin cos cos sin ;两角和差的余弦公式:两角和差的正切公式:cos(tan() cos cos)tan tansin.sin ;1 tan tansin cos (k sin cos (k sin cos { k( 4)二倍角的正弦公式: sin 22 sin cos ;二倍角的余弦公式:二倍角的正切公式: cos 2tan 2cos 22 tansin2;1 2 sin22 cos21 ;1 tan 2降次公式:万能置换公式:1 cos 2sin 2sin221 cos22 2 1 cos 2cos 21 cos2 2sin 22 tan 1 tan 21 tan2 cos2 2;1 sinsincos cos 2 1 tan 2 tan21 cos2 1 cos22 221 sin sin cos2 2tan 22 tan 1 tan 2sin1 cos半角公式: tan ;2 1 cos( 5)辅助角公式:①版本一:sinsinb a 2b 2a sinb cos②版本二: a2b2sin( ) ,其中 0 2 ,cos. a a2b2a sinbcosa2b 2sin() ,其中 a, b 0,0, tan b .2a3、正余弦函数的五点法作图:以 y sin( x) 为例,令 x依次为 0, , , 3, 2 2 2,求出对应的 x 与 y 值,描点 ( x, y) 作图.4、正弦定理和余弦定理:( 1)正弦定理: a sin A b sin B csin C2R(R 为外接圆半径 ) ;其中常见的结论有: ① a 2Rsin A , b 2Rsin B , c 2Rsin C ;② sin A a , sin B2Rb , sin Cc ; 2R 2R ③ sin A : sin B : sin C a : b : c ;aRsin B sin C④S △ ABC 2R 2sin A sin B sin C ; S △ ABCbR sin A sin C ; S △ ABC abc .4 R cRsin A sin B( 2)余弦定理:版本一:a2b 2c 2 b2 a 2c2 c2a2b22bc cosA 2accosB 2abcosC;版本二:cos AcosB cosCb2c2a22bca 2c 2b ;2ac b2a 2 c 2 2ab( 3)任意三角形射影定理(第一余弦定理) :5、与三角形有关的三角比:( 1)三角形的面积:a b c os C c cos B b c cos A a cos C . ca cos Bb cos A① S △ ABC② S △ ABC 1dh ; 2 1 absin C 1 bcsin A1ac sin B ;2 2 2③ S △ ABCl l al b l c , l 为 △ABC 的周长. 2 2 2 2( 2)在 △ABC 中,① a b A B sin A sin B cos A cosB cot A cot B ;②若 △ ABC 是锐角三角形,则 sin A cosB ;sin( A B ) sin C cos( A B ) cos C tan( A B ) tan C ③ sin( B C ) sin A ; cos(B C ) cos A ; tan( B C )tan A ;sin( A C ) sin Bcos( A C )cos Btan( A C )tan Bsin A cos B C tan A cot B C22 2 2 ④ sinBcos A C ; tan B cot A C; 2 2 2 2 sinC cos A B tan C cot A B22 2 2sin Acos Bsin Bcos A sin C cos A⑤ 2 2 ;sin A cos C2 2 ; sin B cos C 2 2 ; sin C cos B 2 2 2 2 2 2sin A sin B cos A cos B2 2 2 2 sin A sin C cos A cosC sin A sin B sinCcos A cos B cos C;2 2 2 2 2 2 2 2 2 2sin B sin C cos B cos C2 2 2 22( ] sin A sin B sin C 4cos A cos B cosC2 2 2⑥ cos A cosB cosC 1 4sin A sin B sin C;2 2 2 sin A sin B sin C 4sin A sin B cosC2 2 2sin 2A sin 2B sin 2C 4sin Asin B sin C ; cos2A cos2B cos2C4cos A cosB cosC 1sin A ⑦cos A sin B cosBsin C cosC(0,3 3 ] 2 ; 3(1, 2sin Asin B sin C sin Asin B sin C cos A cosB cosC (0,3 3] 8 cosA cosB cosC . 1 1, 8其中,第一组可以利用琴生不等式来证明;第二组可以结合第一组及基本不等式证明.( 3)在 △ABC 中,角 A 、 B 、 C 成等差数列 B.3( 4) △ABC 的内切圆半径为 r6、仰角、俯角、方位角:略2S .a b c7、和差化积与积化和差公式(理科) :( 1)积化和差公式: sin coscos sincos cossin sin1[sin( ) sin( )] 2 1[sin( ) sin( )] 2 ; 1[cos( ) cos( )] 2 1[cos( ) cos()]2( 2)和差化积公式: sin sin 2sinsinsin 2coscoscos 2coscoscos2sincos 22 sin2 2.cos 2 2 sin22]六、三角函数1、正弦函数、余弦函数和正切函数的性质、图像:y sin xy cosxy tan x定 义 RR域{ x x k, k Z}2值 [ 1,1]域 奇 [ 1,1]R偶 奇函数偶函数奇函数性 周期 性 最小正周期 T 2最小正周期 T 2 最小正周期 T[2 k 单 ,2 k 2 ] Z ; 2 [2 k, 2k ] Z ;(k, k ) Z 调 [2 k,2 k 3] ] . [2 k , 2 k] ] .22性22( k Z )( k Z )( k Z )当 x 2k最时, y min 1 ; 2当 x 2k时, y min1 ;无值 当 x 2k时, y 2max1;当 x 2k 时, y max 1 ;图像例 1:求函数 y 5sin(2 x) 的周期、单调区间和最值. (当 x 的系数为负数时,单调性相反) 3解析:周期 T22,由函数 y sin x 的递增区间 [2 k , 2 k 22] ,可得2k2x2k ,即 k5 x k , 232 1212 5 于是,函数 y 5sin(2 x) 7 的递增区间为 [ k 3, k ] . 