图表信息问题
图表信息专题复习
(2)若全校共有2700名学生,你估计这所学校有多少
名学生知道母亲的生日?
(3)通过对以上数据的分析,你有何感想?(用一句
话回答)
温馨提醒:
以统计图呈现信息,反映数据及其变化规 律,考查了我们读图、识图能力和分析数据、 处理数据的能力.
我们能否准确地阅读统计图表,获取有效 信息是解决此类试题的关键.
240 160
起点 0 5
20 30 35 时间(分)
根据图象你能得到哪些信息?
《新龟兔赛跑》大家说
路程 (米)
乌龟 兔子
240
100
起点 0
30 35 时间(分)
《由龟上兔图赛你跑可》以的提故出事什给么了问我题们吗什?么启发呢?
y(千米/时)
()
B
C
( )A
O 4 10
25
路程 (米)
乌龟 兔子
我们要学会借助图形本身的性质,结合 推理、计算,有时还通过图形变换的方法 来解决问题.
三、表格类
1.初三数学课本上,用“描点法”画二次函数 y ax2 bx c 的图象时,列了如下表格:
x … 2 1 0 1 2 …
y
…
6 1 2
4
2 1 2
2
2 1 …
2
根据表格上的信息回答问题:
1.图中的实线和虚线分别表示菲尔普斯,张琳与游泳
池一边的距离随游泳时间的变化而变化的图象,则从开始
到结束,他们相遇的次数为( D )
A.2次
B.3次
C.4次
D.5次
s(m)
90
O 30 60 90 120 150 180 t(s)
2.下列图形不能体现 y 是 x 的函数关系的是(C )
图表信息题
如图,l甲、l乙两条直线分别表示 甲走路与乙骑车(在同一条路上) 行走的路程S与时间t的关系,根 据此图,回答下列问题: 4)甲的速度为 km/h , 乙骑 车的速度为 km/h 5)甲行走的路程s(千米)与时间 t(小时)之间的函数关系式是
A
6)如果乙的自行车不出故障,则乙出发后经过 h与甲相遇,相遇后离乙的出发点 km,并在图中标出其相遇点。 相遇点为A
练习3
y(千米/时) (32 )
(1)在y轴( ) 内填入相应的数值;
(8 ) O 4 10 25 x(小时)
(2)沙尘暴从发生到结束,共经过了多少小时?
(2)沙尘暴从发生到结束,共经过了多少小时? (3)求出当x≥25时,风速y(千米/时)与时间 x(小时)之间的函数关系式。 /时) 解:(2)由题意得: y(千米B C(25,32) (32 ) 32÷1=32 (小时) ∴25+32=57(小时) ∴沙尘暴从发生到 (8 ) A (57,0) D 结束,共经过57小时
图表信息题概述
所谓图表信息题,是指将已知信息用图 象或表格形式给出的一类问题。它要求学生 从已知图象或表格中获取数据,去分析、解 决实际问题。
图表信息题是近两年以来,应用题设计 中的新题型,也是我省中考命题的新形式之 一。
1、已知一次函数的图象如图所示:
1 (1)求出此一次函数的解析式;y= x+2 2 (2)观察图象,当x >-4 时,y> 0; 当x =-4 时,y=0;当x <-4 时,y<0;
某气象研究中心观测一场沙尘暴从发生到结 束的全过程,开始时风速平均每小时增加2 千米/时,4小时后,沙尘暴经过开阔荒漠地,风速变为平 均每小时增加4千米/时,一段时间,风速保持不变,当沙 尘暴遇到绿色植被区时 ,其风速平均每小时减少1千米/时, 最终停止,结合风速y与时间x的图象如图,回答下列问题:
图表信息题
图表性息题图表性息题是指通过图形、图象或图表及一定的文字说明来提供问题情景的一类试题,它是近几年全国各省市中考所展示的一种新题型,考查形式有选择题、填空题、解答题,这是今后命题的热点。
解答图表性息题的关键是读懂图表所提供的信息,正确理解各个量的含义,进而建立正确的数学模型,这种题型由于命题广泛,应用的知识也很多,主要有:(1)方程和方程组;(2)不等式和不等式组;(3)函数;(4)统计的有关知识及概率;图表性息题的分类:(1)表格信息问题;(2)图象信息问题;(3)图形语言信息问题;专项精练:1、如图1,边长为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内除去小正方形部分的面积为S(阴影部分),则S与t的大致图象为图2中的()。
2、某商场正在热销2008年北京奥运会吉祥物“福娃”玩具和徽章两种奥运商品,根据下图提供的信息,求一盒“福娃”玩具和一枚徽章的价格各是多少元?3、观察市统计局公布的“十五”时期重庆市农村居民人均收入每年比上一年增长率的统计图,下列说法正确的是()。
A.2003年农村居民人均收入底于2002年;B.农村居民人均收入比上一年增长率低于9%的有2年;C.农村居民人均收入最多是2004年;D.农村居民人均收入每年比上一年的增长率有大有小,但农村居民人均收入在持续增加;4、如图,圆柱形开口杯底部固定在长方形水池底,向水池匀速注入水(倒在杯外),水池中水面高度是h,注水时间为t,则h与t之间的关系大致为图()。
5、免交农业税,大大提高了农民的生产积极性,镇政府引导农民对生产的土特产进行加工后,春节期间,这三种不同的包装的土特产都销售了1200千克,那么本次销售中,这三种包装的土特产获得利润最大的是()。
A.甲 B 乙 C 丙 D 不能确定6、如图,边长为a的大正方形中一个边长为b的小正方形,小明将图(1)的阴影部分拼成了一个矩形,如图(2),这一过程可以验证()。
中考数学冲刺:图表信息型问题--知识讲解(基础)(附答案)
中考冲刺:图表信息型问题—知识讲解(基础)【中考展望】图表信息题是指通过图形、图象或图表及一定的文字说明来提供问题情景的一类试题,它是近几年全国各省市中考所展示的一种新题型,这类试题形式多样,取材广泛,可增加试题的灵活性和趣味性,其发展前景非常广阔.用好题中提供的信息,有利于提高学生分析、解决简单实际问题的能力,同时也是培养现代公民素质的一条重要途径.【方法点拨】1.图象信息题题型特点:这类题是中考试卷中出现频率较高的题型之一,它是通过图象呈现问题中两个变量之间的数量关系,主要考查学生对函数思想和数形结合思想的掌握程度.解题策略:解答这类问题,在弄清题意的基础上,弄清两坐标轴所代表的含义,并对图象的形状、位置、发展变化趋势等捕捉提炼有效信息,解决相关问题.2.图表信息题图表信息题是指通过图表的形式提供信息,这些信息一般以数据形式居多,其主要考查学生对图表数据的分析、比较、判断和结论的归纳能力,要求学生有较强的定量分析和定性概括能力.【典型例题】类型一、图象信息题1.容积率t是指在房地产开发中建筑面积与用地面积之比,即MtS建筑面积用地面积,为充用地面积分利用土地资源,更好地解决人们的住房需求,并适当的控制建筑物的高度,一般容积率t不小于1且不大于8.一房地产开发商在开发某小区时,结合往年开发经验知,建筑面积M(m2)与容积率t的关系可近似地用如图(1)中的线段l来表示;1 m2建筑面积上的资金投入Q(万元)与容积率t的关系可近似地用如图(2)中的一段抛物线c来表示.(1)试求图(1)中线段l的函数关系式,并求出开发该小区的用地面积;(2)求出图(2)中抛物线段c的函数关系式.【思路点拨】(1)因为图象过点(2,28000)和(6,80000),所以易求l的表达式,注意t的取值范围,当t=1时,S用地面积=M建筑面积;(2)根据图象经过点(1,0.18)和(4,0.09)且(4,0.09)为顶点可求c的函数关系式.【答案与解析】解:(1)设M =kt+b ,由图象上两点的坐标(2,28000)、(6,80000),可求得是k =13000,b =2000.所以线段l 的函数关系式为: M =13000t+2000(1≤t ≤8).由M t S =建筑面积用地面积知,当t =1时,S M =用地面积建筑面积.把t =1代入M =13000t+2000中,可得 M =15000.即开发该小区的用地面积是15 000 m 2.(2)根据图象特征可设抛物线段c 的函数关系式为Q =a(t-4)2+0.09,把点(1,0.18)的坐标代入,可求得1100a =. 所以219(4)100100Q t =-+2121(18)100254t t t =-+≤≤.【总结升华】图象信息题一般需要先由图象提供的条件确定出相应的函数关系式,然后再运用函数的性质解决问题,因而可以有效考查对函数思想和数形结合思想方法的掌握和应用情况.举一反三:【变式】甲、乙两人骑自行车前往A 地,他们距A 地的路程s(km)与行驶时间t(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)甲、乙两人的速度各是多少?(2)写出甲、乙两人距A 地的路程s 与行驶时间t 之间的函数关系式(任写一个). (3)在什么时间段内乙比甲离A 地更近? 【答案】 解:(1)50202.5v ==甲(km/h), 60302v ==乙(km/h).(2)5020s t =-甲或6030s t =-乙(答对一个即可); (3)1<t <2.5.2.甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到B 地,他们离出发地的距离为S (km )和行驶时间t (h )之间的函数关系的图象如图所示,根据图中提供的信息,回答下列问题:(1)甲乙两个同学都骑了 (km ).(2)图中P 点的实际意义是 . (3)整个过程中甲的平均速度是 . 【思路点拨】利用函数图象,结合问题可得出甲乙两个同学骑车距离,甲的平均速度等. 【答案与解析】 解:(1利用图象可得:s 为18千米,即甲乙两个同学都骑了18千米, (2)图中P 点的实际意义是:甲,乙相遇,此时乙出发了0.5小时, (3)整个过程中甲的平均速度是 18÷2.5=7.2千米每小时. 故填:(1)18 ;(2)乙出发0.5小时后追上甲,(3)7.2km/h . 【总结升华】此题主要考查了利用函数图象得出正确的信息,题目解决的是实际问题,比较典型. 举一反三:【高清课堂:图表信息型问题 例2】【变式】为了保护水资源,某市制定一套节水的管理措施,其中对居民生活用水收费作如下规定:(1)若某用户六月份用水量为18吨,求其应缴纳的水费;(2)记该户六月份用水量为x 吨,缴纳水费y 元,试列出y 关于x 的函数式;(3)若该用户六月份用水量为40吨,缴纳消费y 元的取值范围为70≤y ≤90,试求m 的取值范围. 【答案】解:(1)六月份应缴纳的水费为:1.5102831⨯+⨯=(元) (2)当010x ≤≤时, 1.5y x =当10x m <≤时,152(10)25y x x =+-=-当x m >时,152(10)3()35y m x m x m =+-+-=--。
