高斯光束小尺度自聚焦的临界功率_邓剑钦_王兴龙_刘侠_肖青 (1)

合集下载

含负折射率光学透镜传感器

含负折射率光学透镜传感器

含负折射率光学透镜传感器靳龙;张兴强;周望怀;熊永臣【摘要】基于激光光线传输矩阵,研究了高斯光束通过不同折射率透镜后,出射光波束腰位置,出射、入射束腰半径大小之比同入射光波束腰位置的定量关系,结果表明:入射光束束腰位置和透镜折射率均可影响高斯光束的输出光学参量.在此基础上,设计了一种光电传感器用于检测蔗糖溶液浓度,定量研究了溶液浓度和出射高斯光束腰位置的对应关系,相关统计参量表明这类传感器可以实现对溶液浓度的高精度测量.%Based on laser transmission matrix,the relation between emerging beam waist position,the ratio of emerging and incident beam waist radius sizes and incident beam waist position when Gaussian beam passes through different refractive index lenses are quantitatively studied.Results show that the emerging Gaussian beam's optical parameters can be influenced by the incident beam waist position and refractive index of the lens.On the basis of that,a photoelectric sensor to detect concentration of sucrose solution is designed,the quantitative analysis displays how emerging Gaussian beam waist position varies with solution concentration,and relevant statistical parameters manifest that this kind of sensor can realize high precise measurement of solution concentration.【期刊名称】《河南科学》【年(卷),期】2018(036)001【总页数】6页(P39-44)【关键词】高斯光束;负折射率透镜;蔗糖溶液;光电传感器【作者】靳龙;张兴强;周望怀;熊永臣【作者单位】湖北汽车工业学院理学院,湖北十堰 442002;湖北汽车工业学院理学院,湖北十堰 442002;湖北汽车工业学院理学院,湖北十堰 442002;湖北汽车工业学院理学院,湖北十堰 442002【正文语种】中文【中图分类】TN249激光具有良好的单色性、相干性、高亮度和方向性[1],被广泛应用于科技、军事、经济和社会发展等诸多领域[2-3].通常,由激光器产生的光波束是一种振幅和等相位面随时间、空间变化的高斯光束[4],这类光波与传统介质相互作用的传输特性、聚焦特点和光束质量等基本性质研究取得了丰硕的成果[5-7].近年来,负折射率材料以其逆多普勒效应[8]、逆契仑可夫辐射现象[9]、逆古斯汉森相移[10]和逆光压现象等反常物理特性,在光电技术领域扮演着举足轻重的角色[11].其中,介电常数和磁导率同时为负的物质为双负材料,也称左手材料[12-13].除此之外,还有电磁参量只有一个为负的特异介质,即单负折射率材料,这类材料又可分为两种:若仅介电常数为负,称为电单负材料;若磁导率为负,则为磁单负材料[14-15].本文基于激光光线传输矩阵,研究了高斯光束通过正、负折射率光学透镜,出射光波束腰位置,出射、入射束腰半径大小之比和入射光波束腰位置的定量关系.在此基础上,提出了一种光电传感器,可以实现对蔗糖溶液浓度的定量检测.1 光波传输及变换理论利用光线传输矩阵理论可知,在傍轴光学系统中,透镜的特征传递矩阵为[16-17]其中:f为透镜的像方焦距,它和透镜折射率之间的关系为:其中:n为透镜折射率;n0为周围介质折射率;r1和r2分别为透镜两边曲率半径.若n为负折射率材料,其电磁参量一般为Drude模型[18-19],即:其中:ε和μ为相对介电常数和相对磁导率;ε1和μ1为大于零的常数,本文取ε1=μ1=1;ωpe、ωpm分别为电、磁等离子体频率;ω为相应入射光角频率,它和入射光频率ν的关系为由式(5)可知,ν和负透镜的折射率一一对应.当高斯光束通过不同介质时,入射光波和出射光波的束腰位置关系为[20]:其中:s0和s1分别为入射和出射光波束腰位置.而物、像束腰半径比例公式为:式中:w0和w1分别为入射、出射光波束腰大小,Z0为瑞利尺寸,其数值表达式为:其中:λ为激光波长.由式(7)、(8)可以看出,当Z0和f恒定时,s1,w1/w0和s0之间有对应关系.2 透镜折射率对光波光学参量的影响首先研究折射率为1.55的石英晶体透镜,利用(2)式,可知其像方焦距f=0.05 m.图1、图2分别为入射光波束腰位置和出射光波束腰位置及出射、入射束腰半径大小之比关系图,其中Z0/f分别取值0,0.2,0.4,0.5,1,2,表明光斑半径依次增加.图1 入射光波束腰位置和出射光波束腰位置变化曲线(f=0.05 m)Fig.1 Relation between incident beam waist position and emerging beam waist position (f=0.05 m)分析图1可知,对于不同的瑞利尺寸Z0,入射光波和出射光波束腰位置均交于点(0.05 m,0.05 m),其值等于透镜的像方焦距.当入射光波束腰位置由负至正逐渐增加时,出射光波束腰位置先减小至最小值,然后在0.05 m附近迅速增加到最大值,继而又继续减小,最后趋于稳定.Z0/f量值越小,曲线变化越明显,对应最大、最小值也越大,而且越靠近s0=0.05 m,在Z0/f=0时过渡到几何光学中的透镜成像情况.从图2可知,出射、入射束腰半径大小之比在s0=0.05 m取得最大值,并且以s0=0.05 m为对称轴,左右对称,w1/w0也随Z0/f的减小而增大,在Z0/f=1时实现1∶1成像.接下来,我们研究的双负折射率透镜.由式(5)、(2)可求得其折射率为-3.0,对应的像方焦距f=-0.05 m.这类透镜光学参量变化曲线分别如图3、图4所示.对比图3和图1可得,当透镜为负折射率材料导致像方焦距和传统材料相反,即f=-0.05 m时,Z0/f相同的两组曲线关于原点对称,因而此时所有曲线交于点(-0.05 m,-0.05 m),各自曲线变化特征和相互关系也可从图1加以类比.对比图4和图2可知,两组出射、入射光波束腰半径大小之比变化曲线关于横坐标w1/w0=0轴对称,即对于负折射率材料,w1/w0始终为负.图2 入射光波束腰位置和出射、入射束腰半径大小之比变化曲线(f=0.05 m)Fig.2 Relation between incident beam waist position and the ratio of emerging and incident beam waist radius sizes(f=0.05 m)图3 入射光波束腰位置和出射光波束腰位置变化曲线(f=-0.05 m)Fig.3Relation between incident beam waist position and emerging beam waist position(f=-0.05 m)图4 入射光波束腰位置和出射、入射束腰半径大小之比变化曲线(f=-0.05 m)Fig.4 Relation between incident beam waist position and the ratio of emerging and incident beam waist radius sizes(f=-0.05 m)同样地,当时,可知透镜对应的折射率为-1.0,f=-0.1 m.其对应的光学参量变化曲线分别如图5、图6所示.对比图5和图3可知,当f=-0.1 m时,各曲线变化趋势和图3基本一致,但相应曲线出射光波束腰位置最大值都较f=-0.05 m增加,最小值也相应减小,并且最大(小)值对应横坐标均向左移动.不同Z0/f曲线的交点移至(-0.1 m,-0.1 m),表明曲线交点的横、纵坐标等于透镜像方焦距.从图6可以看出,相同Z0/f对应的w1/w0大小和f=-0.05 m时的曲线没有变化,只是顶点的横坐标位置向左移动一倍.图5 入射光波束腰位置和出射光波束腰位置变化曲线(f=-0.1 m)Fig.5 Relation between incident beam waist position and emerging beam waist position(f=-0.1 m)图6 入射光波束腰位置和出射、入射束腰半径大小之比变化曲线(f=-0.1 m)Fig.6 Relation between incident beam waist position and the ratio of emerging and incident beam waist radius sizes(f=-0.1 m)3 蔗糖溶液浓度检测仪设计从以上分析可知,出射高斯光束的束腰位置在透镜像方焦距确定时,随入射光束腰位置s0发生变化,反之,若s0恒定,则出射高斯光束束腰位置随透镜像方焦距f,即材料的折射率n变化而变化,基于此,我们设计了一种光电传感器,通过测量出射高斯光束束腰位置变化可以实现对蔗糖溶液的浓度的检测.其原理图如图7所示,一束激光通过正、负透镜交替变化的蔗糖溶液检测仪,其中,绿色为传统透镜,橙色为负折射率光学透镜,黑色为填充蔗糖溶液的容器,出射光束光强被CCD探测,通过PC端自动控制出射光束最大值的坐标,即出射高斯光束束腰位置,进而实现位移输出.图7 蔗糖溶液浓度检测装置原理图Fig.7 Principle diagram of the sucrose solution concentration detection device图8为出射光束束腰位置随溶液折射率的变化曲线,从中可以看出,当溶液折射率逐渐增加时,出射光斑束腰位置依次减小.利用经验公式可知,蔗糖溶液浓度和其折射率的关系为[21]:其中:P为蔗糖溶液浓度,N为对应溶液折射率.利用(7)式可求得部分蔗糖溶液浓度和出射高斯光斑束腰位置量值关系如图9方形黑点所示.接下来,我们对图9进行数值拟合,得出蔗糖溶液浓度和出射高斯光斑束腰位置的函数关系式.当Z0/f<<1时,式(7)过渡为将式(2)代入上式,可得高斯光束像方束腰位置和蔗糖溶液折射率的关系为其中:α,β均为常量,它们和n0,s0,以及透镜两边曲率半径r1和r2有关.利用无穷级数展开公式可将(11)式变换为因此,利用二次多项式截断拟合可得出射高斯光束束腰位置s1和蔗糖溶液浓度P的定量关系为:上式对应参量Adj.R-Square达到0.999 97,残差平方和为4.391 76×10-6,表明这类传感器可以实现对溶液浓度高精度测量.以浓度为10%的蔗糖溶液为例,其理论值s1=0.402 1 m和拟合值为0.402 4 m,对应9.99%蔗糖溶液的误差在±0.01%以内,可以满足食品安全和医疗科学对现代传感器精度的要求[22-23]. 图8 出射光束位置随溶液折射率变化曲线Fig.8 Relation between emerging beam waist position and solution refractive index图9 出射光束位置随溶液浓度变化曲线Fig.9 Relation between emerging beam waist position and solution concentration4 结论结合激光光线传输矩阵,研究了高斯光束通过正、负折射率透镜后,出射光波束腰位置,出射、入射束腰半径大小之比同入射光波束腰位置的定量关系.结果表明:当入射高斯光斑瑞利尺寸Z0不同时,各入射光波和出射光波束腰位置变化曲线也不相同,但各曲线交于一点,这点的横、纵坐标都等于透镜像方焦距f;当负折射率透镜像方焦距和传统透镜正好相反时,相同Z0/f的高斯光斑分别经过正、负透镜变换后,两组出射光束腰位置变化曲线关于原点对称,出射、入射束腰半径大小之比曲线关于横坐标w1/w0=0轴对称;对于不同像方焦距的负折射率透镜,像方焦距f量值越小,相应曲线出射光波束腰位置最大值越大,最小值也越小,并且最大(小)值对应横坐标均向左移动;若Z0/f相等,则两组出射、入射束腰半径大小之比曲线变化规律一致,但曲线顶点对应横坐标移至透镜像方焦距f处.在此基础上,设计了一种光电传感器用于检测蔗糖溶液浓度,其中,溶液浓度和出射高斯光束束腰位置的定量函数关系如式(15)所示,并用其计算了10%蔗糖溶液的s1,和理论值误差在0.01%以内;相关统计参量表明这类传感器可以实现对溶液浓度高精度测量.【相关文献】[1]林溪波.激光技术应用综述[J].上海航天,1996,13(2):48-52.[2]SVELTO O.Principles of lasers[M].New York:A Division of Plenum Publishing Corporation,1998.[3]高旸.激光技术应用现状与分析[J].物理通报,2007,26(11):50-52.[4]洪敏芳,沈建琪,张秋长,等.高斯光束垂直入射到不同折射率介质中的传播规律[J].中国激光,2011,38(7):26-30.[5]LO H W,KLEINERT J,KLEINERT M.Conservation of extremal ellipticity and analytical expressions for astigmatism and asymmetry in Gaussian beam transformations[J].Applied Optics,2017,56(9):2523-2528.[6]邓剑钦,王兴龙,刘侠,等.高斯光束小尺度自聚焦的临界功率[J].激光与光电子学进展,2017,54(1):200-205.[7]姜曼,马鹏飞,周朴,等.基于多层电介质光栅光谱合成的光束质量[J].物理学报,2016,65(10):104203.[8]LEE S H,PARK C M,SEO Y M,et al.Reversed Doppler effect in double negative metamaterials[J].Physical Review B Condensed Matter,2010,81(24):145-173. [9]XI S,CHEN H,JIANG T,et al.Experimental verification of reversed Cherenkov radiation in left-handed metamaterials[J].Physical Review Letters,2009,103(19):194801.[10]LEUNG P T,CHEN C W,CHIANG H rge negative Goos-Hanchen shift at metal surfaces[J].Optics Communications,2007,276(2):206-208.[11]SHALAEV V M.Optical negative-index metamaterials[J].Nature Photonics,2007,1(1):41-48.[12]ZIOLKOWSKI R W.Design,fabrication,and testing of double negative metamaterials[J].IEEE Transactions on Antennas and Propagation,2003,51(7):1516-1529.[13]HOUCK A A,BROCK J B,CHUANG I L.Experimental observations of a left-handed material that obeys Snell’s law[J].Physical Review Letters,2003,90(13):137401. [14]LU W T,HUANG Y J.Storing light in active optical waveguides with single-negative materials[J].Applied Physics Letters,2010,96(21):211112.[15]苏安,张宁.单负材料一维光子晶体的透射谱特性[J].发光学报,2010,31(3):439-444.[16]GHATAK A.Optics[M].Beijing:Higher Education Press,2009.[17]阎吉祥,魏光辉.矩阵光学[M].北京:兵器工业出版社,1995.[18]FEISE M W,KIVSHAR Y S.Sub-wavelength imaging with a left-handed material flat lens[J].Physics Letters A,2005,334(4):326-330.[19]项阳,钱祖平,刘贤,等.基于Drude-FDTD算法的单负介质组合填充波导传播特性研究[J].物理学报,2008,57(9):5537-5541.[20]吕百达.激光光学[M].3版.北京:高等教育出版社,2002.[21]张志伟,尹卫峰,温廷敦,等.溶液浓度与其折射率关系的理论和实验研究[J].中北大学学报(自然科学版),2009,30(3):281-285.[22]谢庄擎.婴幼儿配方乳粉中葡萄糖,果糖,乳糖及蔗糖的快速检测方法研究—离子色谱安培检测法[D].广州:华南农业大学,2016.[23]徐亚琼.便携式血糖仪在生化分析中的应用研究[D].青岛:青岛科技大学,2016.。

