《平面向量数量积》
高三一轮复习课件平面向量的数量积
![高三一轮复习课件平面向量的数量积](https://img.taocdn.com/s3/m/de9fcc9329ea81c758f5f61fb7360b4c2e3f2a30.png)
b解的.
题模计技和算巧方两:向个角a向的. 量利关的用系夹向c角量.
的 利
性 用
质 向
和 量
几 的何Biblioteka 加意 法义 和简 减
化 法
计 进
算 行
b. 简化
注 计
意 算
向
量
ca.. 利利用用数向量量积的公性式质求和解几 何 意 义 简 化 计 算
b. 注意向量的模和方向角的关系
定义:平面向量的数量积是两个向量的模的乘积与两个向量夹角的余 弦值的乘积 几何意义:表示两个向量的夹角大小和方向
性质:数量积满足交换律、结合律和分配律
应用:在物理、工程等领域有广泛应用,如力矩、功等
结合律:a·(b+c) = a·b + a·c 交换律:a·b = b·a 分配律:a·(b+c) = a·b + a·c
平行四边形定 理:两个向量 的数量积等于 这两个向量的
模的乘积
余弦定理:两 个向量的数量 积等于这两个 向量的模的乘 积再乘以这两 个向量的夹角
的余弦值
向量数量积的 性质:向量数 量积的绝对值 等于这两个向 量的模的乘积 再乘以这两个 向量的夹角的
余弦值
向量数量积的 定理:两个向 量的数量积等 于这两个向量 的模的乘积再 乘以这两个向 量的夹角的余
记开方等
理解错误,如 混淆向量的数 量积和向量积
的性质
应用错误,如 无法正确应用 向量的数量积 解决实际问题
计算两个向量的数量积,并判断其 正负性
判断两个向量的数量积是否为零, 并解释原因
计算两个向量的数量积,并判断其 方向
判断两个向量的数量积是否为零, 并解释原因
平面向量的数量积-高考数学复习
![平面向量的数量积-高考数学复习](https://img.taocdn.com/s3/m/b9584b89162ded630b1c59eef8c75fbfc67d9453.png)
若两个向量的夹角为锐角,则3 k >0,即 k >0.
又 a + kb , b +2 ka 不共线,∴ k ≠
2
2
,∴ k >0且 k ≠ .
2
2
方法总结
1. 向量夹角问题的两个注意点
(1)切记向量夹角的范围是[0, π].
(2)非零向量 a 与 b 夹角为锐角⇔ a ·b >0且 a 与 b 不共线;非零向量 a 与 b
=4,则 − =( D
A. 5
B. 3
)
C. 2
D. 1
+ 2 = a 2+ b 2+2 a ·b =49⇒2 a ·b =49-9-16=24,∴ − 2 =
a 2+ b 2-2 a ·b =9+16-24=1,∴ − =1.
3. (2022·新高考Ⅱ卷)已知向量 a =(3,4), b =(1,0), c = a + tb .
1,| c |= 2 ,且 a + b + c =0,则 cos < a - c , b - c >=(
D )
(1)法一:∵ a + b + c =0,∴ a + b =- c ,∴ a 2+ b 2+2 a ·b = c 2.
∵| a |=| b |=1,| c |= 2 ,∴1+1+2 a ·b =2,解得 a ·b =0.
夹角为钝角⇔ a ·b <0且 a 与 b 不共线.
方法总结
2. 求向量夹角的两种方法
(1)定义法:当 a , b 是非坐标形式时,求 a 与 b 的夹角θ,需求出 a ·b 及
| a |,| b |或得出它们之间的关系,由 cos
·
θ=
求得.
||||
(2)坐标法:若已知 a =( x 1, y 1)与 b =( x 2, y 2),则 cos 〈 a , b 〉=
平面向量数量积精选全文完整版
![平面向量数量积精选全文完整版](https://img.taocdn.com/s3/m/9c664216a517866fb84ae45c3b3567ec102ddcff.png)
4、向量的数量积(内积) 定义: a b cos a,b 叫做向量a和b的数量
积(或内积),记作:a ·b .
即 a ·b = a b cos a,b
说明:
1.数量积a b等于a的长度与b在a方向上正 投影的数量|b|cos的乘积.
2.两个向量的数量积是一个实数,符号由 cos〈a,b〉的符号所决定;而数乘向量是 一个向量。
3.两个向量的数量积的性质: 设a、b为两个非零向量,e是与b同向的单位 向量.
(1). e a =a e =|a|cos;
(2). ab a b = 0;
(3). a a = |a|2或 | a | a a
ab (4). cos = | a || b |
;(5).|a b| ≤ |a|.|b| .
练习:判断正误,并简要说明理由: ①a ·0=0;② 0 ·a=0; ③0 - AB = BA ; ④ |a·b|=|a||b|; ⑤若a≠0,则对任一非零b有a ·b≠0; ⑥ a ·b=0,则a与b中至少有一个为0; ⑦ a与b是两个单位向量,则a 2=b 2.
例2.已知|a|=5,|b|=4,<a,b>=120°,求a ·b.
3
,且a,b的夹角为
6
,求|a+b|;
3.在△ABC中,AB=a,BC=b,且a·b>0,求△ABC
形状.
思考:
已知|a|=3, |b|=5,且a·b=-12,求a在b方向上 的正射影的数量及b在a方向上的正射影的数 量。
〈a ,b〉=π时,a、b反向; 〈a ,b〉= 90°时, a ⊥b. (5)规定:在讨论垂直问题时,零向量与任 意向量垂直.
3、向量在轴上的正射影
(1)概念:
平面向量的数量积
![平面向量的数量积](https://img.taocdn.com/s3/m/f2da634a77c66137ee06eff9aef8941ea76e4b3f.png)
平面向量的数量积
什么是平面向量的数量积?
平面向量的数量积,也被称为点积或内积,是指两个向量之间
的运算结果。
它通过将两个向量的对应分量相乘,并将乘积相加得
到一个标量值。
数量积的计算公式
假设有两个平面向量A和B,其坐标分别为(Ax, Ay)和(Bx, By),则它们的数量积被定义为以下公式:
A ·
B = (Ax * Bx) + (Ay * By)
数量积的性质
交换律
两个向量的数量积满足交换律,即 A · B = B · A。
分配律
数量积满足分配律,即对于向量A和向量B,以及标量k,有
以下等式成立:
k(A · B) = k(Ax * Bx) + k(Ay * By)
数量积的意义
计算角度
通过数量积的计算公式,我们可以得到两个向量之间的夹角的
余弦值。
具体地,设向量A和向量B之间的夹角为θ,则有以下等
式成立:
cosθ = (A · B) / (|A| * |B|)
其中,|A| 和 |B| 分别表示向量A和向量B的长度。
因此,通过计算数量积,我们可以得到向量之间的夹角。
判断垂直与平行关系
若两个向量的数量积为0,则它们垂直;若两个向量的数量积
不为0且它们的长度相等,则它们平行。
该文档介绍了平面向量的数量积的定义、计算公式以及性质。
同时,说明了数量积在计算角度和判断垂直与平行关系方面的意义。
平面向量的数量积
![平面向量的数量积](https://img.taocdn.com/s3/m/ebd48f1231126edb6f1a10f8.png)
x2+y2 .
a· b ,(3) 若 向 量 a = (x1 , y1) 与 向 量 b = (x2 , y2) 的 夹 角 为 θ , 则 有 cosθ = |a||b| = x1x2+y1y2 2 2 2 2. x1+y1· x2+y2
第10页
考情分析
课前准备
课堂活动
课后作业
第35课时
平面向量的数量积
0,
.
第5页
考情分析
课前准备
课堂活动
课后作业
第35课时
平面向量的数量积
原创与经典·大一轮整体设计 数学
1、 AB与BC的夹角为_____?
2、找向量夹角方法?
第6页
考情分析
课前准备
课堂活动
课后作业
第35课时
平面向量的数量积
原创与经典·大一轮整体设计 数学
2. 向量数量积的性质 设 a,b 都是非零向量,e 是单位向量,θ 是 a 与 b 的夹角,则 (1) e· a=a· e. (2) a⊥b⇔ a· b= 0 . (3) 当 a 与 b 同向时,a· b=|a|· |b|; 当 a 与 b 反向时,a· b=-|a|· |b|; 特殊的,a· a=|a|2 或|a|= a· a.
第35课时
平面向量的数量积
原创与经典·大一轮整体设计 数学
λa2+λb2+(1+λ2)a· b<0, 所以,2λ+λ+(1+λ2)<0,所以λ2+3λ+1<0, -3- 5 -3+ 5 所以, <λ< 2 2 若θ=180° 时,a+λb 与λa+b 共线且方向相反, 所以,存在 k<0,使 a+λb=k(λa+b), 因为,a,b 不共线,所以,kλ=1,λ=k,所以,k=λ=-1, -3- 5 -3+ 5 所以, <λ< 且λ≠-1. 2 2
§5.3 平面向量的数量积
![§5.3 平面向量的数量积](https://img.taocdn.com/s3/m/c3896e0ebcd126fff7050b37.png)
§5.3 平面向量的数量积考情考向分析 主要考查利用数量积的定义解决数量积的运算、求模与夹角等问题,考查利用数量积的坐标表示求两个向量的夹角、模以及判断两个平面向量的平行与垂直关系.一般以填空题的形式考查,偶尔会在解答题中出现,属于中档题.1.向量的夹角已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB 就是向量a 与b 的夹角,向量夹角的范围是[0,π]. 2.平面向量的数量积定义:设两个非零向量a ,b 的夹角为θ,则数量|a ||b |·cos θ叫做a 与b 的数量积,记作a ·b .3.平面向量数量积的性质设a ,b 都是非零向量,e 是单位向量,θ为a 与b (或e )的夹角.则 (1)e ·a =a ·e =|a |cos θ. (2)a ⊥b ⇔a ·b =0.(3)当a 与b 同向时,a ·b =|a ||b |; 当a 与b 反向时,a ·b =-|a ||b |. 特别地,a ·a =|a |2或|a |=a ·a .(4)cos θ=a ·b|a ||b |.(5)|a ·b |≤|a ||b |.4.平面向量数量积满足的运算律 (1)a ·b =b ·a ;(2)(λa )·b =λ(a ·b )=a ·(λb )(λ为实数); (3)(a +b )·c =a ·c +b ·c .5.平面向量数量积有关性质的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2,由此得到 (1)若a =(x ,y ),则|a |2=x 2+y 2或|a |=x 2+y 2.(2)设A (x 1,y 1),B (x 2,y 2),则A ,B 两点间的距离AB =|AB →|=(x 2-x 1)2+(y 2-y 1)2. (3)设两个非零向量a ,b ,a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0.(4)若a ,b 都是非零向量,θ是a 与b 的夹角,则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22. 知识拓展1.两个向量a ,b 的夹角为锐角⇔a ·b >0且a ,b 不共线; 两个向量a ,b 的夹角为钝角⇔a ·b <0且a ,b 不共线.2.平面向量数量积运算的常用公式 (1)(a +b )·(a -b )=a 2-b 2. (2)(a +b )2=a 2+2a ·b +b 2. (3)(a -b )2=a 2-2a ·b +b 2.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( √ ) (2)由a ·b =0可得a =0或b =0.( × ) (3)(a ·b )c =a (b ·c ).( × )(4)两个向量的夹角的范围是⎣⎢⎡⎦⎥⎤0,π2.( × )(5)若a ·b >0,则a 和b 的夹角为锐角;若a ·b <0,则a 和b 的夹角为钝角.( × ) 题组二 教材改编2.[P90习题T18]已知向量a =(2,1),b =(-1,k ),a ·(2a -b )=0,则k =________. 答案 12解析 ∵2a -b =(4,2)-(-1,k )=(5,2-k ), 由a ·(2a -b )=0,得(2,1)·(5,2-k )=0, ∴10+2-k =0,解得k =12.3.[P90练习T19]设a =(1,2),b =(1,1),c =a +k b .若b ⊥c ,则实数k 的值为________. 答案 -32解析 由已知得c =(1,2)+k (1,1)=(k +1,k +2), 因为b ⊥c ,所以b ·c =0, 因此k +1+k +2=0,解得k =-32.题组三 易错自纠4.设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积是________. 答案 52解析 a +2b =(-1+2m,4),2a -b =(-2-m,3), 由题意得3(-1+2m )-4(-2-m )=0,则m =-12,所以a ·b =-1×⎝ ⎛⎭⎪⎫-12+2×1=52. 5.已知|a |=3,|b |=2,若a ·b =-3,则a 与b 的夹角的大小为________. 答案2π3解析 设a 与b 的夹角为θ,则cos θ=a ·b |a ||b |=-33×2=-12.又0≤θ≤π,所以θ=2π3.6.已知△ABC 的三边长均为1,且AB →=c ,BC →=a ,CA →=b ,则a ·b +b ·c +a ·c =________. 答案 -32解析 ∵〈a ,b 〉=〈b ,c 〉=〈a ,c 〉=120°,|a |=|b |=|c |=1, ∴a ·b =b ·c =a ·c =1×1×cos 120°=-12,∴a ·b +b ·c +a ·c =-32.题型一 平面向量数量积的运算1.设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4,若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →=________. 答案 9解析 AM →=AB →+34AD →,NM →=CM →-CN →=-14AD →+13AB →,∴AM →·NM →=14(4AB →+3AD →)·112(4AB →-3AD →)=148(16AB →2-9AD →2)=148(16×62-9×42)=9. 