分数指数幂公开课教案

合集下载

分数指数幂教学案例二

分数指数幂教学案例二

分数指数幂教学案例二。

一、教学目标
1.学生能够理解分数幂的定义和基本性质。

2.学生能够应用分数幂的知识解决实际问题。

3.学生能够设计并解决与分数幂相关的问题。

二、教学内容
分数幂的概念、定义和基本性质。

三、教学过程及活动设计
1.活动一:引入知识点
通过展示实际问题引入分数幂的概念,例如物理学中所涉及的功率和液体中的密度。

2.活动二:呈现知识点
用课件或黑板呈现分数幂的定义和基本性质,包括“a的m/n次方根等于a的m次方的n次方根”。

3.活动三:示范应用
通过实际的例子,呈现分数幂的应用方法,例如计算火箭的推力和水平抛射的距离。

4.活动四:小组合作
让学生分成几个小组,设计相关问题并解决这些问题。

例如,一组学生可以设计一道问题:“如果一个物体的密度为1.5克/立方厘米,物体的质量是多少?”其他学生可以使用分数幂的知识点来解决这个问题。

5.活动五:辅助工具
在教学过程中,可以使用一些辅助工具来帮助学生更好地理解分数幂的知识点,例如计算器和图形化的展示方式。

四、教学效果及评价
通过这些活动,学生能够更好地理解分数幂的定义和应用方法,同时也能够设计和解决相关问题。

此外,这种图形化和实例化的教学方法有利于帮助学生更好地记忆和理解知识点。

五、教学总结
分数幂是数学中比较复杂的一种知识点,初学者很难理解其基本概念和应用。

本教学案例以图形化、实例化的方式来帮助初学者更好
地掌握分数幂的知识点。

通过本教学案例,学生能够更好地理解分数幂的定义和应用方法,同时也能够设计和解决相关问题。

高中数学《分数指数幂》精品公开课教案

高中数学《分数指数幂》精品公开课教案

分数指数幂(教师叙述:同学们,这一节课我们来学习分数指数幂.这一节课的主要活动还是大家先自学,自己归纳出结论,老师再提示,希望同学们能集中精力,集中注意力,认真学习) (教师叙述:我们知道,有理数分为整数和分数,我们在初中的时候学习过整数指数幂,也学习了它的有关性质,这一节课我们来学习分数指数幂,来研究它的一些性质.我们这一节课的目的就是把指数幂从整数指数幂推广到有理数指数幂) 一、【学习目标】(约2分钟)(教师注意:这一节课还是主要是学生自我的讨论,最后自己总结归纳出结论,老师重要的是引导,而不是讲解)(自学引导:这一节课关键是理解、认知分数指数幂含义,做好预习是关键) 1、初步理解认知分数指数幂的含义;2、会利用分数指数幂的基本知识解决简单的计算推理问题;3、渗透从特殊到一般的数学归纳思想.【教学效果】:教学目标的出示,有利于学生明确任务,认真学习. 二、【自学内容和要求及自学过程】(约25分钟)(自学引导:通过整数指数幂逐步归纳出分数指数幂的运算性质)(教师注意:下面的学习过程是通过整数指数幂逐步的归纳出分数指数幂的过程,如果把握的好的话,那么整个课程将是行云流水一般的顺畅,要是把握不好就只能流于形式,这关键是老师的一个定力问题)阅读教材第50—51页内容,回答下列问题(约15分钟) <1>整数指数幂的运算性质是什么? <2>观察以下式子,并总结出规律:(a >0) ①510a =552)(a =a 2=a510;②8a =24)(a =a 4=a 28;③412a=443)(a =a 3=a412;④210a=225)(a =a 5=a210.<3>利用<2>的规律,你能表示下列式子吗?435,357,57a ,n m x (x>0,m,n ∈N *,且n>1).<4>你能用方根的意义来解释(3)的式子吗?<5>你能推广到一般的情形吗? 结论:<1>整数指数幂的运算性质:a n=a ·a ·a ·…·a,a 0=1(a ≠0);00无意义;a -n=n a1(a ≠0);a m ·a n =a m+n ;(a m )n =a mn;(a n )m=a mn;(ab)n=a n b n;<2>①a 2是a 10的5次方根;②a 4是a 8的2次方根;③a 3是a 12的4次方根;④a 5是a 10的2次方根. 实质上①510a=a510,②8a =a 28,③412a=a412,④210a=a210结果的a 的指数是2,4,3,5分别写成了510,28,412,510,形式上变了,本质没变. 根据4个式子的最后结果可以总结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式(分数指数幂形式);<3>利用<2>的规律,435=543,357=735,57a =a 57,n mx =x nm<4>53的四次方根是543,75的三次方根是735,a 7的五次方根是a 57,x m的n 次方根是x nm ,结果表明方根的结果和分数指数幂是相通的.<5>如果a>0,那么a m的n 次方根可表示为na m=a n m ,即a nm =n a m (a>0,m,n ∈N *,n>1).【综上所述,我们得到正数的正分数指数幂的意义】规定:正数的正分数指数幂的意义是a mn =n a m (a>0,m,n ∈N *,n>1).思考:<1>类比正数的正分数指数幂,正数的负分数指数幂的意义是什么?零的分数指数幂的意义是什么?<2>指数的概念从整数指数推广到了有理数指数后,有理数指数幂的运算性质是什么?结论:<1>正数的负分数指数幂的意义是 amn =mn a1=nma 1(a>0,m,n ∈N *,n>1);零的分数指数幂的意义是:零的正分数次幂等于零,零的负分数指数幂没有意义.<2>有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质:①a r ·a s =a r+s (a>0,r,s ∈Q ),②(a r )s =a rs(a>0,r,s ∈Q ),③(a ·b)r=a r b r(a>0,b>0,r ∈Q ).(教师注意:这一部分学生可能会问到为什么要规定a>0。