增益介质中Compton散射对小尺度自聚焦的影响

增益介质中Compton散射对小尺度自聚焦的影响

增益介质中Compton散射对小尺度自聚焦的影响
郝东山;黄晓东
【期刊名称】《量子电子学报》
【年(卷),期】2007(24)3
【摘要】通过对激光放大介质中多光子非线性Compton散射光小尺度自聚焦特性的研究,提出了小尺度自聚焦的非线性理论,并对小尺度调制方程、增益谱和成丝距离进行了修正.研究发现:散射光的临界频率和最快增长频率近乎是相同的,在介质增益下,散射光引起的非线性扰动最快增长频率和最大增长率与背景光强度和传输距离几乎无关.在一定输入和输出功率下,在散射光出现的初始阶段,它使背景光的能量、小尺度扰动最快增长频率、最大增益和相应的B积分迅速增大,调制谱的范围迅速加宽,成丝距离延长;之后,它们的变化几乎与散射光无关.
【总页数】7页(P374-380)
【关键词】非线性光学;强激光传输;自聚焦;成丝;Compton散射
【作者】郝东山;黄晓东
【作者单位】黄淮学院电子科学与工程系;黄淮学院建筑工程系
【正文语种】中文
【中图分类】O431.2
【相关文献】
pton散射对等离子体MI基态增益谱的影响 [J], 郝晓飞;庞建丽;郝东山
2.介质的增益与损耗对高功率激光小尺度自聚焦的影响 [J], 林晓东;景峰;王逍;陈
建国;李大义
3.增益(损耗)介质中高功率激光束的小尺度自聚焦理论研究 [J], 文双春;范滇元
pton散射对太赫兹波介质微腔光学特性影响 [J], 郝东山;孔新红
pton散射下非傍轴光束的小尺度自聚焦 [J], 衡耀付;郝东山
因版权原因,仅展示原文概要,查看原文内容请购买。

超快激光精密制造技术的研究与应用

超快激光精密制造技术的研究与应用

第50卷 第12期 激光与红外Vol.50,No.12 2020年12月 LASER & INFRAREDDecember,2020 文章编号:1001 5078(2020)12 1419 07·综述与评论·超快激光精密制造技术的研究与应用杜 洋,赵 凯,朱忠良,王 江,邓文敬,梁旭东(上海航天设备制造总厂有限公司,上海200245)摘 要:超快激光以其超短的激光脉冲、超高功率密度、较低的烧蚀阈值、加工超精细及可实现冷加工等特点,近年来受到国际学术界和工程界的广泛关注。