中考第二轮专题复习—第三讲 图表信息型问题
☆◇☆中考数学中的图表信息型问题☆◇☆所谓图表信息问题,就是根据实际问题中所呈现出来的图像、图表信息,要求考生依据这些给出的信息通过整理、分析、加工等手段解决的一类问题,主要考查同学们识图看表的能力以及处理信息的能力.解答这类试题的关键是对图表信息认真分析、合理利用,按照题意要求,准确地输出信息.信息时代的到来,呼唤信息型的中考试题.由于此类问题命题背景广泛、蕴含知识丰富,突出对考生获取、整理与加工信息能力的考查,因而倍受命题者青睐,近年来在各地的中考试题中出现的频率越来越高.图象信息题是指由图象(表)来获取信息.从而达到解题目的的题型,这类问题来源广泛,形式灵活,突出对考生收集、整理和加工信息能力的考查.是近几年中考的热点.解图象信息题的关键是“识图”和“用图”.解这类题的一般步骤是:(1)观察图象,获取有效信息;(2)对已获信息进行加工、整理,理清各变量之间的关系;(3)选择适当的数学工具,通过建模解决问题.题型1此类题目一般以表格的形式出现,通过表格对数据进行收集、整理,得出与解题相关的信息,从而解决实际应用问题.题型2此类题目以图形、图象的形式出现,在图形的形式出现时,题型新颖,给出的形式有形象的人物及各自的语言表述,在活泼的氛围里,给出题目具体内容,在考查学生的建模能力,有时候用不等式,有时候用方程;在图象的形式出现时,有时用函数图象的形式出现,有时以统计图的形式出现,它要把所给的图象或图形的信息进行分类、提取加工,再合成。
例1、某次时装表演会预算中,票价定为每张100元,容纳观众人数不超过2000人,毛利润y(百元)关于观众人数x(百人)之间的函数图象如图2-1-3所示,当观众人数超过1000人时,表演会组织者需向保险公司缴纳定额平安保险费5000元(不列人成本费用人请解答下列问题:(1)求当观众人数不超过1000人时,毛利润y关于观众人数的函数解析式和成本费用S(百元)关于观众人数x的函数解析式;(2)若要使这次表演会获得36000.元的毛利润,那么需售出多少张门票?需支付成本费用多少元?注:当观众人数不超过1000人时,表演会的毛利润一门票收人一成本费用;当观众人数超过1000人时,表演会的毛利润=门票收入-成本费用-平安保险费.解:(1)由图2-1-3知,当 0≤x ≤10与10<x ≤20时,y 都是x 的一次函数.当0≤x ≤10时,设y 关于x 的函数解析式为y =kx +b ,把点(0,-100),(10,400)代入函数解析式,得10050 10400100b k k b b =-=⎧⎧⎨⎨+==-⎩⎩,解得:所以y =50x -100(0≤x ≤10),S =100x -(50x -100)=50x +100(0≤x ≤10)(2)当10<x ≤20时,由题意,知 50x -100=360.所以x =9.2,S =50x +100 =50×9.2+100=560.当10<x ≤2 0时,设y =mx +n .把点(10,350)(20,850)代入函数解析式,得1035050 20850150m n m m n n +==⎧⎧⎨⎨+==-⎩⎩,解得:所以y =50x -150(10<x ≤20),S =100x -(50x -150)-50=50x +100(10<x ≤20)当y =360时,50x -150=360,解得x =10.2.所以S =50×10.2+100=610.答:需售门票 920张或 1020张,相应地需支付成本费用分别为56000元或 61000元. 点拨:正确理解题意,注意单位的统一.例2、(07无锡)某人从甲地出发,骑摩托车去乙地,途中因车出现故障而停车修理,到达乙地时正好用了2小时,已知摩托车行驶的路程(S 千米)与行驶的时间t (小时)之间的函数关系由如图6—1的图象ABCD 给出,若这辆摩托车平均每行驶100千米的耗油量为2升,根据图中给出的信息,从甲地到乙地,这辆摩托车共耗油升.分析:由题意知,摩托车的耗油量与从甲地到乙地所用时间无关,而只与所行驶的路程有关;而由图像可以得到信息,从甲地到乙地的路程为45千米.故耗油量应为45100×2=0.9(升).解:0.9升.说明:本题中摩托车的耗油量与所用时间无关,故从甲地到乙地的行驶时间2小时则属于过剩信息,在解题中要学会合理地排除.时)例3、某村实行合作医疗制度,村委会规定:(一)每位村民年初缴纳合作医疗基金a 元;设一位村民当年治病花费的医疗费为x 元,他个人实际承担的医疗费用(包括医疗费中个人承担的部分和缴纳的合作医疗基金)为y 元.(1)当0≤x≤b 时,y =a ;当b <x≤5000时,y=(用含有a 、b 、c 、x 的式子表示).(2)下表是该村4位村民2001年治疗花费的医疗费和个人实际承担的费用,根据表(3)村民个人一年最多承担医疗费用多少元? (2002年威海市中考试题) 分析:解决本题的关键是要能看懂表格,从第一个表格中我们不难得到如下信息:村民个人实际承担的费用是由两部分组成的,其一是合作医疗基金a ;其二是超过b 元不超过5000元部分的c%.由此,很容易写出用a 、b 、c 、x 表示y 的关系式.从第二个表格中可以看出,村民甲、乙两人的治疗花费的医疗费不同,但个人承担的费用却相同,这说明他们实际上承担的是合作医疗基金,由此可以得出a=30.进而将丙、丁两人的x 、y 具体值代入所列出的关系式中,构成方程组,从而可求出a 、b 、c 的值.而第3小问其实就是求所得到的函数式的最大值,由一次函数的性质可知,当x=5000时取最大值.解:(1)y =(x -b )c%+a ;(2)甲、乙两人花费的医疗费不同,但实际承担的费用相同(都是30元),说明他们两人花费的医疗费都不超过b 元,因此,他们实际承担的费用就是缴纳的合作医疗基金,即a =30.丙、丁两人实际承担的医疗费用超过了30元,说明他们一年得医疗费超过了b 元,但不足5000元,所以⎩⎨⎧=+-=+-830%)150(,5030%)90(c b c b 解得 ⎩⎨⎧==.50,50c b ∴ 当b <x ≤5000时,y =(x -50)50%+30, 即 152y x =+. (3)将x =5000代入,得 y =5000×0.5+5=2505,∴ 村民个人一年最多承担医疗费2505元.说明:本题就其实质来说是一个应用分段函数解决的实际问题,关键是要能根据表格中提供的信息,搞清个人实际所承担的医疗费用,同时要对第二个表格中所反映出的信息进行分析,搞清四位村民所花费的医疗费x 所在的范围,从而确定是否代入所列出的关系式去求解,而不能盲目行事。
2014中考数学总复习专题5图表信息问题
专题突破区
专题视点· 考向解读
重点解析
真题演练
【思路点拨】 (1)由图象知路程与时间的关系是一次函数关系, 函数图象与横轴 交点横坐标的值即是师生回到学校的时间. (2)由题意知三轮车出发, 到达的时间 和路程. 在题图可直接画出其离校路程 s 与时间 t的图象. (3)分情况进行求解. 【自主解答】 ( 1) 设师生返校时的函数解析式为 s= kt + b, 把( 12, 8) 、( 13, 3) 代入得,
专题视点· 考向解读
重点解析
真题演练
专题五
图表信息问题
专题视点·考向解读
图表信息问题是通过图象、图形或表格及一定的文字说明等形式给出信息的一种常 见题型, 以立意新颖, 形式多样, 取材广泛为特点, 此类型问题可分为表格类信息题, 函数图象 信息题、图形语言信息题和统计图表信息题四种类型 . 解决图表信息问题的一般步骤: 1. “识图表”: ( 1) 先整体阅读, 对图表资料有一个整体了解, 进而搜索有效信息; ( 2) 关注数据 变化; ( 3) 注意图表细节的提示作用. 2. “用图表”: 通过认真阅读、观察、分析图表, 获取信息. 根据信息中数据或图形特征, 找出数量关系或弄清函数的对应关系. 3. “建模型”: 在正确理解各变量之间关系的基础上, 建立合理的数学模型, 解决问题.
