大、小偏心受压破坏形态的界限.

合集下载

同济大学混凝土结构基本原理第6章答案

同济大学混凝土结构基本原理第6章答案

其中 当 当
为混凝土极限压应变。 时,截面属于大偏心受压; 时,截面属于小偏心受压。
6-6.长细比对偏心受压构件的承载力有直接影响, 请说明基本计算公式中是如何来考虑这一 问题的。 答:当 ,即短柱情况下,取弯矩增大系数 ;否则,取
28
其中,

6-7 请根据 N cu − M u 相关曲线说明大偏心受压及小偏心受压时轴向力与弯矩的关系,偏压 构件在什么情况下的抗弯承载力最大? 答:在小偏心受压破坏时候,随着轴向力 N c 的增大,构件的抗弯能力 M 逐渐减少;在大偏 心受压构件破坏的时候,随着轴向力 N c 的增大,会提高构件的抗弯承载力。在偏心构件的破 坏处于破坏时,构件的抗弯承载力达到最大值。 6-8 N cu − M u 相关曲线有哪些用途? 答:Ncu-Mu 相关曲线是由具有相同的截面尺寸,相同高度,相同配筋,相同材料强度但偏心距 e0 不同的构件进行系列偏心受压实验得到破坏时每个构件所承受的不同轴力 Ncu 和弯矩 Mu 所 绘制而成的,在此曲线中,我们可以轻松查阅到此构件在小偏心受压或者大偏心受压时候构 件的破坏荷载,了解构件性能.
思考题
6-1.偏心受力构件截面上同时作用有轴向力和弯矩, 除教材上列出的外, 再举出实际工程中 的偏心受压构件和偏心受拉构件各五种。 答:偏心受压构件有屋架的上弦杆、框架结构柱,砖墙及砖垛等。偏心受拉构件有矩形水池 的池壁、矩形剖面料仓或煤斗的壁板、受地震作用的框架边柱,以及双肢柱的受拉肢等。 6-2.对比偏心受压构件与受弯构件正截面的应力及应变分布,说明其相同之处与不同之处。 答: 受弯构件在混凝土出现裂缝前, 混凝土分为受压区和受拉区, 分别承受压应力和拉应力, 受拉区混凝土开裂后, 退出工作, 钢筋单独承担拉应力, 受压区混凝土受压区高度逐渐变小, 压应力不断增大,最终压碎破坏。应变一开始钢筋与混凝土应变相同,慢慢达到混凝土开裂 应变,钢筋屈服应变。而偏心受压构件则因偏心距不同其应力分布亦有不同。当 较大 中时,出现大偏心受压破坏,形式接近受弯。而当 较大 较大或 较小 适

结构设计原理-叶见曙版-课后习题第7-9(附答案)

结构设计原理-叶见曙版-课后习题第7-9(附答案)

第七章7-2试简述钢筋混凝土偏心受压构件的破坏形态和破坏类型。

答:破坏形态:(1)受拉破坏—大偏心受压破坏,当偏心距较大时,且受拉钢筋配筋率不高时,偏心受压构件的破坏是受拉钢筋先达到屈服强度,然后受压混凝土压坏,临近破坏时有明显的预兆,裂缝显著开展,构件的承载能力取决于受拉钢筋的强度和数量。

(2)受压破坏—小偏心受压破坏,小偏心受压构件的破坏一般是受压区边缘混凝土的应变达到极限压应变,受压区混凝土被压碎;同一侧的钢筋压应力达到屈服强度,破坏前钢筋的横向变形无明显急剧增长,正截面承载力取决于受压区混凝土的抗压强度和受拉钢筋强度。

破坏类型:1)短柱破坏;2)长柱破坏;3)细长柱破坏7-3由式(7-2)偏心距增大系数与哪些因素有关?由公式212000)/e 140011ζζη⎪⎭⎫⎝⎛+=h l h (可知,偏心距增大系数与构件的计算长度,偏心距,截面的有效高度,截面高度,荷载偏心率对截面曲率的影响系数,构件长细比对截面曲率的影响系数。

7-4钢筋混凝土矩形截面偏心受压构件的截面设计和截面复核中,如何判断是大偏心受压还是小偏心受压?答:截面设计时,当003.0h e ≤η时,按小偏心受压构件设计,003.0h e >η时,按大偏心受压构件设计。

截面复核时,当b ξξ≤时,为大偏心受压,b ξξ>时,为小偏心受压.7-5写出矩形截面偏心受压构件非对称配筋的计算流程图和截面复核的计算流程图注意是流程图7-6解: 查表得:.1,280',5.110====γMPa f f MPa f sd sd cd m kN M M kN N N d d •=⨯=•==⨯=•=6.3260.16.326,8.5420.18.54200γγ偏心距mm N M e 6028.5426.3260===,弯矩作用平面内的长细比51060060000>==h l ,故应考虑偏心距增大系数。