2.在△ABC 中,AB =4,BC =6,∠ABC =π2,D 是AC 的中点,E 在BC 上,且AE ⊥BD ,则AE →·BC→=________. 答案 16解析 以B 为原点,BA ,BC 所在直线分别为x ,y 轴建立平面直角坐标系(图略),A (4,0),B (0,0),C (0,6),D (2,3),设E (0,t ),BD →·AE →=(2,3)·(-4,t )=-8+3t =0,t =83,即E ⎝ ⎛⎭⎪⎫0,83,AE →·BC →=⎝⎛⎭⎪⎫-4,83·(0,6)=16.思维升华 平面向量数量积的三种运算方法(1)当已知向量的模和夹角时,可利用定义法求解,即a ·b =|a ||b |cos 〈a ,b 〉. (2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.(3)利用数量积的几何意义求解.题型二 平面向量数量积的应用命题点1 求向量的模典例 (1)已知向量a ,b 的夹角为60°,|a |=2,|a -2b |=2,则|b |=________. 答案 1解析 由|a -2b |=2,得(a -2b )2=|a |2-4a ·b +4|b |2=4, 即|a |2-4|a||b |cos 60°+4|b |2=4, 则|b |2-|b |=0,解得|b |=0(舍去)或|b |=1.(2)(2017·江苏沛县中学质检)已知AD 是△ABC 的中线,若∠A =120°,AB →·AC →=-2,则|AD →|的最小值是________. 答案 1解析 ∵AB →·AC →=-2=|AB →||AC →|cos A ,∠A =120°,∴|AB →||AC →|=4, ∵|AD →|=12(AB →+AC →),∴|AD →|2=14(|AB →|2+|AC →|2+2AB →·AC →)=14(|AB →|2+|AC →|2-4)≥14(2|AB →||AC →|-4)=1, 当且仅当AB =AC =2时取等号,∴|AD →|min =1. 命题点2 求向量的夹角典例 (1)已知向量a ,b 满足(2a -b )·(a +b )=6,且|a |=2,|b |=1,则a 与b 的夹角为______. 答案2π3解析 ∵(2a -b )·(a +b )=6,∴2a 2+a ·b -b 2=6, 又|a |=2,|b |=1,∴a ·b =-1, ∴cos 〈a ,b 〉=a ·b |a||b |=-12,又〈a ,b 〉∈[0,π],∴a 与b 的夹角为2π3.(2)已知单位向量e 1与e 2的夹角为π3,向量e 1+2e 2与2e 1+λe 2的夹角为2π3,则λ=________.答案 -3 解析 依题意可得|e 1+2e 2|=(e 1)2+4e 1·e 2+(2e 2)2=7, 同理,|2e 1+λe 2|=4+2λ+λ2, 而(e 1+2e 2)·(2e 1+λe 2)=4+52λ,又向量e 1+2e 2与2e 1+λe 2的夹角为2π3,可知(e 1+2e 2)·(2e 1+λe 2)|e 1+2e 2||2e 1+λe 2|=4+52λ7×4+2λ+λ2=-12, 由此解得λ=-23或-3,又4+52λ<0,∴λ=-3.思维升华 (1)求解平面向量模的方法①把几何图形放到适当的坐标系中,写出有关向量的坐标,求向量的长度.如若向量a =(x ,y ),求向量a 的模只需利用公式|a |=x 2+y 2即可.②当向量坐标无法表示时,利用向量的线性运算和向量的数量积公式进行求解,关键是会把向量a 的模进行如下转化:|a |=a 2. (2)求平面向量的夹角的方法①定义法:利用向量数量积的定义知,cos θ=a ·b|a||b |,其中两个向量的夹角θ的取值范围为[0,π],求解时应求出三个量:a ·b ,|a |,|b |或者找出这三个量之间的关系. ②坐标法:若a =(x 1,y 1),b =(x 2,y 2),则cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. ③解三角形法:可以把所求两向量的夹角放到三角形中,利用正、余弦定理和三角形的面积公式等进行求解.跟踪训练 (1)(2017·全国Ⅰ)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. 答案 2 3解析 方法一 |a +2b |=(a +2b )2=a 2+4a ·b +4b 2=22+4×2×1×cos 60°+4×12=12=2 3. 方法二 (数形结合法)由|a |=|2b |=2知,以a 与2b 为邻边可作出边长为2的菱形OACB ,如图,则|a +2b |=|OC →|.又∠AOB =60°,所以|a +2b |=2 3.(2)(2017·山东)已知e 1,e 2是互相垂直的单位向量,若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________. 答案33解析 由题意知|e 1|=|e 2|=1,e 1·e 2=0,|3e 1-e 2|=(3e 1-e 2)2=3e 21-23e 1·e 2+e 22=3-0+1=2. 同理|e 1+λe 2|=1+λ2.所以cos 60°=(3e 1-e 2)·(e 1+λe 2)|3e 1-e 2||e 1+λe 2|=3e 21+(3λ-1)e 1·e 2-λe 2221+λ2=3-λ21+λ2=12, 解得λ=33. 题型三 平面向量与三角函数典例 (2017·江苏三市调研)如图,A 是单位圆与x 轴正半轴的交点,点B ,P 在单位圆上,且B ⎝ ⎛⎭⎪⎫-35,45,∠AOB =α,∠AOP =θ(0<θ<π),OQ →=OA →+OP →,四边形OAQP 的面积为S .(1)求cos α+sin α;(2)求OA →·OQ →+S 的最大值及此时θ的值θ0.解 (1)∵B ⎝ ⎛⎭⎪⎫-35,45,∠AOB =α, ∴cos α=-35,sin α=45,∴cos α+sin α=15.(2)由已知得,A (1,0),P (cos θ,sin θ), ∴OQ →=(1+cos θ,sin θ), OA →·OQ →=1+cos θ, 又S =sin θ,∴OA →·OQ →+S =sin θ+cos θ+1=2sin ⎝ ⎛⎭⎪⎫θ+π4+1, 又0<θ<π,∴π4<θ+π4<5π4,∴-22<sin ⎝⎛⎭⎪⎫θ+π4≤1, 则OA →·OQ →+S 的最大值为2+1, 此时θ0=π2-π4=π4.思维升华 平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等. 跟踪训练 在平面直角坐标系xOy 中,已知向量m =⎝⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝⎛⎭⎪⎫0,π2.(1)若m ⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值.解 (1)因为m =⎝⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),m ⊥n .所以m ·n =0,即22sin x -22cos x =0, 所以sin x =cos x ,所以tan x =1.(2)因为|m |=|n |=1,所以m ·n =cos π3=12,即22sin x -22cos x =12,所以sin ⎝⎛⎭⎪⎫x -π4=12,因为0<x <π2,所以-π4<x -π4<π4,所以x -π4=π6,即x =5π12.利用数量积求向量夹角典例 已知直线y =2x 上一点P 的横坐标为a ,直线外有两个点A (-1,1),B (3,3).求使向量PA →与PB →夹角为钝角的充要条件. 错解展示:现场纠错解 错解中,cos θ<0包含了θ=π, 即PA →,PB →反向的情况,此时a =1,故PA →,PB →夹角为钝角的充要条件是0<a <2且a ≠1.纠错心得 利用数量积的符号判断两向量夹角的范围时,不要忽视两向量共线的情况.1.(2017·江苏天星湖中学月考)设向量a ,b 满足|a +b |=10,|a -b |=6,则a ·b =________. 答案 1解析 由|a +b |=10得a 2+b 2+2a ·b =10,① 由|a -b |=6得a 2+b 2-2a ·b =6,② ①-②得4a ·b =4,∴a ·b =1.2.已知向量a =(2,1),b =(1,3),则向量2a -b 与a 的夹角为________. 答案 45°解析 由题意可得2a -b =2(2,1)-(1,3)=(3,-1), 则|2a -b |=32+(-1)2=10, |a |=22+12=5,且(2a -b )·a =(3,-1)·(2,1)=6-1=5, 设所求向量的夹角为θ,由题意可得cos θ=(2a -b )·a |2a -b ||a |=510×5=22,则向量2a -b 与a 的夹角为45°.3.已知向量a =(m,2),b =(2,-1),且a ⊥b ,则|2a -b |a ·(a +b )=________.答案 1解析 ∵a ⊥b ,∴2m -2=0,∴m =1,则2a -b =(0,5),a +b =(3,1),∴a ·(a +b )=1×3+2×1=5,|2a -b |=5,∴|2a -b |a ·(a +b )=55=1.4.在△ABC 中,AB =3,AC =2,BC =10,则AB →·AC →=________. 答案 32解析 在△ABC 中,cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =9+4-102×3×2=14,∴AB →·AC →=|AB →||AC →|cos ∠BAC =3×2×14=32.5.在△ABC 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF →=____. 答案109解析 由|AB →+AC →|=|AB →-AC →|,化简得AB →·AC →=0,又因为AB 和AC 为三角形的两条边,它们的长不可能为0,所以AB 与AC 垂直,所以△ABC 为直角三角形.以A 为原点,以AC 所在直线为x 轴,以AB 所在直线为y 轴建立平面直角坐标系,如图所示,则A (0,0),B (0,2),C (1,0).不妨令E 为BC 的靠近C 的三等分点,则E ⎝ ⎛⎭⎪⎫23,23,F ⎝ ⎛⎭⎪⎫13,43, 所以AE →=⎝ ⎛⎭⎪⎫23,23,AF →=⎝ ⎛⎭⎪⎫13,43,所以AE →·AF →=23×13+23×43=109.6.若O 为△ABC 所在平面内任一点,且满足(OB →-OC →)·(OB →+OC →-2OA →)=0,则△ABC 的形状为________三角形.答案 等腰解析 因为(OB →-OC →)·(OB →+OC →-2OA →)=0,即CB →·(AB →+AC →)=0,因为AB →-AC →=CB →,所以(AB →-AC →)·(AB →+AC →)=0,即|AB →|=|AC →|,所以△ABC 是等腰三角形.7.(2017·全国Ⅰ)已知向量a =(-1,2),b =(m,1).若向量a +b 与a 垂直,则m =________. 答案 7解析 ∵a =(-1,2),b =(m,1),∴a +b =(-1+m,2+1)=(m -1,3).又a +b 与a 垂直,∴(a +b )·a =0,即(m -1)×(-1)+3×2=0,解得m =7.8.(2017·江苏泰州中学期中)向量a =(cos 10°,sin 10°),b =(cos 70°,sin 70°),则|a -2b |=________.答案 3解析 a ·b =cos 70°cos 10°+sin 70°sin 10°=cos 60°=12,|a |=|b |=1,所以|a -2b |=a 2+4b 2-4a ·b =1+4-2= 3.9.已知平面内三个不共线向量a ,b ,c 两两夹角相等,且|a |=|b |=1,|c |=3,则|a +b +c |=________.答案 2解析 因为平面内三个不共线向量a ,b ,c 两两夹角相等,所以由题意可知,a ,b ,c 的夹角为120°,又|a |=|b |=1,|c |=3,所以a ·b =-12,a ·c =b ·c =-32,|a +b +c |= 1+1+9+2×⎝ ⎛⎭⎪⎫-12+2×⎝ ⎛⎭⎪⎫-32+2×⎝ ⎛⎭⎪⎫-32=2. 10.已知a =(λ,2λ),b =(3λ,2),如果a 与b 的夹角为锐角,则λ的取值范围是______________.答案 ⎝ ⎛⎭⎪⎫-∞,-43∪⎝ ⎛⎭⎪⎫0,13∪⎝ ⎛⎭⎪⎫13,+∞ 解析 a 与b 的夹角为锐角,则a ·b >0且a 与b 不共线,则⎩⎪⎨⎪⎧ 3λ2+4λ>0,2λ-6λ2≠0,解得λ<-43或0<λ<13或λ>13,所以λ的取值范围是⎝ ⎛⎭⎪⎫-∞,-43∪⎝ ⎛⎭⎪⎫0,13∪⎝ ⎛⎭⎪⎫13,+∞. 11.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61.(1)求a 与b 的夹角θ;(2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积.解 (1)因为(2a -3b )·(2a +b )=61,所以4|a |2-4a ·b -3|b |2=61.又|a |=4,|b |=3,所以64-4a ·b -27=61,所以a ·b =-6,所以cos θ=a ·b |a||b |=-64×3=-12. 又0≤θ≤π,所以θ=2π3. (2)|a +b |2=(a +b )2=|a |2+2a ·b +|b |2=42+2×(-6)+32=13,所以|a +b |=13.(3)因为AB →与BC →的夹角θ=2π3, 所以∠ABC =π-2π3=π3. 又|AB →|=|a |=4,|BC →|=|b |=3,所以S △ABC =12|AB →||BC →|·sin ∠ABC =12×4×3×32=3 3. 12.(2017·江苏)已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π].(1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值.解 (1)因为a =(cos x ,sin x ),b =(3,-3),a ∥b ,所以-3cos x =3sin x .若cos x =0,则sin x =0,与sin 2x +cos 2x =1矛盾,故cos x ≠0.