12 12 7同理可得函数 y 5sin(2 x) 7 递减区间为 [ k 3, k ] . 1212当 2x 2k3,即 x k 2 时,函数 y 12 5sin(2 x ) 取最大值 5; 3当2x 2k ,即3 2 x k5时,函数y125sin(2 x ) 取最大值 5 .3例2:求函数y 5sin(2x ) 7, x3 [0, ] 的单调区间和最值.2解析:由x [0, ] ,可得2x2[ ,4] .3 3 3然后画出 2 x的终边图,然后就可以得出3当2x [ , ] ,即x3 3 24 [0, ] 时,函数y125sin(2 x ) 7 单调递增;3当2x [ , ] ,即x3 2 3 [ , ] 时,函数y12 25sin(2 x ) 7 单调递减.3同时,当2x ,即x3 2时,函数y125sin(2 x ) 7 取最大值12;3当2 x4,即3 3x 时,函数y25sin(2 x ) 7 取最小值735 3;2注意:当x 的系数为负数时,单调性的分析正好相反.2、函数y A s in( x ) h &y A cos( x ) h &y A tan( x ) h ,其中A0, 0 :(1)复合三角函数的基本性质:三角函数y A s in( x ) h y A c os( x ) h y A tan( x ) h其中A0, 0 其中A0, 0 其中A0, 0 振幅 A 无基准线y h定义域( , ) { x x k , k Z }2 值域[ A h, A h] ( , )最小正周期T2T1 1频率 f fT 2 T 相位x初相2( 2)函数 y A s in( x) h 与函数 y sin x 的图像的关系如下:①相位变换: 当0 时, ysin x向左平移个单位y sin( x ) ;当0 时, y ②周期变换: sin x向右平移 个单位y sin( x) ;当1时, ysin( x所有各点的横坐标缩短到原来的)1倍(纵坐标不变)y sin( x) ;当 01时, y ③振幅变换:sin( x所有各点的横坐标伸长到原来的)1倍(纵坐标不变)y sin( x) ;当 A 1时, y sin( x) 所有各点的纵坐标伸长到原来的A 倍(横坐标不变)y A sin( x ) ;当 0 A 1时, y sin( x)所有各点的纵坐标缩短到原来的A 倍(横坐标不变)y A s in( x) ;④最值变换:当 h 0时,当 h 0 时, y A s in( xy A s in( x所有各点向上平行移动所有各点向下平行移动 h 个单位h 个单位y A sin( xy A sin( x) h ;) h ;注意:函数 y A cos( x) h 和函数 y A tan( x) h 的变换情况同上.3、三角函数的值域:(1)) y a sin x b 型:设 t sin x ,化为一次函数 y at b 在闭区间 [ 1,1] 上求最值.(2)) ya sinx b cos x c , a ,b 0 型:引入辅助角 , tanb,化为 ya ab sin(x) c .(3)) ya sin2x b sin x c 型:设 t sin x [ 1,1],化为二次函数 y at 2 bt c 求解.(4)) ya sinxcos x b(sin x cos x) c 型:a (t21)设t sin x cos x [ 2, 2] ,则t 21 2sin x cos x ,化为二次函数 ybt c 在闭2区间 t [ 2, 2] 上求最值.2) )22 2(5)) y a tan x b cot x 型:设 t(6)) y tan x ,化为a sin x b 型:c sin x dy atb ,用“ Nike 函数”或“差函数”求解.t方法一:常数分离、分层求解;方法二:利用有界性,化为 1 sin x 1 求解.(7)) y a sin x b 型: c cosx d化为 a sin x yc cos x b dy ,合并 ay c sin( x) b dy ,利用有界性,sin(x)b dy [ 1,1]求解.a2y 2c2(8)) a sinx cos x b sin 2 x c cos 2x ,( a 0,b, c 不全为 0)型:利用降次公式,可得 asin x cosx b sin 2x ccos 2xasin 2 x c b cos2x b c,然后利用辅 助角公式即可. 4、三角函数的对称性: 2 2 2对称中心 对称轴方程y sin x(k ,0) , k Z xk , k Z2y cos x ( k,0) , k Z 2x k , k Zytan xy cot xk( ,0) k Z / 2 ( k,0) k Z /2备注:① y sin x 和 y cosx 的对称中心在其函数图像上;② y tan x 和 y cot x 的对称中心不一定在其函数图像上. (有可能在渐近线上)例 3:求函数 y 5sin(2 x) 7 的对称轴方程和对称中心.3解析:由函数 ysin x 的对称轴方程 x k, k Z 2,可得 2x k3 , k Z2解得 xk , k Z .122k 所以,函数 y 5sin(2 x) 7 的对称轴方程为 3 x , k Z . 122由函数 y sin x 的中心对称点 (k ,0) , k Z ,可得 2x3k , k Z解得 xk , k Z .62所以,函数 y 5sin(2 x) 7 的对称中心为 ( 3 k ,7) , k Z .6 25、反正弦、反余弦、反正切函数的性质和图像:y arcsin x y arccosx y arctanx 定义域[ 1,1] [ 1,1] ( , )值域[ , ]2 2 [ 0, ] ( , )2 2奇偶性奇函数非奇非偶函数奇函数单调性在[ 1,1]上是增函数在[ 1,1]上是减函数在( , ) 上是增函数对称中心点(0,0) 点(0, )2点(0,0) 图像重要结论:(1)先反三角函数后三角函数:①a [ 1,1] sin(arcsin a) cos(arccosa ) a ;②a R tan(arctan a ) a .(2)先三角函数后反三角函数:①[ , ]2 2arcsin(sin ) ;②[0, ] arccos(cos ) ;③( , )2 2arctan(tan ) .(3)反三角函数对称中心特征方程式:①a [ 1,1] arcsin( a)arcsin a ;②a [ 1,1] arccos( a) arccos a;③a ( , ) arctan( a )arctan a.6、解三角方程公式:sin x a, a 1 x k ( 1)k arcsina, k Zcos x a, a 1 x 2k arccosa, k Z.tan x a, a R x k arctana, k Z。
