金属材料力学性能试验

合集下载

金属行业金属材料的力学性能测试方法

金属行业金属材料的力学性能测试方法

金属行业金属材料的力学性能测试方法金属材料的力学性能测试是金属行业中非常重要的一项工作,它可以用来评估金属材料的力学性能,帮助我们了解这些材料在实际应用中的表现和可靠性。

本文将介绍几种常用的金属材料力学性能测试方法,并对其原理和应用进行详细说明。

一、拉伸试验拉伸试验是测量金属材料在拉伸过程中的力学性能的一种常用方法。

它通过施加拉伸载荷并记录应力和应变的变化来评估材料的强度、延展性和韧性等指标。

在拉伸试验中,常用的测试参数包括屈服强度、断裂强度、断裂延伸率等。

二、硬度测试硬度测试是评估金属材料硬度的方法之一,它可以用来衡量金属材料抵抗形变和破坏的能力。

常见的硬度测试方法有洛氏硬度测试、巴氏硬度测试和维氏硬度测试等。

这些测试方法都通过施加一定压力并测量材料表面的印痕或弹痕来评估材料的硬度。

三、冲击试验冲击试验是评估金属材料在受冲击载荷下的抗冲击性能的方法之一。

常用的冲击试验方法包括冲击弯曲试验和冲击拉伸试验等。

这些试验通过施加冲击力并记录材料的断裂形态和断裂能量来评估材料的韧性和抗冲击能力。

四、压缩试验压缩试验是测量金属材料在受压载荷下的力学性能的方法之一。

它可以用来评估金属材料的强度、稳定性和抗压能力等指标。

在压缩试验中,常用的测试参数包括屈服强度、最大压缩应力和压缩模量等。

五、扭转试验扭转试验是测量金属材料在扭转载荷下的力学性能的一种常用方法。

它可以用来评估金属材料的刚度、强度和韧性等指标。

在扭转试验中,通过施加扭矩并记录应力和应变的变化来评估材料的扭转性能。

总结:金属行业中,对金属材料的力学性能进行测试是非常重要的工作。

本文介绍了几种常用的金属材料力学性能测试方法,包括拉伸试验、硬度测试、冲击试验、压缩试验和扭转试验等。

通过这些测试方法,我们可以全面了解金属材料的力学性能,为金属行业的生产和应用提供科学的依据。

在实际应用中,可以根据具体需求选择合适的测试方法,以确保金属材料的安全可靠性。

金属材料的力学性能与测试方法

金属材料的力学性能与测试方法

金属材料的力学性能与测试方法导语:金属材料作为一种重要的结构材料,其力学性能对于工程设计和材料选择具有重要的影响。

本文将介绍金属材料的力学性能参数及其测试方法,以及测试过程中需要注意的问题。

一、金属材料的力学性能参数金属材料的力学性能参数主要包括强度、延展性、硬度、韧性、疲劳性和冷加工性等。

1. 强度强度是金属材料的抗拉、抗压、抗弯或剪切等力学性能的表征。

常见的强度参数有屈服强度、抗拉强度、抗压强度和抗弯强度等。

屈服强度指的是金属材料开始产生塑性变形时所经受的最大应力;抗拉强度指的是金属材料在拉伸断裂之前能承受的最大应力。

2. 延展性延展性是材料在拉伸过程中的塑性变形能力。

常见的延展性参数有延伸率和断面收缩率等。

延伸率是指金属样品在拉伸过程中断裂前的伸长程度;断面收缩率是指拉伸断裂后试样的横截面积缩小的比例。

3. 硬度硬度是金属材料抵抗表面压痕或穿刺的能力。

常见的硬度测试方法有布氏硬度、洛氏硬度和维氏硬度等。

4. 韧性韧性是金属材料在受到冲击或扭曲力作用下的能量吸收能力。

常见的韧性测试方法包括冲击试验和扭转试验。

5. 疲劳性疲劳性是金属材料在交变应力作用下的抗疲劳性能。

常见的疲劳测试方法有拉伸疲劳试验和弯曲疲劳试验等。

6. 冷加工性冷加工性是指金属材料在冷变形(如冷轧、冷拔等)过程中的变形能力。

冷加工性好的金属材料可以在变形过程中获得较高的强度和硬度。

二、金属材料的力学性能测试方法1. 拉伸试验拉伸试验是测量金属材料强度和延展性的常用方法。

该试验通过施加拉应力使金属样品产生塑性变形,测量应力和应变相关的参数以评估材料的机械性能。

2. 压缩试验压缩试验是测量金属材料抗压强度和压缩性能的方法。

该试验通过施加压应力使金属样本发生塑性变形,测量相应的应力和应变以评估材料的机械性能。

3. 弯曲试验弯曲试验是测量金属材料抗弯强度和韧性的常用方法。

该试验通过在金属样品上施加弯曲力,通过测量不同位置上的应变和应力来评估材料的机械性能。

金属材料的力学性能及其测试方法

金属材料的力学性能及其测试方法

金属材料的力学性能及其测试方法金属材料是广泛应用于各种机械、电子、汽车等领域中的材料。

其作为一种材料,具有许多优点,如高强度、高可塑性、热稳定性和化学稳定性等。

在应用中,金属材料的力学性能是十分重要的参数。

因此,本文主要介绍金属材料的力学性能及其测试方法,以期对相关领域的工作者有所帮助。

第一节:金属材料的力学性能金属材料的力学性能通常包括弹性模量、屈服强度、延伸率、断裂韧性和硬度等。

这里从简单到复杂介绍这些性能参数。

1. 弹性模量弹性模量是金属材料在弹性变形范围内受到应力作用时所表现的一种机械性质。

它的表达式为:E = σ / ε其中E为杨氏模量,单位为MPa;σ为所受应力,单位为MPa;ε为所受弹性应变,无量纲。

弹性模量是金属材料的一个重要指标,它可以衡量金属材料抵抗形变能力的大小。

对于不同的金属材料而言,其弹性模量不同。

2. 屈服强度屈服强度是金属材料在单向轴向拉伸状态下特定应变量时所表现出来的应力大小。

它是指材料能承受的最大应力,以使材料不发生塑性变形。

对于各种金属材料而言,其屈服强度不同。

3. 延伸率延伸率是一个指标,它可以衡量金属材料在受到拉伸应力时,其在一定程度内能够进行延伸的能力。

延伸率的计算公式如下:%EL = (L2 - L1) / L1 × 100%其中%EL表示材料的延伸率,L1和L2分别表示金属材料在断裂前和断裂后的长度,单位为毫米。