于是tan x =-33.又x ∈[0,π],所以x =5π6. (2)f (x )=a ·b =(cos x ,sin x )·(3,-3)=3cos x -3sin x=23cos ⎝⎛⎭⎪⎫x +π6. 因为x ∈[0,π],所以x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6, 从而-1≤cos ⎝⎛⎭⎪⎫x +π6≤32, 于是,当x +π6=π6,即x =0时,f (x )取得最大值3; 当x +π6=π,即x =5π6时,f (x )取得最小值-2 3.13.(2016·江苏)如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,BA →·CA→=4,BF →·CF →=-1,则BE →·CE →的值是________.答案 78解析 设AB →=a ,AC →=b ,则BA →·CA →=(-a )·(-b )=a ·b =4.又∵D 为BC 中点,E ,F 为AD 的两个三等分点,则AD →=12(AB →+AC →)=12a +12b , AF →=23AD →=13a +13b . AE →=13AD →=16a +16b , BF →=BA →+AF →=-a +13a +13b =-23a +13b , CF →=CA →+AF →=-b +13a +13b =13a -23b ,则BF →·CF →=⎝ ⎛⎭⎪⎫-23a +13b ⎝ ⎛⎭⎪⎫13a -23b = -29a 2-29b 2+59a ·b =-29(a 2+b 2)+59×4=-1. 可得a 2+b 2=292. 又BE →=BA →+AE →=-a +16a +16b =-56a +16b . CE →=CA →+AE →=-b +16a +16b =16a -56b , 则BE →·CE →=⎝ ⎛⎭⎪⎫-56a +16b ⎝ ⎛⎭⎪⎫16a -56b =-536(a 2+b 2)+2636a ·b =-536×292+2636×4=78. 14.在等腰直角△ABC 中,∠ABC =90°,AB =BC =2,M ,N 为AC 边上的两个动点(M ,N 不与A ,C 重合),且满足|MN →|=2,则BM →·BN →的取值范围为________. 答案 ⎣⎢⎡⎭⎪⎫32,2 解析 不妨设点M 靠近点A ,点N 靠近点C ,以等腰直角三角形ABC 的直角边所在直线为坐标轴建立平面直角坐标系,如图所示,则B (0,0),A (0,2),C (2,0),线段AC 的方程为x +y -2=0(0≤x ≤2).设M (a,2-a ),N (a +1,1-a )(由题意可知0<a <1),∴BM →=(a,2-a ),BN →=(a +1,1-a ),∴BM →·BN →=a (a +1)+(2-a )(1-a )=2a 2-2a +2=2⎝ ⎛⎭⎪⎫a -122+32, ∵0<a <1,∴由二次函数的知识可得BM →·BN →∈⎣⎢⎡⎭⎪⎫32,2.15.设a ,b 为单位向量,且a ⊥b ,若向量c 满足|c -(a +b )|=|a -b |,则|c |的最大值是________.答案 2 2解析 由题意结合a ⊥b ,可设a =(1,0),b =(0,1),c =(x ,y ),则由|c -(a +b )|=|a -b |,得|(x ,y )-(1,1)|=|(1,-1)|,由此可得(x -1)2+(y -1)2=2,即c 对应的点的轨迹在以(1,1)为圆心的圆上,如图所示,∵圆过原点,∴|c |的最大值为圆的直径2 2.16.已知在△ABC 所在平面内有两点P ,Q ,满足PA →+PC →=0,QA →+QB →+QC →=BC →,若|AB →|=4,|AC →|=2,S △APQ =23,则AB →·AC →的值为________. 答案 ±4 3解析 由PA →+PC →=0知,P 是AC 的中点,由QA →+QB →+QC →=BC →,可得QA →+QB →=BC →-QC →,即QA →+QB →=BQ →,即QA →=2BQ →,∴Q 是AB 边靠近B 的三等分点,∴S △APQ =23×12×S △ABC =13S △ABC , ∴S △ABC =3S △APQ =3×23=2. ∵S △ABC =12|AB →||AC →|sin A =12×4×2×sin A =2, ∴sin A =12,∴cos A =±32, ∴AB →·AC →=|AB →||AC →|·cos A =±4 3.。
数学人教A版(2019)必修第二册6.2.4平面向量数量积(共15张ppt)
![数学人教A版(2019)必修第二册6.2.4平面向量数量积(共15张ppt)](https://img.taocdn.com/s3/m/79975ea45ff7ba0d4a7302768e9951e79b89691e.png)
,求
∙ .
设 =12, =9, ∙ =-54 ,求与的夹角
向量的数量积的几何意义是什么?
B
a
A
b
C A1
B2
D
两个非零向量、,他们的夹角为,
探究向量在上的投影向量的情况.
两个非零向量、,他们的夹角为,是与方向相同的单位
向量.
(1) ∙ = , = .(求向量长度的工具)
如何规定向量的乘法.
向量的乘法的结果是什么量?这个值由那些量决定?符号
由什,我们把数量
cos量叫做、的数量积,记作 ∙
即 ∙ = cos
规定零向量与任一非零向量的数量积为0.
已知 = , = , 与的夹角 =
6.2.4向量的数量积
学习目标
1、向量数量积的运算.
2、向量投影及投影向量的概念
重点、难点 向量数量积的概念与运算律.
向量的概念源自哪一门学科?我们已经研究了向量的哪些
运算?这些向量的运算表运算结果是什么?
前面学习了向量的加,减,数乘(线性运算).
其运算结果是向量.
向量能否相乘?如何规定向量的乘法?我们该怎样研究?
(2) ⊥ ⟺ ∙ =0.(直线垂直的重要条件)
(3) ∙ = ∙ = cos.
已知 = , = , 与的夹角 = °,求 ∙ ,
( + )2 , + .
1、本节课学习了哪些知识和内容.
2、结合实例说明向量数量积的几何意义.
感谢聆听!
2.4《平面向量的数量积》教案(新人教必修4)
![2.4《平面向量的数量积》教案(新人教必修4)](https://img.taocdn.com/s3/m/e1c4b6ac80eb6294dc886c53.png)
§2.4平面向量的数量积第7课时一、 平面向量的数量积的物理背景及其含义教学目的:1.掌握平面向量的数量积及其几何意义;2.掌握平面向量数量积的重要性质及运算律;3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;4.掌握向量垂直的条件. 教学重点:平面向量的数量积定义教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用 授课类型:新授课教 具:多媒体、实物投影仪 内容分析:本节学习的关键是启发学生理解平面向量数量积的定义,理解定义之后便可引导学生推导数量积的运算律,然后通过概念辨析题加深学生对于平面向量数量积的认识.主要知识点:平面向量数量积的定义及几何意义;平面向量数量积的5个重要性质;平面向量数量积的运算律. 教学过程: 一、复习引入:1. 向量共线定理 向量b 与非零向量a共线的充要条件是:有且只有一个非零实数λ,使b =λa .2.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a=λ11e +λ22e 3.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a 把),(y x 叫做向量a 的(直角)坐标,记作),(y x a 4.平面向量的坐标运算若),(11y x a ,),(22y x b ,则b a ),(2121y y x x ,b a ),(2121y y x x ,),(y x a .若),(11y x A ,),(22y x B ,则 1212,y y x x AB5.a ∥b (b0)的充要条件是x 1y 2-x 2y 1=06.线段的定比分点及λP 1, P 2是直线l 上的两点,P 是l 上不同于P 1, P 2的任一点,存在实数λ,使 P P 1=λ2PP,λ叫做点P 分21P P 所成的比,有三种情况:λ>0(内分) (外分) λ<0 (λ<-1) ( 外分)λ<0 (-1<λ<0)7. 定比分点坐标公式:若点P 1(x 1,y 1) ,P2(x 2,y 2),λ为实数,且P P 1=λ2PP ,则点P 的坐标为(1,12121y y x x ),我们称λ为点P 分21P P 所成的比.8. 点P 的位置与λ的范围的关系:①当λ>0时,P P 1与2PP 同向共线,这时称点P 为21P P 的内分点. ②当λ<0(1 )时,P P 1与2PP 反向共线,这时称点P 为21P P 的外分点. 9.线段定比分点坐标公式的向量形式:在平面内任取一点O ,设1OP =a,2OP =b, 可得OP =b a b a1111.10.力做的功:W = |F | |s |cos ,是F 与s 的夹角.二、讲解新课:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.说明:(1)当θ=0时,a与b同向;(2)当θ=π时,a与b反向; (3)当θ=2时,a与b垂直,记a⊥b; (4)注意在两向量的夹角定义,两向量必须是同起点的.范围0 ≤ ≤1802.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos 叫a与b的数量积,记作a b ,即有a b = |a ||b |cos ,(0≤θ≤π).并规定0与任何向量的数量积为0. 探究:两个向量的数量积与向量同实数积有很大区别 (1)两个向量的数量积是一个实数,不是向量,符号由cos的符号所决定.(2)两个向量的数量积称为内积,写成a b ;今后要学到两个向量的外积a ×b ,而a b 是两个向量的数量的积,书写时要严格区分.符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替. (3)在实数中,若a 0,且a b =0,则b =0;但是在数量积中,若a 0,且a b =0,不能推出b =0.因为其中cos有可能为0.(4)已知实数a 、b 、c (b 0),则ab=bc a=c .但是a b = b c a = c如右图:a b = |a ||b |cos= |b ||OA|,b c = |b ||c |cos = |b ||OA|a b = b c 但ac(5)在实数中,有(a b )c = a (b c ),但是(a b )ca (bc )显然,这是因为左端是与c共线的向量,而右端是与a 共线的向量,而一般a 与c 不共线.3.“投影”的概念:作图定义:|b |cos叫做向量b 在a 方向上的投影.投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当C为直角时投影为0;当 = 0时投影为 |b |;当 = 180时投影为 |b |.4.向量的数量积的几何意义:数量积a b 等于a 的长度与b 在a 方向上投影|b |cos 的乘积.5.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量. 1 e a = a e =|a |cos2 aba b = 03当a 与b 同向时,a b = |a ||b |;当a 与b 反向时,a b = |a ||b |. 特别的a a = |a |2或a a a ||4 cos =||||b a ba5|a b | ≤ |a ||b |三、讲解范例:例1 已知|a |=5, |b |=4, a 与b 的夹角θ=120o ,求a ·b . 例2 已知|a |=6, |b |=4, a 与b 的夹角为60o 求(a+2b)·(a-3b).例3 已知|a |=3, |b |=4, 且a 与b 不共线,k 为何值时,向量a+kb 与a-kb 互相垂直. 例4 判断正误,并简要说明理由.①a·0=0;②0·a=0;③0-AB =BA ;④|a·b|=|a||b|;⑤若a≠0,则对任一非零b有a·b≠0;⑥a·b=0,则a与b中至少有一个为0;⑦对任意向量a,b,с都有(a·b)с=a(b·с);⑧a与b是两个单位向量,则a2=b2. 解:上述8个命题中只有③⑧正确;对于①:两个向量的数量积是一个实数,应有0·a=0;对于②:应有0·a=0; 对于④:由数量积定义有|a·b|=|a|·|b|·|cos θ|≤|a||b|,这里θ是a与b的夹角,只有θ=0或θ=π时,才有|a·b|=|a|·|b|;对于⑤:若非零向量a、b垂直,有a·b=0; 对于⑥:由a·b=0可知a⊥b可以都非零; 对于⑦:若a与с共线,记a=λс.则a·b=(λс)·b=λ(с·b)=λ(b·с), ∴(a·b)·с=λ(b·с)с=(b·с)λс=(b·с)a 若a与с不共线,则(a·b)с≠(b·с)a.评述:这一类型题,要求学生确实把握好数量积的定义、性质、运算律.例6 已知|a|=3,|b|=6,当①a∥b,②a⊥b,③a与b的夹角是60°时,分别求a·b.解:①当a∥b时,若a与b同向,则它们的夹角θ=0°,∴a·b=|a|·|b|cos0°=3×6×1=18; 若a与b反向,则它们的夹角θ=180°,∴a·b=|a||b|cos180°=3×6×(-1)=-18; ②当a⊥b时,它们的夹角θ=90°, ∴a·b=0;③当a与b的夹角是60°时,有a·b=|a||b|cos60°=3×6×21=9评述:两个向量的数量积与它们的夹角有关,其范围是[0°,180°],因此,当a∥b时,有0°或180°两种可能. 四、课堂练习:1.已知|a |=1,|b |=2,且(a -b )与a 垂直,则a 与b 的夹角是( ) A.60° B .30° C.135° D.45°2.已知|a |=2,|b |=1,a 与b 之间的夹角为3,那么向量m =a -4b 的模为( ) A.2 B .23 C.6 D.12 3.已知a 、b 是非零向量,则|a |=|b |是(a +b )与(a -b )垂直的( ) A.充分但不必要条件 B .必要但不充分条件 C.充要条件 D.既不充分也不必要条件 4.已知向量a 、b 的夹角为3,|a |=2,|b |=1,则|a +b |·|a -b |= . 5.已知a +b =2i -8j ,a -b =-8i +16j ,其中i 、j 是直角坐标系中x 轴、y 轴正方向上的单位向量,那么a ·b = . 