高一数学上册全部讲解知识点
高一数学上册全部讲解知识点一、知识概述《集合》①基本定义:集合就像是把一些有共同特征的东西放在一起的一个“大筐”。
比如你们班的同学就可以组成一个集合,这些同学就是这个集合里的元素。
②重要程度:在高一数学中算是入门基础的东西,是理解函数等很多知识的基石。
③前置知识:基本的数的概念,像自然数、整数啥的要有个大概了解。
④应用价值:在生活中安排活动分组时就像划分集合,比如打篮球分组把人分成两组,这两组就是两个集合。
《函数的概念》①基本定义:函数就像一个机器,给它一个输入(自变量),然后就会有确定的输出(因变量)。
例如,一个卖水果的,你输入要的苹果数量(自变量),根据苹果的单价,就会得到要付的钱(因变量)。
②重要程度:函数贯穿整个高中数学,是非常重要的内容。
③前置知识:集合的知识要掌握,因为函数是建立在两个非空数集之间的对应关系。
④应用价值:在经济领域计算成本与利润关系等,通过改变生产量(自变量)得出利润(因变量)的值。
《函数的定义域与值域》①基本定义:定义域就是自变量能取的那些值的范围,值域就是函数值(因变量的值)的范围。
好比做蛋糕,面粉(自变量)的量有个可用的范围(定义域),最后做出蛋糕的大小(函数值)也有个范围(值域)。
②重要程度:这对于准确理解函数很重要。
③前置知识:函数概念要清楚。
④应用价值:在现实中规划产量(定义域)时要考虑最终产出(值域),避免资源浪费或者产量不足。
二、知识体系①知识图谱:集合是基础,函数的定义域、值域等都是函数这个大内容下的细分部分。
②关联知识:集合与函数是层层递进的关系,后续的函数性质等都和定义域值域等相关知识有关。
③重难点分析:- 集合那里难点在于集合元素的性质理解准确。
比如互异性,说实话有时候很容易忽略。
- 函数概念重点在于理解对应关系,难点在于一些复杂的函数关系的理解。
- 定义域值域难点在于准确求出根据不同情况的取值范围。
④考点分析:- 集合在考试中会考查元素的从属关系,集合间的运算(交、并、补)等。
高一数学知识点总结大全(非常全面)
高一数学知识点总结大全(非常全面)高一数学知识点总结大全(非常全面)一、数与式1. 自然数和整数自然数是用来表示计数的数字,整数则包括正整数、零和负整数。
2. 有理数和无理数有理数包括整数和分数,能够表示为两个整数的比。
无理数是无限不循环小数,如π和根号2。
3. 数的相反数和绝对值相反数指两个数值的和为零的数。
绝对值是一个数到零的距离,总是非负数。
4. 数的运算数的运算分为四种基本运算:加法、减法、乘法和除法。
要注意运算法则与优先级。
5. 代数式的加减乘除代数式包括有数和字母构成的项,可以进行加减乘除运算,要注意合并同类项和项的系数。
6. 多项式多项式是由若干项相加(减)得到的,其中每一项都是数的乘积。
二、函数与方程1. 函数及其表示法函数是一个集合,它把一个集合的元素(自变量)对应到另一个集合的元素(函数值)。
2. 函数的性质函数的性质包括定义域、值域、单调性、奇偶性等。
3. 方程及其解方程是指等号连接的两个代数式,方程的解满足使等号成立的条件。
4. 一元一次方程一元一次方程是指未知数的最高次数为一的方程,可以通过加减消元或代入法来求解。
5. 一元一次不等式一元一次不等式是指未知数的最高次数为一的不等式,可以通过图像法或代数法来求解。
6. 一元二次方程一元二次方程是指未知数的最高次数为二的方程,可以通过配方法、公式法或因式分解法来求解。
三、平面几何1. 点、线、面的基本概念点是几何图形中最基本的元素,线由无穷多个点组成,面由无穷多个线组成。
2. 直线、射线、线段的关系直线是无边界的,射线有一个起点但没有终点,线段有两个端点。
3. 角的概念和相关性质角是由两条射线共享一个端点构成的图形,可以根据角的大小分为锐角、直角、钝角等。
4. 平行线和垂直线平行线在同一个平面上不相交,垂直线两两相交且角度为90度。
5. 三角形及其性质三角形是由三条线段连接而成的图形,包括等腰三角形、等边三角形等。
6. 圆的概念及其性质圆是由平面上所有与一个确定点的距离相等的点组成的图形,包括半径、直径、弧等。
高一数学的知识点归纳总结
高一数学的知识点归纳总结高一数学是学生进入高中阶段后所学习的重要学科之一。
在这个阶段,学生将进一步夯实基础数学知识,并学习更加深入和复杂的数学概念和方法。
本文将对高一数学的知识点进行归纳总结,帮助学生更好地理解和掌握这一学科。
一、初等代数知识点1. 整式与分式:整式是由常数、未知数和它们的乘积及其他四则运算符号组成的代数式。
分式是有一个或多个整式作分子,一个或多个非零多项式作分母的代数式。
2. 一次函数:一次函数是形如 y=ax+b 的函数,其中 a 和 b 是常数,且a ≠ 0。
一次函数的图像是一条直线,具有常见的斜率和截距的概念。
3. 二次函数:二次函数是形如 y=ax^2+bx+c 的函数,其中 a、b 和 c 是常数,且a ≠ 0。
二次函数的图像是一个抛物线,具有顶点、对称轴和判别式等重要概念。
4. 不等式与不等式组:不等式是数之间大小关系的表示,如大于、小于、大于等于、小于等于等。
而不等式组则是由多个不等式构成的一组数学表达式。
二、平面几何知识点1. 直线与角:直线是由无限个点构成的,它具有特殊的性质和分类。
角是由两条射线共同起点组成的,根据角度大小可以分为锐角、直角、钝角等。
2. 三角形与四边形:三角形是由三条边和三个顶点组成的多边形,根据边长和角度可以进行多种分类。
四边形是由四条边和四个顶点组成的多边形,也有多种分类和特性。