4. 断裂韧性断裂韧性是指金属材料在受到极限应力作用下未能抗下,而在断裂破裂时所表现出来的承受能力。

这个承受能力在物质的许多特性中是最为重要的指标之一。

金属材料的断裂韧性通常使用KIC值(裂纹扩展韧性指数)来表达。

5. 硬度硬度是材料抵抗硬物的能力。

一般来说,硬度越高的材料,则可以抵御更大的压力,并且更耐磨。

对于金属材料而言,其硬度主要有三种测试方法,分别是洛氏硬度试验、布氏硬度试验和维氏硬度试验。

第二节:金属材料的测试方法要测试金属材料的一些力学性能参数,需要运用不同的测试方法。

金属材料静态力学性能测试

金属材料静态力学性能测试

金属材料静态力学性能测试一、实验目的和内容1、测定金属材料的拉伸、压缩和扭转时力学性能参数,如屈服极限,强度极限等;2、观察实验现象,并比较金属材料在拉伸、压缩和扭转时的变形及破坏形式。

3、比较金属材料在拉伸、压缩和扭转时的力学性能特点。

二、实验名称拉伸试验,压缩试验,扭转实验。

三、实验设备电子式万能材料试验机(WDW3100型) 电子扭转试验机 游标卡尺四、试件1、拉伸试验所采用的试件试件采用两种材料:低碳钢和铸铁。

低碳钢属 于塑性材料;铸铁属于脆性材料。

试件的外形如图 1所示。

本实验采用的试件是GB228-87规定的“标 准试件”中的一种。

试件的标距等截面测试部分长度mm l 1000=,直径mm d 100=。

2、压缩试验所采用的试件试件的形状如图2所示,本实验采用的试件是国际规定的“标准试件”中的一种。

图2 压缩试件3、扭转试验所采用的试件采用标准试件,类似拉伸试件。

五、实验原理拉伸实验原理:d 0压缩实验原理:扭转实验原理:六、实验方法及步骤(一)拉伸试验测定一种材料的力学性能,一般应用一组试件(3~6根)来进行,而且应该尽可能每一根试件都测出所要求的性能。

我们主要是学习试验方法,所以我们测定低碳钢σs、σb、δ、ψ的拉伸试验只用一根试件来进行。

其试验步骤如下:1、测量试件尺寸,主要是测量试件的直径和标距。

在标距部分取上、中、下三个截面,对每一个截面用游标卡尺(精度0.02mm)测量互相垂直方向的直径各一次,取其平均值最小截面处的平均直径作为试件的直径。

2、顺时针旋转钥匙打开试验机。

3、用远控盒调整上下夹头的位置,将试件装在实验机的夹具上。

4、打开实验软件,先点联机按钮,然后设置参数。

点击参数录入按钮,输入试验编号及试样参数等。

点击参数设置按钮,输入试验开始点、横梁速度及方向等。

5、选择试验编号和实验曲线,将负荷与位移清零。

6、点击“试验开始”按钮,开始式样,同时仔细观察试样在试验过程中的各种现象。

金属材料力学性能实验报告

金属材料力学性能实验报告

金属材料力学性能实验报告姓名:班级:学号:成绩:实验名称实验一金属材料静拉伸试验实验设备1)电子拉伸材料试验机一台,型号HY-100802)位移传感器一个;3)刻线机一台;4)游标卡尺一把;5)铝合金和20#钢。

试样示意图图1 圆柱形拉伸标准试样示意图试样宏观断口示意图图2 铝合金试样常温拉伸断裂图和断口图(和试样中轴线大约成45°角的纤维状断口,几乎没有颈缩,可以知道为切应力达到极限,发生韧性断裂)图3 正火态20#钢常温拉伸断裂图和断口图(可以明显看出,试样在拉断之后在断口附近产生颈缩。

断口处可以看出有三个区域:1.试样中心的纤维区,表面有较大的起伏,有较大的塑性变形;2.放射区,表面较光亮平坦,有较细的放射状条纹;3.剪切唇,轴线成45°角左右的倾斜断口) 原始数据记录表1 正火态20#钢试样的初始直径测量数据(单位:mm ) 左 中 右 平均值 9.90 10.00 10.009.97 9.92 10.00 10.00 10.00 10.00 9.92左 中 右 平均值 8.70 8.72 8.68 8.69 8.68 8.70 8.70 8.64 8.72 8.70 表2 时效铝合金试样的初始直径测量数据(单位:mm )两试样的初始标距为050 L mm 。

表3 铝合金拉断后标距测量数据记录(单位:mm )AB BC AB+2BC 平均 12.32 23.16 58.64 58.7924.0217.4658.94测量20#钢拉断后的平均标距为u L =69.53 mm ,断口的直径平均值为u d =6.00 mm 。

测量得到铝合金拉断后的断面直径平均值为7.96mm 。

数据处理:1.20#钢正火材料(具有明显物理屈服平台的材料)20#钢正火材料试样的载荷-位移曲线试验结果见图4。

(1)由图可得各特征力值及对应的位移值分别为: 比例伸长力20.6 kN p F =;下屈服力24.5 kN el F =;最大力37.2 kN m F =; 断裂载荷27.1 kN F F =; 断裂后塑性伸长21.4 mm F L ∆=; 断裂后弹性伸长 2.4 mm e L ∆=。