6.已知a ⊥b 、c 与a 、b 的夹角均为60°,且|a |=1,|b |=2,|c |=3,则(a +2b -c )2=______. 7.已知|a |=1,|b |=2,(1)若a ∥b ,求a ·b ;(2)若a 、b 的夹角为60°,求|a +b |;(3)若a -b 与a 垂直,求a 与b 的夹角.8.设m 、n 是两个单位向量,其夹角为60°,求向量a =2m +n 与b =2n -3m 的夹角. 9.对于两个非零向量a 、b ,求使|a +tb |最小时的t 值,并求此时b 与a +tb 的夹角. 五、小结(略) 六、课后作业(略) 七、教学后记:第8课时二、平面向量数量积的运算律教学目的:1.掌握平面向量数量积运算规律;2.能利用数量积的5个重要性质及数量积运算规律解决有关问题;3.掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题. 教学重点:平面向量数量积及运算规律.教学难点:平面向量数量积的应用授课类型:新授课教具:多媒体、实物投影仪内容分析:启发学生在理解数量积的运算特点的基础上,逐步把握数量积的运算律,引导学生注意数量积性质的相关问题的特点,以熟练地应用数量积的性质.教学过程:一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA=a,OB=b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a||b |cos叫a与b的数量积,记作a b ,即有a b = |a||b|cos,(0≤θ≤π).并规定0与任何向量的数量积为0.3.“投影”的概念:作图C定义:|b|cos叫做向量b在a方向上的投影.投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当为直角时投影为0;当= 0时投影为|b|;当= 180时投影为|b|.4.向量的数量积的几何意义:数量积a b等于a的长度与b在a方向上投影|b|cos的乘积.5.两个向量的数量积的性质:设a、b为两个非零向量,e是与b同向的单位向量.1 e a = a e =|a |cos ;2 a b a b = 03当a 与b 同向时,a b = |a ||b |;当a 与b 反向时,a b =|a ||b |. 特别的a a = |a |2或a a a ||4cos =||||b a ba ;5|a b | ≤ |a ||b |二、讲解新课: 平面向量数量积的运算律 1.交换律:a b = b a证:设a ,b 夹角为,则a b = |a ||b |cos ,b a = |b ||a |cos∴a b = b a2.数乘结合律:( a ) b = (a b ) = a ( b ) 证:若 > 0,( a ) b = |a ||b |cos , (a b ) = |a ||b |cos,a ( b ) = |a ||b |cos , 若 < 0,( a ) b =| a ||b |cos() =|a ||b |(cos) = |a ||b |cos, (a b )= |a ||b |cos ,a (b ) =|a || b |cos() =|a ||b |(cos) = |a ||b |cos.3.分配律:(a + b ) c = a c + b c在平面内取一点O ,作OA = a , AB = b ,OC = c , ∵a + b (即OB )在c 方向上的投影等于a 、b 在c 方向上的投影和,即 |a + b | cos = |a | cos 1 + |b | cos 2∴| c | |a + b | cos =|c | |a | cos1 + |c | |b | cos2,∴c (a + b ) = c a + c b 即:(a + b ) c= a c + b c说明:(1)一般地,(a·b)с≠a(b·с)(2)a·с=b·с,с≠0a=b(3)有如下常用性质:a2=|a|2,(a+b)(с+d)=a·с+a·d+b·с+b·d (a+b)2=a2+2a·b+b2三、讲解范例:例1 已知a 、b 都是非零向量,且a + 3b 与7a 5b 垂直,a 4b 与7a2b 垂直,求a 与b 的夹角. 解:由(a + 3b )(7a 5b ) = 0 7a 2 + 16a b 15b 2 = 0 ①(a4b )(7a2b ) = 0 7a 230a b + 8b 2 = 0 ②两式相减:2a b = b 2 代入①或②得:a 2 = b 2设a 、b 的夹角为,则cos=21222 ||||||b b b a b a ∴ = 60例2 求证:平行四边形两条对角线平方和等于四条边的平方和.解:如图:平行四边形ABCD 中,DC AB ,BC AD ,AC =AD AB ∴|AC|2=AD AB AD AB AD AB 2||222而BD =AD AB , ∴|BD|2=AD AB AD AB AD AB 2||222∴|AC |2 + |BD |2 = 2222AD AB = 2222||||||||AD DC BC AB例3 四边形ABCD 中,AB =a,BC =b,CD =с,DA =d,且a·b=b·с=с·d=d·a,试问四边形ABCD 是什么图形?分析:四边形的形状由边角关系确定,关键是由题设条件演变、推算该四边形的边角量. 解:四边形ABCD 是矩形,这是因为:一方面:∵a+b+с+d=0,∴a+b=-(с+d),∴(a+b)2=(с+d)2即|a|2+2a·b+|b|2=|с|2+2с·d+|d|2由于a·b=с·d,∴|a|2+|b|2=|с|2+|d|2① 同理有|a|2+|d|2=|с|2+|b|2②由①②可得|a|=|с|,且|b|=|d|即四边形ABCD 两组对边分别相等. ∴四边形ABCD 是平行四边形另一方面,由a·b=b·с,有b(a-с)=0,而由平行四边形ABCD 可得a=-с,代入上式得b·(2a)=0,即a·b=0,∴a⊥b也即AB ⊥BC .综上所述,四边形ABCD 是矩形.评述:(1)在四边形中,AB ,BC ,CD ,DA 是顺次首尾相接向量,则其和向量是零向量,即a+b+с+d=0,应注意这一隐含条件应用;(2)由已知条件产生数量积的关键是构造数量积,因为数量积的定义式中含有边、角两种关系. 四、课堂练习:1.下列叙述不正确的是( )A.向量的数量积满足交换律 B .向量的数量积满足分配律 C.向量的数量积满足结合律 D.a ·b 是一个实数2.已知|a |=6,|b |=4,a 与b 的夹角为60°,则(a +2b )·(a -3b )等于( ) A.72 B .-72 C.36 D.-363.|a |=3,|b |=4,向量a +43b 与a -43b 的位置关系为( ) A.平行 B .垂直 C.夹角为3D.不平行也不垂直 4.已知|a |=3,|b |=4,且a 与b 的夹角为150°,则(a +b )2= . 5.已知|a |=2,|b |=5,a ·b =-3,则|a +b |=______,|a -b |= . 6.设|a |=3,|b |=5,且a +λb 与a -λb 垂直,则λ= . 五、小结(略) 六、课后作业(略) 七、板书设计(略) 八、课后记:第9课时三、平面向量数量积的坐标表示、模、夹角教学目的:⑴要求学生掌握平面向量数量积的坐标表示⑵掌握向量垂直的坐标表示的充要条件,及平面内两点间的距离公式. ⑶能用所学知识解决有关综合问题. 教学重点:平面向量数量积的坐标表示教学难点:平面向量数量积的坐标表示的综合运用 授课类型:新授课教 具:多媒体、实物投影仪 教学过程: 一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos 叫a与b的数量积,记作a b ,即有a b = |a ||b |cos ,(0≤θ≤π).并规定0与任何向量的数量积为0. 3.向量的数量积的几何意义:C数量积a b 等于a 的长度与b 在a 方向上投影|b |cos 的乘积.4.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量. 1 e a = a e =|a |cos; 2aba b = 03当a 与b 同向时,a b = |a ||b |;当a 与b 反向时,a b = |a ||b |. 特别的a a = |a |2或a a a ||4 cos =||||b a ba ;5|a b | ≤ |a ||b |5.平面向量数量积的运算律 交换律:a b = b a数乘结合律:( a ) b = (a b ) = a ( b ) 分配律:(a + b ) c = a c + b c 二、讲解新课:⒈ 平面两向量数量积的坐标表示已知两个非零向量),(11y x a ,),(22y x b ,试用a 和b 的坐标表示b a .设i 是x 轴上的单位向量,j 是y 轴上的单位向量,那么j y i x a 11 ,j y i x b 22 所以))((2211j y i x j y i x b a 2211221221j y y j i y x j i y x i x x 又1 i i ,1 j j ,0 i j j i ,所以b a 2121y y x x这就是说:两个向量的数量积等于它们对应坐标的乘积的和.即b a 2121y y x x 2. 平面内两点间的距离公式一、 设),(y x a ,则222||y x a 或22||y x a.(2)如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么221221)()(||y y x x a (平面内两点间的距离公式)二、 向量垂直的判定设),(11y x a ,),(22y x b ,则b a 02121 y y x x 三、 两向量夹角的余弦( 0)co s =||||b a ba 222221212121y x y x y y x x四、 讲解范例:五、 设a = (5, 7),b = ( 6, 4),求a ·b 及a 、b 间的夹角θ(精确到1o ) 例2 已知A (1, 2),B (2, 3),C ( 2, 5),试判断△ABC 的形状,并给出证明. 例3 已知a = (3, 1),b = (1, 2),求满足x a = 9与x b = 4的向量x . 解:设x = (t , s ), 由429349s t s t b x a x32s t ∴x = (2, 3) 例4 已知a =(1,3),b =(3+1,3-1),则a 与b 的夹角是多少? 分析:为求a 与b 夹角,需先求a ·b 及|a |·|b |,再结合夹角θ的范围确定其值. 解:由a =(1,3),b =(3+1,3-1)有a ·b =3+1+3(3-1)=4,|a |=2,|b |=22.记a 与b 的夹角为θ,则cosθ=22b a b a 又∵0≤θ≤π,∴θ=4评述:已知三角形函数值求角时,应注重角的范围的确定.例5 如图,以原点和A (5, 2)为顶点作等腰直角△OAB ,使 B = 90 ,求点B 和向量AB 的坐标.解:设B 点坐标(x , y ),则OB = (x , y ),AB = (x 5, y 2) ∵OB AB ∴x (x 5) + y (y 2) = 0即:x 2 + y 2 5x 2y = 0 又∵|OB | = |AB | ∴x 2 + y 2 = (x 5)2 + (y 2)2即:10x + 4y = 29由2723232729410025221122y x y x y x y x y x 或∴B 点坐标)23,27( 或)27,23(;AB =)27,23( 或)23,27(例6 在△ABC 中,AB =(2, 3),AC =(1, k ),且△ABC 的一个内角为直角,求k 值.解:当A = 90 时,AB AC = 0,∴2×1 +3×k = 0 ∴k =23当B = 90 时,AB BC = 0,BC =AC AB = (1 2, k 3) = ( 1, k 3) ∴2×( 1) +3×(k 3) = 0 ∴k =311 当C = 90 时,AC BC = 0,∴ 1 + k (k 3) = 0 ∴k =2133 六、 课堂练习:1.若a =(-4,3),b =(5,6),则3|a |2-4a ·b =( ) A.23 B .57 C.63 D.83 2.已知A (1,2),B (2,3),C (-2,5),则△ABC 为( )A.直角三角形 B .锐角三角形 C.钝角三角形 D.不等边三角形 3.已知a =(4,3),向量b 是垂直a 的单位向量,则b 等于( ) A.)54,53(或)53,54( B .)54,53(或)54,53( C.)54,53( 或)53,54(D.)54,53( 或)54,53(4.a =(2,3),b =(-2,4),则(a +b )·(a -b )= .5.已知A (3,2),B (-1,-1),若点P (x ,-21)在线段AB 的中垂线上,则x = . 6.已知A (1,0),B (3,1),C (2,0),且a =,b =,则a 与b 的夹角为 . 七、 小结(略) 八、 课后作业(略) 九、 板书设计(略) 十、 课后记:。
高中数学第六章平面向量及其应用-向量的数量积课件及答案
![高中数学第六章平面向量及其应用-向量的数量积课件及答案](https://img.taocdn.com/s3/m/db3e93105627a5e9856a561252d380eb629423f3.png)
【对点练清】 1.(2020·全国卷Ⅱ)已知单位向量 a ,b 的夹角为 45°,ka -b 与 a 垂直,则 k=_____.
解析:由题意,得 a ·b =|a |·|b |cos 45°= 22.因为向量a =ka
2-a ·b =k-
22=0,解得
【学透用活】 [典例 3] (1)已知 e1 与 e2 是两个互相垂直的单位向量,若向量 e1+ke2 与 ke1+e2 的夹角为锐角,则 k 的取值范围为_________. (2)已知非零向量 a ,b 满足 a +3b 与 7a -5b 互相垂直,a -4b 与 7a -2b 互相垂直,求 a 与 b 的夹角. [解析] (1)∵e1+ke2 与 ke1+e2 的夹角为锐角, ∴(e1+ke2)·(ke1+e2)=ke21+ke22+(k2+1)e1·e2=2k>0,∴k>0.当 k =1 时,e1+ke2=ke1+e2,它们的夹角为 0,不符合题意,舍去.综上, k 的取值范围为 k>0 且 k≠1. 答案:(0,1)∪(1,+∞)
(3)设非零向量 a 与 b 的夹角为 θ,则 cos θ>0⇔a ·b >0.