3. 圆与圆的性质:圆是由平面上到一个定点距离相等的所有点组成的图形。
圆的性质包括半径、直径、弧、弦、切线等相关概念。
三、解析几何知识点1. 平面坐标系和直角坐标系:平面坐标系是用来表示点在平面上位置关系的工具,由坐标轴和原点组成。
直角坐标系是平面坐标系的一种特殊情况,坐标轴相互垂直。
2. 函数及其图像:函数是一种特殊的关系,每个自变量对应唯一的因变量。
函数的图像可以通过绘制关系式,如一次函数、二次函数、指数函数等,来展示函数的性质和特点。
3. 二次函数的图像与性质:二次函数的图像是一个抛物线,通过对称轴、顶点、判别式等概念可以进行图像的分析和性质的解释。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学知识点汇总讲解大全Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT高中数学知识点汇总(高一)一、集合和命题一、集合:(1)集合的元素的性质: 确定性、互异性和无序性; (2)元素与集合的关系: ①a A ∈↔a 属于集合A ; ②a A ∉↔a 不属于集合A . (3)常用的数集:N ↔自然数集;↔*N 正整数集;Z ↔整数集; Q ↔有理数集;R ↔实数集;Φ↔空集;C ↔复数集;⎪⎩⎪⎨⎧↔↔-+负整数集正整数集Z Z ;⎪⎩⎪⎨⎧↔↔-+负有理数集正有理数集Q Q ;⎪⎩⎪⎨⎧↔↔-+负实数集正实数集R R .(4)集合的表示方法:集合⎩⎨⎧↔↔描述法无限集列举法有限集;例如:①列举法:{,,,,}z h a n g ;②描述法:{1}x x >. (5)集合之间的关系:①B A ⊆↔集合A 是集合B 的子集;特别地,A A ⊆;A BA CBC ⊆⎧⇒⊆⎨⊆⎩.②B A =或A BA B ⊆⎧⎨⊇⎩↔集合A 与集合B 相等; ③A B ⊂≠↔集合A 是集合B 的真子集.例:N Z Q R ⊆⊆⊆C ⊆;N Z Q R C ⊂⊂⊂⊂≠≠≠≠. ④空集是任何集合的子集,是任何非空集合的真子集. (6)集合的运算:①交集:}{B x A x x B A ∈∈=且 ↔集合A 与集合B 的交集; ②并集:}{B x A x x B A ∈∈=或 ↔集合A 与集合B 的并集;③补集:设U 为全集,集合A 是U 的子集,则由U 中所有不属于A 的元素组成的集合,叫做集合A 在全集U 中的补集,记作A C U .④得摩根定律:()U U U C A B C A C B =;()U U U C A B C A C B = (7)集合的子集个数:若集合A 有*()n n N ∈个元素,那么该集合有2n 个子集;21n -个真子集;21n -个非空子集;22n -个非空真子集. 二、四种命题的形式:(1)命题:能判断真假的语句.(2)四种命题:如果用α和β分别表示原命题的条件和结论,用α和β分别表示α和β的否定,那么四种命题形式就是:(3)充分条件,必要条件,充要条件:①若βα⇒,那么α叫做β的充分条件,β叫做α的必要条件;②若βα⇒且αβ⇒,即βα⇔,那么α既是β的充分条件,又是β的必要条件,也就是说,α是β的充分必要条件,简称充要条件. ③欲证明条件α是结论β的充分必要条件,可分两步来证: 第一步:证明充分性:条件⇒α结论β; 第二步:证明必要性:结论⇒β条件α. (4)子集与推出关系:设A 、B 是非空集合,}{α具有性质x x A =,}{β具有性质y y B =, 则B A ⊆与βα⇒等价.结论:小范围⇒大范围;例如:小明是上海人⇒小明是中国人. 小范围是大范围的充分非必要条件; 大范围是小范围的必要非充分条件.二、不等式一、不等式的性质:二、一元一次不等式: 三、一元二次不等式:四、含有绝对值不等式的性质:(1)b a b a b a -≥±≥+; (2)n n a a a a a a +++≥+++ 2121. 五、分式不等式: (1)0))((0>++⇔>++d cx b ax d cx b ax ; (2)0))((0<++⇔<++d cx b ax dcx bax . 六、含绝对值的不等式:七、指数不等式:(1))()()1()()(x x f a a a x x f ϕϕ>⇔>>; (2))()()10()()(x x f a a a x x f ϕϕ<⇔<<>.八、对数不等式:(1)⎩⎨⎧>>⇔>>)()(0)()1)((log )(log x x f x a x x f a a ϕϕϕ;(2)⎩⎨⎧<>⇔<<>)()(0)()10)((log )(log x x f x f a x x f a a ϕϕ.九、不等式的证明: (1)常用的基本不等式:①R b a ab b a ∈≥+、(222,当且仅当b a =时取“=”号); ②+∈≥+R b a ab ba 、(2,当且仅当b a =时取“=”号);≥211a b+. ③+∈≥++R c b a abc c b a 、、(3333,当且仅当c b a ==时取“=”号);④+∈≥++R c b a abc c b a 、、(33,当且仅当c b a ==时取“=”号); ⑤n a a a na a a nn n (2121 ≥+++为大于1的自然数,+∈R a a a n ,,,21 ,当且仅当n a a a === 21时取“=”号); (2)证明不等式的常用方法:①比较法; ②分析法; ③综合法.三、函数的基本性质一、函数的概念:(1)若自变量−−−→−fx 对应法则因变量y ,则y 就是x 的函数,记作D x x f y ∈=),(; x 的取值范围D ↔函数的定义域;y 的取值范围↔函数的值域. 求定义域一般需要注意: ①1()y f x =,()0f x ≠;②y ,()0f x ≥; ③0(())y f x =,()0f x ≠; ④log ()a y f x =,()0f x >;⑤()log f x y N =,()0f x >且()1f x ≠.(2)判断是否函数图像的方法:任取平行于y 轴的直线,与图像最多只有一个公共点;(3)判断两个函数是否同一个函数的方法:①定义域是否相同;②对应法则是否相同.二、函数的基本性质: (1)奇偶性:注意:定义域包括0的奇函数必过原点(0,0)O . (2)单调性和最值:注意:①复合函数的单调性:②如果函数)(x f y =在某个区间I 上是增(减)函数,那么函数)(x f y =在区间I 上是单调函数,区间I 叫做函数)(x f y =的单调区间.