专题突破区
专题视点· 考向解读
重点解析
真题演练
专题考点 0 2 函数图象信息题
图象信息题是指给出图象及一定的文字说明, 借此来从中捕捉信息进行计 算或推理的一类题. 解题的关键是要善于从图象的形状、位置、特殊点、发展 变化趋势等有关信息中提取数量信息, 建立等量( 函数) 关系式.
专题突破区
苏科版(2024新版)七年级数学上册第四章专题课件:一元一次方程中的图表信息题
类型四 分段计费问题
4.(2024江苏苏州张家港期末)某城市“一户一表”居民用电 实行阶梯电价,具体收费标准如下.
一户居民一个月的用电量 (单位:千瓦时)
第1档 不超过180千瓦时的部分
第2档
超过180千瓦时的部分
电价 (单位:元/千瓦时)
0.5 0.6
(1)若该市某户居民12月用电量为200千瓦时,则该户居民应
8
5
13
2 B 6 321 8
3
5
11
3 C 6 312 9
x
5
10
4 D 6 006 1
1
0
0
备注
积分=胜场积分+平场积分+负场积分
(1)表格中x的值为ቤተ መጻሕፍቲ ባይዱ
,本次足球小组赛胜一场积
分,平一场积
分,负一场积
分.
(2)该比赛参加第一阶段小组赛6场比赛的奖金分配方案为
每支球队都可以获得参赛奖金1 200万元.另外,小组赛中每
类型二 月历问题
2.你对生活中常见的月历了解吗?月历中存在许多数字奥秘, 你知道吗?
日
一
二
三
四
五
六
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
(1)在如图所示的月历中,横行、竖列上相邻的两数之间有什 么关系? (2)如果告诉你一竖列上连续三个数的和为72,你能知道是哪 几天吗? (3)如果用一个正方形框住的2×2个数的和为56,那么被框住 的四天你知道分别是几号吗?
中考数学第二轮复习:图表信息问题
1
专 题 解 读
2
考情透析 图表信息题是中考常考的一种新题型,它是通过图象、 图形及表格等形式给出信息,通过认真阅读、观察、 分析、加工、处理等手段解决的一类实际问题.主要 考查同学们的读图、识图、用图能力,以及分析问题、 解决问题的能力.图表信息问题往往和“方程(组)、不 等式(组)、函数、统计与概率”等知识结合考查.
11
二、表格信息题
以表格的形式给出数据信息是这类信息题的特征,分析表中的数据,能从表
格中发现两个量之间存在规律,归纳出相应的关系式是解决此类问题的关键.
12
【例题2】 (2012· 浙江台州)某汽车在刹车后行驶的距离s(单
位:米)与时间t(单位:秒)之间的关系的部分数据如下表:
时间t(秒) 行驶距离s(米)
4
专 题 突 破
5
一、图象信息题
此类题目主要是运用函数图象(一次函数、二次函数、反比例函数的 图象等)表示物体的变化规律(体现在两个变量之间的数量关系),考查
数形结合的思想和函数建模能力.解答时往往根据图象的形状、位置、 变化趋势等信息来判断、分析、解决问题.
6
【例题1】 (2012· 浙江义乌)周末,小明骑自行车从家里出
10
(3)设从家到乙地的路程为m km,
则点 E(x1,m),点 C(x2,m),分别代 入 y=60x-80,y=20x-10, m+80 m+10 得:x1= , x2 = . 60 20 10 1 ∵x2-x1= = , 60 6 m+10 m+80 1 ∴ - = , 20 60 6 解得:m=30. ∴从家到乙地的路程为 30 km.
14
分析 (1)描点作图即可. (2)首先判断函数为二次函数.用待定系数法,由 所给的任意三点即可求出函数解析式. (3)①将函数解析式表示成顶点式(或用公式求), 即可求得答案.
2020中考数学冲刺练习-第05讲 图表信息性问题--含解析
2020数学中考冲刺专项练习【难点突破】着眼思路,方法点拨, 疑难突破;图表信息题是中考常考的一种新题型,它是通过图象、图形及表格等形式给出信息,通过认真阅读、观察、分析、加工、处理等手段解决的一类实际问题.主要考查同学们的读图、识图、用图能力,以及分析问题、解决问题的能力.图表信息问题往往和“方程(组)、不等式(组)、函数、统计与概率”等知识结合考查.解题基本思路:“细读图表→分析→理清关系→解决问题”。
首先要注意细心地观察、搜集、整理和加工题目中所透露出来的信息,包括题目中的细微之处,努力回想相应的知识点,并进行梳理,作出合理的推断和决策;然后在捕捉有用信息的基础上,将其转化为数学模型,并进行解释与应用。
根据图表信息型试题的特点,可将其大致分为五类:(1)图形信息型;(2)表格类信息型;(3)情景图象信息型;(4)函数图象信息型;(5)统计图表信息型.类型1、图形信息型图形信息型试题常以图形来呈现信息(图形本身具有的特征及其性质)或数量关系,解答时要借助于图形本身的性质,结合推理、计算甚至图形变换的方法来解决问题.类型2、表格类信息型用表格呈现数据信息,比较直观、简洁,在日常生活中使用极为普遍,工厂的产值、股市的行情、话费的计算等,表格信息型问题近年来成为了中考数学试题的一道亮丽风景.解答这类问题关键是分析表格数据,抽取有效信息,找出内在规律,需要同学们具备一定的分析、理解、处理数据的能力.类型3、情景图象信息型这类试题一般是以一段生活实际情景、一场新颖且富有趣味性的游戏为背景或以图片中人物对话的形式呈现信息,寓数学问题、数学思想和方法于情景之中的一类新颖题型.需要将获取的信息结合所学的数学知识(方程、函数、不等式等)来解决.类型4、函数图象信息型函数图象信息型是以函数图象为背景,表示两个变量之间的数量关系,常见的有一次函数图象、二次函数图象和反比例函数图象有关的信息题.解决这类问题,需要同学们能看懂函数的图象,并从图象的形状、位置、发展趋势等方面获取有效的信息,从而找到解决问题的突破口.类型5、统计图表信息型此类题是通过常见的统计图表(频数分布表、频率分布直方图、条形统计图、折线统计图、扇形统计图等)给出数据信息和变化规律的常考题型.考查读图、识图能力和分析数据此类题是通过常见的统计图表(频数分布表、频率分布直方图、条形统计图、折线统计图、扇形统计图等)给出数据信息和变化规律的常考题型.考查读图、识图能力和分析数据。
第39章 图表信息题
第三十九章 图表信息22.(2012年广西玉林市,22,8分)某奶品生产企业,2010年对铁锌牛奶、酸牛奶、纯牛奶三个品种的生产情况进行了统计,绘制了图1、2的统计图,请根据图中信息解答下列问题:(1)酸牛奶生产了多少万吨?把图1补充完整;酸牛奶在图2所对应的圆心角是多少度?(2)由于市场不断需求,据统计,2011年的生产量比2010年增长20%,按照这样的增长速度,请你估算2012年酸牛奶的生产量是多少万吨?分析:(1)根据纯牛奶所占百分率和纯牛奶的产量,求出牛奶的总产量,用总产量减铁锌牛奶和纯牛奶的产量即为酸牛奶的产量;酸牛奶产量除以总产量乘以360°即为酸牛奶在图2所对应的圆心角的度数; (2)根据平均增长率公式直接解答即可.解:(1)牛奶总产量=120÷50%=240吨,酸牛奶产量=240-40-120=80吨,酸牛奶在图2所对应的圆心角度数为24080×360°=120°.(2)2012年酸牛奶的生产量为80×(1+20%)2=115.2吨.答:2012年酸牛奶的生产量是115.2万吨.点评:本题考查了条形统计图和扇形统计图,将二者结合起来是解题的关键.16.(2012湖北黄冈,16,3)某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60 千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4 个结论:①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米;③图中点B的坐标为(334,75);④快递车从乙地返回时的速度为90千米/时.以上4 个结论中正确的是____________(填序号)【解析】设快递车出发的速度为x千米/时,则由图像得3(x-60)=120,解得x=100,①正确;而甲、乙两地之间的距离大于120千米,②错误;点B的横坐标是快递车返回的时间:3+4560=334(h),而纵坐标是此时货车距乙地的距离120-34×60=75(km),∴点B的坐标为(334,75),③正确;设快递车出发的速度为m千米/时,则(144-334)(m+60)=75,解得m=90,④正确.【答案】①③④【点评】根据图像信息解决行程问题,关键是要能读懂题意并能看懂图像所反映的时间、速度、行程三者之间的关系.难度较大.24.(2012黑龙江省绥化市,24,7分)学生的学习兴趣如何是每位教师非常关注的问题.