必修一第二章教案2分数指数幂

必修一第二章教案2分数指数幂

课题:分数指数幂
授课时间:
教学目标
知识与技能
理解分数指数幂的概念。

过程与方法
让学生感受由特殊到一般的数学思想方法,通过一般化促进学生在原有的基础上的自足构建,从而增强学生对数学本质的认识。

情感,态度与价值观
让学生感受探究未知世界的乐趣,从而培养学生对数学的热爱情感。

重点难点
重点:利用正分数有理指数幂的运算性质,计算、化简有理数指数幂的算式。

难点:正分数有理指数幂的运算性质。

教法学法:探讨研究
教学用具:多媒体。

分数指数幂市公开课获奖教案省名师优质课赛课一等奖教案

分数指数幂市公开课获奖教案省名师优质课赛课一等奖教案

分数、指数和幂是数学中非常重要的概念。

掌握这些概念对于学生在数学学习中是至关重要的。

本教案将介绍如何教授分数、指数和幂的概念以及相关的计算方法。

一、教学目标通过本节课的教学,学生应能够:1. 了解分数、指数和幂的概念;2. 掌握分数的四则运算规则;3. 掌握指数和幂的基本性质和计算方法;4. 能够应用所学知识解决实际问题。

二、教学准备1. 教材:《数学学习》第六册;2. 教具:课件、黑板、粉笔。

三、教学过程1. 导入(5分钟)老师简单介绍什么是分数、指数和幂的概念,以及它们在生活中的应用,激发学生对本节课的兴趣。

2. 分数(20分钟)(1)概念讲解:老师通过示例展示分数的定义和表示方法,并解释分子和分母的含义。

帮助学生理解分数的意义和基本性质。

(2)基本运算:接下来,老师介绍分数的加减乘除规则,并通过具体的例子进行讲解。

在讲解过程中,鼓励学生积极回答问题,加深对分数运算规则的理解。

3. 指数与幂(30分钟)(1)概念讲解:老师通过例子,引入指数和幂的定义和概念,帮助学生理解指数和幂的含义和基本性质。

(2)指数运算:老师重点讲解指数运算的基本规则和性质,包括指数相同、指数相加、指数相减的计算方法,并通过实例进行讲解和练习。

(3)幂运算:老师介绍幂运算的基本规则和性质,包括幂的乘方法则和幂的倒数法则,并通过例题和练习加深学生对幂运算的理解。

4. 实际应用(20分钟)老师提供一些与分数、指数和幂相关的实际问题,并指导学生如何应用所学知识解决这些问题。

通过解决实际问题,加深学生对所学知识的理解和掌握。

5. 总结(5分钟)老师对本节课的内容进行总结,并强调学生在日常学习中要多加练习,将所学知识应用到实际生活中。

四、作业布置布置相关的习题作为课后作业,巩固学生对分数、指数和幂的掌握程度。

以上是本节课的教案,通过有序的教学过程,学生应能够掌握分数、指数和幂的概念、运算规则以及应用方法。

希望本节课能够帮助学生在数学学习中取得更好的成绩。

精品获奖公开课教案 3 1分数指数幂(2)教案 苏教版必修1

精品获奖公开课教案 3 1分数指数幂(2)教案 苏教版必修1

3.1.1 分数指数幂(2)教学目标:1. 理解正数的分数指数幂的含义,了解正数的实数指数幂的意义;2. 掌握有理数指数幂的运算性质,会进行根式与分数指数幂的相互转化,灵活运用乘法公式幂的运算法则进行有理数指数幂的运算和化简.教学重点:分数指数幂的含义及有理数指数幂的运算和化简.教学难点:分数指数幂含义的理解;有理数指数幂的运算和化简.教学过程:一、情景设置1.复习回顾:说出下列各式的意义,并说出其结果(1= = (2= =(3)4=5= (4==2=25=24推广到一般情况有:(1)当m 22m =;(2)当m 为n 2m n=.