(3)零点:若D x x f y ∈=),(,D c ∈且0)(=c f ,则c x =叫做函数)(x f y =的零点.零点定理:⎩⎨⎧<⋅∈=0)()(],[),(b f a f b a x x f y ⇒00(,)()0x a b f x ∈⎧⎨=⎩存在;特别地,当(),[,]y f x x a b =∈是单调函数,且()()0f a f b ⋅<,则该函数在区间[,]a b 上有且仅有一个零点,即存在唯一0(,)x a b ∈,使得0()0f x =.(4)平移的规律:“左加右减,下加上减”.(5)对称性:①轴对称的两个函数:②中心对称的两个函数:③轴对称的函数:注意:()()f a x f b x +=-⇒()f x 关于2x =对称; ()()f a x f a x +=-⇒()f x 关于x a =对称;()()f x f x =-⇒()f x 关于0x =对称,即()f x 是偶函数. ④中心对称的函数:注意:()()f a x f b x c ++-=⇒()f x 关于点(,)22c对称; ()()0f a x f b x ++-=⇒()f x 关于点(,0)2a b+对称; ()()2f a x f a x b ++-=⇒()f x 关于点(,)a b 对称;()()0f x f x +-=⇒()f x 关于点(0,0)对称,即()f x 是奇函数. (6)凹凸性:设函数(),y f x x D =∈,如果对任意12,x x D ∈,且12x x ≠,都有1212()()22x x f x f x f ++⎛⎫< ⎪⎝⎭,则称函数()y f x =在D 上是凹函数;例如:2y x =.进一步,如果对任意12,,n x x x D ∈,都有1212()()()n n x x x f x f x f x f n n +++++⎛⎫<⎪⎝⎭,则称函数()y f x =在D 上是凹函数;该不等式也称琴生不等式或詹森不等式;设函数(),y f x x D =∈,如果对任意12,x x D ∈,且12x x ≠,都有1212()()22x x f x f x f ++⎛⎫> ⎪⎝⎭,则称函数()y f x =在D 上是凸函数.例如:lg y x =.进一步,如果对任意12,,n x x x D ∈,都有1212()()()n n x x x f x f x f x f n n +++++⎛⎫>⎪⎝⎭,则称函数()y f x =在D 上是凸函数;该不等式也称琴生不等式或詹森不等式. (7)翻折:(8)周期性:若R x x f y ∈=),(,0≠∃T ,x R ∈任取,恒有)()(x f T x f =+,则称T 为这个函数的周期.注意:若T 是)(x f y =的周期,那么)0,(≠∈k Z k kT 也是这个函数的周期; 周期函数的周期有无穷多个,但不一定有最小正周期.①()()f x a f x b +=+,a b ≠⇒()f x 是周期函数,且其中一个周期T a b =-; (阴影部分下略)②()()f x f x p =-+,0p ≠⇒2T p =; ③()()f x a f x b +=-+,a b ≠⇒2T a b =-; ④1()()f x f x p =+或1()()f x f x p =-+,0p ≠⇒2T p =;⑤1()()1()f x p f x f x p -+=++或()1()()1f x p f x f x p ++=+-,0p ≠⇒2T p =;⑥1()()1()f x p f x f x p ++=-+或()1()()1f x p f x f x p +-=++,0p ≠⇒4T p =;⑦()f x 关于直线x a =,x b =,a b ≠都对称⇒2T a b =-; ⑧()f x 关于两点(,)a c ,(,)b c ,a b ≠都成中心对称⇒2T a b =-; ⑨()f x 关于点(,)a c ,0a ≠成中心对称,且关于直线x b =,a b ≠对称⇒4T a b =-;⑩若()()(2)()f x f x a f x a f x na m +++++++=(m 为常数,*n N ∈),则()f x 是以(1)n a +为周期的周期函数;若()()(2)()f x f x a f x a f x na m -+++-++=(m 为常数,n 为正偶数),则()f x 是以2(1)n a +为周期的周期函数.三、V 函数:四、分式函数:五、曼哈顿距离:在平面上,11(,)M x y ,22(,)N x y ,则称1212d x x y y =-+-为MN 的曼哈顿距离. 六、某类带有绝对值的函数:1、对于函数y x m =-,在x m =时取最小值;2、对于函数y x m x n =-+-,m n <,在[,]x m n ∈时取最小值;3、对于函数y x m x n x p =-+-+-,m n p <<,在x n =时取最小值;4、对于函数y x m x n x p x q =-+-+-+-,m n p q <<<,在[,]x n p ∈时取最小值;5、推广到122n y x x x x x x =-+-++-,122n x x x <<<,在1[,]n n x x x +∈时取最小值;1221n y x x x x x x +=-+-++-,1221n x x x +<<<,在n x x ∈时取最小值.思考:对于函数1232y x x x =-+++,在x _________时取最小值.四、幂函数、指数函数和对数函数(一)幂函数(1)幂函数的定义:形如)(R a x y a ∈=的函数称作幂函数,定义域因a 而异.(2)当1,0≠a 时,幂函数)(R a x y a ∈=在区间),0[+∞上的图像分三类,如图所示. (3)作幂函数)1,0(≠=a x y a 的草图,可分两步: ①根据a 的大小,作出该函数在区间),0[+∞上的图像;②根据该函数的定义域及其奇偶性,补全该函数在]0,(-∞上的图像. (4)判断幂函数)(R a x y a ∈=的a 的大小比较:方法一:)(R a x y a ∈=与直线(1)x m m =>的交点越靠上,a 越大; 方法二:)(R a x y a ∈=与直线(01)x m m =<<的交点越靠下,a 越大(5)关于形如()ax by c cx d+=≠+0的变形幂函数的作图: ①作渐近线(用虚线):d x c=-、ay c =;②选取特殊点:任取该函数图像上一点,建议取(0,)bd;③画出大致图像:结合渐近线和特殊点,判断图像的方位(右上左下、左上右下).