设mm a a s s 40'==,则mm a h h s 5600=-=0.1,15606027.22.07.22.01001=>⨯+=+=ζζ取h e 0.1,105.1600600001.015.101.015.1202=>=⨯-=-=ζζ取h l 所以偏心距增大系数07.11110560/602140011)(140011221200=⨯⨯⨯⨯+=+=ζζηh l h e (1)大小偏心受压的初步判断003.064460207.1h mm e >=⨯=η,故可先按照大偏心受压来进行配筋计算。

混凝土结构设计原理-习题+答案-第六章受压构件正截面承截力

混凝土结构设计原理-习题+答案-第六章受压构件正截面承截力

第六章受压构件正截面承截力一、选择题1.轴心受压构件在受力过程中钢筋和砼的应力重分布均(A )A .存在;B. 不存在.2.轴心压力对构件抗剪承载力的影响是(B)A .凡有轴向压力都可提高构件的抗剪承载力,抗剪承载力随着轴向压力的提高而提高;B .轴向压力对构件的抗剪承载力有提高作用,但是轴向压力太大时,构件将发生偏压破坏;C .无影响。

3.大偏心受压构件的破坏特征是:(B )A .靠近纵向力作用一侧的钢筋和砼应力不定,而另一侧受拉钢筋拉屈;B .远离纵向力作用一侧的钢筋首先被拉屈,随后另一侧钢筋压屈、砼亦被压碎;C .远离纵向力作用一侧的钢筋应力不定,而另一侧钢筋压屈,砼亦压碎。

4.钢筋砼柱发生小偏压破坏的条件是:(D)A .偏心距较大,且受拉钢筋配置不多;B .受拉钢筋配置过少;C .偏心距较大,但受压钢筋配置过多;D .偏心距较小,或偏心距较大,但受拉钢筋配置过多。

5.大小偏压破坏的主要区别是:(D )A .偏心距的大小;B .受压一侧砼是否达到极限压应变;C .截面破坏时受压钢筋是否屈服;D .截面破坏时受拉钢筋是否屈服.6.在设计双筋梁、大偏压和大偏拉构件中要求2s x a '≥的条件是为了:(B )A .防止受压钢筋压屈;B .保证受压钢筋在构件破坏时能达到设计屈服强度y f ';C .避免y f '〉 400N/mm 2。

7.对称配筋的矩形截面偏心受压构件(C20,HRB335级钢),若经计算,0.3,0.65i o e h ηξ>=,则应按( A )构件计算。

A .小偏压; B. 大偏压; C 。

界限破坏.8.对b ×h o ,f c ,f y ,y f '均相同的大偏心受压截面,若已知M 2>M 1,N 2>N 1,则在下面四组内力中要求配筋最多的一组内力是(B )A .(M 1,N 2);B 。

(M 2,N 1);C 。

(完整版)混凝土简答题

(完整版)混凝土简答题

简答题一.钢筋和混凝土是如何共同工作的?1.混凝土硬化后,钢筋和混凝土之间产生良好的粘结力,使两者结合为整体,从而保证在荷载作用下,钢筋和混凝土能变形协调,共同工作,不易失稳。

2.钢筋与混凝土两者有相近的膨胀系数,两者之间不会发生相对的温度变形而使粘结力遭到破坏。

3.在钢筋的外部,应按照构造要求设置一定厚度的混凝土保护层,钢筋包裹在混凝土之中,受到混凝土的固定和保护作用,钢筋不容易生锈,发生火灾时,不致使钢筋软化导致结构的整体倒塌。

4、钢筋端部有足够的锚固长度.二.什么是混凝土的徐变?影响混凝土徐变的主要因素有哪些?徐变会对结构造成哪些影响?在不变的应力长期持续作用下,混凝土的变形随时间的增加而徐徐增长的现象称为徐变。

徐变主要与应力大小、内部组成和环境几个因素有关。

所施加的应力越大,徐变越大;水泥用量越多,水灰比越大,则徐变越大;骨料越坚硬,徐变越小;振捣条件好,养护及工作环境湿度大,养护时间长,则徐变小。

徐变会使构件变形增加,使构件的应力发生重分布。

在预应力混凝土结构中徐变会造成预应力损失。

在混凝土超静定结构中,徐变会引起内力重分布。

三.混凝土结构对钢筋的性能有哪些要求?1.要求钢筋强度高,可以节省钢材;2。

要求钢筋的塑性好,使结构在破坏之前有明显的预兆;3.要求钢筋的可焊性好,使钢筋焊接后不产生裂纹及过大的变形;4。

要求钢筋与混凝土的粘结锚固性能好,使钢筋与混凝土能有效地共同工作.四.何为混凝土的保护层厚度?作用是什么?钢筋的混凝土保护层厚度是指从钢筋外边缘到混凝土外边缘的距离作用:钢筋混凝土结构中钢筋能够与混凝土协同工作,是由于他们之间存在着粘结锚固作用,因此受力钢筋应握裹在混凝土当中,对于构建边缘的钢筋,其锚固程度即表现为保护层厚度,耐久性的要求,防止爆裂的出现。