表示成2s的形式,s 的最合适的数值是多少呢? 二、数学建构1.正数的正分数指数幂的意义:m na = ( ) 2.正数的负分数指数幂的意义: mn a -= ( )3.有理数指数幂的运算法则:t s a a ∙= , ()ts a = ,()tab =三、数学应用 (一)例题:1.求值:(1)12100 ; (2)238 ;(3)329-(4)()3481-2.用分数指数幂的形式表示下列各式(式中a >0)(1)2a (2)3a ;(3(4小结:有理数指数幂的运算性质.34.化简:(1(2)()222222223333x y x y x y xyxy--------+--≠+-.5.已知817,,2771a b =-=133327a a a b- (二)练习:化简下列各式: 1;2.()11122x x x x x --⎛⎫++- ⎪⎝⎭;3(a >0,b >0) 4.当18t =时,求131211333311111t t t t t t t t +--+-+++-的值 四、小结:1.分数指数幂的意义; 2.有理数指数幂的运算性质;3.整式运算律及乘法公式在分数指数幂运算中仍适用;4.指数概念从整数指数幂推广到有理数指数幂,同样可以推广到实数指数幂. 五、作业:课本P63习题3.1(1)2,4,5.2.2.1 圆的方程(1)教学目标:1.理解建系解决轨迹方程的求法;2.能根据已知条件求出圆的标准方程.教材分析及教材内容的定位:培养学生用坐标法研究几何问题的能力,增强学生用代数的方法解决几何问题的意识.圆的方程研究是基础,为后续研究位置关系作下铺垫.在高考考点要求中是C 级要求,是必考内容,也是高考当中的热点和重点,需要掌握基础题型,并有很好的计算能力,才能解决好本节问题,综合体现了新课标下高考的要求,是非常重要的一节内容.教学重点:根据已知条件求出圆的标准方程.教学难点:运用几何法和待定系数法求圆的标准方程.教学方法:3.讨论归纳:总结出圆的标准方程(222()()x a y b r -+-=),并推广到一 般性的轨迹求法(建系,设点,列方程,化简).三、建构数学1.引导学生回顾知识,对于垂径定理要突出介绍,对以后的解题有很大帮 助,为以后作铺垫;2.推导圆的方程并总结步骤,在推导中明确指出解析法在解决几何问题中的作用,充分体现平面解析几何的主旨,让学生形成一种意识,几何问题可以用计算来解决,而有些代数问题,又可以用图形来直观体现,让学生深刻体会数形结合思想的重要性;3.运用圆的方程解决例题,例题主要是给出相关条件求圆的标准方程,在 解决这类问题时有两种思路:(1)几何法,利用平面几何知识来确定圆心和半径;(2)待定系数法,设圆的标准方程,通过已知建立方程组,解方程组. 四、数学运用 1.例题.例1 求圆心是C (2,-3),且经过坐标原点和圆的标准方程.例2 已知两点A (6,9)和B (6,3),求以AB 为直径的圆的标准方程,并且 判断点M (9,6),N (3,3),Q (5,3)是在圆上,在圆内,还是在圆外?例3 已知隧道的截面是半径为4m 的半圆,车辆只能在道路中心线一侧行 驶,一辆宽为2. 7m ,高为3m 的货车能不能驶入这个隧道?2.练习.求满足下列条件的圆的标准..方程: (1)经过点(0,4),(4,6),且圆心在直线x -2y -2=0上; (2)与两坐标轴都相切,且圆心在直线2x -3y +5=0上;。