本文梳理了超快激光精密制造技术的发展历史,综述了超快激光精密制造技术在表面加工及三维加工领域的工艺研究及应用进展,并介绍了超快激光精密制造装备在国内外的研制情况,对今后超快激光精密制造技术研究的发展趋势进行了探讨和展望。

关键词:超快激光;精密制造;微纳结构;装备中图分类号:TN249 文献标识码:A DOI:10.3969/j.issn.1001 5078.2020.12.001ResearchandapplicationofultrafastlaserprecisionmanufacturingtechnologyDUYang,ZHAOKai,ZHUZhong liang,WANGJiang,DENGWen jing,LIANGXu dong(ShanghaiAerospaceEquipmentsManufacturingCo.,Ltd.,Shanghai200245,China)Abstract:Ultra fastlaserfeaturesultra shortlaserpulses,ultra highpowerdensity,lowablationthresholds,ultra fineprocessingandcoldprocessing Inrecentyears,ithasreceivedextensiveattentionfromtheinternationalacademicandengineeringcircles Thedevelopmenthistoryofultra fastlaserprecisionmanufacturingtechnologyissortedout,andtheprogressofultra fastlaserprecisionmanufacturingtechnologyinthefieldofsurfaceprocessingand3Dprocessingisreviewed Atthesametime,Thedevelopmentofultra fastlaserprecisionmanufacturingequipmentathomeanda broadisintroduced Finally,thedevelopmenttrendofultra fastlaserprecisionmanufacturingtechnologyresearchisdiscussedandprospected.Keywords:ultra fastlaser;precisionmanufacturing;micro nanostructure;equipment基金项目:国家自然科学基金青年基金项目(No 51705328);上海市青年科技英才扬帆项目(No 17YF1408500)资助。

高功率啁啾高斯脉冲在光纤中传输的形变研究

高功率啁啾高斯脉冲在光纤中传输的形变研究

高功率啁啾高斯脉冲在光纤中传输的形变研究
浮怀铎;许立新(指导);王安廷
【期刊名称】《量子电子学报》
【年(卷),期】2011(28)3
【摘要】从光纤广义非线性薛定谔方程出发,定义了用于衡量脉冲形变大小的脉冲形变因子,定量地分析了在传输过程中脉冲形变因子、临界长度、临界功率及初始啁啾之间的关系。

结果表明:在传输过程中,当入射脉冲的峰值功率一定时,正啁啾脉冲的形变比负啁啾脉冲和无啁啾脉冲的形变小;当脉冲的初始啁啾一定时,脉冲传输的临界长度随着传输功率的增加而降低,且随着功率的增大,不同初始啁啾脉冲的临界长度趋于一致;在传输距离一定时,临界功率与初始啁啾呈线性变化,且啁啾的漂移对正啁啾脉冲的临界功率影响较大。

【总页数】5页(P357-361)
【关键词】非线性光学;脉冲形变因子;脉冲展宽因子;啁啾高斯脉冲
【作者】浮怀铎;许立新(指导);王安廷
【作者单位】中国科学技术大学光学与光学工程系,安徽省光电子科学与技术重点实验室,安徽合肥230026
【正文语种】中文
【中图分类】TN253
【相关文献】
1.高斯脉冲在光纤中传输的光纤光栅色散补偿研究 [J], 裴丽;宁提纲;延凤平;简水生;谢增华;李唐军
2.光脉冲在非啁啾光纤光栅中的透射传输研究 [J], 赵俊荣;余震虹
3.超高斯啁啾光脉冲在单模光纤中传输的演化行为 [J], 郭仿军;夏光琼;林晓东;吴正茂
4.啁啾高斯脉冲在光纤中传输的脉冲展宽研究 [J], 赵玉辉;郑义;张玉萍;张兴坊;詹仪
5.采用啁啾光纤光栅补偿带啁啾的超高斯脉冲在光纤中传输的色散 [J], 高耀辉;冯国英;李小东;陈建国
因版权原因,仅展示原文概要,查看原文内容请购买。

高斯光束小尺度自聚焦的临界功率_邓剑钦_王兴龙_刘侠_肖青 (1)

高斯光束小尺度自聚焦的临界功率_邓剑钦_王兴龙_刘侠_肖青 (1)

L OP网络预出版:标题:高斯光束小尺度自聚焦的临界功率作者:邓剑钦,王兴龙,刘侠,肖青收稿日期:2016-08-03录用日期:2016-09-19DOI:10.3788/lop54.011901引用格式:邓剑钦,王兴龙,刘侠,肖青. 高斯光束小尺度自聚焦的临界功率[J].激光与光电子学进展,2017,54(01):011901.网络预出版文章内容与正式出版的有细微差别,请以正式出版文件为准!————————————————————————————————————————————————————您感兴趣的其他相关论文:贝塞尔晶格中高斯光束的传输鄢曼 覃亚丽 任宏亮 李伽 薛林林浙江工业大学信息工程学院光纤通信与信息工程研究所, 浙江 杭州 310023激光与光电子学进展,2015,52(2):021901 非线性诱导的功率控制高斯光束变换效应陆大全华南师范大学信息光电子科技学院 广东省微纳光子功能材料与器件重点实验室, 广东 广州 510631激光与光电子学进展,2013,50(7):071901 用于实现激光高效率加工的光束整形技术夏国才 孙小燕 段吉安中南大学机电工程学院, 湖南 长沙 410083激光与光电子学进展,2012,49(10):100002高功率激光系统中的小尺度自聚焦研究陈宝算 张军勇 张艳丽 刘德安 朱健强中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800激光与光电子学进展,2012,49(1):010002非局域空间光孤子临界功率的确定寿倩华南师范大学光子信息技术广东省高校重点实验室, 广东 广州 510631激光与光电子学进展,2011,48(8):081901网络出版时间:2016-10-14 14:14:21网络出版地址:/kcms/detail/31.1690.TN.20161014.1414.050.html高斯光束小尺度自聚焦的临界功率邓剑钦1,2王兴龙2 刘侠2肖青1,21天津大学精密仪器与光电子工程学院,激光与光电子研究所,天津 3000722珠海光库科技股份有限公司,广东珠海 519000摘要通过理论分析和数值模拟研究了高斯光束发生小尺度自聚焦的临界功率。

LD光束在自聚焦透镜中的传输特性

LD光束在自聚焦透镜中的传输特性

LD光束在自聚焦透镜中的传输特性
徐强;曾晓东;安毓英;曹长庆
【期刊名称】《光子学报》
【年(卷),期】2007(36)B06
【摘要】基于分析激光二极管光束传输特性,运用厄米-高斯光束描述其远场分布.将自聚焦透镜用于激光二极管的光束整形,用2阶传输矩阵描述自聚焦透镜.运用Collins衍射积分公式,分析了LD光束在自聚焦透镜中传输场分布的解析表达式.在此基础上,数值计算了一种LD光束在自聚焦透镜中场分布.该模型结构简单,可用于分析光束传输特性和设计光束整形系统.
【总页数】3页(P72-74)
【关键词】激光二极管;椭圆厄米高斯光束;自聚焦透镜;光场分布
【作者】徐强;曾晓东;安毓英;曹长庆
【作者单位】西安电子科技大学理学院;西安电子科技大学技术物理学院
【正文语种】中文
【中图分类】TN248
【相关文献】
1.LD光束经自聚焦透镜变换后的特性研究 [J], 张大勇;周寿桓;梁峰;赵鸿
2.强光束传输的非旁轴矢量自聚焦理论 [J], 文双春
3.高速调制光束在桥式相位共轭镜中的传输特性 [J], 李焱;冯玉文;姜永远;孙秀冬;周忠祥;许克彬
4.自聚焦圆贝塞尔高斯涡旋光束在自由空间中的传播特性 [J], 江骏杰;邓冬梅
5.有限能量Airy光束的小尺度自聚焦特性 [J], 于文龙;章礼富;谭超;傅喜泉
因版权原因,仅展示原文概要,查看原文内容请购买。