为此,某校教师对该校部分学生的学习兴趣进行了一次抽样调查(把学生的学习兴趣分为三个层次,A层次:很感兴趣;B层次:较感兴趣;C层次:不感兴趣),并将调查结果绘制成了图①和图②的统计图(不完整).请你根据图中提供的信息,解答下列问题:⑴此次抽样调查中,共调查了名学生;⑵将图①、图②补充完整;⑶求图②中C层次所在扇形的圆心角的度数;⑷根据抽样调查结果,请你估算该校1200名学生中大约有多少名学生对学习感兴趣(包括A层次和B层次).【解析】解:(1)此次抽样调查中,共调查了50÷25%=200(人);故答案为:200.(2)C层次的人数为:200-120-50=30(人);所占的百分比是:30 200 ×100%=15%;B层次的人数所占的百分比是1-25%-15%=60%;(3)C层次所在扇形的圆心角的度数是:360×15%=54°;(4)根据题意得:(25%+60%)×1200=1020(人)答:估计该校1200名学生中大约有1020名学生对学习感兴趣..【答案】⑴200;⑵如图所示;⑶540;⑷1020.【点评】本题主要考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.难度中等.专项九图表信息(43)14.(2012四川省资阳市,14,3分)某果园有苹果树100棵,为了估计该果园的苹果总产量,小王先按长势把苹果树分成了A、B、C三个级别,其中A级30棵, B级60棵, C级10棵,然后从A、B、C三个级别的苹果树中分别随机抽取了3棵、6棵、1棵,测出其产量,制成了如下的统计表.小李看了这个统计表后马上正确估计出了该果园的苹果总产量,那么小李的估计值是千克.【解析】由表格中各种等级果树的平均产量可估算果园的总产量为:80×30+75×60+70×10=7600【答案】7600【点评】本题主要考查了由样本估计总体的估算,解决本题的关键是分清样本、总体具体所表示的意义.难度较小.20. (2012山东省聊城,20,8分)为进一步加强中学生近视眼的防控工作,市教育局近期下发了有关文件,将学生视力保护工作纳入学校和教师的考核内容.为此,某县教育局主管部门对今年初中毕业生的视力进行了一次抽样调查,并根据调查结果绘制了如下频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:(1)求表中a 、b 的值,并补充完频数分布直方图;(2)若视力在4.9以上(含4.9)均为正常,估计该县5600名初中毕业生视力正常的有多少人? 解析:(1)要求a 的值,只需用其中一组已知视力范围的频数与频率关系求出频数总数;再结合根据该栏的频率、数据总次数求出a.(2)找出4.9以上(含4.9)的频率和,进行估计总体. 解:(1)由15÷0.05=300(人),所以a=300×0.25=75(人). . b=60÷300=0.20.(2)因为视力在4.9以上(含4.9)的频率为0.25+0.20=0.45. 所以5600×0.45=2520(人)答:估计该县5600名初中毕业生视力正常的约有2520人. 点评:灵活运用频率=数据总数频数,会对该公式变形运用.用样本统计量估计总统指标是统计的重要思想.如本问题(2)问,用样本频率估计总体中视力正常情况.22. (2012江苏盐城,22,8分)第三十届夏季奥林匹克运动会将于2012年7月27日至8月12日在英国伦敦举行,目前正在进行火炬传递活动.某校学生会为了确定近期宣传专刊的主题,想知道学生对伦敦奥运火炬传递路线的了解程度,决定随机抽取部分学生进行一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图。
数学中考冲刺:图表信息型问题--知识讲解(提高)
中考冲刺:图表信息型问题—知识讲解(提高)责编:常春芳【中考展望】图表信息题是指通过图形、图象或图表及一定的文字说明来提供问题情景的一类试题,它是近几年全国各省市中考所展示的一种新题型,这类试题形式多样,取材广泛,可增加试题的灵活性和趣味性,其发展前景非常广阔.用好题中提供的信息,有利于提高学生分析、解决简单实际问题的能力,同时也是培养现代公民素质的一条重要途径.【方法点拨】1.图象信息题题型特点:这类题是中考试卷中出现频率较高的题型之一,它是通过图象呈现问题中两个变量之间的数量关系,主要考查学生对函数思想和数形结合思想的掌握程度.解题策略:解答这类问题,在弄清题意的基础上,弄清两坐标轴所代表的含义,并对图象的形状、位置、发展变化趋势等捕捉提炼有效信息,解决相关问题.2.图表信息题图表信息题是指通过图表的形式提供信息,这些信息一般以数据形式居多,其主要考查学生对图表数据的分析、比较、判断和结论的归纳能力,要求学生有较强的定量分析和定性概括能力.图表信息题是中考常见的一种题型,它是通过图象、图形及表格等形式给出信息的一种新题型,在解决图表信息题的时候要注意以下几点:1、细读图表:(1)注重整体阅读.先对材料或图表资料等有一个整体的了解,把握大体方向.要通过整体阅读,搜索有效信息;(2)重视数据变化.数据的变化往往说明了某项问题,而这可能正是这个材料的重要之处;(3)注意图表细节.图表中一些细节不能忽视,它往往起提示作用,如图表下的“注”“数字单位”等.2、审清要求:图表题往往对答题有一定的要求,根据考题要求进行回答,才能有的放矢.题目要求包往往括字数句数限制、比较对象、变化情况等.3、准确表达解答图表题需要用简明的语言进行概括.解答前,要正确分析图表中所列内容的相互联系,从中找出规律性的东西,再归纳概括为一个结论.在表述时要有具体的数据比较、分析,要客观地反映图表包含的信息,特别要注意题目中的特殊限制.【典型例题】类型一、图象信息题1.(2016•烟台)如图,⊙O的半径为1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发(P 点与O点不重合),沿O→C→D的路线运动,设AP=x,sin∠APB=y,那么y与x之间的关系图象大致是()A.B. C.D.【思路点拨】根据题意分1<x<与≤x<2两种情况,确定出y与x的关系式,即可确定出图象.【答案】C.【答案与解析】解:当P在OC上运动时,根据题意得:sin∠APB=,∵OA=1,AP=x,sin∠APB=y,∴xy=1,即y=(1<x≤),当P在上运动时,∠APB=∠AOB=45°,此时y=(<x≤2),图象为:故选C.【总结升华】此题考查了动点问题的函数图象,列出y与x的函数关系式是解本题的关键.2.(福鼎市期中)甲、乙两人骑车前往A地,他们距A地的路程S(km)与行驶时间t(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)甲、乙两人的速度各是多少?(2)求甲距A地的路程S与行驶时间t的函数关系式.(3)直接写出在什么时间段内乙比甲距离A地更近?(用不等式表示)【思路点拨】(1)分别利用利用总路程除以总时间求出速度即可;(2)利用待定系数法求出函数解析式即可;(3)利用函数图象确定乙比甲距离A地更近时的时间即可.【答案与解析】解:(1)v甲==30(km/h),v乙==20(km/h);(2)设甲的函数关系式为S=kt+b,把(0,50),(2.5,0)代入解得:,解得:,∴关系式为:S=﹣20t+50;(3)由图象可得出:当1<t<2.5时,乙比甲距离A地更近.【总结升华】此题考查了学生从图象中读取信息的能力.学会利用数形结合来解答问题.举一反三:【高清课堂:图表信息型问题例4】【变式】如图,已知抛物线P:y=ax2+bx+c(a≠0) 与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线P上部分点的横坐标对应的纵坐标如下:(1) 求A、B、C三点的坐标;(2) 若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;(3) 当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k·DF,若点M不在抛物线P 上,求k的取值范围.【答案】 解:⑴ 解法一:设 2(0)y ax bx c a =++≠,任取x,y 的三组值代入,求出解析式2142y x x =+-, 令y=0,求出124,2x x =-=;令x=0,得y=-4,∴ A 、B 、C 三点的坐标分别是A(2,0),B(-4,0),C(0,-4) .解法二:由抛物线P 过点(1,-52),(-3,52-)可知, 抛物线P 的对称轴方程为x=-1,又∵ 抛物线P 过(2,0)、(-2,-4),则由抛物线的对称性可知,点A 、B 、C 的坐标分别为 A(2,0),B(-4,0),C(0,-4) .