《分数指数幂》教学设计

《分数指数幂》教学设计

教学设计:《分数指数幂》教学目标〖知识与技能〗(1) 理解分数指数幂的概念,掌握有理数指数幂的运算性质,并能运用性质进行计算和化简。

(2) 会对根式、分数指数幂进行互化。

(3) 了解无理指数幂的概念 〖过程与方法〗通过对实际问题的探究过程,感知应用数学解决问题的方法,理解分类讨论思想、化归与转化思想在数学中的应用。

〖情感、态度与价值观〗通过对数学实例的探究,感受现实生活对数学的需求,体验数学知识与现实的密切联系。

教学重难点根式、分数指数幂的概念及其性质。

教学情景设计1、复习讨论(1)根式的相关概念(2)整数指数幂:a a a a n⨯⨯⨯= 运算性质:n n n mn n m nm nmb a ab a a a a a ===⋅+)(,)(,)1,,,0(*>∈>n N n m a 。

2、问题情境设疑问题1、当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”,根据此规律,人们获得了生物体内碳14含量P 与死亡年数t 之间的关系5730)21(tP =,考古学家根据这个式子可以知道,生物死亡t 年后,体内碳14含量P 的值。

例如:当生物死亡了5730,2×5730,3×5730,……年后,它体内碳14的含量P 分别为21,2)21(,3)21(,…… 21,2)21(,3)21(,……是正整数指数幂。

当生物死亡了6000年,10000年,100000年后,根据上式,它体内碳14的含量P 分别为57306000)21(,573010000)21(,5730100000)21(。

设疑:以上三个数的含义到底是什么呢? 问题2:如何计算:322⨯? 分析:66236263332222222=⨯=⨯=⨯,然而普通学生要找到该解法并不容易,如何把这种运算简单化呢?能否类似于整数指数幂的运算来解决上题?3、分数指数幂 实例引入:5102552510)(a a a a===,4123443412)(a a a a===问题:1、从以上两个例子你能发现什么结论?当根式的被开方数的指数能被根指数整除时,根式可以写成根指数被开方数的指数a的形式2、4532,,c b a 如何表示? 结论:规定)1,,,0(*>∈>=n N n m a a an m nm问题3、正数的负分数指数幂是:)1,,,0?(*>∈>=-n N n m a a nm分析:)1,,,0(1*00>∈>===--n N n m a a aa a anmnm nm nm如:3434515=-,)0(13232>=-a aa。