(√)
(4)|a ·b |≤a ·b .
( ×)
2.若向量 a ,b 满足|a |=|b |=1,a 与 b 的夹角为 60°,则 a ·b 等于 ( )
1 A.2
3 B.2
C.1+
3 2
D.2
答案:A
3.已知|a |=1,|b |=2,设 e 是与 a 同方向上的单位向量,a 与 b 的夹 角为π3,则 b 在 a 方向上的投影向量为______.
(4)|a ·b |≤__|_a_|_|_b_|.
2.平面向量数量积的运算律:
平面向量的数量积_图文_图文
![平面向量的数量积_图文_图文](https://img.taocdn.com/s3/m/7d40d56f312b3169a451a4c2.png)
我们知道,数量之间可以进行加、 减、乘、除运算,运算的结果依然 是数量。那么向量呢?
前面,我们对向量进行了加减的运算, 发现它们运算的结果还是向量。那么向 量之间能否进行乘除运算呢?如果能的 话,运算的结果还是向量吗?
一 .引入
物理实例如图,一个物体在力F 的作用下产生位移S,那么力F 所做的功W=____________
特别地,a ·a (或写成 a 2)=| a |2或| a |=√a ·a .
(4)| a ·b |≤| a || b |.
向量a与b共线
| a ·b |=| a || 算律 (1) a ·b = b ·a (交换律); (2) ( a ) ·b=( a ·b )= a ·( b ); (3) ( a + b ) ·c= a ·c + b ·c(分配律);
2. 已知△ABC中, AB=a, AC=b, 当 a·b <0, a·b =0时 , △ ABC各是什么三角形.
钝角三角形
直角三角形
4、P108 Ex1
六、运算律
实数之间的乘法满足哪些运算律?你能类比得出向
量的数量积的运算律吗?
从力的做功来
(1) a ·b = b ·a (交换律);
看若力增大n倍
A 2
a
bB
1
O A1 c B1 C
例2 辨析题:
向量的数量积 不满足消去律
1.若a≠0,且a ·b=0,则b=0. ( X )
2.若a≠0,且a ·b=a ·c,则b=c.( X )
3.(a ·b) ·c=a ·(b ·c(). X )
┐
4.若a2=0,则a=0( √ ) 5.若a2+b2= 0,则a=b= ( √ ) 6若 |a ·b|≥|a| ·|b|, 则a∥b.( √ )
2.4.1平面向量的数量积》(第一课时)
![2.4.1平面向量的数量积》(第一课时)](https://img.taocdn.com/s3/m/6074bf19964bcf84b9d57b3f.png)
问题提出
1.向量的模和夹角分别是什么概念? 1.向量的模和夹角分别是什么概念? 向量的模和夹角分别是什么概念
, 注意: 两向量的夹角定义两向量必须 是同起点的范围是 ≤θ ≤ π. , 0
向量的夹角 两个非零向量a 两个非零向量 和b ,作OA = a ,OB = b ,则 ∠AOB = θ
数量积a·b等于 的模与 数量积 等于a的模与 在a方向上的 等于 的模与b在 方向上的 投影︱ ︱ θ的乘积,或等于b的模与 投影︱b︱cosθ的乘积,或等于 的模与 a在b方向上的投影︱a︱cosθ的乘积. 方向上的投影︱ ︱ θ的乘积. 在 方向上的投影
平面向量的数量积的运算性质 问题5 都是非零向量, 等于多少? 问题5:设a与b都是非零向量,若a⊥b,则a·b等于多少? 与 都是非零向量 ⊥ , 等于多少 反之成立吗? 反之成立吗?
数量积的运算律: 数量积的运算律: 交换律: 交换律: r r r r r r r 分配律: 分配律:(a + b) ⋅ c = a ⋅ c + b ⋅ c
r r r r a ⋅b = b ⋅ a
数乘结合律: 数乘结合律:
(λa)·b=λ(a·b)=a·(λb) = 关于向量的数量积运算: 关于向量的数量积运算: 数量积运算不满足结合律。 数量积运算不满足结合律。 思考4:对于实数λ,(λa)·b表示什么意义?它可以转化为哪
Байду номын сангаас
F
S
W=︱F︱︱s︱cosθ =
问题2:你能用文字语言来表述功的计算公式吗 如果 问题 :你能用文字语言来表述功的计算公式吗?如果 我们将公式中的力与位移推广到一般向量,其结果又该 我们将公式中的力与位移推广到一般向量, 如何表述? 如何表述? 功是力与位移的大小及其夹角余弦的乘积; 功是力与位移的大小及其夹角余弦的乘积; 两个向量的大小及其夹角余弦的乘积。 两个向量的大小及其夹角余弦的乘积。
《平面向量数量积》教案
![《平面向量数量积》教案](https://img.taocdn.com/s3/m/801deee21b37f111f18583d049649b6648d7099c.png)
《平面向量数量积》教案一、教学目标1. 理解平面向量的概念,掌握向量的表示方法。
2. 掌握向量的数量积运算,了解数量积的性质和运算规律。
3. 能够运用数量积解决实际问题,提高数学应用能力。
二、教学内容1. 向量的概念及表示方法2. 向量的数量积定义及计算公式3. 数量积的性质和运算规律4. 数量积在坐标系中的运算5. 数量积的应用三、教学重点与难点1. 重点:向量的概念,数量积的计算公式,数量积的性质和运算规律。
2. 难点:数量积在坐标系中的运算,数量积的应用。
四、教学方法1. 采用讲授法,讲解向量及数量积的基本概念、性质和运算规律。
2. 利用案例分析法,分析数量积在实际问题中的应用。
3. 利用数形结合法,直观展示数量积在坐标系中的运算。
4. 引导学生通过小组讨论、探究,提高学生的参与度和自主学习能力。
五、教学安排1. 第一课时:向量的概念及表示方法2. 第二课时:向量的数量积定义及计算公式3. 第三课时:数量积的性质和运算规律4. 第四课时:数量积在坐标系中的运算5. 第五课时:数量积的应用六、教学过程1. 导入:通过复习实数乘法的分配律,引导学生思考向量数量积的定义。
2. 讲解向量的概念,向量的表示方法,向量的几何直观。
3. 引入向量数量积的概念,讲解数量积的计算公式。
4. 通过实例,演示数量积的运算过程,让学生感受数量积的意义。
5. 总结数量积的性质和运算规律,引导学生发现数量积与向量坐标的关系。
七、案例分析1. 利用数量积解释物理学中的力的合成与分解。
2. 利用数量积解决几何问题,如求解平行四边形的对角线长度。
3. 利用数量积判断两个向量是否垂直。
八、数量积在坐标系中的运算1. 讲解坐标系中向量的表示方法,向量的坐标运算。
2. 推导数量积在坐标系中的运算公式。
3. 通过实例,演示数量积在坐标系中的运算过程。
4. 引导学生掌握数量积在坐标系中的运算方法,提高运算能力。
九、数量积的应用1. 利用数量积解决线性方程组。
平面向量的数量积
![平面向量的数量积](https://img.taocdn.com/s3/m/0e217278783e0912a2162a21.png)
3分
2 , 2 2 1 2 ∵ 0°≤θ ≤ 180°,∴θ =45°.
则cos θ =
a b | a || b |
2
5分 6分
(2)∵(a-b)2=a2-2a·b+b2
1 1 1 1 2 , 2 2 2
∴|a-b|=
2 . 2
8分
1 1 5 , 2 2 2
(a+b)2=a2+2a·b+b2=1+2×
∴ka2+(2k-1)a·b-2b2=0.
16k-16(2k-1)-2×64=0,∴k=-7.
思想方法
感悟提高
方法与技巧
1.数量积a·b中间的符号“·”不能省略,也不能用 “×”来替代. 2.要熟练类似( a+μ b)·(sa+tb)= sa2+( t+μ s) a·b+μ tb2的运算律( 、μ 、s、t∈R). 3.求向量模的常用方法:利用公式 |a|2=a2, 将模的运 算转化为向量的数量积的运算. 4.一般地,(a·b)c≠(b·c)a即乘法的结合律不成
立 . 因 a·b 是一个数量,所以 (a·b)c 表示一个与 c
共线的向量,同理右边(b·c)a表示一个与a共线 的向量,而a与c不一定共线,故一般情况下(a·b)c ≠(b·c)a.
失误与防范
1. 零 向 量 :(1)0 与 实 数 0 的 区 别 , 不 可 写 错 :
0a=0≠0,a+(-a)=0≠0,a·0=0≠0;(2)0 的方向是任 意的,并非没有方向, 0 与任何向量平行,我们只 定义了非零向量的垂直关系. 2.a·b=0不能推出a=0或b=0,因为a·b=0 a⊥b.
数学(2.4.1平面向量数量积的物理背景及其含义)
![数学(2.4.1平面向量数量积的物理背景及其含义)](https://img.taocdn.com/s3/m/76d9f35a4531b90d6c85ec3a87c24028905f855e.png)
功率等于功与作用时间的比值。平面向量数量积可以用来描述功率,即功率等于功向量与时间向量的 模的比值。
03
平面向量数量积的应用
速度与加速度的研究
速度
速度是描述物体运动快慢的物理量, 等于位移与时间的比值。在平面向量 中,速度可以表示为向量,其模即为 线段长度与时间的比值。
加速度
加速度是描述物体速度变化快慢的物 理量,等于速度的变化量与时间的比 值。在平面向量中,加速度可以表示 为速度向量的变化率,其模即为速度 变化量与时间的比值。
详细描述
根据数乘的定义,实数k与向量a的数乘记作 ka,其模长为|ka|=|k||a|。设向量a与向量b的
夹角为θ,则有k(a·b)=k(|a||b|cosθ), (ka)·b=|ka||b|cosθ=k(|a||b|cosθ),
a·(kb)=|a||kb|cosθ=k(|a||b|cosθ)。这说明数 乘律成立,即k(a·b)=(ka)·b=a·(kb)。
几何意义
总结词
平面向量数量积表示两个向量在方向上的相似性和夹角关系。
详细描述
平面向量数量积的几何意义在于表示两个向量在方向上的相似性和夹角关系。当两个向量的夹角为锐角时,数量 积大于0,表示两个向量方向相同;当夹角为钝角时,数量积小于0,表示两个向量方向相反;当夹角为0或180 度时,数量积为0,表示两个向量垂直或反向。
动量与冲量
动量
物体的动量等于物体的质量与速 度的乘积。平面向量数量积可以 用来描述动量,即物体的动量等 于质量与速度向量的模的乘积。
冲量
冲量等于力的作用时间与力的乘 积。平面向量数量积可以用来描 述冲量,即冲量等于力向量与时 间向量的模的乘积。
功与功率
功
平面向量的数量积
![平面向量的数量积](https://img.taocdn.com/s3/m/f943184aae1ffc4ffe4733687e21af45b307fecd.png)
平面向量的数量积【考点梳理】1.平面向量的数量积(1)定义:已知两个非零向量a 和b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积(或内积).规定:零向量与任一向量的数量积为0.(2)几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.2.平面向量数量积的运算律 (1)交换律:a ·b =b ·a ;(2)数乘结合律:(λa )·b =λ(a ·b )=a ·(λb ); (3)分配律:a ·(b +c )=a ·b +a ·c .3.平面向量数量积的性质及其坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2),θ=〈a ,b 〉.考点一、平面向量数量积的运算【例1】(1)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为( ) A .-58 B .18 C .14 D .118(2)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO →·AP →的最大值为________.[答案] (1)B (2) 6[解析] (1)如图所示,AF →=AD →+DF →.又D ,E 分别为AB ,BC 的中点,且DE =2EF ,所以AD →=12AB →,DF →=12AC →+14AC →=34AC →, 所以AF →=12AB →+34AC →. 又BC →=AC →-AB →,则AF →·BC →=⎝ ⎛⎭⎪⎫12AB →+34AC →·(AC →-AB →)=12AB →·AC →-12AB →2+34AC →2-34AC →·AB →=34AC →2-12AB →2-14AC →·AB →. 又|AB →|=|AC →|=1,∠BAC =60°, 故AF →·BC →=34-12-14×1×1×12=18.故选B. (2)设P (cos α,sin α), ∴AP →=(cos α+2,sin α),∴AO →·AP →=(2,0)·(cos α+2,sin α)=2cos α+4≤6, 当且仅当cos α=1时取等号.【类题通法】1.求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.2.解决涉及几何图形的向量数量积运算问题时,可先利用向量的加减运算或数量积的运算律化简再运算.但一定要注意向量的夹角与已知平面角的关系是相等还是互补.【对点训练】1.线段AD ,BE 分别是边长为2的等边三角形ABC 在边BC ,AC 边上的高,则AD →·BE →=( )A .-32 B .32 C .-332 D .332[答案] A[解析] 由等边三角形的性质得|AD →|=|BE →|=3,〈AD →,BE →〉=120°,所以AD →·BE →=|AD →||BE →|cos 〈AD →,BE →〉=3×3×⎝ ⎛⎭⎪⎫-12=-32,故选A.2.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________.[答案] 1 1[解析] 法一:以射线AB ,AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),B (1,0),C (1,1),D (0,1),设E (t,0),t ∈[0,1],则DE →=(t ,-1),CB →=(0,-1),所以DE →·CB →=(t ,-1)·(0,-1)=1.因为DC →=(1,0),所以DE →·DC →=(t ,-1)·(1,0)=t ≤1,故DE →·DC →的最大值为1.法二:由图知,无论E 点在哪个位置,DE →在CB →方向上的投影都是CB =1,所以DE →·CB →=|CB →|·1=1,当E 运动到B 点时,DE →在DC →方向上的投影最大,即为DC =1, 所以(DE →·DC →)max =|DC →|·1=1.