啁啾高斯脉冲光束在正色散介质中的自聚焦特性

啁啾高斯脉冲光束在正色散介质中的自聚焦特性

啁啾高斯脉冲光束在正色散介质中的自聚焦特性楚晓亮;刘兰琴;周凯南;郭仪;张彬;蔡邦维;魏晓峰;朱启华;黄小军;曾小明;王晓东;王逍【期刊名称】《强激光与粒子束》【年(卷),期】2005(17)12【摘要】采用分步法结合Hankel变换对修正薛定谔方程进行数值求解,通过数值计算对飞秒脉冲在非线性正色散介质中的自聚焦特性进行了简要分析.在此基础上,针对啁啾脉冲放大系统(CPA)中的啁啾高斯脉冲,对其全光束自聚焦特性进行了计算模拟和分析讨论.研究结果表明,群速度色散(GVD)对大啁啾脉冲的影响很小,谱宽对自聚集的影响可以忽略.因此,具有大啁啾的脉冲在非线性正色散介质中的自聚焦特性不同于飞秒脉冲,而与纳秒脉冲相似.【总页数】5页(P1794-1798)【作者】楚晓亮;刘兰琴;周凯南;郭仪;张彬;蔡邦维;魏晓峰;朱启华;黄小军;曾小明;王晓东;王逍【作者单位】四川大学,电子信息学院,四川,成都,610064;中国工程物理研究院,激光聚变研究中心,四川,绵阳,621900;中国工程物理研究院,激光聚变研究中心,四川,绵阳,621900;中国工程物理研究院,激光聚变研究中心,四川,绵阳,621900;四川大学,电子信息学院,四川,成都,610064;四川大学,电子信息学院,四川,成都,610064;中国工程物理研究院,激光聚变研究中心,四川,绵阳,621900;中国工程物理研究院,激光聚变研究中心,四川,绵阳,621900;中国工程物理研究院,激光聚变研究中心,四川,绵阳,621900;中国工程物理研究院,激光聚变研究中心,四川,绵阳,621900;中国工程物理研究院,激光聚变研究中心,四川,绵阳,621900;中国工程物理研究院,激光聚变研究中心,四川,绵阳,621900【正文语种】中文【中图分类】TN241;O437.5【相关文献】1.单模光纤中无初始啁啾超高斯脉冲特性的研究 [J], 王跃;李永倩;李晓娟;孟祥腾;王宇2.贝塞尔-高斯脉冲光束在色散介质中的时间和光谱特性 [J], 邹其徽;吕百达3.部分相干高斯—谢尔模光束在负色散介质中的光谱特性 [J], 戈迪4.啁啾高斯脉冲通过增益色散介质的传输特性 [J], 冯婷;曾曙光;张彬5.色散介质中啁啾高斯脉冲的时间和光谱特性 [J], 邹其徽;吕百达因版权原因,仅展示原文概要,查看原文内容请购买。