五.钢筋混凝土梁正截面受弯主要有那几种破坏形态?各有什么特点?主要有三种破坏形态:1.适筋破坏形态:当纵向受拉钢筋配筋率适当时,发生适筋破坏。

大小偏心受压的界限

大小偏心受压的界限

大小偏心受压的界限
在结构工程中,大小偏心受压是指混凝土构件在受力时,压力作用点相对于构件截面的几何中心点的位置关系。

这种现象通常出现在承受轴向力和弯矩的混凝土构件中,如柱、梁等。

根据压力作用点相对于构件截面中心的距离,可以将偏心受压分为两类:大偏心受压和小偏心受压。

1.大偏心受压:当压力作用点距离构件截面中心的距离大于截面尺寸的1/4时,称为大偏心受压。

在这种情况下,构件的承载能力主要由混凝土的抗压强度和钢筋的抗拉强度共同决定。

大偏心受压时,混凝土和钢筋的应力均较大,因此设计时需要确保混凝土的压碎指标和钢筋的锚固、屈服和极限强度满足要求。

2.小偏心受压:当压力作用点距离构件截面中心的距离小于或等于截面尺寸的1/4时,称为小偏心受压。

在这种情况下,构件的承载能力主要由混凝土的抗压强度决定,钢筋的应力相对较小。

小偏心受压时,混凝土的应力较均匀,钢筋的应力较小,因此设计时对混凝土的压碎指标要求较高,而对钢筋的锚固、屈服和极限强度的要求相对较低。

在设计混凝土构件时,需要根据偏心受压的大小来选择合适的截面尺寸、混凝土强度等级、钢筋直径和布置方式,以确保构件的承载能力和稳定性。

同时,还需要考虑构件的耐久性、防火性和施工条件等因素。

第6章的习题答案syj-2012混凝土设计原理 邵永健

第6章的习题答案syj-2012混凝土设计原理 邵永健
Nu A
Nb
B
O
C
Mu
上图所示的 Nu-Mu 相关曲线首先可分为小偏心受压(曲线 AB)和大偏心受压(曲线 BC)两个 曲线段,其特点有: (1)Nu-Mu 相关曲线上的任一点表示截面恰好处于承载能力极限状态;Nu-Mu 相关曲线内的任 一点表示截面未达到承载能力极限状态;Nu-Mu 相关曲线外的任一点表示截面承载力不足。 (2)在小偏心受压范围内(曲线 AB) ,此范围内 N>Nb,随着轴向压力 N 的增加,截面的受弯 承载力 Mu 逐渐减小。即在小偏心受压范围内,当弯矩 M 为某一定值时,轴向压力 N 越大越不安全。 (3)在大偏心受压范围内(曲线 BC) ,此范围内 N≤Nb,随着轴向压力 N 的增加,截面的受弯 承载力 Mu 逐渐增大。即在大偏心受压范围内,当弯矩 M 为某一定值时,轴向压力 N 越大越安全。 (4)无论大偏心受压还是小偏心受压,当轴向压力 N 为某一定值时,始终是弯矩 M 越大越不 安全。 (5)轴心受压时(A 点) ,M=0,Nu 达到最大;纯弯时(C 点) ,N=0,Mu 不是最大;界限破 坏(B 点)附近,Mu 达到最大。
(6)对于对称配筋截面,界限破坏时的轴向压力 Nb=ξbα1 fcbh0,可见 Nb 只与材料强度等级和截 面尺寸有关,而与配筋率无关。 Nu-Mu 相关曲线在工程设计中的用途主要有两个方面:首先,通常工程结构受到多种荷载工况的 作用,其构件截面也有多组 N、M 内力组合,此时可根据 Nu-Mu 相关曲线的特点,选取一组或若干 组不利内力进行配筋计算,从而可减少计算工作量。第二,应用 Nu-Mu 相关方程,可以对一些常用 的截面尺寸、混凝土强度等级和钢筋类别的偏心受压构件,事先绘制好不同配筋率下的 Nu-Mu 相关 曲线;设计时可直接查相应的相关曲线得到承载力所需的钢筋面积 As、A' s ,从而使计算大大简化。 6.16 试述轴向压力对偏心受压构件斜截面受剪承载力的影响规律?《规范》GB50010 又是如何 考虑钢筋混凝土偏心受压构件的斜截面受剪承载力计算问题? 答:试验表明,由于轴向压力的作用,使得垂直裂缝的出现推迟,也延缓了斜裂缝的出现和发 展,斜裂缝的倾角变小,混凝土剪压区高度增大,从而使得斜截面受剪承载力有所提高。 当轴压比 N/ (fcbh)较小时,斜截面受剪承载力随着轴压比的增大而增大。当轴压比在 0.3~0.5 时,受剪承载力达到最大。继续增大轴压比,由于剪压区混凝土压应力过大,使得混凝土的受剪强 度降低,反而使受剪承载力随着轴压力的增大而降低。 《规范》GB50010 考虑到轴向压力的有利作用,在受弯构件斜截面受剪承载力计算公式的基础 上增加一项考虑轴向压力有利影响的附加承载力。 即按下式计算偏心受压构件的斜截面受剪承载力:

【混凝土习题集】—6—受压构件承载力计算

【混凝土习题集】—6—受压构件承载力计算

94第六章 受压构件承载力计算一、填空题:1、小偏心受压构件的破坏都是由于 而造成的。

2、大偏心受压破坏属于 ,小偏心破坏属于 。

3、偏心受压构件在纵向弯曲影响下,其破坏特征有两种类型,对长细比较小的短柱属于 破坏,对长细比较大的细长柱,属于 破坏。

4、在偏心受压构件中,用 考虑了纵向弯曲的影响。

5、大小偏心受压的分界限是 。

6、在大偏心设计校核时,当 时,说明sA '不屈服。

7、对于对称配筋的偏心受压构件,在进行截面设计时, 和 作为判别偏心受压类型的唯一依据。

8、偏心受压构件 对抗剪有利。

二、判断题:1、在偏心受力构件中,大偏压比小偏压材料受力更合理。

( )2、在偏心受压构件中,s A '不大于bh %2.0。

( )3、小偏心受压构件偏心距一定很小。

( )4、小偏心受压构件破坏一定是压区混凝土先受压破坏。

( )5、在大小偏心受压的界限状态下,截面相对界限受压区高度b ξ,具有与受弯构件的b ξ完全相同的数值。

( ) 6、在偏心受压破坏时,随偏心距的增加,构件的受压承载力与受弯承载力都减少。

( )7、附加偏心距随偏心距的增加而增加。

( )8、偏心距增大系数,解决了纵向弯曲的影响问题。

( )9、在偏心受压构件截面设计时,对称配筋时,当b ξξ≤时,可准确地判别为大偏心受压。

( )10、在偏心构件中对称配筋主要是为了使受力更合理。

( )11、附加偏心距是考虑了弯矩的作用。

( )12、偏心距不变,纵向压力越大,构件的抗剪承载能力越大。

( )13、偏心距不变,纵向压力越大,构件的抗剪承载能力越小。

( )三、选择题:1、大小偏心受压破坏特征的根本区别在于构件破坏时,( )。

A 受压混凝土是否破坏B 受压钢筋是否屈服C 混凝土是否全截面受压D 远离作用力N 一侧钢筋是否屈服952、在偏心受压构件计算时,当( )时,就可称为短柱,不考虑修正偏心距。

A 30≤h l B 80≤h l C 3080≤h l D 300 hl 3、小偏心受压破坏的特征是( )。

国家开放大学电大本科《水工钢筋混凝土结构》2023-2024期末试题及答案(试卷代号:1174)

国家开放大学电大本科《水工钢筋混凝土结构》2023-2024期末试题及答案(试卷代号:1174)

国家开放大学电大本科《水工钢筋混凝土结构(本)^2023-2024期末试题及答案(试卷代号:1174)一、选择题(在所列备选项中,选1项正确的或最好的作为答案,将选项号填入各题的括号中。

每小题2分,共20分)1.钢筋混凝土结构按制造方式分类,可分为三类,其中()整体性好,刚度大,但施工受季节影响大。

A.整体式B.装配式C.装配整体式2.在钢筋混凝土结构构件中,钢筋混凝土受力后会沿钢筋和混凝土的接触而产生剪应力,通常把这种剪应力称为()oA.摩阻力B.黏结力C.机械咬合力3.失效概率与可靠指标的关系为()。

A.可靠指标愈大,失效概率愈大B.可靠指标愈小,失效概率愈小C.可靠指标愈大,失效概率愈小4.截面尺寸和材料品种确定后,受弯构件正截而抗弯承载力与受拉区纵向受拉钢筋配筋率p之间的关系是()。

A.p愈大,正截而抗弯承载力愈大B.p愈大,正截而抗弯承载力愈小C.p当满足条件p mnWpWpniin时,p愈大,正截面抗弯承载力愈大5.设计双筋梁时,当求A、A'时,补充条件是()。