(二)指数&指数函数1、指数运算法则: ①yx yxaa a +=⋅;②xyyxa a =)(;③xxxb a b a ⋅=⋅)(;④()xx x a a b b=,其中),0,(R y x b a ∈>、.2、指数函数图像及其性质:3、判断指数函数x y a =中参数a 的大小:方法一:x y a =与直线(0)x m m =>的交点越靠上,a 越大; 方法二:x y a =与直线(0)x m m =<的交点越靠下,a 越大.(三)反函数的概念及其性质1、反函数的概念:对于函数()y f x =,设它的定义域为D ,值域为A ,如果对于A 中任意一个值y ,在D 中总有唯一确定的x 值与它对应,且满足()y f x =,这样得到的x 关于y 的函数叫做()y f x =的反函数,记作1()x f y -=.在习惯上,自变量常用x 表示,而函数用y 表示,所以把它改写为1()()y f x x A -=∈. 2、求反函数的步骤:(“解”→“换”→“求”) ①将()y f x =看作方程,解出()x f y =; ②将x 、y 互换,得到1()y f x -=; ③标出反函数的定义域(原函数的值域). 3、反函数的条件:定义域与值域中的元素一一对应. 4、反函数的性质:①原函数)(x f y =过点),(n m ,则反函数)(1x f y -=过点),(m n ;②原函数)(x f y =与反函数)(1x f y -=关于x y =对称,且单调性相同;③奇函数的反函数必为奇函数. 5、原函数与反函数的关系:(四)对数&对数函数1、指数与对数的关系:2、对数的运算法则:①01log =a ,1log =a a ,N a N a =log ;②常用对数N N 10log lg =,自然对数N N e log ln =;③N M MN a a a log log )(log +=,N M NMa a a log log log -=,M n M a n a log log =; ④bN N a a b log log log =,a b b a log 1log =,b n mb a m a n log log =,b b ac a c log log =,log log N N b a a b =.3、对数函数图像及其性质:4、判断对数函数log ,0a y x x =>中参数a 的大小:方法一:log ,0a y x x =>与直线(0)y m m =>的交点越靠右,a 越大; 方法二:log ,0a y x x =>与直线(0)y m m =<的交点越靠左,a 越大.五、三角比1、角的定义: (1)终边相同的角:①α与2,k k Z πα+∈表示终边相同的角度;②终边相同的角不一定相等,但相等的角终边一定相同; ③α与,k k Z πα+∈表示终边共线的角(同向或反向). (2)特殊位置的角的集合的表示:(3)弧度制与角度制互化:①180rad π=︒; ②1801rad π=︒; ③1180rad π︒=.(4)扇形有关公式: ①rl =α; ②弧长公式:r l α=;③扇形面积公式:21122S lr r α==(想象三角形面积公式).(5)集合中常见角的合并:(6)三角比公式及其在各象限的正负情况:以角α的顶点为坐标原点,始边为x 轴的正半轴建立直角坐标系,在α的终边上任取一个异于原点的点(,)P x y ,点P 到原点的距离记为r ,则 (7)特殊角的三角比:(8)一些重要的结论:(注意,如果没有特别指明,k 的取值范围是k Z ∈) ①角α和角β的终边:②α的终边与2α的终边的关系. α的终边在第一象限⇔(2,2)2k k παππ∈+⇔(,)24k k απππ∈+;α的终边在第二象限⇔(2,2)2k k παπππ∈++⇔(,)242k k αππππ∈++;α的终边在第三象限⇔3(2,2)2k k παπππ∈++⇔3(,)224k k αππππ∈++;α的终边在第四象限⇔3(2,22)2k k παπππ∈++⇔3(,)24k k αππππ∈++. ③sin θ与cos θ的大小关系: sin cos θθ<⇔3(2,2)44k k ππθππ∈-+⇔θ的终边在直线y x =右边(0x y ->);sin cos θθ>⇔5(2,2)44k k ππθππ∈++⇔θ的终边在直线y x =左边(0x y -<);sin cos θθ=⇔5{22}44k k ππθππ∈++,⇔θ的终边在直线y x =上(0x y -=).④sin θ与cos θ的大小关系: sin cos θθ<⇔(,)44k k ππθππ∈-+⇔θ的终边在00x y x y +>⎧⎨->⎩或00x y x y +<⎧⎨-<⎩; sin cos θθ>⇔3(,)44k k ππθππ∈++⇔θ的终边在00x y x y +>⎧⎨-<⎩或00x y x y +>⎧⎨-<⎩; sin cos θθ=⇔3{}44k k ππθππ∈++,,k Z ∈⇔θ的终边在y x =±. 2、三角比公式:(1)诱导公式:(诱导公式口诀:奇变偶不变,符号看象限) 第一组诱导公式: 第二组诱导公式: 第三组诱导公式: (周期性) (奇偶性) (中心对称性) 第四组诱导公式: 第五组诱导公式: 第六组诱导公式:(轴对称) (互余性) (2)同角三角比的关系:倒数关系: 商数关系: 平方关系:(3)两角和差的正弦公式:βαβαβαsin cos cos sin )sin(±=±; 两角和差的余弦公式:βαβαβαsin sin cos cos )cos( =±; 两角和差的正切公式:βαβαβαtan tan 1tan tan )tan( ±=±.(4)二倍角的正弦公式:αααcos sin 22sin =;二倍角的余弦公式:1cos 2sin 21sin cos 2cos 2222-=-=-=ααααα; 二倍角的正切公式:ααα2tan 1tan 22tan -=;降次公式: 万能置换公式:22222221cos 2sin 21cos 2sin 21cos 2cos 21cos 2cos 21sin sin cos 221cos 2tan 1cos 21sin sin cos 22ααααααααααααααααα⎧-=⎪-⎧⎪=⎪⎪+=⎪⎪+⎪⎪=⇒⎨⎨⎛⎫⎪⎪-=- ⎪-⎪⎪⎝⎭=⎪⎪+⎩⎛⎫⎪+=+ ⎪⎪⎝⎭⎩; ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+-=+=ααααααααα2222tan 1tan 22tan tan 1tan 12cos tan 1tan 22sin 半角公式:αααααsin cos 1cos 1sin 2tan -=+=; (5)辅助角公式: ①版本一:)sin(cos sin 22ϕααα++=+b a b a ,其中⎪⎪⎩⎪⎪⎨⎧+=+=<≤2222cos sin ,20b a a b a b ϕϕπϕ.