超小自聚焦光纤探头的研究进展

超小自聚焦光纤探头的研究进展

超小自聚焦光纤探头的研究进展王驰;旷滨;孙建美;朱俊;毕书博;蔡楹;于瀛洁【摘要】梯度折射率(Gradient-index,GRIN)光纤探头是一种全光纤型超小光学镜头,在心血管等狭小空间组织内窥影像检测中具有广阔的应用前景.但其发展一直缺少系统的理论体系.本文讨论探头设计、制作和性能测试等方面的关键问题.基于GRIN光纤探头聚焦性能的特征参数,对解析设计方法与数值仿真设计方法进行比较分析.针对超小GRIN光纤探头的制作难题,研究一种光纤熔接和切割的高精度一体化集成装置,描述GRIN光纤探头的制作方法.此外,分析了超小GRIN光纤探头聚焦性能检测的方法及装置.本文为超小GRIN光纤探头的设计、制作及性能测试提供了一个方法体系.【期刊名称】《中国光学》【年(卷),期】2018(011)006【总页数】14页(P875-888)【关键词】光学相干层析;微小光学探头;自聚焦光纤镜头;GRIN光纤探头;光纤熔接与切割【作者】王驰;旷滨;孙建美;朱俊;毕书博;蔡楹;于瀛洁【作者单位】上海大学精密机械工程系,上海200072;近地面探测技术重点实验室,江苏无锡214035;上海大学精密机械工程系,上海200072;上海大学精密机械工程系,上海200072;近地面探测技术重点实验室,江苏无锡214035;上海大学精密机械工程系,上海200072;近地面探测技术重点实验室,江苏无锡214035;上海大学精密机械工程系,上海200072【正文语种】中文【中图分类】TP394.1;TH691.91 IntroductionOptical coherence tomography(OCT[1-3]) is becoming increasingly promising in the fields such as biomedical and surgical operations due to its advantages including rapid imaging speed, high resolutions, and non-contact detection, etc.. Following the X-ray computed tomography(XCT) and magnetic resonance imaging(MRI), OCT is another tomography technology which can be used to obtain the internal structure information of the samples by detecting interference signal. In OCT system, optical probe is a key component that transmits and focuses light beam(e.g. Gaussian beam) inside a sample of interest, and then collects the reflected or scattered light carrying information about the sample and sends the information to the signal processing system. Its focusing performance plays an important role in determining the imaging quality of the OCT system. For example, the focal waist location and spot size of the probe respectively determine the penetration depth and lateral resolution to a large extent. However, most biological tissues are optically nontransparent, so the detection depth of OCT is limited, generally in the range of 1-3 mm[4]. The development of small endoscopic optical probes has become an important growing branch of OCT technology.Gradient-index(GRIN) fiber probe is defined to be as an all-fiber-typeultra-small optical probe, which typically consists of a single-modefiber(SMF), a no-core fiber(NCF), and a GRIN fiber lens. It could be suitable for the imaging detection in deep, narrow tissues or organs such as cardiovascular system, and has been investigated by some researchers in recent years. Lin[5] presented a novel application approach in the study of two-segment lensed fiber collimator. Swanson[6] was granted an invention patent for ultra-small GRIN fiber probe. Then, Reed and Jafri et al. developed in-vivo OCT imaging system [7-8]. Since 2007, Dr. Mao et al. studied the fabrication method and performance testing method of such GRIN fiber probe[9-10]. Jung[11]analyzed a miniaturized OCT probe model, comprising of a “SMF+NCF+GRIN lens”, with the ABCD matrix algorithm for a Gaussian beam. Lorenser[12]modeled the ultra-small GRIN fiber probe with the Beam Propagation Method(BPM). In recent years, the group headed by Prof. Sampson D. D. at the University of Western Australia has obtained application solutions of breast cancer and preliminary testing results of optical image with the OCT system based on GRIN fiber probe[13]. In addition, Schmitt R. studied the testing scheme of micro-deep holes by using endoscopic detection system based on this probe[14-15] .Ultra-small GRIN fiber probe has many advantages on endoscope detection. However, the design theory of GRIN fiber probe has been largely overlooked or only simplified in the above studies. In addition, this kind of probe is difficult to fabricate due to its ultra-small size. Since 2011, our research group has researched the design theory of the GRIN fiberprobe through analytical method and numerical simulation technology[16-22]. And the fabrication method of the fiber probe based on fiber cutting and fiber welding were preliminary studied[23]. These design methods published previously are described in this paper. Advantages of each method are presented. Based on the existing researches, we have recently developed a high precision optical integration machine with functions of fiber welding and fiber cutting. In addition, detection method for the focusing performance of the probe is overviewed together with the coupling efficiency testing method.2 Optical model of the GRIN fiber probeFig.1 displays a typical model of GRIN fiber probes, which is composed of a single-mode fiber(SMF), a no-core fiber(NCF), and a GRIN fiber lens. The SMF is connected with the detection arm of the OCT system, and guides the light beam into the NCF. The NCF is a kind of special fiber with homogeneous refractive index. Adding the NCF is able to improve the focusing performance of the probe by expanding the beam and thus to overcome the problem of limited mode field diameter of the SMF. However, the length of NCF should be chosen appropriately. On one hand, when the NCF is too long, overflowing of some light energy may exist off the probe side which will finally reduce beam coupling efficiency. On the other hand, when the NCF is too short, it may result in the failure of expanding beam and improving the focusing performance of the probe. GRIN fiber lens is the most critical part of the probe that performs a self-focusing function due to the continuous change of refractive index. Whenthe length of the GRIN fiber lens goes close to 1/4 pitch(or the integer times), the lens will get a really short focal length for strong focusing performance; When the length is close to 1/2 pitch(or the integer times), a longer focal length will be got with a bigger spot size. In the study of the imaging performance of an OCT system, a longer focal length is needed in order to obtain a deeper detection depth. In addition, focusing spot size is as small as possible to get a higher lateral resolution. Therefore, a tradeoff is adopted to determine the length of GRIN fiber lens. An ideal design for ultra-small GRIN fiber probe can be obtained by using a NCF spacer with the characteristics of beam-expanding to improve the focusing performance. The length of NCF and the length of GRIN fiber lens are in the submillimeter range; therefore it is a challenging problem to achieve high precision cutting and welding of such short fiber components. It is noted that, the refractive indices of the NCF and the core of GRIN fiber at the axis should match that of the SMF at the core, in order to minimize the influence of the complicated reflection of input beam by different optical interfaces on OCT imaging quality.Fig.1 Model of GRIN fiber probe3 Design methods of GRIN fiber probe3.1 Analytical design methodThe optical characteristic parameters is the theoretical basis for design of GRIN fiber probe, which are defined as in Ref.[16]. Working distance is the distance between the output end of the probe and the focal plane, characterizing the detection depth of the OCT system. Focused spot size isthe waist diameter of Gauss beam focused by the probe, characterizing the lateral resolution of the OCT system. Depth of field is twice of the Rayleigh range of the Gauss beam, characterizing the range of the detection depth of the OCT system. A brief overview is described below. As shown in Fig.1, an approximate Gaussian beam is output from the SMF with a wavelength of λ and a radius of ω0, then transmits into the NCF with an index of n1, and then transmits into the GRIN fiber lens with an index profile described by the formula (1). The light beam is eventually focused into a spot with a waist radius of W and a waist location of Zw in air. The refractive index of air is n2. The refractive index at the center of the GRIN fiber lens is n0. L0 and L represent the length of the NCF and the length of the GRIN fiber lens, respectively. Planes 1 to 6 denote the input plane, two interfaces between the NCF and the GRIN fiber lens, two interfaces between the GRIN fiber lens and the air, and the focal plane, respectively. The refractive index of a GRIN fiber lens can be described as the following quadratic equation.(1)Where r is the radius, and g is the gradient constant. Assigning a=λ/n1πw2, according to Ref.[16], the expression of the working distance can be described as formula (2) by adopting the complex beam parameter matrix transformation method.(2)WhereS1=-2n1n2L0a2S4=2n0n1gL0a2The expressions of the spot size can be described as formula (3).(3)WhereThe expressions of the Rayleigh range can be described as (4):(4)According to formulas above, we can comprehensively analyze the relationship between the focusing performance and the structural parameters of the GRIN fiber probe, the results can be used to optimize ultra-small GRIN fiber probes with specific optical performance requirements. For example, MATLAB is adopted to further solve these expressions of the characteristic parameters by means of drawing the function plots between the characteristics and the length of the fiber spacer L0 and the length of GRIN fiber lens L. As shown in Fig.2, Fig.2(a)illustrates the contour relationship plots of working distance and spot size. Fig.2(b) shows the relationships between working distance and spot size and the length of NCF L0, given a constant length of the GRIN fiber lens L=0.1 mm. Fig.2(c) shows the relationships between working distance and spot size and the length of a GRIN fiber lens L, given a constant NCF length L0=0.36 mm. According to Fig.2, it is obvious that NCF can improve the focusing performance of the GRIN fiber probe and increase the working distance while still keeping the focusing spot small. In addition, the working distance shows periodicity with the increasing of the length of the GRIN fiber lens, which depends on the pitch length of the lens.Fig.2 Relationship between characteristics and the lengths of probe componentsGenerally speaking, one tends to design an OCT system with working distance and depth of field as long as possible and lateral resolution as high as possible, respectively. In addition, the lateral resolution decreases with the increase of spot size. Therefore, the length of the NCF and the length of the GRIN fiber lens should be chosen to achieve a trade-off between the working distance and the lateral resolution of an OCT imaging system in order to optimize the design of GRIN fiber probe. As a special and useful case of interest, according to Fig.2(b), when the NCF length ranges from 0.32 to 0.4 mm, given the length of GRIN fiber lensL=0.1 mm, the working distance is located into 0.5 to 0.76 mm, and correspondingly the spot size is located into 26 to 40 μm. Therefore, in order to meet such different requirements of the OCT imaging probe, theuse of NCF length, 0.32 to 0.4 mm, may be a good tradeoff, which means that the working distance is greater than 0.5 mm and the spot size less than 40 μm.From Fig.2, we find another important conclusion that the characteristic parameter can change sharply within some length ranges of the NCF or GRIN fiber lens. Since the length of the GRIN fiber probe is less than 1 mm, any small error in either the length of the NCF or that of the GRIN fiber lens during fabrication can have a great impact on its optical focusing performance. In Ref.[21], the partial derivatives of the mathematical expressions and 2-D curvature graphs of characteristics are adopted to analyze this mutation in detail when designing the lengths of the NCF and the GRIN fiber lens. The selected lengths of the two components of the GRIN fiber probe should meet the specific performance and avoid obviously mutational range.3.2 Numerical design method by using GLADAs presented above, analytical design method can help analyze and design such ultra-small GRIN fiber probe with special demands of optical properties by means of the mathematical expressions of characteristic parameters. The use of NCF can improve the focusing performance of GRIN fiber probe by means of its effect of expanding beam. However, it is difficult to obtain the beam profile at locations of interest, e.g. input plane, two interfaces between the NCF and the GRIN fiber lens, two interfaces between the GRIN fiber lens and the air, and the focal plane, etc.. The beam parameters and the beam profile within the ultra-small GRIN fiberprobe path are very difficult or even impossible to measurement by experimental method due to its very limited size. In order to solve such issues, the numerical design method was proposed to model GRIN fiber probes in Ref.[18] by using the optical software of GLAD which has the capability of modeling almost any type of physical optical systems. GLAD treats optical beams as complex amplitude distribution, and gives a much more powerful analysis capability. It models the GRIN fiber probe by assigning relative parameters of light source and optical components. Take a special case of the GRIN fiber probe as an example, Fig.3 shows the full profile of all points along the optical path through the probe with the length of NCF L0=0.36 mm and the length of GRIN L=1.24 mm. Fig.3(a) displays beam profile as a function of distance from the surface of the SMF to a total distance of 3.52 mm. Fig.3(b) demonstrates beam width vs. axial position. From Fig.3, we can acquire the best focus position at about 2.35 mm, and thus the working distance 0.75 mm, and the spot size 36 μm. It is obvious that the beam is expanded through the NCF, then focused and thus narrowed down through the GRIN fiber lens.Fig.3 Beam profile of all points along the optical path going through the probe3.3 Numerical design method by using VirtualLabGLAD can help obtain the beam profile at all locations along the propagation direction in addition to the internal probe. However, it is a kind of programing language and is very difficult for a general user to get a quick grasp. And the design process of GRIN fiber probe is verycomplicated. Therefore, the authors proposed another numerical design method by means of the commercial optical software VirtualLab as described in Refs.