A.钢筋用量最小B.混凝土用量最小C.钢筋和混凝土用量都最小6 .钢筋混凝土梁受剪承载力计算公式是根据()破坏形态建立的。

A.延性B.适筋C.剪压7.当混凝土双向受力时,它的抗压强度随另一方向压应力的增大而()。

A.增加B.减小C.不变8.钢筋混凝土大偏心受压柱,如果分别作用两组荷载,已知M.〈M2、N. > Nz,若M、N,作用时柱破坏,那么M2、N2作用时()。

A.柱破坏B.柱有可能破坏C.柱不破坏9.大偏心受拉构件的破坏特征与()构件类似。

A.受剪B.大偏心受压.C.小偏心受拉10.部分预应力混凝土是指正常使用荷载下,()。

A.允许存在拉应力或有限裂缝宽度B.预应力钢筋少且应力较低C.仅允许存在拉应力二、判断题(将判断结果填入括孤,以/表示正确,以X表示错误。

每小题2分,共20分)11.结构设计工作不应被设计规范束缚,在经过各方而的可靠性论证后,应积极采用先进的理论和技术。

偏心受压构件

偏心受压构件
求As、A’s
▲分析:三个未知数,As、 A’s和 x,怎么办?
▲措施:令x=bh0
▲求解:利用两个基本公式可得
As
Ne 1 fcbh02b (1
f y (h0 as' )
0.5b )
As
1 fcbh0b
fy
f y As
N
h 式中e = ei + 2 -as
▲验算最小配筋率
As 0.002bh; A's 0.002bh
M Cmns M 2
ns
1
1300(M 2
1 /N
ea
)
/
h0
lc h
2
c
Cm
0.7 0.3 M1 M2
0.7
ea (20, h / 30)max
h为长边长度
c
0.5 fc A N
:截面曲率修正系数,当计算值大于1.0时取1.0
c
其中,当 Cmns 1.0 时取1.0
对剪力墙肢及核心筒墙肢类构件,取1.0
第五章 受压构件
(2) As 、A’s应满足最小配筋率:
As 0.002bh; A's 0.002bh
As + A's ρminbh (3) As 、A’s应满足最大配筋率:
As + A's 0.05bh
1.材料强度及几何参数
截面设计时, h0 = h - as
混凝土等级不超过C25时as‘= as =45mm 混凝土等级超过C25时as‘= as =40mm
l0
eeii
N
yy
N
y f ?sin x
le
ff
N
l0le

建筑结构习题

建筑结构习题

一.填空题1. 偏心受压构件正截面破坏有——和——破坏两种形态。

当纵向压力N 的相对偏心距e 0/h 0较大,且A s 不过多时发生——破坏,也称——。

其特征为——。

2. 小偏心受压破坏特征是受压区混凝土——,压应力较大一侧钢筋——,而另一侧钢筋受拉——或者受压——。

3. 界限破坏指——,此时受压区混凝土相对高度为——。

4. 偏心受压长柱计算中,由于侧向挠曲而引起的附加弯矩是通过_____来加以考虑的。

5. 钢筋混凝土偏心受压构件正截面承载力计算时,其大小偏压破坏的判断条件是:当____为大偏压破坏;当——为小偏压破坏。

6. 钢筋混凝土偏心受压构件在纵向弯曲的影响下,其破坏特征有两种类型:①——;②——。

对于长柱、短柱和细长柱来说,短柱和长柱属于——;细长柱属于——。

7. 柱截面尺寸bxh (b 小于h),计算长度为l 0 。

当按偏心受压计算时,其长细比为——;当按轴心受压计算时,其长细比为——。

8. 由于工程中实际存在着荷载作用位置的不定性、——及施工的偏差等因素,在偏心受压构件的正截面承载力计算中,应计入轴向压力在偏心方向的附加偏心距e a ,其值取为——和——两者中的较大值。

9. 钢筋混凝土大小偏心受拉构件的判断条件是:当轴向拉力作用在A s 合力点及A s ’合力点——时为大偏心受拉构件;当轴向拉力作用在A s 合力点及A s ’合力点——时为小偏心受拉构件。

10. 沿截面两侧均匀配置有纵筋的偏心受压构件其计算特点是要考虑——作用,其他与一般配筋的偏心受压构件相同。

11. 偏心距增大系数2012011()1400i le hh ηξξ=+式中:e i 为______;l 0/h 为_____;ξ1为 ______。

12. 受压构件的配筋率并未在公式的适用条件中作出限制,但其用钢量A s +A s ′最小为______,从经济角度而言一般不超过_____。

13. 根据偏心力作用的位置,将偏心受拉构件分为两类。

混凝土上册课后思考题答案

混凝土上册课后思考题答案

1.1钢筋混凝土梁破坏时都有哪些特点?钢筋和混凝土是如何共同工作的?钢筋混凝土梁破坏时的特点是:受拉钢筋屈服,受压区混凝土被压碎,破坏前变形较大,有明显预兆,属于延性破坏类型。

在钢筋混凝土结构中,利用混凝土的抗压能力较强而抗拉能力很弱,钢筋的抗拉能力很强的特点,用混凝土主要承受梁中和轴以上受压区的压力,钢筋主要承受中和轴以下受拉区的拉力,即使受拉区的混凝土开裂后梁还能继续承受相当大的荷载,直到受拉钢筋达到屈服强度以后,荷载再略有增加,受压区混凝土被压碎,梁才破坏。

由于混凝土硬化后钢筋与混凝土之间产生了良好的粘结力,且钢筋与混凝土两种材料的温度线膨胀系数十分接近,当温度变化时,不致产生较大的温度应力而破坏二者之间的粘结,从而保证了钢筋和混凝土的协同工作。