②版本二:sin cos )a b θθθϕ±=±,其中,0,0,tan 2b a b aπϕϕ><<=. 3、正余弦函数的五点法作图:以sin()y x ωϕ=+为例,令x ωϕ+依次为30,,,,222ππππ,求出对应的x 与y 值,描点(,)x y 作图.4、正弦定理和余弦定理: (1)正弦定理:R R CcB b A a (2sin sin sin ===为外接圆半径); 其中常见的结论有:①A R a sin 2=,B R b sin 2=,C R c sin 2=; ②R a A 2sin =,R b B 2sin =,Rc C 2sin =; ③c b a C B A ::sin :sin :sin =;④22sin sin sin ABC S R A B C =△;sin sin sin sin sin sin ABCaR B CS bR A C cR A B⎧⎪=⎨⎪⎩△;4ABC abc S R =△.(2)余弦定理:版本一:⎪⎩⎪⎨⎧-+=-+=-+=C ab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222;版本二:⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=-+=-+=ab c a b C ac b c a B bc a c b A 2cos 2cos 2cos 222222222; (3)任意三角形射影定理(第一余弦定理):cos cos cos cos cos cos a b C c Bb c A a C c a B b A =+⎧⎪=+⎨⎪=+⎩.5、与三角形有关的三角比: (1)三角形的面积:①12ABC S dh =△;②111sin sin sin 222ABC S ab C bc A ac B ===△;③ABC S =△l 为ABC △的周长. (2)在ABC △中,①sin sin cos cos cot cot a b A B A B A B A B >⇔>⇔>⇔<⇔<; ②若ABC △是锐角三角形,则sin cos A B >;③sin()sin sin()sin sin()sin A B C B C A A C B +=⎧⎪+=⎨⎪+=⎩;cos()cos cos()cos cos()cos A B C B C A A C B +=-⎧⎪+=-⎨⎪+=-⎩;tan()tan tan()tan tan()tan A B CB C A A C B+=-⎧⎪+=-⎨⎪+=-⎩;④sin cos 22sin cos 22sin cos 22AB C BA C CA B +⎧=⎪⎪+⎪=⎨⎪+⎪=⎪⎩;tan cot 22tan cot 22tan cot 22A B C B A C C A B +⎧=⎪⎪+⎪=⎨⎪+⎪=⎪⎩;⑤sin cos 22sin cos 22A B A C ⎧<⎪⎪⎨⎪<⎪⎩;sin cos 22sin cos 22B A B C ⎧<⎪⎪⎨⎪<⎪⎩;sin cos22sin cos 22C AC B ⎧<⎪⎪⎨⎪<⎪⎩; ⇒sin sin cos cos 2222sin sin cos cos 2222sin sin cos cos 2222A B A B AC A C BC B C ⎧<⎪⎪⎪<⎨⎪⎪<⎪⎩⇒sin sin sin cos cos cos 222222A B C A B C <;⑥sin sin sin 4cos cos cos 222cos cos cos 14sin sin sin 222sin sin sin 4sin sin cos 222A B C A B C A B C A B C A B C A B C ⎧++=⎪⎪⎪++=+⎨⎪⎪+-=⎪⎩;sin 2sin 2sin 24sin sin sin cos 2cos 2cos 24cos cos cos 1A B C A B C A B C A B C ++=⎧⎨++=--⎩;⑦sin sin sin (0,23cos cos cos (1,]2A B C A B C ⎧++∈⎪⎪⎨⎪++∈⎪⎩;sin sin sin (0,8sin sin sin cos cos cos 1cos cos cos (1,]8A B C A B C A B C A B C ⎧∈⎪⎪⎪>⎨⎪⎪∈-⎪⎩. 其中,第一组可以利用琴生不等式来证明;第二组可以结合第一组及基本不等式证明.(3)在ABC △中,角A 、B 、C 成等差数列⇔3B π=.(4)ABC △的内切圆半径为2Sr a b c=++.6、仰角、俯角、方位角: 略7、和差化积与积化和差公式(理科):(1)积化和差公式: 1sin cos [sin()sin()]21cos sin [sin()sin()]21cos cos [cos()cos()]21sin sin [cos()cos()]2αβαβαβαβαβαβαβαβαβαβαβαβ⎧=++-⎪⎪⎪=+--⎪⎨⎪=-++⎪⎪⎪=--+⎩; (2)和差化积公式:sin sin 2sin cos 22sin sin 2cos sin 22cos cos 2cos cos22cos cos 2sin sin 22αβαβαβαβαβαβαβαβαβαβαβαβ+-⎧+=⎪⎪+-⎪-=⎪⎨-+⎪+=⎪⎪-+⎪-=-⎩.六、三角函数1、正弦函数、余弦函数和正切函数的性质、图像:]..)1min -=; 1min -=y ;=调性相反) 解析:周期22T ππ==,由函数x y sin =的递增区间[2,2]22k k ππππ-+,可得 222232k x k πππππ-≤+≤+,即51212k x k ππππ-≤≤+, 于是,函数5sin(2)73y x π=++的递增区间为5[,]1212k k ππππ-+. 