[19-20]. VirtualLab is a unified optical modeling platform and numerical analysis software for physical optics, designed by German LightTrans Company. Based on the theory of electromagnetic field, it canbe used to model all light sources and arbitrary transmission by the usageof field tracking. Model is built in the form of Light Path Diagram(LPD). The light source, components and detectors used in the system, can be called from the optical element library and their optical characteristic can be edited flexibly.Fig.4 Light path diagram of GRIN fiber probeFig.4 is the LPD to model GRIN fiber probe. The element “Gaussian Wave” represents the input Gaussian beam. The output of SMF can be considered as the incident position of the Gaussian beam. Optical element “NCF” represents the coreless fiber. Optical element “GRIN fiber lens” indicates the self-focus fiber lens. Opt ical element “Detector” indicates the beam parameter detector for detecting the waist size of Gaussian beam. Optical element “Virtual Screen” is to observe the intensity distribution of Gaussian beam. By double-clicking the corresponding symbol, we can flexibly change parameters to complete the configuration of the light source and optical elements. Fig.5(a) shows the intensity distribution of Gaussian beam at the output end of a GRIN fiber probe by setting the length of NCF as 0.36 mm and the GRIN fiber length as 0.11 mm. Fig.5(b) shows the plot of beam radius versus the axial position. It can bemonitored that the Gaussian beam is focused and then gradually diverged at the exit end of the probe. The position with minimal beam radius along the Z-axis is the waist position of the output Gaussian beam. The radius of the waist position is spot size.Fig.5 Beam focal performance at different locations along the propagation path4 Fabrication of GRIN fiber probeFabricaion of GRIN fiber probe is a very difficult and important task due to its limited size, it needs high-precision manufacturing devices and methods. In order to solve this problem, we have recently developed an all-in-one integration fabrication device of ultra-small GRIN fiber probe as shown in Fig.6, which is made of fiber welding unit and fiber cutting unit. The characteristic of this encapsulation device is to achieve the integration of fabrication device of ultra-small GRIN fiber probe. The steps of fiber cutting and fiber welding are operated on the same device during fabricating the ultra-small GRIN fiber probe, which further simplifies the fabrication process and improves the fabrication efficiency of ultra-small fiber probe.Fig.6 All-in-one integration device for fiber welding and cuttingThis machine can cut and weld bare fibers with high cutting precision about 5 μm. The length of NCF and GRIN fiber can also be measured by this device. And the measurement accuracy is about 1 μm. The fabrication process of the GRIN fiber probe is shown in Fig.7, and the main steps are as follows:(1)Fuse the NCF to the single-mode optical fiber; (2)Cut the NCFto certain length as fiber spacer by taking the fusion point A as the origin between SMF and NCF; (3)Fuse the GRIN fiber lens to the fiber spacer; (4)Cut GRIN fiber to pre-calculated length as the focusing lens by taking the welding joint B as the origin between the fiber spacer and the GRIN fiber lens. Through the above methods, we have fabricated six groups with different sizes of the probe and measured the lengths of probe components with high magnification rate microscopic, as shown in Tab.1. Fig.7 Process of fabricating a GRIN fiber probeTab.1 Preset length and the measured length of probe componentsGroupNCF length/mmGRIN fiber lens length/mmPresetlength100.360200.41030.1600.20040.2400.14050.3600.11060.3000.150Mea suredlength100.356200.40730.1640.20040.2420.14150.3560.10860.3000.1465 Properties detection methods of GRIN fiber probeThe miniaturization of dimension and focusing spot is the main advantage of GRIN fiber probe, however, it is difficult to detect the focusing performance of the probe with high precision and speed by traditional beam detection methods, i.e. the mechanical scanning and array detection method, owing to the low efficiency and poor real-time performance in mechanical scanning method[24-25] and the resolution limited by pixel sizes in array detection method[26-27]. Based on the characters of focusing performances, this paper describes a non-contact detection method with infinity optical transformation technology as presented in Ref.[28]. The accurate position of the probe is realized through the preciseadjustment mechanism. Finally, the focusing performances are obtained by using curving fitting method with measured data captured from the measurement system.The working distance of GRIN fiber probe generally does not exceed 1 mm, and the focus spot size is about 40 μm. The above characters indicate that the focusing position is too close to the output plane of lens with a micro focus spot. Hence, during the measurement of focusing performances, the output plane of the lens should avoid direct contact with the detector, due to the limitation of dimension and beam parameters of the probe. Fig.8 presents theproperty testing method. The distribution of light intensity at various distances along the direction of propagation after the lens is captured through changing the distance between the lens and the detector along the optical axis. Then, the working distance and the spot size are calculated from the measured intensity distribution.Fig.8 Schematic diagram of the property testing method for the GRIN fiber probeIn order to achieve the reliable mind about detecting the focusing performance of the micro fiber lens as shown in Fig.8, an infinity optical transformation system is presented in Fig.9 based on precise adjustment mechanism. The center of the light from a source through the lens is aligned with the center of the detector by accurately adjusting the lens position. Then, the light is captured with magnification by the infinity optical transformation system in a non-contact mode. The CCD camera converts the optical signals to electrical signals which are then transmitedinto a computer. Finally, the computer software analysis the beam information and provides illuminating displays for beam parameters, such as beam width, peak power, and intensity distribution, etc.Fig.9 Schematic diagram of the focusing performance measurement of the GRIN fiber probeThe measurement system corresponding to Fig.9, can be composed of a Beam Analyzer USB(Duma Optronics Ltd.) with 1.0 μm resolution, a superluminous diode source(SLD-1310-18, Fiberlabs), a microscopic objective lens(M Plan Apo NIR 10X, Mitutoyo), and a precise adjusting platform, etc. In the process of detection, the small fiber probe is fixed on the adjusting platform. The light source is connected to the lens by single-mode fiber, and the CCD detector will capture the magnified beam under the effect of the optical transformation system for analyzing the beam parameters. Before measuring the beam profile from the lens, we use the precise adjustment mechanism(attached a fiber jig) to adjust the position of the probe and make exit beam vertical to the CCD receiving plane. Finally, in order to collect the beam parameters at various distances along the direction of propagation, the probe moving to change the distance between the probe and the detector by adjusting the platform.Tab.2 shows the properties comparison between the testing data and the calculation data using different design methods. It is obvious that, the calculation results of working distance and spot size are almost the same as those experimental data. Therefore, the presented design methods for investigating GRIN fiber probe are feasible and effective. In terms of thedifferences between the experimental and calculation results, there could be the following reasons. Firstly, the cutting lengths of NCF and GRIN fiber lens cannot be completely precisely consistent with the pre-calculated lengths, results in errors of beam expanding and focusing between the experimental and calculation data. Secondly, the actual indices of the center of GRIN fiber lens and the NCF as well as the core of SMF are not same, which leads to beam back reflection between different interfaces. However, this phenomenon is not taken into account in the calculation programe. Thirdly, the measurement error of the experimental system is another reason. Moreover, there may be some other factors to be investigated.Tab.2 Properties comparison between the testing values and the simulating dataTypesSamplesNCF/mmGRIN fiber lens/mmWorking distance/mmSpot size/μmExperimental 10.360.100.7531results[9-10]20.360.110.602930.360.120.5026Analyticalcalculation10.360.100.7532.4results20.360.110.6323.730.360.120.5118.4Nu merical calculation10.360.100.7333results usingGLAD20.360.110.642830.360.120.5225Numericalcalculation10.360.100.7532results using VirtualLab20.360.110.632430.360.120.5119Fig.10 Detection scheme of the coupling efficiencyFig.11 Detection system of the coupling efficiencyIn addition, the coupling efficiency of GRIN fiber probes, which reflects the comprehensive focusing performance of probes, is an importantcharacteristic parameter for determining the detection performance of OCT system and it affects the sensitivity of OCT detection system. In Ref.[29-35], a theoretical equation for the coupling efficiency of probes is derived using an analytical approach based on the optical model of ultra-small GRIN fiber probe and transmission characteristics of the Gaussian beam. Variation and influencing factors were analyzed and verified by establishing the corresponding experiment system for testing. The detection scheme of coupling efficiency was investigated by the theoretical calculation method of coupling efficiency of the probe, and Fig.11 shows the actual detection system corresponding to Fig.10. The output and receiving ends of the probe with fiber clamps are placed on two five-dimensional adjustment platforms and fixed to the optical isolation platform. The output and receiving ends of the probe are connected to the output laser and power receiver respectively. The microscope is used to adjust the relative position of the two fiber probes to ensure that the central axes of the two probes overlap with each other. During the experiment, the fixed five-dimensional adjustment platform is used for placing the output end of the probe, and that for placing the receiving end of the probe is used to change the axial distance between the two probes. During the experiment, the adjustment platform for placing the receiving fiber probe is gradually adjusted to only change the axial distance between fibers. The corresponding power value received by the power meter at every position is recorded until the power value drops near zero. After recording all the power values, the coupling efficiency iscalculated to analyze the relationship between the coupling efficiency and the axial distance of the probe. It is noted that, the actual coupling efficiency of ultra-small GRIN fiber probe was investigated by introducing the energy loss factor and position error factor and a method was proposed to estimate the energy loss factor based on the simulated annealing algorithm. The result indicates that the ultra-small GRIN fiber probe has a superior focusing performance, and the mechanism of energy loss of the probe itself should be further explored in the future.6 ConclusionsStudy of the gradient-index lens based small optical probes is an important topic for the miniaturization of OCT systems[36-40]. GRIN fiber probe is an ultra-small optical probe that may be used for the imaging of small lumen, narrow space in the deep tissues and organs(e.g. Cardiovascular) of human beings and small animals. In this paper, some different design methods are described. The calculating data are well agreement with the previously published experimental results and thus demonstrate the effectiveness of the design methods. Therefore, the authors argue that these design methods can be used as a design theory of GRIN fiber probes[41-46].From this paper, we give the other conclusions. Different analytical and numerical methods can solve the problem of the design of the GRIN fiber probe, and each one enjoys its own advantages. The analytical design method, by using the expressions of optical characteristics parameters of GRIN fiber probe, can help analyze the function relationships between thefocusing properties of the probe and its different influencing factors comprehensively. For example, the three-dimensional graphs of characteristics parameters can be adopted to intuitively judge the influence of different lengths of NCF and GRIN fiber lens on the probe focusing performance. The application of GLAD makes it easy to analyze the propagation performance of the beam at all locations going through the probe directly. The utilization of VirtualLab is convenient for probe modeling and parameter setting.This paper proposed a high precision fiber welding-cutting device with the welding unit and cutting unit. The device is utilized to fabricate several groups of the GRIN fiber probes and measure the lengths of their components with high magnification rate microscope. The result shows that the measured lengths are similar to the preset lengths, which further verifies the designed device requirements about fabrication of the probe, and it can be used in the researches of miniaturized optical probe and OCT system.In addition, it is very difficult to detect the focusing performance of the probe with high precision and speed by traditional beam detection methods due to the miniaturization of dimension and focusing spot. Based on the characters of focusing performances, this paper describes a non-contact detection method with infinity optical transformation technology. And the detection scheme of coupling efficiency of GRIN fiber probes was described, which reflects the comprehensive focusing performance of probes. As a result, a system of design, fabrication and testing methods is。