考点二、平面向量的夹角与垂直【例2】(1)已知向量a =(-2,3),b =(3,m ),且a ⊥b ,则m =________. (2)已知平面向量a ,b 满足|a |=2,|b |=1,a 与b 的夹角为2π3,且(a +λb )⊥(2a -b ),则实数λ的值为( )A .-7B .-3C .2D .3(3)若向量a =(k ,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.[答案] (1)2 (2)D (3)⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3[解析] (1)由题意,得-2×3+3m =0,∴m =2.(2)依题意得a ·b =2×1×cos 2π3=-1,(a +λb )·(2a -b )=0,即2a 2-λb 2+(2λ-1)a ·b =0,则-3λ+9=0,λ=3.(3)∵2a -3b 与c 的夹角为钝角,∴(2a -3b )·c <0, 即(2k -3,-6)·(2,1)<0,解得k <3.又若(2a -3b )∥c ,则2k -3=-12,即k =-92. 当k =-92时,2a -3b =(-12,-6)=-6c ,即2a -3b 与c 反向.综上,k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3.【类题通法】1.根据平面向量数量积的性质:若a ,b 为非零向量,cos θ=a ·b|a ||b |(夹角公式),a ⊥b ⇔a ·b =0等,可知平面向量的数量积可以用来解决有关角度、垂直问题.2.数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角.【对点训练】1.已知向量a =(1,m ),b =(3,-2),且(a +b )⊥b ,则m =( ) A .-8 B .-6 C .6 D .8[答案] D[解析] 法一:因为a =(1,m ),b =(3,-2),所以a +b =(4,m -2). 因为(a +b )⊥b ,所以(a +b )·b =0,所以12-2(m -2)=0,解得m =8. 法二:因为(a +b )⊥b ,所以(a +b )·b =0,即a·b +b 2=3-2m +32+(-2)2=16-2m =0,解得m =8.2.设向量a =(m,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________. [答案] -2[解析] ∵|a +b |2=|a |2+|b |2+2a·b =|a |2+|b |2, ∴a·b =0.又a =(m,1),b =(1,2),∴m +2=0,∴m =-2.3.已知非零向量a ,b 满足|b |=4|a |,且a ⊥(2a +b ),则a 与b 的夹角为( ) A .π3 B .π2 C .2π3 D .5π6 [答案] C[解析] ∵a ⊥(2a +b ),∴a ·(2a +b )=0, ∴2|a |2+a ·b =0,即2|a |2+|a ||b |cos 〈a ,b 〉=0.∵|b |=4|a |,∴2|a |2+4|a |2cos 〈a ,b 〉=0, ∴cos 〈a ,b 〉=-12,∴〈a ,b 〉=2π3.4.已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =( )A .30°B .45°C .60°D .120°[答案] A[解析] 因为BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,所以BA →·BC →=34+34=32.又因为BA →·BC →=|BA →||BC →|cos ∠ABC =1×1×cos ∠ABC ,所以cos ∠ABC =32. 又0°≤∠ABC ≤180°,所以∠ABC =30°.故选A.考点三、平面向量的模及其应用【例3】(1)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. (2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________.[答案] (1) 23 (2) 5[解析] (1)|a +2b |2=(a +2b )2=|a |2+2|a |·|2b |·cos 60°+(2|b |)2=22+2×2×2×12+22=4+4+4=12,∴|a +2b |=12=2 3.(2)以D 为原点,分别以DA ,DC 所在直线为x 轴,y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =x (0≤x ≤a ),∴D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,x ).P A →=(2,-x ),PB →=(1,a -x ),∴P A →+3PB →=(5,3a -4x ),|P A →+3PB →|2=25+(3a -4x )2≥25,当x =3a 4时取等号.∴|P A →+3PB →|的最小值为5.【类题通法】1.求向量的模的方法:(1)公式法,利用|a |=a ·a 及(a ±b )2=|a |2±2a ·b +|b |2,把向量的模的运算转化为数量积运算;(2)几何法,利用向量的几何意义,即利用向量加减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解.2.求向量模的最值(范围)的方法:(1)代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;(2)几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.【对点训练】1.已知平面向量a 与b 的夹角等于π3,若|a |=2,|b |=3,则|2a -3b |=( ) A .57 B .61 C .57 D .61 [答案] B[解析] 由题意可得a ·b =|a |·|b |cos π3=3,所以|2a -3b |=(2a -3b )2=4|a |2+9|b |2-12a ·b =16+81-36=61,故选B.2.已知正△ABC 的边长为23,平面ABC 内的动点P ,M 满足|AP →|=1,PM →=MC →,则|BM →|2的最大值是________.[答案] 494[解析] 建立平面直角坐标系如图所示,则B (-3,0),C (3,0),A (0,3),则点P 的轨迹方程为x 2+(y -3)2=1. 设P (x ,y ),M (x 0,y 0),则x =2x 0-3,y =2y 0, 代入圆的方程得⎝ ⎛⎭⎪⎫x 0-322+⎝ ⎛⎭⎪⎫y 0-322=14,所以点M 的轨迹方程为⎝ ⎛⎭⎪⎫x -322+⎝ ⎛⎭⎪⎫y -322=14,它表示以⎝ ⎛⎭⎪⎫32,32为圆心,以12为半径的圆,所以|BM →|max =⎝ ⎛⎭⎪⎫32+32+⎝⎛⎭⎪⎫32-02+12=72,所以|BM →|2max =494.。
总复习《第28讲 平面向量的数量积》
![总复习《第28讲 平面向量的数量积》](https://img.taocdn.com/s3/m/e6be6fc8bb4cf7ec4afed09f.png)
【变式】
1.在△ABC中,(1)若CA=a,CB=b,求证△ABC
1 S 的面积 Δ 2
a b a b
2
2
(2)若CA=(a1,a2 ),CB=(b1,b2 ),求证:△ABC
1 的面积 S Δ a1b2 a 2 b1 2
归纳反思
1.向量的运算要注意 两个向量相加减是一个向量, 两个向量的数量积是一个实数. 2.要注意共线和垂直的区分
a x2 y2
cosθ
x1 x2 y1 y2
2 2 x12 y12 x2 y2
a· b= 0
x1x2+y1y2=0
x1 x2 y1 y2 x12 y12 x22 y22
|a· b|与 |a||b|
|a·b|≤ |a||b| .
例题1.判断正误:
( Y—表示正确;N—表示错误 )
思考: (1) n的有两个值都符合要求吗? (2) 如何求c?
【变式】如图,在边长为1的正三角形ABC
uuu r uuu r uu r uur 中,设 BC 2BD, CA 3CE 则 uuu r uur 1 ADgBE 4 .
A
r r r r a b a b cos 【代数运算】
总复习第28讲
平面向量的数量积
要点·疑点·考点
1.平面向量的数量积的定义
(1)设两个非零向量a和b,作OA=a,OB=b, 则∠AOB=θ叫a与b的夹角,其范围是[0,π], (2) |b|cosθ叫b在a上的投影. (3)
|a||b|cosθ
叫a与b的数量积,记作a·b,即
a·b=|a||b|cosθ. (4)几何意义是: a·b等于|a|与 b在a方向上的投影|b|cosθ 的积.
《平面向量的数量积 》课件
![《平面向量的数量积 》课件](https://img.taocdn.com/s3/m/85ce2937f56527d3240c844769eae009581ba234.png)
数量积的性质
对称性
了解数量积的对称性质,即两个向量的数量积与 顺序无关。
同向向量和垂直向量的数量积
学习同向向量和垂直向量的数量积的特点和计算 方法。
分配律
掌握数量积的分配律,即对两个向量进行数量积 后再进行加法等价于对两个向量分别进行数量积 再进行加法。
零向量的数量积
了解零向量在数量积中的特殊性质。
《平面向量的数量积 》 PPT课件
这个PPT课件将帮助你了解平面向量的数量积及其重要性。你将学习到平面 向量的基础知识、数量积的定义和性质,并了解它在向量夹角计算、向量投 影和向量垂直判定中的应用。
简介
平面向量的定义和表示
了解平面向量的定义和表示方法,以及如何在平面 上进行向量表示。
向量的模长和方向角
学习如何计算向量的模长和方向角,并应用于问题 求解。
数量积的定义
1 两个向量的数量积公式
掌握两个向量的数量积的公式,以及如何进行计算。
2 两个向量数量积的几何意义
了解两个向量数量积的几何意义,以及它在平面向量中的应用。
3 两个向量数量积的计算方法
学习使用点乘法进行向量数量积的计算,掌握计算的步骤和技巧。
数量积的应用
1
向量夹角的计算
学习如何通过数量积计算两个向量的夹角,并将其应用于几何问题的解决。
2
向量投影的计算
掌握如何利用数量积计算一个向量在另一个向量上的投影,并理解投影的几何意 义。
3
向量垂直的判定
了解如何通过数量积判断两个向量是否垂直,并应用于物理和几何问题的分析。
总结
数量积的基本概念
概述平面向量的数量积的基 本概念和定义。
数量积的性质
总结数量积的各种性质,包 括对称性、分配律等。
第五章 5.3平面向量的数量积
![第五章 5.3平面向量的数量积](https://img.taocdn.com/s3/m/ee6ad54859fafab069dc5022aaea998fcc2240cb.png)
1.两个向量的夹角 (1)定义已知两个非零向量a ,b ,作OA →=a ,OB →=b ,则∠AOB 称作向量a 和向量b 的夹角,记作〈a ,b 〉. (2)范围向量夹角〈a ,b 〉的范围是[0,π],且〈a ,b 〉=〈b ,a 〉. (3)向量垂直如果〈a ,b 〉=π2,则a 与b 垂直,记作a ⊥b .2.向量在轴上的正射影已知向量a 和轴l (如图),作OA →=a ,过点O ,A 分别作轴l 的垂线,垂足分别为O 1,A 1,则向量O 1A 1→叫做向量a 在轴l 上的正射影(简称射影),该射影在轴l 上的坐标,称作a 在轴l 上的数量或在轴l 的方向上的数量.OA →=a 在轴l 上正射影的坐标记作a l ,向量a 的方向与轴l 的正向所成的角为θ,则由三角函数中的余弦定义有a l =|a |cos θ. 3.向量的数量积(1)平面向量的数量积的定义|a||b |cos 〈a ,b 〉叫做向量a 和b 的数量积(或内积),记作a·b ,即a·b =|a||b |cos 〈a ,b 〉. (2)向量数量积的性质①如果e 是单位向量,则a·e =e·a =|a |cos 〈a ,e 〉; ②a ⊥b ⇔a·b =0; ③a·a =|a |2,|a |=a·a ;④cos 〈a ,b 〉=a·b |a||b |(|a||b |≠0);⑤|a·b |__≤__|a||b |. (3)数量积的运算律 ①交换律:a·b =b·a .②对λ∈R ,λ(a·b )=(λa )·b =a ·(λb ). ③分配律:(a +b )·c =a·c +b·c . (4)数量积的坐标运算设a =(a 1,a 2),b =(b 1,b 2),则 ①a·b =a 1b 1+a 2b 2; ②a ⊥b ⇔a 1b 1+a 2b 2=0;③|a |=a 21+a 22;④cos 〈a ,b 〉=a 1b 1+a 2b 2a 21+a 22·b 21+b 22.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( √ ) (2)向量在另一个向量方向上的正射影为数量,而不是向量.( × )(3)在四边形ABCD 中,AB →=DC →且AC →·BD →=0,则四边形ABCD 为矩形.( × ) (4)两个向量的夹角的范围是[0,π2].( × )(5)由a ·b =0可得a =0或b =0.( × ) (6)(a ·b )c =a (b ·c ).( × )1.已知向量a ,b 的夹角为60°,且|a |=2,|b |=1,则向量a 与向量a +2b 的夹角等于( ) A.150° B.90° C.60° D.30°答案 D解析 设向量a 与向量a +2b 的夹角为θ. ∵|a +2b |2=4+4+4a ·b =8+8cos 60°=12, ∴|a +2b |=23, a ·(a +2b )=|a |·|a +2b |·cos θ =2×23cos θ=43cos θ,又a ·(a +2b )=a 2+2a ·b =4+4cos 60°=6, ∴43cos θ=6,cos θ=32, ∵θ∈[0°,180°],∴θ=30°,故选D.2.(2015·山东)已知菱形ABCD 的边长为a ,∠ABC =60°,则BD →·CD →等于( ) A.-32a 2B.-34a 2C.34a 2 D.32a 2 答案 D解析 如图所示,由题意,得BC =a ,CD =a ,∠BCD =120°.BD 2=BC 2+CD 2-2BC ·CD ·cos 120°=a 2+a 2-2a ·a ×⎝⎛⎭⎫-12=3a 2, ∴BD =3a .