金属的力学性能及试验方法

金属的力学性能及试验方法

金属的力学性能及试验方法金属是指具有良好导电、导热性能,具有一定塑性和可锻性,通常为固态的元素或化合物。

在工业生产和建筑施工中,常常用到金属材料,因此了解金属的力学性能和试验方法非常重要。

本文将从金属的力学性能、力学试验和金属材料的应用等方面进行阐述。

1. 强度金属材料的强度是指抵抗外力破坏的能力,通常用抗拉、抗压、抗剪等强度来表示。

抗拉强度是指钢材在受到拉应力时发生的拉断应力最大值,抗压强度是指钢材在受到压应力时发生的压缩应力最大值,抗剪强度是指钢材在受到剪应力时发生的剪切应力最大值。

不同的金属材料的强度不同,可以通过力学测试来得到不同金属材料的强度值。

2. 塑性金属材料的塑性是指金属在受到外力作用下发生形变的能力。

通常用屈服点、延伸率和冷弯性能等来表示。

屈服点是指金属在受到拉应力时发生的弹性变形后,开始出现塑性变形的应力值。

延伸率是指金属在拉伸过程中能够完全拉开的长度与原长度之比,冷弯性能是指金属材料在冷弯时所能承受的最大应力值,一般来说,塑性强的金属材料能够承受更大的拉应力,延伸率也会更高,因此在一些需要有一定塑性和可锻性的场合,如汽车制造和机械制造等,常常使用具有良好塑性和可锻性的金属材料。

3. 硬度硬度是指金属材料抵抗刻擦的能力,即金属材料的表面极其内部能够承受的压力的大小。

硬度的测量有多种方法,如布氏硬度、Vickers硬度、洛氏硬度等。

不同的测量方法所得到的硬度值也不同。

1. 拉伸试验拉伸试验是最为常见的一种力学试验方法,用于测量金属材料的强度、塑性和弹性等力学性能。

试样用钳夹好,一头通过万能试验机的拉伸机械臂和传感器连接,另一头通过夹具固定。

在破断前,可以通过读数器和试验机的力值计算出试样在拉伸过程中出现的最大应力值。

2. 压缩试验压缩试验是测量金属材料抵抗压缩力的试验方法,试样一般为柱形。

试样被夹具夹紧,然后放入万能试验机的压缩机械臂下方进行压缩。

通过试验机内的传感器可以测量到试样在压缩过程中的应力值,以及当试样发生变形时所受到的最大压力值。

金属材料力学性能测试规范

金属材料力学性能测试规范

金属材料力学性能测试规范一、金属材料力学性能测试的重要性金属材料的力学性能是指材料在受到外力作用时所表现出的特性,包括强度、硬度、韧性、塑性等。

这些性能直接影响着材料在实际应用中的可靠性和安全性。

例如,在建筑领域,钢材的强度决定了建筑物的承载能力;在机械制造中,零部件的硬度和韧性关系到其使用寿命和运行稳定性。

因此,通过科学、规范的测试方法获取准确的力学性能数据,对于材料的选择、设计和质量控制具有重要意义。

二、常见的金属材料力学性能测试项目1、拉伸试验拉伸试验是评估金属材料强度和塑性的最基本方法。

通过对标准试样施加逐渐增加的轴向拉力,测量试样在拉伸过程中的变形和断裂特性。

主要测试指标包括屈服强度、抗拉强度、延伸率和断面收缩率等。

2、硬度试验硬度是衡量金属材料抵抗局部变形能力的指标。

常见的硬度测试方法有布氏硬度、洛氏硬度、维氏硬度等。

硬度测试可以快速、简便地评估材料的硬度分布和加工硬化程度。

3、冲击试验冲击试验用于测定金属材料在冲击载荷下的韧性。

通过使标准试样承受一定能量的冲击,观察试样断裂的情况,计算冲击吸收功,以评估材料的抗冲击性能。

4、疲劳试验疲劳试验模拟材料在交变载荷作用下的失效行为。

通过对试样进行多次循环加载,记录试样发生疲劳破坏的循环次数,从而评估材料的疲劳强度和寿命。

三、测试设备和仪器1、万能材料试验机万能材料试验机是进行拉伸、压缩、弯曲等力学性能测试的主要设备。

它能够精确控制加载速率和测量试样的变形。

2、硬度计根据不同的硬度测试方法,选择相应的硬度计,如布氏硬度计、洛氏硬度计、维氏硬度计等。

3、冲击试验机冲击试验机用于进行冲击试验,常见的有摆锤式冲击试验机和落锤式冲击试验机。

4、疲劳试验机疲劳试验机专门用于进行疲劳性能测试,包括旋转弯曲疲劳试验机、轴向疲劳试验机等。

四、试样制备试样的制备是保证测试结果准确性的关键环节。

试样的尺寸、形状和加工精度应符合相关标准的要求。

1、拉伸试样通常采用圆形或矩形截面的试样,其标距长度、直径或宽度等尺寸应根据材料的种类和测试标准进行确定。

金属材料力学性能测试与分析实验报告

金属材料力学性能测试与分析实验报告

金属材料力学性能测试与分析实验报告摘要:本实验旨在通过对金属材料的力学性能进行测试和分析,以探究其力学行为和性能。

在本实验中,我们选取了一种常见的金属材料进行测试,并使用了相关的测试方法和设备,包括拉伸试验、硬度测试和冲击试验。

通过对实验结果的分析与比较,我们探讨了该金属材料的力学性能表现以及对其应用的影响。

实验结果显示,该金属材料表现出高强度、良好的塑性和韧性,适用于各种工程应用。

1. 引言金属材料是广泛应用于工程领域的重要材料,其力学性能直接关系到其在工程中的可靠性和安全性。

因此,了解金属材料的力学性能是进行工程设计和材料选择的基础。

本实验旨在通过力学性能测试来了解金属材料的力学特性和表现,以提供工程实践的依据。

2. 实验方法和设备2.1 材料样品选择选取了某种常见的金属材料作为研究对象,样品形状和尺寸符合标准要求。

2.2 拉伸试验使用拉伸试验机进行拉伸试验,按照标准规范进行测试,记录载荷-位移曲线,计算材料的弹性模量、屈服强度、抗拉强度和断后延伸率等指标。

2.3 硬度测试使用硬度计对材料进行硬度测试,选择适当的测试方法,如布氏硬度或洛氏硬度,记录测试结果并计算平均硬度值。

2.4 冲击试验利用冲击试验机对材料进行冲击试验,记录冲击能量和冲击韧性等指标。

3. 实验结果与分析3.1 拉伸试验拉伸试验结果显示,该金属材料在加载过程中呈现明显的弹性阶段、塑性阶段和断裂阶段。

载荷-位移曲线呈现出典型的应力-应变曲线特征。

根据试验数据计算得到的材料力学性能指标如下:- 弹性模量:XXX GPa- 屈服强度:XXX MPa- 抗拉强度:XXX MPa- 断后延伸率:XXX %3.2 硬度测试通过硬度测试,我们得到了该金属材料的平均硬度值为XXX。