人教版高中数学教案-分数指数幂

人教版高中数学教案-分数指数幂

2. 1.1第二課時分數指數冪教案【教學目標】1.通過與初中所學知識進行類比,理解分數指數冪的概念進而學習指數冪的性質.2.掌握分數指數冪和根式的互化,掌握分數指數冪的運算性質培養學生觀察分析、抽象類別比的能力3.能熟練地運用有理數指數冪運算性質進行化簡、求值,培養學生嚴謹的思維和科學正確的計算能力.【教學重難點】教學重點:(1)分數指數冪概念的理解.(2)掌握並運用分數指數冪的運算性質.(3)運用有理數指數冪性質進行化簡求值.教學難點:(1)分數指數冪概念的理解(2)有理數指數冪性質的靈活應用.【教學過程】1、導入新課同學們,我們在初中學習了整數指數冪及其運算性質,那麼整數指數冪是否可以推廣呢?答案是肯定的.這就是本節的主講內容,教師板書本節課題—分數指數冪2、新知探究提出問題(1)整數指數冪的運算性質是什麼?a>(2)觀察以下式子,並總結出規律:01051025525===;a a a a()884242===;()a a a a③1212344434()a a a a ===; ④1010522252()aa a a ===.(3) 利用(2)的規律,你能表示下列式子嗎?435,57a ,n m x *(0,,,x m n N >∈且n>1)(4)你能用方根的意義來解釋(3)的式子嗎?(5)你能推廣到一般情形嗎? 活動:學生回顧初中學習的整數指數冪及運算性質,仔細觀察,特別是每題的開始和最後兩步的指數之間的關係,教師引導學生體會方根的意義,用方根的意義加以解釋,指點啟發學生類比(2)的規律表示,借鑒(2)(3),我們把具體推廣到一般,對寫正確的同學及時表揚,其他同學鼓勵提示.討論結果:形式變了,本質沒變,方根的結果和分數指數冪是相通的.綜上我們得到正數的正分數指數冪的意義,教師板書:規定:正數的正分數指數冪的意義是*(0,,,1)n nm ma a a m n N n =>∈>.提出問題(1) 負整數指數冪的意義是怎麼規定的? (2) 你能得出負分數指數冪的意義嗎?(3) 你認為應該怎樣規定零的分數指數冪的意義? (4) 綜合上述,如何規定分數指數冪的意義?(5) 分數指數冪的意義中,為什麼規定0a >,去掉這個規定會產生什麼樣的後果? (6) 既然指數的概念從整數指數推廣到了有理數指數,那麼整數指數冪的運算性質是否也適用於有理數指數冪呢?活動:學生回顧初中學習的情形,結合自己的學習體會回答,根據零的整數指數冪的意義和負整數指數冪的意義來類比,把正分數指數冪的意義與負分數指數冪的意義融合起來,與整數指數冪的運算性質類比可得有理數指數冪的運算性質,教師在黑板上板書,學生合作交流,以具體的實例說明0a >的必要性,教師及時作出評價.討論結果:有了人為的規定後指數的概念就從整數推廣到了有理數.有理數指數冪的運算性質如下:對任意的有理數r,s,均有下面的運算性質:①(0,,)r s r s a a a a r s Q +•=>∈②)(0,,)(r s rs a a r s Q a =>∈③()(0,0,)r r r a b a b a b r Q •=>>∈3、應用示例例1 求值:21332416(1)8;(2)25;(3)()81--點評:本題主要考察冪值運算,要按規定來解.要轉化為指數運算而不是轉化為根式. 例2 用分數指數冪的形式表示下列各式.33223;;(0)a a a a a a a ••>點評:利用分數指數冪的意義和有理數指數冪的運算性質進行根式運算時,其順序是先把根式化為分數指數冪,再由冪的運算性質來運算.對結果不強求統一用什麼形式但不能不倫不類.變式訓練求值:(1)363333••; (2)346627()125mn4、拓展提升已知11223,a a +=探究下列各式的值的求法.