∴BD →·CD →=|BD →||CD →|cos 30°=3a 2×32=32a 2.3.已知单位向量e 1,e 2的夹角为α,且cos α=13,若向量a =3e 1-2e 2,则|a |=________.答案 3解析 ∵|a |2=a ·a =(3e 1-2e 2)·(3e 1-2e 2)=9|e 1|2-12e 1·e 2+4|e 2|2=9-12×1×1×13+4=9.∴|a |=3.4.已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC →的夹角为________.答案 90°解析 由AO →=12(AB →+AC →)可知点O 为BC 的中点,即BC 为圆O 的直径,又因为直径所对的圆周角为直角,所以∠BAC =90°,所以AB →与AC →的夹角为90°.5.(教材改编)已知|a |=5,|b |=4,a 与b 的夹角θ=120°,则向量b 在向量a 方向上的正射影的数量为________. 答案 -2解析 由数量积的定义知,b 在a 方向上的正射影的数量为|b |cos θ=4×cos 120°=-2.题型一 平面向量数量积的运算例1 (1)(2015·四川)设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4,若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →等于( )A.20B.15C.9D.6(2)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________.答案 (1)C (2)1 1 解析 (1)AM →=AB →+34AD →,NM →=CM →-CN →=-14AD →+13AB →,∴AM →·NM →=14(4AB →+3AD →)·112(4AB →-3AD →)=148(16AB →2-9AD →2)=148(16×62-9×42)=9, 故选C.(2)方法一 以射线AB ,AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),B (1,0),C (1,1),D (0,1),设E (t,0),t ∈[0,1],则DE →=(t ,-1),CB →=(0,-1),所以DE →·CB →=(t ,-1)·(0,-1)=1. 因为DC →=(1,0),所以DE →·DC →=(t ,-1)·(1,0)=t ≤1, 故DE →·DC →的最大值为1.方法二 由图知,无论E 点在哪个位置,DE →在CB →方向上的正射影都是CB →, ∴DE →·CB →=|CB →|·1=1,当E 运动到B 点时,DE →在DC →方向上的正射影的数量最大即为DC =1, ∴(DE →·DC →)max =|DC →|·1=1.思维升华 (1)求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用向量的正射影.(2)解决涉及几何图形的向量数量积运算问题时,可先利用向量的加、减运算或数量积的运算律化简再运算,但一定要注意向量的夹角与已知平面角的关系是相等还是互补.(1)如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP→=2,则AB →·AD →=________.(2)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________. 答案 (1)22 (2)2解析 (1)由CP →=3PD →,得DP →=14DC →=14AB →,AP →=AD →+DP →=AD →+14AB →,BP →=AP →-AB →=AD →+14AB →-AB →=AD→-34AB →.因为AP →·BP →=2,所以(AD →+14AB →)·(AD →-34AB →)=2,即AD →2-12AD →·AB →-316AB →2=2.又因为AD →2=25,AB →2=64,所以AB →·AD →=22.(2)由题意知:AE →·BD →=(AD →+DE →)·(AD →-AB →) =(AD →+12AB →)·(AD →-AB →)=AD →2-12AD →·AB →-12AB →2=4-0-2=2.题型二 用数量积求向量的模、夹角 命题点1 求向量的模例2 (1)已知向量a ,b 均为单位向量,它们的夹角为π3,则|a +b |等于( )A.1B. 2C. 3D.2(2)(2014·湖南)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________. 答案 (1)C (2)7+1解析 (1)因为向量a ,b 均为单位向量,它们的夹角为π3,所以|a +b |=(a +b )2=a 2+2a ·b +b 2=1+2cos π3+1= 3.(2)设D (x ,y ),由CD →=(x -3,y )及|CD →|=1知(x -3)2+y 2=1,即动点D 的轨迹为以点C 为圆心的单位圆.又O A →+OB →+OD →=(-1,0)+(0,3)+(x ,y )=(x -1,y +3),∴|OA →+OB →+OD →|=(x -1)2+(y +3)2.问题转化为圆(x -3)2+y 2=1上的点与点P (1,-3)的距离的最大值. ∵圆心C (3,0)与点P (1,-3)之间的距离为(3-1)2+(0+3)2=7, 故(x -1)2+(y +3)2的最大值为7+1. 命题点2 求向量的夹角例3 (1)(2015·重庆)若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A.π4 B.π2 C.3π4D.π(2)若向量a =(k,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________________________________________________________________________. 答案 (1)A (2)⎝⎛⎭⎫-∞,-92∪⎝⎛⎭⎫-92,3 解析 (1)由(a -b )⊥(3a +2b )得(a -b )·(3a +2b )=0,即3a 2-a·b -2b 2=0.又∵|a |=223|b |,设〈a ,b 〉=θ, 即3|a |2-|a |·|b |·cos θ-2|b |2=0,∴83|b |2-223|b |2·cos θ-2|b |2=0,∴cos θ=22.又∵0≤θ≤π,∴θ=π4.(2)∵2a -3b 与c 的夹角为钝角, ∴(2a -3b )·c <0, 即(2k -3,-6)·(2,1)<0, ∴4k -6-6<0, ∴k <3.又若(2a -3b )∥c ,则2k -3=-12,即k =-92.当k =-92时,2a -3b =(-12,-6)=-6c ,即2a -3b 与c 反向.综上,k 的取值范围为⎝⎛⎭⎫-∞,-92∪⎝⎛⎭⎫-92,3. 思维升华 (1)根据平面向量数量积的定义,可以求向量的模、夹角,解决垂直、夹角问题;两向量夹角θ为锐角的充要条件是cos θ>0且两向量不共线;(2)求向量模的最值(范围)的方法:①代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;②几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.(1)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.(2)在△ABC 中,若A =120°,AB →·AC →=-1,则|BC →|的最小值是( ) A. 2 B.2 C. 6D.6答案 (1)223 (2)C解析 (1)∵|a |= (3e 1-2e 2)2=9+4-12×1×1×13=3,|b |=(3e 1-e 2)2=9+1-6×1×1×13=22,∴a ·b =(3e 1-2e 2)·(3e 1-e 2)=9e 21-9e 1·e 2+2e 22 =9-9×1×1×13+2=8,∴cos β=83×22=223.(2)∵AB →·AC →=-1, ∴|AB →|·|AC →|·cos 120°=-1,即|AB →|·|AC →|=2,∴|BC →|2=|AC →-AB →|2=AC →2-2AB →·AC →+AB →2 ≥2|AB →|·|AC →|-2AB →·AC →=6, ∴|BC →|min = 6.题型三 平面向量与三角函数例4 (2015·广东)在平面直角坐标系xOy 中,已知向量m =⎝⎛⎭⎫22,-22,n =(sin x ,cos x ),x ∈⎝⎛⎭⎫0,π2. (1)若m ⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值.解 (1)因为m =⎝⎛⎭⎫22,-22,n =(sin x ,cos x ),m ⊥n . 所以m ·n =0,即22sin x -22cos x =0, 所以sin x =cos x ,所以tan x =1. (2)因为|m |=|n |=1,所以m ·n =cos π3=12,即22sin x -22cos x =12,所以sin ⎝⎛⎭⎫x -π4=12, 因为0<x <π2,所以-π4<x -π4<π4,所以x -π4=π6,即x =5π12.思维升华 平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.已知O 为坐标原点,向量OA →=(3sin α,cos α),OB →=(2sin α,5sin α-4cos α),α∈⎝⎛⎭⎫3π2,2π,且OA →⊥OB →,则tan α的值为( ) A.-43B.-45C.45D.34答案 A解析 由题意知6sin 2α+cos α·(5sin α-4cos α)=0,即6sin 2α+5sin αcos α-4cos 2α=0,上述等式两边同时除以cos 2α,得6tan 2α+5tan α-4=0,由于α∈⎝⎛⎭⎫3π2,2π,则tan α<0,解得tan α=-43,故选A.7.向量夹角范围不清致误典例 (12分)若两向量e 1,e 2满足|e 1|=2,|e 2|=1,e 1,e 2所成的角为60°,若向量2t e 1+7e 2与向量e 1+t e 2所成的角为钝角,求实数t 的取值范围.易错分析 两个向量所成角的范围是[0,π],两个向量所成的角为钝角,容易误认为所成角π为钝角,导致所求的结果范围扩大. 规范解答解 设向量2t e 1+7e 2与向量e 1+t e 2的夹角为θ,由θ为钝角,知cos θ<0,故 (2t e 1+7e 2)·(e 1+t e 2)=2t e 21+(2t 2+7)e 1·e 2+7t e 22=2t 2+15t +7<0,解得-7<t <-12.[5分] 再设向量2t e 1+7e 2与向量e 1+t e 2反向, 则2t e 1+7e 2=k (e 1+t e 2)(k <0),[7分]从而⎩⎪⎨⎪⎧2t =k ,7=tk ,且k <0,解得⎩⎪⎨⎪⎧t =-142,k =-14,即当t =-142时,两向量所成的角为π.[10分] 所以t 的取值范围是(-7,-142)∪(-142,-12).[12分] 温馨提醒 (1)两个非零向量的夹角范围为[0,π],解题时要注意挖掘题中隐含条件.(2)利用数量积的符号判断两向量的夹角取值范围时,应该注意向量夹角的取值范围,不要忽视两向量共线的情况.若a ·b <0,则〈a ,b 〉∈(π2,π];若a ·b >0,则〈a ,b 〉∈[0,π2).[方法与技巧]1.计算数量积的三种方法:定义法、坐标运算、数量积的几何意义,解题要灵活选用恰当的方法,和图形有关的不要忽略数量积几何意义的应用.2.求向量模的常用方法:利用公式|a |2=a 2,将模的运算转化为向量的数量积的运算.3.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧. [失误与防范]1.数量积运算律要准确理解、应用,例如,a ·b =a ·c (a ≠0)不能得出b =c ,两边不能约去一个向量.2.两个向量的夹角为锐角,则有a ·b >0,反之不成立;两个向量夹角为钝角,则有a ·b <0,反之不成立.A 组 专项基础训练 (时间:35分钟)1.若向量a ,b 满足|a |=|b |=2,a 与b 的夹角为60°,则|a +b |等于( ) A.22+ 3 B.2 3 C.4 D.12答案 B解析 |a +b |2=|a |2+|b |2+2|a ||b |cos 60°=4+4+2×2×2×12=12,|a +b |=2 3.2.已知向量a =(1,3),b =(3,m ).若向量a ,b 的夹角为π6,则实数m 等于( )A.2 3B. 3C.0D.- 3 答案 B解析 ∵a ·b =(1,3)·(3,m )=3+3m , a ·b =12+(3)2×32+m 2×cos π6,∴3+3m =12+(3)2×32+m 2×cos π6,∴m = 3.3.设e 1,e 2,e 3为单位向量,且e 3=12e 1+k e 2(k >0),若以向量e 1,e 2为邻边的三角形的面积为12,则k 的值为( ) A.32 B.22 C.52D.72 答案 A解析 设e 1,e 2的夹角为θ,则由以向量e 1,e 2为邻边的三角形的面积为12,得12×1×1×sin θ=12,得sin θ=1,所以θ=90°,所以e 1·e 2=0.从而对e 3=12e 1+k e 2两边同时平方得1=14+k 2,解得k =32或-32(舍去).4.若O 为△ABC 所在平面内任一点,且满足(OB →-OC →)·(OB →+OC →-2OA →)=0,则△ABC 的形状为( ) A.正三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形答案 C解析 因为(OB →-OC →)·(OB →+OC →-2OA →)=0, 即CB →·(AB →+AC →)=0,∵AB →-AC →=CB →, 所以(AB →-AC →)·(AB →+AC →)=0,即|AB →|=|AC →|, 所以△ABC 是等腰三角形,故选C.5.