硬度是材料抵抗局部塑性变形和耐刮削能力的指标,较高的硬度值表示该金属材料具有较好的耐磨性和抗刮削性能。

3.3 冲击试验冲击试验结果显示,该金属材料在受到冲击负荷时具有较高的韧性和抗冲击性能。

金属材料力学性能测试及分析

金属材料力学性能测试及分析

金属材料力学性能测试及分析金属材料在现代制造业中起着不可替代的作用。

无论是汽车、飞机、船舶、建筑或机器设备,都离不开金属材料。

为了保证产品质量和安全性,金属材料的力学性能测试和分析显得十分重要。

一、金属材料力学性能测试在金属材料生产过程中,进行力学性能测试是必不可少的一步。

常见的金属材料力学性能测试项目包括拉伸、弯曲、压缩、硬度等。

拉伸试验是最常见的力学性能测试之一。

此测试可以从材料应变-应力曲线中获得许多关键参数,例如最大强度、屈服强度、延伸率和断裂强度等。

该测试需要将单根金属材料在两千斤以上的极限负荷下逐渐拉伸至断裂,测试设备一般为万能试验机。

弯曲试验主要是评估金属材料的弯曲能力。

弯曲测试要求金属材料在弯曲时不出现断裂或裂缝。

该试验主要用于评估金属材料的加工性和设计强度。

压缩试验通常用于评估金属材料在压缩方向上的性能表现。

测试设备为常见的万能试验机,将金属材料放在一个钢模具中,逐渐施加负载直至金属材料发生压缩。

硬度测试评估金属材料的抵抗变形能力。

硬度测试设备可以对金属材料进行加压、打击或穿刺测试,来评估金属在不同环境或应用中的抵抗性。

二、金属材料力学性能分析在完成力学性能测试后,接下来是进行力学性能分析。

为此,需要将之前得到的数据进行处理和分析。

拉伸试验的结果通过应力-应变曲线进行分析,得到金属材料的强度和延展性能。

其中,屈服强度代表材料开始变形的阈值,最大强度反映材料在加载末期阶段的性能,以及延伸性能表示在材料断裂前的延展能力。

弯曲试验的结果提供了材料的弯曲强度和弯曲刚度,可以用于评估材料在实际应用中的使用寿命。

压缩试验的结果反映了金属材料的压缩强度和塑性应变能力。

在这个测试中,金属材料具有最高应变和强度,因此其性能表现主要取决于材料的完整性和微观结构。

硬度测试可用于评估金属材料的耐磨性和耐切削性。

更硬的材料将具有更高的耐久性和更少的形变。

三、应用金属材料力学性能测试和分析在制造业中广泛应用。

金属材料力学性能测试.pptx

金属材料力学性能测试.pptx

添加实物图
Q235-10mmx10mmx55mmV型缺口试样
五、低温冲击
冷脆转变温度Tk:由于温度 降低造成金属由韧性状态 转变为脆性状态的温度。 测定Tk的方法: (1)能量法:冲击吸收功 降低到某一个具体数值时 的温度定为Tk。 (2)端口形貌法:端口形 貌中纤维区所占面积下降 到50%时所对应的温度。
当l0=10d0 时,伸长率用10 表示; 当l0=5d0 时,伸长率用5 表示。
显然5> 10 ③ < 5%时,无颈缩,为脆性材料表征
>5% 时,有颈缩,为塑性材料表征
弯曲
技术指标: 最大压力:100KN 速率:0-120mm/min
特点: (1)试样形状简单、操作方便。常用 于测定铸铁、铸造合金、工具钢和硬质 合金等脆性和低塑形材料的强度和显示 塑性的差别。 (2)弯曲试样表面应力最大, 可较灵敏地反映材料表面缺陷。
一、金属材料力学性能简介
力学性能
材 料
使用性能
物理性能 化学性能


铸造性能

工艺性能
锻压性能 焊接性能
热处理性能
力学性能
静载时 动载时
——材料抵抗各种外加载荷的能力。 弹性:弹性形变 刚度:产生弹性变形的难易程度 强度:抵抗永久变形和断裂的能力 塑性:塑性变形 硬度:抵抗硬物压入的能力
韧性:塑性变形和断裂过程中吸收能量的能力
高温电子万能材料试验机
高温拉伸试样-加引伸计
高温拉伸试样-加引伸计பைடு நூலகம்
拉断前
拉断后
四、常温冲击
• 冲击韧性:是指材料抵 抗冲击载荷作用而不破 坏的能力。
指标为冲击 韧性值ak(通 过冲击实验 测得)。

金属力学性能测定实验报告

金属力学性能测定实验报告

金属力学性能测定实验报告一、实验目的(1)了解硬度测定的基本原理及常用硬度试验法的应用范围。

(2)学会恰当采用硬度计。

二、实验设备(1)布氏硬度计(2)读数放大镜(3)洛氏硬度计(4)硬度试块若干(5)铁碳合金淬火试样若干(ф20×10mm的工业纯铁,20,45,60,t8,t12等)。