⑵ 由题意,AD DG AO OC=,而AO=2,OC=4,AD=2-m ,故DG=4-2m , 又 BE EF BO OC=,EF=DG ,得BE=4-2m ,∴ DE=3m , ∴S DEFG =DG·DE=(4-2m) 3m=12m-6m 2 (0<m <2) .注:也可通过解Rt△BOC 及Rt △AOC ,或依据△BOC 是等腰直角三角形建立关系求解.⑶ ∵S DEFG =12m-6m 2 (0<m <2),∴m=1时,矩形的面积最大,且最大面积是6 .当矩形面积最大时,其顶点为D(1,0),G(1,-2),F(-2,-2),E(-2,0),设直线DF 的解析式为y=kx+b ,易知,k=23,b=-23,∴2233y x =-, 又可求得抛物线P 的解析式为:2142y x x =+-, 令2233x -=2142x x +-,可求出x=1613-±. 设射线DF 与抛物线P 相交于点N , 则N 的横坐标为1613--,过N 作x 轴的垂线交x 轴于H ,有 FN HE DF DE ==161233----=5619-+, 点M 不在抛物线P 上,即点M 不与N 重合时,此时k 的取值范围是 k≠5619-+且k >0. 类型二、图表信息题3.为减少环境污染,自2008年6月1日起,全国的商品零售场所开始实行“塑料购物袋有偿使用制度”(以下简称“限塑令”).某班同学于6月上旬的一天在某超市门口采用问卷调查的方式,随机调查了“限塑令”实施前后,顾客在该超市用购物袋的情况,以下是根据100位顾客的100份有效答卷画出的统计图表的一部分:请你根据以上信息解答下列问题:(1)补全图,“限塑令”实施前,如果每天约有2000人次到该超市购物.根据这100位顾客平均一次购物使用塑料购物袋的平均数,估计这个超市每天需要为顾客提供多少个塑料购物袋?(2)补全图,并根据统计图和统计表说明,购物时怎样选用购物袋,塑料购物袋使用后怎样处理,能对环境保护带来积极的影响.【思路点拨】(1)根据调查的总人数100人,结合其它部分数据即可计算出5个对应的频数是100-90=10;然后首先计算样本平均数,再进一步计算2000人需要的塑料袋;(2)根据总百分比是1即可计算收费塑料购物袋占:1-75%=25%;结合两个统计图中的数据进行合理分析,提出合理化建议即可.【答案与解析】解:(1)如图所示.“限塑令”实施前,平均一次购物使用不同数量塑料购物袋的人数统计图9137226311410546373003100100⨯+⨯+⨯+⨯+⨯+⨯+⨯== 这100位顾客平均一次购物使用塑料购物袋的平均数为3个.2000×3=6000(个).估计这个超市每天需要为顾客提供6000个塑料购物袋.(2)图中,使用收费塑料购物袋的人数所占百分比为25%.由上图和统计表可知,购物时应尽量使用自备袋和押金式环保袋,少用塑料购物袋;塑料购物袋应尽量循环使用,以便减少塑料购物袋的使用量,为环保做贡献.【总结升华】此题是社会上的热门话题与统计相结合的一道考题,考查了学生对图表绘制过程的理解、阅读图表并提取有用信息的技能,借助数据处理结果做合理推测的能力.4.在某次人才交流会上,应聘人数和招聘人数分别居前5位的行业列表如下:如果用同一行业应聘人数与招聘人数比值的大小来衡量该行业的就业情况,那么根据表中数据,对上述行业的就业情况判断正确的是( )A.计算机行业好于其他行业B.贸易行业好于化工行业C.机械行业好于营销行业D.建筑行业好于物流行业【思路点拨】本题综合考查统计部分的有关知识,通过统计表可以得到应聘人数与招聘人数,进而通过计算应聘人数与招聘人数的比值大小来衡量该行业的就业情况,比值越小越容易就业,比值越大越不容易就业,通过计算即可求解.【答案与解析】解:计算机行业比值为1.83;机械行业比值为2.29;营销行业比值为1.50;建筑行业为0;化工行业为0;而物流行业与贸易行业的比值为无穷大,所以此题应选D.【总结升华】本题综合考查统计部分的有关知识,通过统计表可以得到应聘人数与招聘人数,进而通过计算应聘人数与招聘人数的比值大小来衡量该行业的就业情况,比值越小越容易就业,比值越大越不容易就业.举一反三:【变式】下表为抄录北京奥运会官方票务网公布的三种球类比赛的部分门票价格,某公司购买的门票种类、数量绘制的条形统计图如下图.依据上列图、表,回答下列问题:(1)其中观看男篮比赛的门票有 张;观看乒乓球比赛的门票占全部门票的 %;(2)公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地等完全相同且充分洗匀),问员工小亮抽到男篮门票的概率是 ;(3)若购买乒乓球门票的总款数占全部门票总款数的81,试求每张乒乓球门票的价格. 【答案】(1)30,20;(2)310; (3)解法一:依题意,有x x 205080030100020+⨯+⨯= 18 . 解得x =500 .经检验,x =500是原方程的解.答:每张乒乓球门票的价格为500元.解法二:依题意,有x 2050800301000+⨯+⨯= x 208⨯.解得x =500 .答:每张乒乓球门票的价格为500元.类型三、从表格、数字中寻求规律5.我市某工艺厂为配合北京奥运,设计了一款成本为20元/件的工艺品投放市场进行试销.经过调查,得到如下数据:(1)把上表中x 、y 的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y 与x 的函数关系,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得利润最大?最大利润多少?(利润=销售总价-成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得利润最大?【思路点拨】从表格中的数据我们可以看出当x增加10时,对应y的值减小100,所以y与x之间可能是一次函数的关系,我们可以根据图象发现这些点在一条直线上,所以y与x之间是一次函数的关系,然后设出一次函数关系式,求出其关系式.【答案与解析】(1)画图如图;由图可猜想y与x是一次函数关系,设这个一次函数为y= k x+b(k≠0)∵这个一次函数的图象经过(30,500)、(40,400)这两点,∴5003040040k bk b=+⎧⎨=+⎩解得10800kb=-⎧⎨=⎩∴函数关系式是:y=-10x+800(2)设工艺厂试销该工艺品每天获得的利润是W元,依题意得W=(x-20)(-10x+800)=-10x2+1000x-16000=-10(x-50)2+9000∴当x=50时,W有最大值9000.所以,当销售单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元.(3)对于函数 W=-10(x-50)2+9000,当x≤45时,W的值随着x值的增大而增大,销售单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大.【总结升华】能从表格、数字中发现两个量之间存在规律,归纳出相应的关系式是关键.举一反三:【高清课堂:图表信息型问题例3】【变式】某绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A、B两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:说明:不同种植户种植的同类蔬菜每亩平均收入相等.⑴求A、B两类蔬菜每亩平均收入各是多少元?⑵某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.【答案】解:(1)设A、B两类蔬菜每亩平均收入分别是x元,y元.由题意得:解得:答:A、B两类蔬菜每亩平均收入分别是3000元,3500元.(2)设用来种植A类蔬菜的面积a亩,则用来种植B类蔬菜的面积为(20-a)亩.由题意得:解得:10<a≤14.∵a取整数为:11、12、13、14.∴租地方案为:类别种植面积单位:(亩)A 11 12 13 14B 9 8 7 6。
2020年中考数学热点冲刺3 图表信息问题(含解析)