同理可得函数5sin(2)73y x π=++递减区间为7[,]1212k k ππππ++.当2232x k πππ+=+,即12x k ππ=+时,函数5sin(2)3y x π=+取最大值5;当2232x k πππ+=-,即512x k ππ=-时,函数5sin(2)3y x π=+取最大值5-. 例2:求函数5sin(2)7,[0,]32y x x ππ=++∈的单调区间和最值.解析:由[0,]2x π∈,可得42[,]333x πππ+∈.然后画出23x π+的终边图,然后就可以得出当2[,]332x πππ+∈,即[0,]12x π∈时,函数5sin(2)73y x π=++单调递增; 当42[,]323x πππ+∈,即[,]122x ππ∈时,函数5sin(2)73y x π=++单调递减.同时,当232x ππ+=,即12x π=时,函数5sin(2)73y x π=++取最大值12;当4233x ππ+=,即2x π=时,函数5sin(2)73y x π=++取最小值7;注意:当x 的系数为负数时,单调性的分析正好相反.2、函数sin()y A x h ωϕ=++&cos()y A x h ωϕ=++&tan()y A x h ωϕ=++,其中0,0A ϕ>≠:(1)复合三角函数的基本性质:(2)函数sin()y A x h ωϕ=++与函数sin y x =的图像的关系如下: ①相位变换:当0ϕ>时,sin sin()y x y x ϕϕ=−−−−−−→=+向左平移个单位; 当0ϕ<时,sin sin()y x y x ϕϕ=−−−−−−→=+向右平移个单位; ②周期变换:当1ω>时,1sin()sin()y x y x ωϕωϕ=+−−−−−−−−−−−−−−→=+所有各点的横坐标缩短到原来的倍(纵坐标不变); 当01ω<<时,1sin()sin()y x y x ωϕωϕ=+−−−−−−−−−−−−−−→=+所有各点的横坐标伸长到原来的倍(纵坐标不变); ③振幅变换:当1A >时,sin()sin()A y x y A x ωϕωϕ=+−−−−−−−−−−−−−−→=+所有各点的纵坐标伸长到原来的倍(横坐标不变); 当01A <<时,sin()sin()A y x y A x ωϕωϕ=+−−−−−−−−−−−−−−→=+所有各点的纵坐标缩短到原来的倍(横坐标不变);④最值变换:当0h >时,sin()sin()h y A x y A x h ωϕωϕ=+−−−−−−−−−→=++所有各点向上平行移动个单位; 当0h <时,sin()sin()h y A x y A x h ωϕωϕ=+−−−−−−−−−→=++所有各点向下平行移动个单位; 注意:函数cos()y A x h ωϕ=++和函数tan()y A x h ωϕ=++的变换情况同上. 3、三角函数的值域: (1)sin y a x b =+型:设sin t x =,化为一次函数y at b =+在闭区间[1,1]-上求最值. (2)sin cos y a x b x c =±+,,0a b >型:引入辅助角,tan baϕϕ=,化为)y x c ϕ=±+. (3)2sin sin y a x b x c =++型:设sin [1,1]t x =∈-,化为二次函数2y at bt c =++求解. (4)sin cos (sin cos )y a x x b x x c =+±+型:设sin cos [t x x =±∈,则212sin cos t x x =±,化为二次函数2(1)2a t y bt c -=±++在闭区间[t ∈上求最值.(5)tan cot y a x b x =+型:设tan t x =,化为by at t=+,用“Nike 函数”或“差函数”求解.(6)sin sin a x by c x d+=+型:方法一:常数分离、分层求解;方法二:利用有界性,化为1sin 1x -≤≤求解. (7)sin cos a x by c x d+=+型:化为sin cos a x yc x b dy -=-)x b dy ϕ+=-,利用有界性,sin()[1,1]x ϕ+=-求解.(8)22sin cos sin cos a x x b x c x ++,(0,,a b c ≠不全为0)型:利用降次公式,可得22sin cos sin cos sin 2cos 2222a cb b ca x xb xc x x x -+++=++,然后利用辅 助角公式即可. 4、三角函数的对称性:备注:①x y sin =和x y cos =的对称中心在其函数图像上;②x y tan =和x y cot =的对称中心不一定在其函数图像上.(有可能在渐近线上)例3:求函数5sin(2)73y x π=++的对称轴方程和对称中心.解析:由函数sin y x =的对称轴方程2ππ+=k x ,Z k ∈,可得232x k πππ+=+,Z k ∈解得122k x ππ=+,Z k ∈. 所以,函数5sin(2)73y x π=++的对称轴方程为122k x ππ=+,Z k ∈.由函数sin y x =的中心对称点)0,(πk ,Z k ∈,可得23x k ππ+=,Z k ∈解得62k x ππ=-+,Z k ∈. 所以,函数5sin(2)73y x π=++的对称中心为(,7)62k ππ-+,Z k ∈.5、反正弦、反余弦、反正切函数的性质和图像:重要结论:(1)先反三角函数后三角函数:①[1,1]sin(arcsin )cos(arccos )a a a a ∈-⇒==; ②tan(arctan )a R a a ∈⇒=. (2)先三角函数后反三角函数: ①[,]22ππθ∈-⇒arcsin(sin )θθ=; ②[0,]θπ∈⇒arccos(cos )θθ=; ③(,)22ππθ∈-⇒arctan(tan )θθ=. (3)反三角函数对称中心特征方程式:①[1,1]a ∈-⇒arcsin()arcsin a a -=-; ②[1,1]a ∈-⇒arccos()arccos a a π-=-; ③(,)a ∈-∞+∞⇒arctan()arctan a a -=-.6、解三角方程公式: sin ,1(1)arcsin ,cos ,12arccos ,tan ,arctan ,k x a a x k a k Z x a a x k a k Z x a a Rx k a k Z πππ⎧=≤=+-∈⎪=≤=±∈⎨⎪=∈=+∈⎩.。