(6)ф20×10mm的 20,45,60,t8,t12钢退火态,正火态,淬火及回火态的试样。

三、实验内容1、概述硬度就是指材料抵抗另一较软的物体装入表面抵抗塑性变形的一种能力,就是关键的.力学性能指标之一。

与其它力学性能较之,硬度实验简单易行,又迪代工件,因此在工业生产中被广泛应用。

常用的硬度试验方法存有:布氏硬度试验――主要用于黑色、有色金属原材料检验,也可用于退火、正火钢铁零件的硬度测定。

洛氏硬度试验——主要用作金属材料热处理后产品性能检验。

维氏硬度试验——用于薄板材或金属表层的硬度测定,以及较精确的硬度测定。

显微硬度试验——主要用于测定金属材料的显微组织组分或相组分的硬度。

2、实验内容及方法指导(1)布氏硬度试验测定。

(2)洛氏硬度试验测量。

(3)试验方法指导。

3、实验注意事项(1)试样两端要平行,表面要平整,若有油污或氧化皮,可用砂纸打磨,以免影响测定。

(2)圆柱形试样应当放到具有“v”形槽的工作台上操作方式,以免试样翻转。

(3)加载时应细心操作,以免损坏压头。

(4)测完硬度值,刺破载荷后,必须并使压头全然返回试样后再摘下试样。

(5)金刚钻压头系贵重物品,资硬而脆,使用时要小心谨慎,严禁与试样或其它物件碰撞。

(6)应当根据硬度实验机的采用范围,按规定合理采用相同的载荷和压头,少于采用范围,将无法赢得精确的硬度值。

四、实验步骤1、布氏硬度试验布氏硬度试验是用载荷p把直径为d的淬火钢球压人试件表面,并保持一定时间,而后卸除载荷,测量钢球在试样表面上所压出的压痕直径d,从而计算出压痕球面积a,然后再计算出单位面积所受的力(p/a值),用此数字表示试件的硬度值,即为布氏硬度,用符号hb表示。

金属材料力学性能测定及其应用

金属材料力学性能测定及其应用

金属材料力学性能测定及其应用一、引言金属材料在工业生产中具有广泛的应用,对金属材料的力学性能的测定是对其使用性能评价和加工质量控制的重要手段。

本文将着重介绍金属材料的力学性能测定方法及其应用。

二、金属材料的力学性能测定方法1. 拉伸试验拉伸试验是一种常见的金属材料力学性能测试方法,该方法适用于金属拉伸力学性能的测定。

在拉伸试验时,通过机械设备施加一定的拉伸载荷,测量被试样发生塑性变形的力和变形量,从而计算出试样的强度和韧性等力学性能指标。

2. 碳氢分析法碳氢分析法可以用于测量铁、钢等金属中碳含量的方法。

该方法首先通过化学反应将样品中的碳转化为一定量的二氧化碳,然后使用专门的仪器,量化检测样品中的二氧化碳含量,从而计算出样品中的碳含量。

3. 硬度试验硬度试验是一种简单易行的类比试验方法,适用于测定金属材料抗压、抗拉等力学性能。

硬度试验可分为维氏硬度试验、布氏硬度试验、洛氏硬度试验和肖氏硬度试验等几种类型,不同类型的硬度试验方法有不同的适用范围和测定参数,可以根据不同情况进行选择。

三、金属材料的力学性能应用1. 工程应用金属材料作为制造工程的常见材料,其力学性能测定对工程生产具有重要意义。

工程师可以通过测定金属材料的力学性能,选择合适的材料加工工艺,提高生产效率,降低制造成本,保障工程质量等。

2. 质量控制金属材料力学性能的差异往往与其质量有直接关系。

在工业生产过程中,金属材料的力学性能测定可以作为对其质量控制的重要手段。

通过测定金属材料力学性能,可以检测金属材料的质量是否合格,并准确识别渗透性、组织结构等方面的缺陷。

3. 产品应用金属材料的力学性能测定对其在产品应用中发挥全面性能至关重要。

例如,在汽车制造过程中,通过测定轮毂的材质、硬度等力学性能指标,可以保证汽车在高速行驶时的安全性能。

四、结论通过以上讨论,本文介绍了金属材料的力学性能测定方法及其应用。

在工业生产和应用方面,对金属材料的力学性能指标的了解和掌握极其重要,涉及到制造工艺选择、产品性能分析等诸多方面,对推进各个行业的技术升级和质量控制有着至关重要的作用。

金属材料力学性能试验方法分析

金属材料力学性能试验方法分析

金属材料力学性能试验方法分析摘要:金属材料是工业生产中的常用材料,在日常生活中极为常见,使用金属材料时,一定要注意金属材料的力学性能。

本文介绍金属材料力学性能试验标准、试验方法以及仪器设备,在力学性能试验中,重点探究金属材料拉伸性能、压缩性能、扭转性能、硬度性能的试验方法,为金属材料试验提供参考。

关键词:金属材料;力学性能;试验方法前言:金属材料的力学性能会直接影响材料的使用状态和使用寿命,如果材料力学性能较差,有可能会使机器频繁发生故障,金属产品也无法发挥实际的功效,必须要加强力学性能检测,采用科学的力学性能试验方法,参考相关标准,对试验结果进行分析,综合分析金属材料的力学性能,不断强化金属材料的性能。

1金属材料力学性能试验标准分析金属材料力学性能试验需要以规范化的试验标准为参考依据,试验人员需要了解试验标准体制的具体规定,对最新修订的试验标准进行研究,按照科学的试验方法和规范的试验标准展开力学性能试验。

不同的试验方法有着不同的标准,如拉伸试验标准、压缩试验标准、扭转试验标准、硬度试验标准、弯曲试验标准、冲击试验标准、疲劳试验标准等,需要根据具体的试验内容和方法选择对应的试验标准,与力学性能试验结果进行比较,分析金属材料力学性能的实际情况[1]。

2金属材料力学性能试验方法研究2.1拉伸试验对金属材料的拉伸性能进行测试,需要采用拉伸测试方法,对拉伸试验结果进行分析,判断金属材料的极限拉伸范围,根据极限拉伸范围继续进行试验,对金属材料在试验中的变化情况进行记录和分析。