热点专题3 图表信息问题考向1平均数、中位数、众数、方差的概念及计算1.(2019 江苏省常州市)在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是,这组数据的众数为元;(2)求这组数据的平均数;(3)该校共有600名学生参与捐款,请你估计该校学生的捐款总数.【答案】(1)30,10(2)12;(3)7200【解析】(1)本次调查的样本容量是6+11+8+5=30,这组数据的众数为10元;故答案为:30,10;(2)这组数据的平均数为=12(元);(3)估计该校学生的捐款总数为600×12=7200(元).点评此题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.本题也考查了平均数、中位数、众数的定义以及利用样本估计总体的思想.2. (2019 江苏省南京市)如图是某市连续5天的天气情况.(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大;(2)根据如图提供的信息,请再写出两个不同类型的结论.【解析】(1)方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;(2)用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,通常用s2来表示,计算公式是:s2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2](可简单记忆为“方差等于差方的平均数”).解答解:(1)这5天的日最高气温和日最低气温的平均数分别是==24,==18,方差分别是==0.8,==8.8,∴<,∴该市这5天的日最低气温波动大;(2)25日、26日、27日的天气依次为大雨、中雨、晴,空气质量依次良、优、优,说明下雨后空气质量改善了.【点评】本题考查了方差,正确理解方差的意义是解题的关键.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.3. (2019 江苏省淮安市)某企业为了解员工安全生产知识掌握情况,随机抽取了部分员工进行安全生产知识测试,测试试卷满分100分.测试成绩按A、B、C、D四个等级进行统计,并将统计结果绘制了如下两幅不完整的统计图.(说明:测试成绩取整数,A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)请解答下列问题:(1)该企业员工中参加本次安全生产知识测试共有人;(2)补全条形统计图;(3)若该企业共有员工800人,试估计该企业员工中对安全生产知识的掌握能达到A级的人数.【解析】解:(1)20÷50%=40,所以该企业员工中参加本次安全生产知识测试共有40人;故答案为40;(2)C等级的人数为40﹣8﹣20﹣4=8(人),补全条形统计图为:(3)800×=160,4. (2019 江苏省连云港市)为了解某地区中学生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,2~4小时(含2小时),4~6小时(含4小时),6小时及以上,并绘制了如图所示尚不完整的统计图.(1)本次调查共随机抽取了名中学生,其中课外阅读时长“2~4小时”的有人;(2)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为°;(3)若该地区共有20000名中学生,估计该地区中学生一周课外阅读时长不少于4小时的人数.【解析】(1)本次调查共随机抽取了:50÷25%=200(名)中学生,其中课外阅读时长“2~4小时”的有:200×20%=40(人),故答案为:200,40;(2)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为:360°×(1﹣﹣20%﹣25%)=144°,故答案为:144;(3)20000×(1﹣﹣20%)=13000(人),答:该地区中学生一周课外阅读时长不少于4小时的有13000人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.5. (2019 江苏省泰州市) PM2.5是指空气中直径小于或等于2.5μm的颗粒物,它对人体健康和大气环境造成不良影响,下表是根据《全国城市空气质量报告》中的部分数据制作的统计表.根据统计表回答下列问题,2017年、2018年7~12月全国338个地级及以上市PM2.5平均浓度统计表(单位:μg/m3)(1)2018年7~12月PM2.5平均浓度的中位数为μg/m3;(2)“扇形统计图”和“折线统计图”中,更能直观地反映2018年7~12月PM2.5平均浓度变化过程和趋势的统计图是;(3)某同学观察统计表后说:“2018年7~12月与2017年同期相比,空气质量有所改善”,请你用一句话说明该同学得出这个结论的理由.【解析】(1)2018年7~12月PM2.5平均浓度的中位数为=μg/m3;故答案为:;(2)可以直观地反映出数据变化的趋势的统计图是折线统计图,故答案为:折线统计图;(3)2018年7~12月与2017年同期相比PM2.5平均浓度下降了.点评本题考查了统计图的选择,利用统计图的特点选择是解题关键.6. (2019 江苏省无锡市)《国家学生体质健康标准》规定:体质测试成绩达到90.0分及以上的为优秀;达到80.0分至89.9分的为良好;达到60.0分至79.9分的为及格;59.9分及以下为不及格.某校为了了解九年级学生体质健康状况,从该校九年级学生中随机抽取了10%的学生进行体质测试,测试结果如下面的统计表和扇形统计图所示.各等级学生平均分统计表(1)扇形统计图中“不及格”所占的百分比是;(2)计算所抽取的学生的测试成绩的平均分;(3)若所抽取的学生中所有不及格等级学生的总分恰好等于某一个良好等级学生的分数,请估计该九年级学生中约有多少人达到优秀等级.【解析】(1)4%(2)92.1×52%+85.0×26%+69.2×18%+41.3×4%=84.1(3)设总人数为n个由题意得:80.0 ≤ 41.3×n×4%≤89.9所以48<n<54又因为4%n为整数所以n=50即优秀的学生有52%×50÷10%=260 人考向2统计图1. (2019 江苏省宿迁市)为了解学生的课外阅读情况,七(1)班针对“你最喜爱的课外阅读书目”进行调查(每名学生必须选一类且只能选一类阅读书目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选类别人数统计表根据以上信息解决下列问题(1)m=,n=;(2)扇形统计图中“科学类”所对应扇形圆心角度数为°;(3)从选哲学类的学生中,随机选取两名学生参加学校团委组织的辩论赛,请用树状图或列表法求出所选取的两名学生都是男生的概率.【解析】解:(1)抽查的总学生数是:(12+8)÷40%=50(人),m=50×30%﹣5=10,n=50﹣20﹣15﹣11﹣2=2;故答案为:20,2;(2)扇形统计图中“科学类”所对应扇形圆心角度数为360°×=79.2°;故答案为:79.2;(3)列表得:由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中所选取的两名学生都是男生的有2种可能,∴所选取的两名学生都是男生的概率为=.【点评】此题主要考查了列表法与树状图法,以及扇形统计图、统计表的应用,要熟练掌握.2. (2019 江苏省徐州市)某户居民2018年的电费支出情况(每2个月缴费1次)如图所示:根据以上信息,解答下列问题:(1)求扇形统计图中“910月”对应扇形的圆心角度数;(2)补全条形统计图.【解析】解:(1)补全表格如下:(2)由表知,共有12种等可能结果,其中积为9的有1种,积为偶数的有8种结果,所以积为9的概率为112;积为偶数的概率为82123=,故答案为:112,23.(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的有5和7这2种,∴此事件的概率为21 126=,故答案为:16.点评此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.3. (2019 江苏省徐州市)某户居民2018年的电费支出情况(每2个月缴费1次)如图所示:根据以上信息,解答下列问题:(1)求扇形统计图中“910-月”对应扇形的圆心角度数; (2)补全条形统计图.【解析】解:(1)全年的总电费为:24010%2400÷=元 910-月份所占比:7280240060÷=, ∴扇形统计图中“910-月”对应扇形的圆心角度数为:73604260︒⨯=︒ 答:扇形统计图中“910-月”对应扇形的圆心角度数是42︒(2)78-月份的电费为:2400300240350280330900-----=元, 补全的统计图如图:点评考查条形统计图、扇形统计图的特点及反应数据的变化特征,两个统计图联系在一起,可以发现数据之间关系,求出在某个统计图中缺少的数据.4. (2019 江苏省盐城市)某公司共有400名销售人员,为了解该公司销售人员某季度商品销售情况,随机抽取部分销售人员该季度的销售数量,并把所得数据整理后绘制成如下统计图表进行分析.频数分布表请根据以上信息,解决下列问题:(1)频数分布表中,a=、b=;(2)补全频数分布直方图;(3)如果该季度销量不低于80件的销售人员将被评为“优秀员工”,试估计该季度被评为“优秀员工”的人数.