1.2结构由哪些功能要求?简述承载能力极限状态正常使用极限状态的概念?建筑结构应该满足安全性、适用性和耐久性的功能要求。

承载能力极限状态,即结构或构件达到最大承载能力或者达到不适于继续承载的变形状态。

正常使用极限状态,即结构或构件达到正常使用或耐久性能中某项规定限值的状态。

2.1混凝土的强度等级是根据什么确定的?混凝土的强度等级是根据立方体抗压强度标准值确定的。

我国新《规范》规定的混凝土强度等级有C15、C20、C25、C30、C35、C40、C45、C50、C55、C60、C65、C70、C75和C80,共14个等级。

2.2根据约束原理如何加固该柱?根据约束原理,要提高混凝土的抗压强度,就要对混凝土的横向变形加以约束,从而限制混凝土内部微裂缝的发展。

因此,工程上通常采用沿方形钢筋混凝土短柱高度方向环向设置密排矩形箍筋的方法来约束混凝土,然后沿柱四周支模板,浇筑混凝土保护层,以此改善钢筋混凝土短柱的受力性能,达到提高混凝土的抗压强度和延性的目的。

2.3混凝土的徐变?影响?因素?如何减小?结构或材料承受的荷载或应力不变,而应变或变形随时间增长的现象称为徐变。

对称配筋矩形截面偏心受压构件大小偏心受压的界限

对称配筋矩形截面偏心受压构件大小偏心受压的界限

对称配筋矩形截面偏心受压构件大小偏心受压的界限
随着建筑结构设计的不断发展,对称配筋矩形截面偏心受压构件在工程实践中得到广泛应用。

然而,在设计过程中,我们需要关注偏心受压构件大小偏心受压的界限问题。

本文旨在探讨该问题,并提供一些相关的建议。

首先,我们需要明确什么是偏心受压构件。

偏心受压构件是指受压构件在其截面上由于作用力的偏心而引起的弯曲。

而大小偏心受压是指构件截面上作用力的偏心距超过了构件宽度的一半。

对于这种情况,我们需要关注其极限承载力和变形性能。

在设计过程中,我们应该遵循以下原则。

首先,构件的截面应具有足够的刚度,以保证其抵抗弯曲的能力。

其次,要考虑构件的抗剪承载能力,以确保不会出现剪力破坏。

此外,还要保证构件的延性,以防止脆性破坏。

对于偏心受压构件大小偏心受压的界限,一般可以通过计算确定。

在计算过程中,我们需要考虑构件的截面性质、材料特性、偏心距等因素。

通过适当的截面配筋和调整偏心距,可以使构件在偏心受压作用下达到较好的承载能力和延性。

此外,还需要注意的是,在实际工程中,我们应该遵循相关的设计规范和标准,以确保设计的安全性和可靠性。

同时,还要进行合理的施工措施和质量控制,以保证构件的实际性能与设计要求相一致。

总之,对称配筋矩形截面偏心受压构件的大小偏心受压界限是设计过程中需要关注的重要问题。

通过合理的设计和施工措施,我们可以确保构件具有足够的承载能力和良好的变形性能。

同时,我们也需要遵循相关的设计规范和标准,以确保工程的安全性和可靠性。

成人教育 《钢筋混凝土结构》期末考试复习题及参考答案

成人教育 《钢筋混凝土结构》期末考试复习题及参考答案

钢筋混凝土结构练习题A一、填空题1、1结构的功能要求有安全性、适用性和 。

2、结构的目标可靠指标【β 】与结构的 和 有关。

3、保证弯起钢筋弯起点离充分利用点之间的距离≥0.5h 0,目的是 。

4、钢筋混凝土弯、剪、扭构件,剪力的增加将使构件的抗扭承载力 ;扭矩的增加将使构件的抗剪承载力 。

混凝土受扭构件的抗扭纵筋与箍筋的配筋强度比ζ应在 范围内。

5、T 形截面弯、剪、扭构件的弯矩由 承受,剪力由 承受,扭矩由 承受。

6. 结构构件正常使用极限状态的要求主要是指在各种作用下 和 不超过规定的限值。

二.简答题1.试解释受弯构件最大裂缝宽度计算公式)08.09.1(1.2max te eq s sk d c E W ρσψ+=中ψ和sk σ的意义。

2.为什么T 形截面受弯构件翼缘的宽度应在计算中有所限制?3.钢筋混凝土及预应力钢筋混凝土结构中所用的钢筋可分为哪两类?分别绘制它们的应力-应变曲线,并标明它们各自的强度指标。

4.受弯构件计算时,受压区应力图形用矩形代替曲线的原则是什么?5.影响混凝土徐变的因素有哪些?三.计算题1.已知矩形截面梁b ×h=250×500mm ,s a =35mm ,由荷载设计值产生的弯矩M=200kNm 。