在拉伸试验中,为了保证数据的准确性和测试结果的可靠性,需要对各种影响因素进行控制,尽量避免拉伸试验过程受到其他因素的影响。

试验人员要仔细检查拉伸试验中的设备和仪器,确保设备仪器具有良好的性能,保证拉伸试验数据的精确性,避免试验结果受到设备仪器的影响。

以低碳钢材料为例,对该材料进行拉伸试验时,判断低碳钢的极限屈服荷载PS,当主动指针不再转动的时候,对低碳钢进行测量。

金属材料力学性能检测

金属材料力学性能检测

§ 1.1 金属材料拉伸试验
§ 1.1 金属材料拉伸试验
2、定标距试样
定标距试样的原始标距与横截面间无比例关
系,一般 L取0 100mm, 200m。m
3、取样与制样
• 通常从产品、压制坯或铸锭切取样坯经机加工 制成试样。但具有恒定横截面的产品(型材、 棒材、线材等)和铸造试样(铸铁和铸造非铁合 金)可以不经机加工而进行试验。
金属材料力学性能检测
▪§ 1.1 拉伸试验 ▪§ 1.2 金属扭转及弯曲试验 ▪§ 1.3 金属硬度试验 ▪§ 1.4 金属冲击韧性试验
§ 概述
金属材料在外力作用下所表现出的诸如强度、 塑性、弹性等等力学特性称为材料的力学性能, 而衡量金属材料力学性能的指标统称为力学(机 械)性能指标,这些指标是通过实验来确定的。 本章就依据国家标准来讨论这些指标的意义及测 定方法。
1)比例极限: p
p

Pp A0
2)弹性极限: e
e

Pe A0
3)屈服极限: s
4)强度极限: b
5)断裂强度: k
s

Ps A0
b

Pb A0
k

Pk A0
§ 1.1 金属材料拉伸试验
各应力指标的定义及测试方法:
1、 比例极限
p
定义:应力与应变成直线关系的最大应力值。
变的应力作为屈服强度,以 0.表2 示
测量方法与弹s 性极限相似。
§ 1.1 金属材料拉伸试验
4、强度极限(抗拉强度) b
定义:曲线上最大应力为强度极限。 标志:出现颈缩现象。
§ 1.1 金属材料拉伸试验
5、断裂强度 k
定义:试样拉断时的真实应力,表征材料对断裂 的抗力。

金属力学性能试验

金属力学性能试验


1. 根据测试要求和试样的形状、尺寸选择相应的夹具。

⒉ 打开计算机。

⒊ 打开试验机控制器电源,等候数秒,以待控制系统检测。

⒋ 根据测试要求,在计算机上打开相应的测试程序。

⒌ 等候数秒,当计算机桌面上的工具栏所有图标示出来后,按控制器面板上的“ON”按钮以
使 主机和测试程序相连。

⒍ 在计算机上打开测试要求的相关测试程序。
二、实验内容
• 1.根据国家标准GB228/T—2002 《金属材料室温拉伸试验方法》测 定低碳钢、灰铸铁、铸铝的E; ReH;ReL;Rp0.1;Rp0.2;Rm;Agt; Ag;At;A;Z。
• 2.分析和讨论试验结果。
三、实验测试原理
三、实验测试原理
低碳钢退火态拉伸曲线 : 弹性变形→屈服变形→均匀塑性变形→集中 塑性变形→断裂

⒎ 根据测试要求和试样的尺寸,在计算机桌面上点击“设置参数”,输入相关测试参数。

⒏ 点击 “夹具复位”,使横梁到达设置位置。

⒐ 夹持试样,输入试样尺寸

⒑ 点击“力值清零”。

⒒ 点击“开始”,开始测试。

⒓ 在弹出的对话框中输入试样尺寸。

⒔ 点击“OK”,试验机进入测试状态。

⒕ 测试结束后,从夹具上取下试样。
首次下降前的最大应力。 • ReL:下屈服强度 —屈服期间,不计初始
瞬时效应时的最低应力。
高强度钢拉伸应力―应变
Stress in Mpa
1600
1400
1200
1000
800
600
400
200

金属材料行业材料力学性能测试技术手册

金属材料行业材料力学性能测试技术手册

金属材料行业材料力学性能测试技术手册一、引言金属材料的力学性能测试是评估材料质量和性能的重要手段。

本技术手册旨在介绍金属材料力学性能测试的基本原理、常用方法和操作流程,方便金属材料行业从业人员在工作中正确、准确地进行力学性能测试。

二、金属材料力学性能测试概述1. 测试目的金属材料力学性能测试旨在衡量材料在受载情况下的强度、刚度、韧性、延性等性能参数,以评估材料的可靠性和适用性。

2. 测试内容常见的金属材料力学性能测试内容包括拉伸试验、压缩试验、弯曲试验等,通过这些试验可以得到材料的应力-应变曲线、屈服强度、断裂强度、弹性模量等重要参数。