【解析】解:(1)根据题意得:b=3÷0.06=50,a==0.26;故答案为:0.26;50;(2)根据题意得:m=50×0.46=23,补全频数分布图,如图所示:(3)根据题意得:400×(0.46+0.08)=216,则该季度被评为“优秀员工”的人数为216人.【点评】此题考查了频数分布直方图,用样本估计总体,以及频数分布图,弄清题中的数据是解本题的关键.5. (2019 江苏省扬州市)扬州市“五个一百工程“在各校普遍开展,为了了解某校学生每天课外阅读所用的时间情况,从该校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如图不完整的频数分布表和频数分布直方图.根据以上信息,回答下列问题:(1)表中a=,b=;(2)请补全频数分布直方图;(3)若该校有学生1200人,试估计该校学生每天课外阅读时间超过1小时的人数.【解析】解:(1)a=36÷0.3=120,b=12÷120=0.1,故答案为:120,0.1;(2)1<t≤1.5的人数为120×0.4=48,补全图形如下:(3)估计该校学生每天课外阅读时间超过1小时的人数为1200×(0.4+0.1)=600(人).【点评】本题主要考查频率分布直方图和频率分布表的知识和分析问题以及解决问题的能力,解题的关键是能够读懂统计图,并从中读出有关信息.6. (2019 江苏省镇江市)陈老师对他所教的九(1)、九(2)两个班级的学生进行了一次检测,批阅后对最后一道试题的得分情况进行了归类统计(各类别的得分如下表),并绘制了如图所示的每班各类别得分人数的条形统计图(不完整).各类别的得分表已知两个班一共有50%的学生得到两个正确答案,解答完全正确,九(1)班学生这道试题的平均得分为3.78分.请解决如下问题:(1)九(2)班学生得分的中位数是;(2)九(1)班学生中这道试题作答情况属于B类和C类的人数各是多少?【解析】解:(1)由条形图可知九(2)班一共有学生:3+6+12+27=48人,将48个数据按从小到大的顺序排列,第24、25个数据都在D类,所以中位数是6分.故答案为6分;(2)两个班一共有学生:(22+27)÷50%=98(人),九(1)班有学生:98﹣48=50(人).设九(1)班学生中这道试题作答情况属于B类和C类的人数各是x人、y人.由题意,得,解得.答:九(1)班学生中这道试题作答情况属于B类和C类的人数各是6人、17人.【点评】本题考查的是统计图表与条形图的综合运用.读懂统计图表,从统计图表中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.也考查了中位数与平均数.。
图表信息型问题的教学方法
图表信息型问题的教学方法图表信息型问题是中考常考的题型,一般是将实际问题以图形、图像、表格及一定的文字说明等形式呈现,通过观察、整理、分析等手段获取其中隐含的解题信息进而解决实际问题的一类题型。
主要考察学生读图识表及对信息加工、处理的能力。
在教学过程中,力求让学生理清相关知识的概念和性质,充分发挥学生的主观能动性,参与课堂各项活动,小组之间多交流,在愉快的氛围中掌握解题技能,教师从中起到辅导和点拨的作用,千万不能一讲到底,因为图表信息问题必须让学生经历观察、比较、发现、归纳、交流、总结等活动获得感性认识,教师再加以点拨和指导,这样才能使学生真正掌握知识,培养学生数学的应用能力。
下面结合本人的教学实践谈几点做法。
一、充分利用现代媒体手段,激发学生兴趣。
课堂教学过程中,以学生熟悉的生活情境为背景,利用现代多媒体直观、形象的展示,依次设计步步深入的问题,有效地吸引学生的注意力,调动学生的学习积极性、主动性和求知欲,让学生在轻松愉快的氛围中去思考。
图表信息型问题的量比较大,而多媒体恰好可以弥补这一点,它能贮存大量的信息资料,快速呈现,及时为学生提供生动形象的感性材料,让学生直观读题、读图,调动学生的思考积极性,使学生由被动接受知识转为主动学习,积极配合课堂教学,主动参与教学过程。
学生有了兴趣,就更容易接受和领会。
这样既节约了板书的时间,同时也增大了教学容量,从而提高了教学效率。
二、留足时间,让学生自主学习。
教学中,要把课堂还给学生,给学生充足的自主学习时间。
教学时,教师要敢于放手,相信学生,让学生认真的读图,引导学生主动参与学习的全过程,自觉自愿的学习。
学生有了充足的时间,才会做到有效的思考。
三、交流展示,张扬学生个性。
四、引导学生学会反思,总结方法经验。
数学学习的过程是一个勇于发现问题、分析问题、解决问题、质疑反思的过程。
教师引导学生学会反思,是提高自身学习能力的重要途径之一。
但反思什么?对于学生来说,肯定是有困难的。
初中奥数讲义_图表信息问题附答案
【例题求解】【例1】一慢车和一快车沿相同的路线从A到B地,所行的路程与时间的函数图象如图所示,试根据图象,回答下列问题:(1)慢车比快车早出发小时,快车追上慢车时行驶了千米,快车比慢车早小时到达6地;(2)快车追上慢车需小时,慢车、快车的速度分别为千米/时;(3)A、B两地间的路程是.思路点拨对于(2),设快车追上慢车需t小时,利用快车、慢车所走的路程相等,建立t的方程.注:股市行情走势图、期货市场趋势图、工厂产值利润表、甚而电子仪器自动记录的地震波等,它们广泛出现在电视、报刊、广告中,渗透到现实生活的每一角落,这些图表、图象中蕴涵着丰富的信息,我们应学会收集、整理与获取.【例2】已知二次函数cbx+=2的图象如图,并设M=baxy++++--2,则( )+2+-bca-ababcaA.M>0 B.M=0 C.M<0 D.不能确定M为正、为负或为0思路点拨由抛物线的位置判定a、b、c的符号,并由1x,推出相应y值的正负性.±=注:函数图象选择题是广泛见于各地中考试卷中的一种常见问题,解此类问题的基本思路是:由图象大致位置确定解析式中系数符号特征,进而再判定其他图象的大致位置,在解题中常常要运用直接判断、排除筛选、分类讨论、参数吻合等方法.【例3】 某人租用一辆汽车由A 城前往B 城,沿途可能经过的城市以及通过两城市之间所需的时间(单位:小时)如图所示.若汽车行驶的平均速度为80千米/时,而汽车每行驶1千米所需要的平均费用为1.2元.试指出此人从A 城出发到B 城的最短路线.(2003年全国初中数学竞赛题)思路点拨 从A 城出发到B 城的路线分成如下两类:(1)从A 城出发到达B 城,经过O 城,(2)从A 城出发到达B 城,不经过O 城.【例4】 我国东南沿海某地的风力资源丰富,一年内日平均风速不小于3米/秒的时间共约160天,其中日平均风速不小于6米/秒的时间约占60天.为了充分利用“风能”这种“绿色能源”,该地拟建一个小型风力发电厂,决定选用A 、B 两种型号的风力发电机.根据产品说明,这两种风力发电机在各种风速下的日发电量(即一天的发电量)如下表: 根据上面的数据回答:(1)若这个发电厂购x 台A 型风力发电机,则预计这些A 型风力发电机一年的发电总量至少为 千瓦·时;发电机(2)已知A型风力发电机每台0.3万元,B型风力发电机每台0.2万元.该发电厂拟购置风力发电机共10台,希望购机的费用不超过2.6万元,而建成的风力发电厂每年的发电总量不少于102000千瓦·时,请你提供符合条件的购机方案.思路点拨对于(1),注意“平均风速不小于3米/秒”的时间区分;对于(2),利用购置费用和发电总量分别列出不等式.【例5】一蔬菜基地种植的某种绿色蔬菜,根据今年的市场行情,预计从5月1日起的50天内,它的市场售价y与上市时间x的关系可用图1的一条线段表示;它的种植成本2y与上市时间x的关系可用图2 1抛物线的一部分来表示,假定市场售价减去种植成本为纯利润,问哪天上市的这种绿色蔬菜既不赔本也不赚钱?思路点拨由图象提供的信息,求出直线、抛物线的解析式,利用市场售价与成本价相等建立时间x的方程.注:本例综合运用一次函数和二次函数的有关知识,涉及信息量大,题中呈现信息的方式不仅是文字和符号,还包括表格.解图象信息问题的关键是化“图象信息”为“数学信息”,具体包括:(1)读图找点;(2)看图确定系数符号特征;(3)见形(图象形态)想式(解析式),建模求解.学历训练1.如图,是某出租车单程收费y (元)与行驶路程x(千米)之间的函数关系的图象,请根据图象回答以下问题:(1)当行驶8千米时,收费应为 ; (2)从图象上你能获得哪些正确的信息(请写出2条)① ;② . (3)收费y (元)与行驶x (千米)( x ≥3)之间的函数关系式为 .2.甲、乙两人(甲骑自行车,乙骑摩托车)从A 城出发到B 地旅行,如图表示甲、乙两人离开A 城的路程与时间之间的函数图象。
图表信息题(含答案)