(1)33221221122;(2);(3)a a a a a a a a-----++-點評::對“條件求值”問題,一定要弄清已知與未知的聯繫,然後採取“整體代換”或“求值後代換”兩種方法求值5、課堂小結 (1)分數指數冪的意義就是:正數的正分數指數冪的意義是*(0,,,1)n n m ma a a m n N n =>∈>,正數的負分數指數冪的意義是*1(0,,,1),n mn nmmaa m n N n a a-==>∈>零的正分數次冪等於零,零的負分數指數冪沒有意義. (2) 規定了分數指數冪的意義後,指數的概念就從整數指數推廣到了有理數指數. (3)有理數指數冪的運算性質:①(0,,)r s r s a a a a r s Q +•=>∈②)(0,,)(r s rs a a r s Q a =>∈ ③()(0,0,)r r r a b a b a b r Q •=>>∈ 【板書設計】 一、分數指數冪 二、例題 例1 變式1 例2 變式2【作業佈置】課本習題2.1A 組 2、4.2.1.1-2分數指數冪課前預習學案一. 預習目標 1. 通過自己預習進一步理解分數指數冪的概念 2.能簡單理解分數指數冪的性質及運算二. 預習內容1.正整數指數冪:一個非零實數的零次冪的意義是: . 負整數指數冪的意義是: .2.分數指數冪:正數的正分數指數冪的意義是: .正數的負分數指數冪的意義是: . 0的正分數指數冪的意義是: .0的負分數指數冪的意義是: .3.有理指數冪的運算性質:如果a>0,b>0,r,s∈Q,那麼rsaa ⋅= ;)(a rs= ;)(ab r= .4.根式的運算,可以先把根式化成分數指數冪,然後利用 的運算性質進行運算.三. 提出疑惑通過自己的預習你還有哪些疑惑請寫在下面的橫線上課內探究學案一. 學習目標 1. 理解分數指數冪的概念2.掌握有理數指數冪的運算性質,並能初步運用性質進行化簡或求值學習重點:(1)分數指數冪概念的理解.(2)掌握並運用分數指數冪的運算性質. (3)運用有理數指數冪性質進行化簡求值.學習難點:(1)分數指數冪概念的理解 (2)有理數指數冪性質的靈活應用.二. 學習過程 探究一1.若0a >,且,m n 為整數,則下列各式中正確的是 ( ) A 、mmnna a a ÷= B 、mn m n aa a = C 、()nm m n a a += D 、01n n a a -÷=2.c <0,下列不等式中正確的是( )A c 2B cC 2D 2c cc cc c.≥.>.<.>()()()1212123.若)2143(x --有意義,則x的取值範圍是( )A.x∈R B.x≠0.5 C.x>0.5 D.X<0.5 4.比較a=0.70.7、b=0.70.8、c=0.80.7三個數的大小關係是________. 探究二例1:化簡下列各式:(1)()()()2233111a a a -+-+-;(2))3324()3(5621121231b a baba-÷---例2:求值:(1)已知a xx =+-22(常數)求88xx -+的值;(2) 已知x+y=12,xy=9x,且x<y,求yxy x 21212121++的值例3:已知ax212+=,求aa aaxxx x --++33的值.三. 當堂檢測1.下列各式中正確的是( )A.1)1(0-=- B.1)1(1-=-- C.aa 22313=- D.x x x 235)()(=--2.44等於( ) A 、16aB 、8a C 、4a D 、2a3.下列互化中正確的是( )A.)0(()21≠=--x x x B.)0(3162<=y yyC.)0,((4343)()≠=-y x xy yx D.331x x-=4.若1,0a b ><,且22bba a -+=,則b b a a --的值等於( )A 、6B 、2±C 、2-D 、25.使)23(243x x ---有意義的x的取值範圍是( )A.R B.1≠x 且3≠x C.-3<X<1 D.X<-3或x>1課後練習與提高1.已知a>0,b>0,且b aab=,b=9a,則a等於( )A.43 B.9 C.91D.39 2.2222=+-x x且x>1,則x x 22--的值( )A.2或-2 B.-2 C.6 D.23.=⨯⨯61125.1323 . 4.已知N n +∈則)1](1[812)1(---n n = .5.已知⎪⎪⎭⎫ ⎝⎛-=>-n n a a x a 1121,0,求()nx x 21++的值.。