三、拉伸试验1. 试验设备和工具拉伸试验需要用到拉伸试验机、标准试样和相应的夹具。

拉伸试验机应具备精确控制试验速度、测量载荷和位移等功能。

2. 操作步骤(1)选择适当的试样尺寸和夹具。

(2)安装试样并调整夹具,确保试样正确固定。

(3)设置拉伸试验机的工作参数,如试验速度、载荷范围等。

(4)开始试验,记录载荷和位移数据。

(5)根据试验数据计算材料的应力-应变曲线和相关参数。

四、压缩试验1. 试验设备和工具压缩试验需要用到压缩试验机、标准试样和相应的夹具。

压缩试验机应具备精确控制试验速度、测量载荷和位移等功能。

2. 操作步骤(1)选择适当的试样尺寸和夹具。

(2)安装试样并调整夹具,确保试样正确固定。

(3)设置压缩试验机的工作参数,如试验速度、载荷范围等。

(4)开始试验,记录载荷和位移数据。

(5)根据试验数据计算材料的应力-应变曲线和相关参数。

五、弯曲试验1. 试验设备和工具弯曲试验需要用到弯曲试验机、标准试样和相应的夹具。

弯曲试验机应具备精确控制试验速度、测量载荷和位移等功能。

2. 操作步骤(1)选择适当的试样尺寸和夹具。

(2)安装试样并调整夹具,确保试样正确固定。

(3)设置弯曲试验机的工作参数,如试验速度、载荷范围等。

(4)开始试验,记录载荷和位移数据。

(5)根据试验数据计算材料的应力-应变曲线和相关参数。

金属材料的力学性能测试与分析

金属材料的力学性能测试与分析

金属材料的力学性能测试与分析金属材料广泛应用于各个领域,具有优良的力学性能是其重要的特征之一。

为了保证金属材料的质量和可靠性,对其力学性能进行测试与分析是至关重要的。

本文将重点介绍金属材料力学性能测试方法及分析步骤。

一、金属材料的力学性能测试1. 强度测试强度是金属材料抵抗外力的能力,可以通过拉伸试验来进行测试。

该试验的原理是将金属试样放置在拉伸机上,施加逐渐增加的力,直到断裂为止。

在试验过程中,可以测量材料的屈服强度、抗拉强度、延伸率等指标。

这些参数对于评估金属材料的力学性能至关重要。

2. 硬度测试硬度是金属材料抵抗表面压力的能力。

硬度测试可通过使用洛氏硬度计或布氏硬度计进行。

试验时,试样表面受到一定压力,通过测量压印的深度来确定硬度指标。

硬度测试可以帮助判断金属材料的耐磨性和抗变形能力。

3. 韧性测试韧性是金属材料在承受外力时能够吸收能量并发生塑性变形的能力。

冲击试验是测试韧性的常用方法之一。

冲击试验中,将标准试样放置在冲击机上,施加特定冲击载荷,并记录试样失效前所吸收的能量。

韧性测试结果可以评估金属材料在低温环境下的可靠性。

二、金属材料力学性能分析1. 强度分析通过强度测试获得的数据,可以进行强度分析。

通常包括计算应力-应变曲线、屈服强度、抗拉强度、断裂延伸率等参数。

这些数据可用于比较不同金属材料的强度,评估材料的抗拉伸能力以及预测它们在实际应用中的行为。

强度分析对于材料的选择、设计和制造过程中的质量控制具有重要意义。

2. 硬度分析硬度测试结果的分析可用于比较不同金属材料之间的硬度差异。

通过硬度值,可以评估材料的耐磨性和抗变形能力。

硬度分析还可以为金属材料的工艺设计和材料选择提供重要参考。

3. 韧性分析韧性测试结果的分析有助于评估金属材料的抗冲击能力和低温性能。

韧性分析还可以用于指导金属材料的合金设计和淬火工艺的优化。

通过分析韧性参数,可以对材料的破坏机理进行理解,并提供改进金属材料韧性的方法。

金属力学性能测试标准

金属力学性能测试标准

金属力学性能测试标准金属材料作为工程领域中使用最广泛的材料之一,其力学性能的测试标准对于材料的质量控制和工程设计具有重要意义。

本文将从金属力学性能测试的目的、方法以及标准等方面进行详细介绍,以期为相关领域的研究人员和工程师提供参考。

一、目的。

金属力学性能测试的主要目的在于评估材料的力学性能,包括抗拉强度、屈服强度、延伸率、硬度等指标。

通过测试,可以了解材料在受力情况下的表现,为工程设计和材料选择提供依据。

同时,测试结果也可以用于质量控制和产品认证,确保产品符合相关标准和要求。

二、方法。

1. 抗拉强度测试。

抗拉强度是评价材料抗拉性能的重要指标。

测试时,将试样加在拉伸试验机上,施加逐渐增加的拉力,直到试样发生断裂。

根据试验过程中的拉力和变形量,可以计算出材料的抗拉强度。

2. 屈服强度测试。

屈服强度是材料在拉伸过程中发生塑性变形的临界点。

测试方法与抗拉强度测试类似,但需要额外考虑材料的流变行为,通过对应力-应变曲线的分析,确定材料的屈服强度。

3. 延伸率测试。

延伸率是评价材料延展性能的指标,通常通过拉伸试验来进行测试。

在试验中,可以观察试样的变形情况,计算出材料的延伸率,从而评估其延展性能。

4. 硬度测试。

硬度是材料抵抗外力的能力,通常用来评价材料的耐磨性和耐压性。

常见的硬度测试方法包括布氏硬度、洛氏硬度、维氏硬度等,通过在材料表面施加一定载荷,测量材料的硬度值。

三、标准。

金属力学性能测试的标准主要包括国际标准和行业标准两类。

国际标准由国际标准化组织(ISO)制定,通常适用于全球范围内的材料测试。

而行业标准则是由各个行业协会或组织制定,针对特定材料或产品的测试要求。

在进行金属力学性能测试时,应当严格遵守相关的测试标准,以确保测试结果的准确性和可比性。

同时,随着科学技术的发展,测试标准也会不断更新和完善,因此在进行测试时,应当关注最新的标准要求,以保证测试结果的有效性。

总结。

金属力学性能测试是评价材料质量和性能的重要手段,通过测试可以全面了解材料的力学性能,为工程设计和产品制造提供依据。

金属材料力学性能与试验方法

金属材料力学性能与试验方法
+ 强度:指金属在静载荷下抵抗变形和断裂的能力。是一般零件设计、选材 时的重要依据 。
+ 硬度:它是衡量材料软硬的一个指标,是 金属表面抵抗塑性变形和破坏 的能力。检查和控制金属零件的热处理质量
+ 塑性:指金属发生塑性变形而不发生破断的能力。
+ 冲击韧度(冲击韧性):材料抵抗冲击载荷而不破断的能力。
3.6 金属材料弯曲试验
3.6.1 试验标准: GB/T 14452-93 金属弯曲力学性能试验方法
3.6 金属材料弯曲试验
3.6.2试验原理:采用三点弯曲或四 点弯曲方式对圆形或矩形横截面试 样施加弯曲力,一般直至断裂,测 定其弯曲力学性能。
3.6金属材料弯曲试验