二轮专题复习-- 图表信息题图表信息题是中考常见的一种题型,它是通过图象、图形及表格等形式给出信息的一种新题型,在解决图表信息题的时候要注意以下几点:1、细读图表:(1)注重整体阅读。
先对材料或图表资料等有一个整体的了解,把握大体方向。
要通过整体阅读,搜索有效信息;(2)重视数据变化。
数据的变化往往说明了某项问题,而这可能正是这个材料的重要之处;(3)注意图表细节。
图表中一些细节不能忽视,他往往起提示作用。
如图表下的“注”“数字单位”等。
2、审清要求:图表题往往对答题有一定的要求,根据考题要求进行回答,才能有的放矢。
题目要求包往往括字数句数限制、比较对象、变化情况等。
3、准确表达解答图表题需要用简明的语言进行概括。
解答前,要正确分析图表中所列内容的相互联系,从中找出规律性的东西,再归纳概括为一个结论。
在表述时要有具体的数据比较、分析,要客观地反映图表包含的信息,特别要注意题目中的特殊限制。
类型之一图形信息题找规律是解决数学问题的一种重要手段,找规律既需要敏锐的观察力,又需要一定的逻辑推理能力。
在解决图形问题的时候应从图形的个数、形状以及图形的简单性质入手。
1.(沈阳市)观察下列图形的构成规律,根据此规律,第8个图形中有个圆.2.(聊城市)如下左图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是()A.54个B.90个C.102个D.114个3.(·桂林市)如上右图,矩形A1B1C1D1的面积为4,顺次连结各边中点得到四边形A2B2C2D2,再顺次连结四边形A2B2C2D2四边中点得到四边形A3B3C3D3,依此类推,求四边形A n B n C n D n,的面积是。
内部,画1条射线,可得3个锐角;4(·襄樊市)如图,在锐角AOB94xyOPD CBA画2条不同射线,可得6个锐角;画3条不同射线,可得10个锐角;……照此规律,画10条不同射线,可得锐角个.类型之二图象信息题此类题目以图象的形式出现,有时用函数图象的形式出现,有时以统计图的形式出现,需要要把所给的图象信息进行分类、提取加工,再合成.5.(•莆田市)如图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程随时间变化的图象,根据图象下列结论错误的是()A.轮船的速度为20千米/小时C.轮船比快艇先出发2小时B.快艇的速度为40千米/小时D.快艇不能赶上轮船6.(•滨州市)如图,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则△ABC的面积是()A.10B.16C.18D.207.(·龙岩市)下表为抄录北京奥运会官方票务网公布的三种球类比赛的部分门票价格,某公司购买的门票种类、数量绘制的条形统计图如下图.依据上列图、表,回答下列问题:(1)其中观看男篮比赛的门票有张;观看乒乓球比赛的门票占全部门票的 %;(2)公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地等完全相同且充分洗匀),问员工小亮抽到足球门票的概率是;(3)若购买乒乓球门票的总款数占全部门票总款数的81,试求每张乒乓球门票的价格。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级二轮专题复习材料
专题十六:图表信息问题
【近3年临沂市中考试题】
1、(2014年T21.本小题满分7分)
随着人民生活水平的提高,购买老年代步车的人越来越多.这些老年代步车却成为交通安全的一大隐患.针对这种现象,某校数学兴趣小组在《老年代步车现象的调查报告》中就“你认为对老年代步车最有效的的管理措施”随机对某社区部分居民进行了问卷调查,其中调查问卷设置以下选项(只选一项):A:加强交通法规学习;B:实行牌照管理;C:加大交通违法处罚力度;D:纳入机动车管理;E:分时间分路段限行.
调查数据的部分统计结果如下表:
(1)根据上述统计表中的数据可得m =_______,n =______,a =________;
(2)在答题卡中,补全条形统计图;
(3)该社区有居民2600人,根据上述调查结果,请你估计选择“D:纳入机动车管理”的居民约有多少人?
2、(2015年T21本小题满分7分)“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).
请你根据图中提供的信息,解答下列问题:
(1)补全条形统计图;
(2)估计该市这一年(365天)空气质量达到“优”和“良”的总天数;
(3)计算随机选取这一年内的某一天,空气质量是“优”的概率.
3.(2016年T21 本小题满分6分)为了解某校九年级学生的身高情况,随机抽取部分学生的身高进行调查,利用所得数据绘成如图统计图表:
频数分布表
(1)填空:a=,b=;
(2)补全频数分布直方图;
(3)该校九年级共有600名学生,估计身高不低于165cm的学生大约有多少人?
4、(2014年T24本小题满分9分)24.(本小题满分9分)
某景区的三个景点A,B,C在同一线路上,甲、乙两名游客从景点A出发,甲步行到景点C,
乙乘景区观光车先到景点B,在B处停留一段时间后,再步行到景点C. 甲、乙两人离开景点A
后的路程S(米)关于时间t(分钟)的函数图象如图所示.根据以上信息回答下列问题:
(1)乙出发后多长时间与甲相遇?
(2)要使甲到达景点C时,乙与C的路程不超过400米,则乙从景点B步行到景点C的速
度至少为多少?
(结果精确到0.1米/分钟)
【中考集锦】
1.(2016山东济宁第17题)2016年6月15日是父亲节,某商店老板统计了这四年父亲节当天剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分.
请根据图1、图2解答下列问题:
(1)近四年父亲节当天剃须刀销售总额一共是5.8万元,请将图1中的统计图补充完整;(2)计算该店2015年父亲节当天甲品牌剃须刀的销售额.2.(2016湖南永州第22题)二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了如图两幅统计图,请结合两幅统计图,回答下列问题:
(1)在这次问卷调查中一共抽取了名学生,a=%;
(2)请补全条形统计图;
(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为度;
(4)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.
3. (2016湖南娄底第21题)在2016CCTV 英语风采大赛中,娄底市参赛选手表现突出,成绩均不低于60分.为了更好地了解娄底赛区的成绩分布情况,随机抽取利了其中200名学生的成绩(成绩x 取整数,总分100分)作为样本进行了整理,得到如图的两幅不完整的统计图表: 根据所给信息,解答下列问题:
(1)在表中的频数分布表中,m= ,n= .
0.40
(2)请补全图中的频数分布直方图.
(3)按规定,成绩在80分以上(包括80分)的选手进入决赛.若娄底市共有4000人参数,请估计约有多少人进入决赛?
4. (2016湖北黄石第21题)(本小题满分8分)为了解某市初三学生的体育测试成绩和课外体育锻炼时间的情况,现从全市初三学生体育测试成绩中随机抽取120名学生的体育测试成绩作为样本.体育成绩分为四个等次:优秀、良好、及格、不及格. (1)试求样本扇形图中体育成绩“良好”所对扇形圆心角的度数;
(2)统计样本中体育成绩“优秀”和“良好”学生课外体育锻炼时间表(如图表所示),请将图表填写完整(记学生课外体育锻炼时间为x 小时);
(3)全市初三学生中有14400人的体育测试成绩为“优秀”和“良好”,请估计这些学生中课外体育锻炼时间不少于4小时的学生人数.
5、(2016江苏省无锡市)某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y(万元)与月份x(月)之间的函数关系的图象如图1中的点状图所示(5月及以后每月的销售额都相同),而经销成本p(万元)与销售额y(万元)之间函数关系的图象图2中线段AB 所示.
(1)求经销成本p(万元)与销售额y(万元)之间的函数关系式;
(2)分别求该公司3月,4月的利润;
(3)问:把3月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元?(利润=销售额﹣经销成本)6、(2016云南省第22题)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.
(1)求y与x的函数解析式(也称关系式)
(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.。