陈鹤鸣激光原理高斯光束.pptx

陈鹤鸣激光原理高斯光束.pptx

A B 1 L
TL
C
D
0
1
R2
AR1 CR1
B D
(遵循ABCD变换法则)
第12页/共39页
(2)经过薄透镜的变换规律
R1 (z) R2 (z)
O1
O2
F
(遵循ABCD变换法则)
1 11
R2 R1 F
A
TF
C
B D
1 1
F
0
1
R2
AR1 CR1
B D
(3)经过球面镜反射
(z)
1
1
i
q(z) R(z) 2(z)
q( z )复曲率半径
u00 ( x,
y,
z)
c
0
(z)
exp
i
k(z
x2 y2 2q(z)
)
(z)
均匀球面波:
u( x,
y, z)
u0 R
exp i
k(z
x
2 y 2R
2
)
0
第10页/共39页
可将基模高斯光束看作具有复数波面曲率半径的球面波光束
A2q 2 0
ACq 2 0
B2 BD
1 F
(1
lC F
)2
(
0
2
)2
(l
lC
llC F
)2
(1
lC F
)2
2
(0
)2
(l
lC
llC F
)2 (1
l F
)
第18页/共39页
特例:求 l、0 (变换后的焦斑大小和焦斑距离)
0
0 c
A B l

高斯光束整形为平顶光束的双凸非球面镜的数值模拟与分析

高斯光束整形为平顶光束的双凸非球面镜的数值模拟与分析
Ke wor y ds: u sa e m ; atp b a ; o v x a p rc m i o ; ra tr fs ra e s a e; s e iiy Ga s i n b a f to e m c n e s he i r r pa me e o u fc h p a ph ret l s

t a a a t r if e c n te d sg fa p e i ro u f c . h n, c o dn ot e a ta e u rme t o p t i lp r mee s n u n eo h e in o s h rcmi rs ra e T e a c r i gt h cu lr q i c l e ns fi u n e p e so s i EMA , e g t h e ts cu e o s h r ro y t m y mah maia i lt n x r s in n Z X w e e b s t t r fa p e i mi rs se b te t lsmua i . t r u c r c o
CHEN i CHEN n , n , U n , AN o g we , Ka , Me g LIGa g NI Ga g F Zh n — i MA n—e g Yu fn 。
( .ntueo ae n i eigB in n e i f ehooy B in 0 14 C ia2 B in K Lsr eh o g 1 Istt f sr g e,e ig10 2 , h ;. e igG ae cnl i L E n n j v sy g j n j T o y C . Ld B in 00 5 C ia3 A ae yo p — et nc, hns cdm f cecsB in 0 00,hn ) o ,t,e ig10 8 , hn ;. cdm f t e c oi C ieeA ae yo i e, eig108 C i j O ol r s S n j a

厄米_高斯光束通过含硬边光阑光学系统束宽传输近似解析方程

厄米_高斯光束通过含硬边光阑光学系统束宽传输近似解析方程

∫ ∫
式中
M ikw2 0 1 2 p/ 2 (1 ) exp ( - ikz ) ρ Fj 2 B j = 1 Qq Qq 2 2 k w0 ikD ) q2 〕 ×exp〔- ( + Hp ( Rqq) 2B 4 B 2 Q2q ( q = x , p = m , j = j1 ; q = y , p = n , j = j2 , 下同)
2 2 2 2 3 3 exp ( - η w )〔 3 πexp (η w ) erf (η w) - 6η w - 4η w ) 〕 5 - w 4η ∞ 15 π ∞ 3 π 2 2 6 2 2 4 exp ( - η x ) x dx = , exp ( - η x ) x dx = 5 - ∞ - ∞ 8η7 4η ( 11) 得到 TEM11 模的束宽传输的近似解析方程为 : ( 12) S 11 xS 11 y = 0 . 8 式中 :
ikAw0 + 2 2B a ikw0
Q1 2 Gj1 w0
2)
1/ 2
Fj2 2 1/ 2 3 ) 〕 , R1 R2〔 ( 1 Q2 Q2
2 2
+ 1 , Q2 =
焦移量 Δ zf 和最小束宽 wmin 随光阑 - 透镜相对分离量 s/ f 的 ) 可知 , 当 s/ f < 1 时 ,Δ 变化曲线 。 由图 3 (α zf < 0 , 即实际焦 面朝透镜方向移动 ; 当 s/ f > 1 时 , Δ zf > 0 , 即实际焦面朝远 透镜方向移动 ; 当 s/ f = 1 时 ,Δ zf = 0 , 即实际焦平面与透镜 几何焦面重合 。 图 3 ( b) 表明 ,ω min 在 s/ f = 1 处取极大值 , 即 ( b) 分别为 Δ 此时焦面上光强最弱 。 图 4 ( a) 、 zf 和ω min 随截断 参数 α的变化曲线 。 由图 4 ( a) 可知 , | Δ zf | 随 α的增大而减 小。 数值计算表明 , 当 α > 4 . 5 时 , Δ zf 达到一定值 , 即光阑效 应可忽略 。 由图 4 ( b) 可知 , wmin 随α的增大而减小 , 即实际焦 ( b) 分别为 Δ 面上光强随 α的增大而增强 。 图 5 ( a) 、 zf 和 wmin 随光束菲涅尔数 Nw 的变化曲线 。 图 5 表明 , | Δ zf | 和 wmin 均 随 Nw 的增大而减小 , 即随着 Nw 的增大 , 焦移量减小 , 实际焦 面光强值增大 。

自聚焦激光束光束质量评价的功率谱密度方法

自聚焦激光束光束质量评价的功率谱密度方法

自聚焦激光束光束质量评价的功率谱密度方法彭志涛;景峰;刘兰琴;朱启华;陈波;张昆;刘华;张清泉;程晓峰;蒋东镔;刘红婕;彭翰生【期刊名称】《物理学报》【年(卷),期】2003(052)001【摘要】把功率谱密度分析的方法引入到激光束光束质量的评价中,分析了自聚焦激光束的近场分布,研究了强激光非线性自聚焦的一般规律,给出了在一定强度调制下的光束经过钕玻璃介质发生自聚焦成丝效应的B积分阈值条件,实验和理论模拟结果基本一致.【总页数】4页(P87-90)【作者】彭志涛;景峰;刘兰琴;朱启华;陈波;张昆;刘华;张清泉;程晓峰;蒋东镔;刘红婕;彭翰生【作者单位】中国工程物理研究院激光聚变研究中心,绵阳919信箱988分箱,621900;中国工程物理研究院激光聚变研究中心,绵阳919信箱988分箱,621900;中国工程物理研究院激光聚变研究中心,绵阳919信箱988分箱,621900;中国工程物理研究院激光聚变研究中心,绵阳919信箱988分箱,621900;中国工程物理研究院激光聚变研究中心,绵阳919信箱988分箱,621900;中国工程物理研究院激光聚变研究中心,绵阳919信箱988分箱,621900;中国工程物理研究院激光聚变研究中心,绵阳919信箱988分箱,621900;中国工程物理研究院激光聚变研究中心,绵阳919信箱988分箱,621900;中国工程物理研究院激光聚变研究中心,绵阳919信箱988分箱,621900;中国工程物理研究院激光聚变研究中心,绵阳919信箱988分箱,621900;中国工程物理研究院激光聚变研究中心,绵阳919信箱988分箱,621900;中国工程物理研究院激光聚变研究中心,绵阳919信箱988分箱,621900【正文语种】中文【中图分类】O4【相关文献】1.自聚焦激光束光束质量评价的功率谱密度方法 [J], 彭志涛;景峰;刘兰琴;朱启华;张昆;陈波2.环形激光束自聚焦效应的补偿研究 [J], 赵华君;石东平;郑稷;曾祥伦;吴强;3.环形激光束自聚焦效应的补偿研究 [J], 赵华君;石东平;郑稷;曾祥伦;吴强4.高功率激光束光束质量的数值评价方法 [J], 陈哲;曾淳5.双环斑激光束在克尔介质中的自聚焦和光斑分裂效应(英文) [J], 沈常宇;尹宝银;苗润才;陈飞因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