混凝土强度等级C30,钢筋选用HRB400级,求受拉钢筋面积s A 。

,/3.14,0.121mm N f c ==α2min 360/,0.52,0.2%y b f N mm ξρ===2、某矩形截面简支梁,混凝土强度等级2225(11.9 1.27)c t C f N mm f N mm ==、,截面尺寸见下图,纵向钢筋400HRB (2360y f N mm =),箍筋采用235HPB 钢筋(2210yf N mm=),试求该梁所承受的线荷载设计值(包括自重)。

(注:纵向钢筋采用单排,35,0.520s ba mmξ==,应考虑受弯和受剪承载力)钢筋混凝土结构练习题A 答案一. 填空题1、结构的功能要求有安全性、适用性和 耐久性。

混凝土课后思考题

混凝土课后思考题

5.1 轴心受压普通箍筋短柱的破坏形态是随着荷载的增加,柱中开始出现微细裂缝,在临近破坏荷载时,柱四周出现明显的纵向裂缝,箍筋间的纵筋发生压屈,向外凸出,混凝土被压碎,柱子即告破坏。

而长柱破坏时,首先在凹侧出现纵向裂缝,随后混凝土被压碎,纵筋被压屈向外凸出;凸侧混凝土出现垂直于纵轴方向的横向裂缝,侧向挠度急剧增大,柱子破坏。

稳定系数来表示长柱承载力的降低程度,即ϕ=s l N N u u /,l N u 和s N u 分别为长柱和短柱的承载力破坏。

5.2 轴心受压普通箍筋柱的正截面受压承载力计算公式为:)(9.0's 'y c u A f A f N +=ϕ轴心受压螺旋箍筋柱的正截面受压承载力计算公式为:)2(9.0's 'y sso y cor c u A f A f A f N ++=α5.3 纵筋 柱中直径不宜小于12mm ;全部纵向钢筋的配筋率不宜大于5%;全部纵向钢筋配筋率不应小于最凶啊配筋百分率,且截面一侧纵向钢筋配筋率不应小于0.2% 箍筋 为了能箍住纵筋,防止纵筋圧曲,柱及其他受压构件中的周边箍筋应做成封闭式;其间距在绑扎骨架中不应大于15d (纵筋最小直径)且不应大于400mm ,也不大于构件横截面的短柱尺寸,箍筋直径不应小于d/4(纵筋最大直径),且不应小于6mm5.4 偏心受压短柱破坏形态:混凝土先被压碎,远侧钢筋可能受拉也可能受压,但都未达到受拉屈服,属于脆性破坏 偏心受压构件按受力情况可分为单向偏心受压构件和双向偏心受压构件;按破坏形态可分为大偏心受压构件和小偏心受压构件;按长细比可分为短柱、长柱和细长柱。

5.5偏心受压长柱的正截面受压破坏有两种形态,当柱长细比很大时,构件的破坏不是由于材料引起的,而是由于构件纵向弯曲失去平衡引起的,称为“失稳破坏”,它不同于短柱所发生的“材料破坏”;当柱长细比在一定范围内时,虽然在承受偏心受压荷载后,偏心距由e i 增加到e i +f ,使柱的承载能力比同样截面的短柱减小,但就其破坏本质来讲,与短柱破坏相同,均属于“材料破坏”,即为截面材料强度耗尽的破坏。

第五章受压构件的截面承载力(小偏压三种情况说明)

第五章受压构件的截面承载力(小偏压三种情况说明)
ei N e¢
h ¢ ¢ N u e 1 f c bh0 (h0 ) f y¢ As (h0 a¢ s) 2
e¢ h a¢ s (e0 ea ) 2
f ¢yAs
a1f cbx h0 – a¢ s h¢ 0
ssA¢s
a¢ s
as
大偏心受压不对称配筋
不对称配筋
小偏心受压不对称配筋 实际工程中,受压构件常承受变号弯矩作用,所以采用对称配筋
对称配筋不会在施工中产生差错,为方便施工通常采用对称配筋
大偏心受压对称配筋 对称配筋 小偏心受压对称配筋
5.6 非对称配筋截面的承载力计算
大小偏心分界限
当 < b 属于大偏心破坏形态 > b 属于小偏心破坏形态
e0b
Nb
界限破坏时: =b,由平衡条件得 f y As 1 fcbh0b
界限破坏
当受拉钢筋屈服的同时,受压边缘混凝土应变 达到极限压应变。
大小偏心受压的分界:
As h0
A¢s
x h0
xb b h0
s y
g h 0.002
当 < b ––– 大偏心受压 ab
b c d e f
x0
a¢¢ a¢ a xcb
= b ––– 界限破坏状态 ad
cu
(1)偏心距小,构件全截面受压,靠近纵向力一侧压应力 大,最后该区混凝土被压碎,同时压筋达到屈服强度,另一 侧钢筋受压,但未屈服。 (2)偏心距小 ,截面大部分受压,小部分受拉,破坏时压区 混凝土压碎,受压钢筋屈服,另一侧钢筋受拉,但由于离中 和轴近,未屈服。 (3)偏心距大,但受拉钢筋配置较多。由于受拉钢筋配置较多, 钢筋应力小,破坏时达不到屈服强度,破坏是由于受压区混 凝土压碎而引起,类似超筋梁。 特征:破坏是由于混凝土被压碎而引起的,破坏时靠近纵向力 一侧钢筋达到屈服强度,另一侧钢筋可能受拉也可能受压, 但都未屈服。