6.金属材料弯曲试验
3.6.4 试验参数:
3.3 金属材料硬度试验
3.3.4 金属材料维氏硬度
3.3 金属材料硬度试验
3.3.4 金属材料维氏硬度
3.4 金属材料压缩试验
3.4.1 试验标准: GB/T 7314-2005 金属材料 室温压缩试验方法
3.4金属材料压缩试验
3.4.2 试验设备(同拉伸试验)
电子拉压万能试验机
液压拉压万能试验机
3.3 金属材料硬度试验
3.3.2 金属材料洛氏硬度 (1)试验系统
3.3金属材料硬度试验
3.3.2 金属材料洛氏硬度
(2)原理:将压头(金刚石圆锥、硬质合金 球)按右图分两步骤压入试样表面,经规 定保持时间后,卸除主试验力,测量在初 始试验力下的残余压痕深度h。
根据h值及常数N和S(见表2),用下式计算 洛氏硬度。
号 缩应应力附以。下脚标说明,例如Rτc1.5表示规定总压缩应变为l.5%时的压
3.4金属材料压缩试验
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 断面收缩率 Z --试样拉断后,颈缩处横截面的最大 缩减量与原始横截面积的百分比。 • 断面收缩率Z的测定:测出断裂后试样颈缩处最小 横截面积 Su。
S 0 Sμ 100% S0
颈缩
• 铸铁的拉伸实验方法与低碳钢的拉伸实验相同, 但是铸铁在拉伸时的力学性能明显不同于低碳钢, 其应力应变曲线如图2-5所示。铸铁从开始受力 直至断裂,变形始终很小,既不存在屈服阶段, 也无颈缩现象。断口垂直于试样轴线,这说明引 起试样破坏的原因是最大拉应力。
强化阶段:经过屈服阶段后,材料又恢复了抵抗变形的能力,要使它继续变形必须增加拉力。 颈缩阶段:在试件某一薄弱的横截面处发生急剧的局部收缩,横截面 d)断裂
颈缩
上屈服点的数值与试样形状、加载速度等因素有关,一般是 不稳定的;下屈服点则有比较稳定的数值,能够反映材料的 性能。通常就把下屈服点称为屈服点,而下屈服点对应的应 力值称为屈服强度。
抗拉强度Rm • 抗拉强度(Rm) ---试样拉伸过程中最大试验力所 对应的应力。
Fm Rm So
• 断后伸长率---试样拉断后,标距部分的残余伸 长与原始标距的百分比。 • 断后伸长率A的测定:将拉断后的试样的断裂部 分在断裂处紧密对接在一起,测出试样断裂后标 距间的长度Lμ。
Lμ L 0 A 100% L0
断面收缩率(Z):断裂后试样横截面积的最大缩减量(So-Su)与原始横截面积(So)之 比的百分率。
低碳钢的拉伸应力-应变曲线
应力
屈服阶段
颈缩阶段
抗拉强度(Rm):tensile strength 相应最大力(Fm)的应力。
强化阶段
下屈服强度 ReL
Rm
断裂
Fm S0
S0:试样原始横截面积
屈服强度:yield strength 当金属材料呈现屈服现象时,在试验期间 达到塑性变形发生而力不增加的应力点, 应区分上屈服强度和下屈服强度。 应变 上屈服强度(ReH):upper yield strength 试样发生屈服而力首次下降前的最高应力。
适用范围: 测量薄板类 ;
HV≈HBS ;
冲击韧性( notch toughness ):
材料在冲击载荷作用下抵抗破坏的能力。
直径、载荷及载荷保持时间。
如:120HBS10/1000/30表示直径为10mm的
钢球在1000kgf(9.807kN)载荷作用下保
持30s测得的布氏硬度值为120。
洛氏硬度 HR ( Rockwll hardness )
洛氏硬度测试示意图
洛氏硬度计
h1-h0
维氏硬度 HV ( diamond penetrator hardness )
金属材料力学性能试验
一、力学性能的定义
• 力学性能是指材料在外加载荷与环境因素联合作 用下表现的行为,也就是材料抵抗外加载荷引起 变形和断裂的能力。
• 拉伸实验是应用最广泛的力学性能实验方法。拉 伸实验测定的力学性能指标称为拉伸性能,是材 料的基本力学性能,是各种材料结构强度设计的 主要依据,是评定、选定材料的主要依据。 • 对于某些脆性材料,一般采用弯曲或压缩实验测 定材料力学性能。


第二节:硬度
硬度( hardness ):是指材料抵抗其他硬物体压 入其表面的能力 •常用测量硬度的方法
布氏硬度HB 洛氏硬度HR 维氏硬度HV
布氏硬度 HB ( Brinell-hardness )
布氏硬度计
适用范围:
<450HBS;
<650HBW;
符号HBS或HBW之前的数字表示硬度 值,符号后面的数字按顺序分别表示球体
弹性阶段
O
下屈服强度(ReL):lower yield strength
在屈服期间,不计初始瞬时效应时的最低应力。
根据低碳钢应力-应变曲线不同阶段的变形特征,整个拉伸过程依次分为: 弹性阶段、屈服阶段、强化阶段、颈缩阶段。
弹性阶段:当外力解除后变形能够全部消除、恢复原状,为弹性变形。
屈服阶段:开始产生塑性变形,即当外力解除后,变形不能完全恢复,而残留下一部分变形。
规定非比例延伸强度(Rp)
非比例延伸率等于规定的引伸计标距百分率时的应力。使用的符号应附以下脚注说明所规 定的百分率,例如RP0.2, 表示规定非比例延伸率为0.2%时的应力。 其他金属材料的拉伸实验和低碳钢拉伸实验方法相同,但材料所显示出来的力学性能有很 大差异。下图给出了锰钢、硬铝、退火球墨铸铁和45 钢的应力-应变图。这些材料都是塑性材料, 但前三种材料没有明显的屈服阶段。对于没有明显屈服阶段的塑性材料,通常规定以产生0.2%塑 性应变时所对应的应力值作为材料的名义屈服极限,以RP0.2表示。
二、拉伸试验中的基本概念
应力:应力是在它所作用面积上的力,用N/mm2表示。 在米制单位中,用千帕(kPa)或兆帕(MPa)表示。
1)圆形截面
2)矩形截面
a b l0
四种形式的应力
• • • •
拉应力是能够使材料伸长的应力。 压应力是能使材料缩短的应力。 剪切应力是能使材料沿应力平行方向产生位移的应力。 扭转应力是能使材料的两个底面沿相反方向产生扭动的 应力。
应变是被测试材料尺寸的变化率,它是 加载后应力引起的尺寸变化。 由于应变是一个变化率,所以它没有单 位。
长度的变化量 应变 原始长度
应变的计算
有关拉伸试样的基本术语
原始标距(Lo):施力前的试样标距。 断后标距(Lu):试样断裂后的标距。 平行长度(Lc):试样两头部或两夹持部分(不带头试样)之间平行部分的长度。 断后伸长率(A):是断后标距的残余伸长(Lu-Lo)与原始标距(Lo)之比的百分率。
相关文档
最新文档