L OP网络预出版:标题:高斯光束小尺度自聚焦的临界功率作者:邓剑钦,王兴龙,刘侠,肖青收稿日期:2016-08-03录用日期:2016-09-19DOI:10.3788/lop54.011901引用格式:邓剑钦,王兴龙,刘侠,肖青. 高斯光束小尺度自聚焦的临界功率[J].激光与光电子学进展,2017,54(01):011901.网络预出版文章内容与正式出版的有细微差别,请以正式出版文件为准!————————————————————————————————————————————————————您感兴趣的其他相关论文:贝塞尔晶格中高斯光束的传输鄢曼 覃亚丽 任宏亮 李伽 薛林林浙江工业大学信息工程学院光纤通信与信息工程研究所, 浙江 杭州 310023激光与光电子学进展,2015,52(2):021901 非线性诱导的功率控制高斯光束变换效应陆大全华南师范大学信息光电子科技学院 广东省微纳光子功能材料与器件重点实验室, 广东 广州 510631激光与光电子学进展,2013,50(7):071901 用于实现激光高效率加工的光束整形技术夏国才 孙小燕 段吉安中南大学机电工程学院, 湖南 长沙 410083激光与光电子学进展,2012,49(10):100002高功率激光系统中的小尺度自聚焦研究陈宝算 张军勇 张艳丽 刘德安 朱健强中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800激光与光电子学进展,2012,49(1):010002非局域空间光孤子临界功率的确定寿倩华南师范大学光子信息技术广东省高校重点实验室, 广东 广州 510631激光与光电子学进展,2011,48(8):081901网络出版时间:2016-10-14 14:14:21网络出版地址:/kcms/detail/31.1690.TN.20161014.1414.050.html高斯光束小尺度自聚焦的临界功率邓剑钦1,2王兴龙2 刘侠2肖青1,21天津大学精密仪器与光电子工程学院,激光与光电子研究所,天津 3000722珠海光库科技股份有限公司,广东珠海 519000摘要通过理论分析和数值模拟研究了高斯光束发生小尺度自聚焦的临界功率。

发现高斯光束小尺度自聚焦的临界功率与初始调制幅度有关。

初始调制幅度越大,高斯光束分裂成丝所需的功率越小;初始调制幅度越小则要求功率越大。

当高斯光束输入功率低于高斯光束小尺度自聚焦临界功率,但高于整体自聚焦临界功率时,在非线性介质中传输时将以全光束塌陷的形态聚焦为一点;当高斯光束的初始输入功率高于高斯光束小尺度自聚焦临界功率时,在非线性介质中传输的高斯光束将分裂形成多根高强度的细丝。

在高斯光束非线性传输过程中,整体自聚焦和小尺度自聚焦效应之间存在相互竞争,竞争的结果由高斯光束的初始参数决定。

关键词自聚焦;小尺度自聚焦;高斯光束;临界功率中图分类号O436.3 文献标识码 ACritical Power for Small-Scale Self-Focusing of Gaussian BeamDeng Jianqin1,2 Wang xinglong2 Liu xia2 Xiao qing1,21Institute of Laser and Optoelectronics, College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China;2Advanced Fiber Resources (Zhuhai), Ltd, Guangdong, Zhuhai 519000, China)Abstract In this paper, the threshold power for small-scale self-focusing (SSSF) of Gaussian beam is studied by both theoretical analysis and numerical simulation. It is foundthat the initial modulation amplitude of noise affects the critical power for SSSF of Gaussian beam. Generally, critical power for SSSF of Gaussian beam decreases with increasing the initial modulation amplitude. Gaussian beam with input power higher than the critical powerfor whole beam self-focusing but lower than the critical power for SSSF will collapse intoa single spot as the laser beam propagats in nonlinear media. In the case of input power above the critical power for SSSF, the Gaussian beam will undergo SSSF, leading to the formation of multiple filamentation.Keywords self-focusing; small-scale self-focusing; Gaussian beam; critical powerOCIS codes190.4390; 260.5950; 140.3530————————基金项目:广东省产学研合作项目(2014B090905016)、广东省应用型科技研发专项资金项目(2015B090921006)作者简介:邓剑钦(1983-),男,博士,主要从事高功率激光的传输与控制等方面的研究。

E-mail:d_j_q_001@1引言自聚焦是强激光非线性传输过程中的一个基本问题[1-4]。

通常分为整体自聚焦和小尺度自聚焦,分别引起光束的整体成丝和多路成丝。

如果细丝的强度超过激光介质的破坏阈值,介质将会被破坏,在用于惯性约束聚变的高功率激光驱动器中,小尺度自聚焦是导致光束质量变差和限制激光驱动器负载的主要因素。

B-T理论对成丝现象给出了比较简单而清晰的解释[5],B-T理论认为发生小尺度自聚焦的光学系统存在一个由光束参数和介质参数共同决定的最快增长的空间调制频率,而最终增长形成细丝的空间调制源正是光束自身的随机噪声。

早在上世纪六七十年代,小尺度自聚焦的B-T理论就在实验上得到了验证[6-8]。

后来,文双春教授等人在强激光的小尺度自聚焦领域做了大量细致的工作,对B-T理论作了推广或修正[9-11],例如非傍轴激光小尺度自聚焦的规律[9]、调制场与本底场的能量交换对多路成丝过程中小尺度自聚焦最终形态的影响[10]、光束局部调制状态下的小尺度自聚焦[11],通过考虑多种不同的实际情况,使其更加接近实际情形。

另外,强激光小尺度自聚焦的抑制方法 [12-13]、调制光束在强非线性介质中的多路成丝[14]和小尺度自聚焦近场光强的熵表征方法[14]等,成为了近几年研究的新热点,同时也为理解实际光学系统中的小尺度自聚焦现象以及如何避免出现严重的小尺度自聚现象,提供了一定的参考意义。

光束小尺度分裂成丝的临界功率,以及细丝的空间分布形态受到光束空间分布的直接影响。

高斯光束是一种最为普遍的激光空间分布,常用激光器大多工作在高斯基模。

高斯光束在非线性介质中的传输特性已被广泛研究,但是高斯光束传输过程中由全光束塌陷向小尺度自聚焦转变时的临界功率一直没有定论。

Fibich等人认为带有初始调制幅度10%噪声的高斯光束,在输入功率为40cr P(cr P为整体自聚焦临界功率)时,将开始表现为小尺度自P[16];而聚焦的形态。

因此,他将40cr P定义为高斯光束小尺度分裂成丝的临界功率MF Campillo等人认为相对均匀的高斯光束在输入功率高至100cr P时,仍然表现为全光束塌陷的聚焦形态[17]。

显然,两者得到的临界功率值具有很大的差异,而小尺度自聚焦效应是强激光传输过程中不可避免的现象。

因此,获得高功率高斯型激光小尺度自聚焦的临界功率,对于理解高功率激光非线性传输的实验过程具有一定的指导意义。

本文通过理论分析和数值模拟详细研究了高斯光束发生小尺度分裂成丝的功率条件。

结果显示高斯光束在非线性传输过程中,小尺度自聚焦效应诱导分裂成丝与整体自聚焦所导致的全光束塌陷是影响高斯光束空间分布的两种相反的机制,前者使得高斯光束分裂成多丝分布,而后者则将高斯光束聚焦为一个整体而塌陷。

两者在传输过程中相互竞争的结果由光束的初始输入参数决定。

因此,初始输入参数不一样,高斯光束发生小尺度分裂成丝的临界功率也不一样。

2 理论分析小尺度自聚焦特征长度的分析,可从下式非线性薛定谔方程出发[2]:22202002||0E n i E k E E z n k ⊥∂+∇+=∂,(1) 式中,000/k n c ω=为波数,0n 为介质的常折射率,0ω是入射光束的圆频率,c 是真空中的光速,2⊥∇为横向拉普拉斯算符,2n 为介质的非线性折射率。

设输入光束的电场表达示为[2]:()()()(),,,,E A z A z u x y z iv x y z =++⎡⎤⎣⎦,(2) 其中,(,,)u x y z 和(),,v x y z 分别是调制的振幅分量和相位分量,()A z 为本底振幅,在非线性介质中传输时将引入由非线性效应累积的相位延迟,因此()A z 的表达示可写为[2]:220000()exp 2n A z A ik A z n ⎡⎤=⎢⎥⎣⎦,(3)其中,0A 为初始振幅。

把(2)式和(3)式代入(1)式求解,可得:22222200200()24δ⊥⊥=⎡⎤=-⎢⎥⎣⎦gzu z e q n g k A q k n ,(4) 其中,δ为常数,代表初始调制振幅,q ⊥为横向空间波数,表征横向空间调制的频率,g 是调制场u 的增长率,并且最大增长率为:220000002γ==m n g k A k I n n ,(5) 其中,200/n n c γε=为非线性系数,0ε是真空介真常数,2n 是非线性折射率,光强20000/2I n c A ε=。

在整体自聚焦过程中,当光束振幅增长至初始振幅的45倍时,将以指数形式迅速塌陷;在很短的传输距离内,光束就崩塌至很小的自聚焦点[2]。

相关文档
最新文档