在△ABC 中,如图,若|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 边的三等分点,则AE →·AF →等于( )A.89B.109C.259D.269 答案 B解析 若|AB →+AC →|=|AB →-AC →|,则AB →2+AC →2+2AB →·AC →=AB →2+AC →2-2AB →·AC →,即有AB →·AC →=0.E ,F 为BC 边的三等分点,则AE →·AF →=(AC →+CE →)·(AB →+BF →)=⎝⎛⎭⎫AC →+13CB →·⎝⎛⎭⎫AB →+13BC →=⎝⎛⎭⎫23AC →+13AB →·⎝⎛⎭⎫13AC →+23AB →=29AC →2+29AB →2+59AB →·AC →=29×(1+4)+0=109.故选B.6.在△ABC 中,M 是BC 的中点,AM =3,点P 在AM 上,且满足AP →=2PM →,则P A →·(PB →+PC →)的值为________. 答案 -4解析 由题意得,AP =2,PM =1, 所以P A →·(PB →+PC →)=P A →·2PM → =2×2×1×cos 180°=-4.7.如图,在△ABC 中,O 为BC 中点,若AB =1,AC =3,〈AB →,AC →〉=60°,则|OA →|=________. 答案132解析 因为〈AB →,AC →〉=60°,所以AB →·AC →=|AB →|·|AC →|cos 60°=1×3×12=32,又AO →=12(AB →+AC →),所以AO →2=14(AB →+AC →)2=14(AB →2+2AB →·AC →+AC →2),所以AO →2=14(1+3+9)=134,所以|OA →|=132. 8.在△ABC 中,若OA →·OB →=OB →·OC →=OC →·OA →,则点O 是△ABC 的________(填“重心”、“垂心”、“内心”、“外心”). 答案 垂心解析 ∵OA →·OB →=OB →·OC →, ∴OB →·(OA →-OC →)=0, ∴OB →·CA →=0,∴OB ⊥CA ,即OB 为△ABC 底边CA 上的高所在直线.同理OA →·BC →=0,OC →·AB →=0,故O 是△ABC 的垂心.9.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61.(1)求a 与b 的夹角θ;(2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积.解 (1)∵(2a -3b )·(2a +b )=61,∴4|a |2-4a ·b -3|b |2=61.又∵|a |=4,|b |=3,∴64-4a ·b -27=61,∴a ·b =-6.∴cos θ=a ·b |a ||b |=-64×3=-12, 又∵0≤θ≤π,∴θ=2π3. (2)|a +b |2=(a +b )2=|a |2+2a ·b +|b |2=42+2×(-6)+32=13,∴|a +b |=13.(3)∵AB →与BC →的夹角θ=2π3, ∴∠ABC =π-2π3=π3. 又|AB →|=|a |=4,|BC →|=|b |=3,∴S △ABC =12|AB →||BC →|sin ∠ABC =12×4×3×32=3 3. 10.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n =(cos B ,-sin B ),且m ·n =-35. (1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的正射影的数量.解 (1)由m ·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35,所以cos A =-35. 因为0<A <π,所以sin A =1-cos 2 A = 1-⎝⎛⎭⎫-352=45. (2)由正弦定理,得a sin A =b sin B,则sin B =b sin A a =5×4542=22, 因为a >b ,所以A >B ,则B =π4. 由余弦定理得(42)2=52+c 2-2×5c ×⎝⎛⎭⎫-35, 解得c =1,故向量BA →在BC →方向上的正射影的数量为|BA →|cos B =c cos B =1×22=22. B 组 专项能力提升(时间:25分钟)11.(2015·湖南)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A →+PB →+PC→|的最大值为( )A.6B.7C.8D.9答案 B解析 由A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,所以AC 为圆直径,故P A →+PC →=2PO →=(-4,0),设B (x ,y ),则x 2+y 2=1且x ∈[-1,1],PB →=(x -2,y ),所以P A →+PB →+PC →=(x -6,y ).故|P A →+PB →+PC →|=-12x +37,所以x =-1时有最大值49=7,故选B.12.在△ABC 中,A =90°,AB =1,AC =2.设点P ,Q 满足AP →=λAB →,AQ →=(1-λ)AC →,λ∈R .若BQ →·CP →=-2,则λ等于( )A.13B.23C.43D.2 答案 B解析 BQ →=AQ →-AB →=(1-λ)AC →-AB →,CP →=AP →-AC →=λAB →-AC →,BQ →·CP →=(λ-1)AC →2-λAB →2=4(λ-1)-λ=3λ-4=-2,即λ=23. 13.如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在CD 上,若AB →·AF→=2,则AE →·BF →的值是( )A. 2B.2C.0D.1答案 A解析 依题意得AE →·BF →=(AB →+BE →)·(AF →-AB →)=AB →·AF →-AB →2+BE →·AF →-BE →·AB →=2-2+1×2-0=2,故选A.14.设向量a =(a 1,a 2),b =(b 1,b 2),定义一种向量积a ⊗b =(a 1b 1,a 2b 2),已知向量m =(2,12),n =(π3,0),点P (x ,y )在y =sin x 的图象上运动,Q 是函数y =f (x )图象上的点,且满足OQ →=m ⊗OP →+n (其中O 为坐标原点),则函数y =f (x )的值域是________.答案 ⎣⎡⎦⎤-12,12 解析 设Q (c ,d ),由新的运算可得OQ →=m ⊗OP →+n =(2x ,12sin x )+(π3,0) =(2x +π3,12sin x ), 由⎩⎨⎧ c =2x +π3,d =12sin x ,消去x 得d =12sin(12c -π6), 所以y =f (x )=12sin(12x -π6), 易知y =f (x )的值域是⎣⎡⎦⎤-12,12. 15.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若AB →·AC →=BA →·BC →=1.(1)判断△ABC 的形状;(2)求边长c 的值;(3)若|AB →+AC →|=22,求△ABC 的面积.解 (1)由AB →·AC →=BA →·BC →=1,得bc ·cos A =ac ·cos B ,由正弦定理,得sin B cos A =sin A cos B ,∴sin(A -B )=0,∴A =B ,即△ABC 是等腰三角形.(2)由AB →·AC →=1,得bc ·cos A =1,又bc ·b 2+c 2-a 22bc=1,则b 2+c 2-a 2=2, 又a =b ,∴c 2=2,即c = 2.(3)由|AB →+AC →|=22,得2+b 2+2=8,∴b =2,又c =2,∴cos A =24,sin A =144, ∴S △ABC =12bc ·sin A =12×2×2×144=72.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量数量积的物理背景及其含义
【课型】:新授课
【课时】:第一课时教材分析
本节内容选自人教A版高中数学必修四第二章第二节241平面向量数量积的物理背景及其含义。
本节内容先通过物理中“功”的例子抽象出平面向量数量积的概念,了解它的物理背景,再在此基础上探究学习数量积的几何含义、性质与运算律。
平面向量的数量积是继学习了向量的线性运算后的又一重要运算,在数学、物理等学科中都有广泛的应用。
它既是对平面向量的深入学习与拓展,也为后续物理应用的学习、立体几何问题的解决等提供了新的思路,起着重要的承上启下的衔接作用。
在平面向量数量积概念中,既有长度又有角度,既有数又有形,是代数、几何与三角的最佳结合点,也很好的体现了数形结合的数学思想方法。
二、学情分析
本节课的授课对象是高一学生,从知识起点看,在学习本节内容前,学生已经学习了向量的概念及其线性运算,学习了功等简单的物理知识,并且初步体会了研究向量运算的一般方法;从能力上看,学生具备了一定程度的分析问题与解决问题的能力,也形成了一定的逻辑思维;从情感上看,高一的学生对未知有探求的渴望,有学习新知的渴望。
但在学习本节内容时,之前向量线性运算的知识会造成学生对数量积这个概念的理解上的偏差,干扰学生对数量积概念的理解,另外,相对于线性运算而言,数量积的结果发生了本质的变化,两个不同性质的向量经过数量积运算后,结果却不是向量,这给学生的学习带来了困难。
三、重难点
重点:平面向量数量积的概念;
难点:平面向量数量积的定义与几何意义的理解。
四、三维目标
(一)知识与技能
说出平面向量数量积的概念;知道平面向量数量积的物理背景;
(二)过程与方法
通过把功这个式子推广到一般形式来学习数量积概念的过程,学习从特殊到一半的数学学习方法;
通过进一步根据图式理解概念,巩固数形结合的数学思想方法。
(三)情感、态度与价值观
通过生活中的物理问题引出数量积的概念,体会数学与生活与其他学科密切相关;
通过解答新的运算与线性运算之间的区别,感受探索的乐趣,体验到成功解决疑问的快乐。
五、教学过程
(一)创设情境,导入新课
情景:某天老师的小车在路上抛锚了,看到前方有一修车厂,需要将车子推到修车厂门口才可以修理,老师用力F拉动汽车产生的位移为s,假设F是恒力。
问题:老师做了多少功?
【师生活动】教师引导学生从数学的角度看这个式子,W是数量,F和s都是向量,而从物理的角度看这个式子,其中F和s是力向量和位移向量的大小,所以
可以将该式改成:
问题:功的计算是一种向量间的运算,那是向量的线性运算么?
【教师活动】教师带领学生回顾之前学习的向量的线性运算。
【学生活动】学生很容易得到功的计算不属于向量的线性运算 问题:将向量的线性运算与功的计算进行比较,请学生找两者的区别 结论:有两个不同点:
①力□、减法运算都是两个同性质的向量进行运算,数乘是实数与一个向量的运 算,而功的运
算是两个不同性质的向量一力和位移的运算;
② 线性运算的结果还是同性质的向量,而功的运算结果却是数量 进而导入本节课的内容一一平面向量数量积。
【设计意图】教师通过生活中的亲身经历提出问题引入新课, 有利于激发学生的 认同感与学习兴趣,体会数学与其他学科与生活之间的密切联系, 后通过分析比 较之前学习的向量运算,创建学生的认知冲突,引出了平面向量数量积,点明本 节课的学习内容
(二) 逐步探索,发现新知
1.剖析概念,知道物理背景
【学生活动】学生容易得到答案:功是力与位移大小及其夹角余弦的乘积。
问题:如果将这个特殊的式子推广到一般的式子,又该如何描述?
结论:数量R 是两个向量的模及其夹角余弦的乘积。
【教师活动】给出向量数量积的定义。
问题:你能用文字语言表述上面的“功的计算公式”一
S COS0 吗?
【教师活动】教师通过一般的R
cos ,引导学生得出答案
定义(板书) 向量数量积:
已知两个非零向量a 和b ,它们的夹角为日,我们把数量a b C °ST 叫做a
和b 的数量积(或内积),记作
ab ,即 ab^ab COSV 另外,我们规定零向量与任一向量的数量积为
【师生活动】教师结合图像让学生做进一步的理解。
【教师活动】学习了数量积的概念后,又回到功的式子,请学生将功的式子改成 数量积的形式。
【教师活动】教师点明功的数学实质就是力 F 和位移S 两个向量的数量积。
注意点:
①两个不同性质的向量经过数量积运算后得到的是一个数量;
②两个向量的夹角取值二范围为[0,二];
③符号ab 不能写成ab 或者a b
2.明确内涵,掌握几何意义
【教师活动】学习了数量积的概念,也明确了它的物理背景,那么从数学角度看 这个运算,它的几何意义又是什么呢?在发现它的几何意义之前, 先学习另一个 新的概念:向量投影。
定义(板书)
向量投影:
T
j
【学生活动1: F ;= F S T
COS
如下图所示,我们把b cos 叫做向量b 在a 方向上的投影,记作
O 。
! = b c o s 。
T T
【教师活动】请学生根据推车情景的简图回答 S 在F 上的投影
【学生活动】学生将容易的得到:
问题:学习了投影后,从新的角度看看数量积,能发现它的几何意义吗?
【师生活动】教师引导学生一起得到几何意义是:
【设计意图】新课程中,教学是师生积极交往互动、共同发展的,通过这一环节
数量积
ab 等于a 的长度a 与b 在a 方向上的投影 b cosT 的乘积。
注意:投影也是数量。
>
调动师生间与学生间的合作交流, 通过讨论合作突破难点,掌握重点,体会合作 与成功的乐趣。
(三) 自我尝试,巩固新知
11 I T T — * T T
例1.已知a =5,|b=4,a 与b 的夹角日=120,求a b
【学生活动】该题请学生自主完成
解:
=5 4 cos120°
1
=5 4(-)
2
=-10
例2.已知在/ ABC 中, AB 二;,£ 二b,当a b < 0或a b = 0时,试判断/ ABC 的 形状。
【学生活动】该题请学生自主完成。
解: ab>=ab cos r ,ab 0
4 4 r T
当a b ::: 0时,COST ::: 0,且"0,二丨,• v 是钝角,/ ABC 是钝角三角形; 当::=0 时,cos — 0,且「"0,二 1,.二=90°,/ ABC 是 直角三角形
【设计意图】学生通过自主实践,亲身尝试解答问题,将知识内化、理解掌握。
(四) 小结升华,布置作业
【学生活动】最后请学生小结今天所学的知识, 教师可以从几个问题引导学生进 行总结,再由教师进行补充。
引导的问题是:
1、 本节课我们学习的主要内容是什么?
ab 二 b cos 6
2、平面向量数量积的物理背景和数学几何意义是什么?
3、我们是按照怎样的思维模式进行概念的归纳?
4、学到了什么数学思想方法?
最后布置作业:
课本P119 习题 2.4A 组2、5、6、9。