偏压计算基本思路

偏压计算基本思路

受拉破坏 :
受压破坏 :
破坏时靠近纵向力作用一侧边缘混凝土应变达到 极限压应变而破坏。受压钢筋达到抗压屈服强度, 而远离纵向力一侧的钢筋可能受拉也可能受压,
但不能达到抗拉屈服强度 反向破坏 :当相对偏心距很小时,会发生远离纵向力作用一 侧混凝土首先被压坏的现象,即“反向破坏” .破 坏时受拉钢筋达到抗压屈服强度。矩形截面非对 fc A N 称配筋小偏心受压构件,当 时,应计算反 向破坏承载力。
, f y f y As As
1、大小偏心的判别
x N , x b h0 为大偏心受压, x b h0 为小偏心受压。 1 f c b
2、大偏压设计
x Ne 1 f c bx( h0 ) 2 As As f y ( h0 a )
x
如果 <
As
2a /
N (ei h / 2 a / ) f y ( h0 a / )
As/
As / bh
/ bh =
min

ft / f y
适用条件:
,且不小于 0.45
,并不小于 min 。
3. 小偏心受压正截面承载力设计

N b 1 f c bh0
2 Ne 0.43 1 f c bh0 1 f c bh0 ( 1 b )( h0 a )

ft / f y
As/ / bh
in m
,且不小于 0.45



3 、 小偏心受压正截面承载力设计
cy 2 1 b
( 0)若 b 按照大偏心
( 1)若 b cy 2 1 b
Ne 1 f c bh0 (1 / 2) As f y ( h0 a )

模块5钢筋混凝土纵向受力构件计算能力训练习题答案

模块5钢筋混凝土纵向受力构件计算能力训练习题答案

模块五 钢筋混凝土纵向受力构件计算能力训练习题答案 一、简答题1试说明轴心受压普通箍筋柱和螺旋箍筋柱的区别?答:与轴心受压普通箍筋柱相比,混凝土的受压破坏可认为是由于横向变形而发生的破坏,螺旋箍筋可以约束混凝土的横向变形,因而可以间接提高混凝土的纵向抗压强度。

试验研究表明,当混凝土所受的 压应力较低时,螺旋箍筋的受力并不明显;当混凝土的压应力增至相当大后,(纵向钢筋受压屈服),混凝土中沿受力方向的微裂缝开始迅速发展,使混凝土的横向变形明显增大并对箍筋形成径向压力,这时箍筋才对混凝土施加被动的径向约束压力,当构件的压应变超过无约束混凝土的极限应变后,箍筋以外的表层混凝土将逐步脱落,箍筋以内的混凝土 (称核芯混凝土)在箍筋的约束下处于三向受压应状态,可以进一步承受压力直至螺旋箍筋受拉屈服,其抗压极限强度和极限压应变随箍筋约束力的增大(螺旋减小,箍筋直径增 大)而增大。

2轴心受压短柱、长柱的破坏特征各是什么?为什么轴心受压长柱的受压承载力低于短柱?承载力计算时如何考虑纵向弯曲的影响?答:钢筋混凝土轴心受压短柱,当荷载较小时,混凝土处于弹性工作阶段,随着荷载的增大,混凝土塑性变形发展,钢筋压应力'sσ和混凝土压应力σc 之比值将发生变化。

's σ增加较快而σc 增长缓慢。

当荷载持续一段时间后,由于收缩和徐变的影响,随时间的增长,'s σ减小,σc 增大。

's σ及σc 的变化率与配筋率ρ′=A s ′/A c 有关,此处为受压钢筋的截面面积,A c 为构件混凝土的截面面积。

配筋率ρ′越大,受压筋'sσ增长就越缓慢,而混凝土的压应力σc 减小得就越快。

试验表明,配 纵筋和箍筋的短柱,在荷载作用下整个截面的应变分布是均匀的,随着荷载的增加,应变也迅速增加。

最后构件的混凝土达到极限应变柱子出现纵向裂缝,保护层剥落。

接着箍筋间的纵向钢筋向外凸出。

钢筋混凝土轴心受压柱,当长细比较大时(l 0/b >8),在未达到所确定的极限荷载以前,经常由于侧挠度的增大,发生纵向弯曲而破坏、钢筋混凝土柱由于各种原因可能存在初始偏心距,受荷以后将引起附加弯矩和弯曲变形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档