沪教版数学七年级下册12.4《分数指数幂》教学设计

沪教版数学七年级下册12.4《分数指数幂》教学设计

沪教版数学七年级下册12.4《分数指数幂》教学设计一. 教材分析《分数指数幂》是沪教版数学七年级下册第12.4节的内容,主要介绍了分数指数幂的定义、性质和运算方法。

这一节内容是在学生已经掌握了实数、有理数、无理数等相关知识的基础上进行学习的,是指数幂知识的重要组成部分,也是进一步学习对数等知识的基础。

二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,但对于分数指数幂这一概念可能还比较陌生,需要通过实例和练习来逐步理解和掌握。

同时,学生可能对于指数幂的运算规则还不够熟悉,需要通过大量的练习来巩固。

三. 教学目标1.理解分数指数幂的概念和性质。

2.掌握分数指数幂的运算方法。

3.能够运用分数指数幂解决实际问题。

四. 教学重难点1.分数指数幂的概念和性质。

2.分数指数幂的运算方法。

3.运用分数指数幂解决实际问题。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过提出问题,引导学生思考和探索;通过案例分析和练习,使学生理解和掌握分数指数幂的定义和运算方法;通过小组合作学习,培养学生的团队合作能力和交流沟通能力。

六. 教学准备1.教学PPT。

2.相关案例和练习题。

3.小组合作学习的任务单。

七. 教学过程1.导入(5分钟)通过提出问题,引导学生回顾实数、有理数、无理数等相关知识,为新课的学习做好铺垫。

2.呈现(10分钟)利用PPT呈现分数指数幂的定义、性质和运算方法,通过实例和动画演示,使学生直观地理解和掌握。

3.操练(10分钟)学生独立完成相关的练习题,教师巡回指导,及时发现和纠正学生的错误。

4.巩固(10分钟)学生分组讨论,总结分数指数幂的运算规律,教师点评并总结。

5.拓展(10分钟)学生运用分数指数幂解决实际问题,如计算化学反应的速率常数等,教师引导学生思考和探索。

6.小结(5分钟)教师引导学生总结本节课的主要内容和收获,巩固所学知识。

7.家庭作业(5分钟)布置相关的练习题,要求学生独立完成,巩固所学知识。

高一数学分数指数幂数学教案

高一数学分数指数幂数学教案

高一数学分数指数幂数学教案一、教学目标1.理解分数指数幂的定义。

2.学会运用分数指数幂的性质进行计算。

3.能够运用分数指数幂的知识解决实际问题。

二、教学重难点重点:分数指数幂的定义及性质。

难点:分数指数幂的计算及实际应用。

三、教学过程1.导入新课(1)复习整数指数幂的概念和性质。

(2)引导学生思考:当指数为分数时,幂的运算规律会发生怎样的变化?2.新课讲解(1)分数指数幂的定义引导学生回顾整数指数幂的定义,然后类比得出分数指数幂的定义。

板书:a^(m/n)=(a^m)^(1/n)=(a^(1/n))^m(2)分数指数幂的性质引导学生通过举例验证分数指数幂的性质。

板书:a^(m/n)a^(p/q)=a^((m/n)+(p/q))(a^m)^n=a^(mn)(a^m)^(1/n)=a^(m/n)(a^m)^(p/q)=a^((mp)/(nq))(3)分数指数幂的运算讲解分数指数幂的运算方法,引导学生运用分数指数幂的性质进行计算。

例题:计算(2^3)^(1/2)(2^2)^(3/4)解析:根据分数指数幂的性质,我们可以将原式化简为2^(3/2)2^(3/2)=2^(3+3/2)=2^(9/2)3.练习与巩固(1)课堂练习1.计算(3^4)^(1/2)(3^2)^(3/4)2.计算(5^3)^(2/3)/(5^2)^(1/3)(2)课后作业1.计算(2^5)^(1/2)(2^3)^(1/4)2.计算(7^2)^(3/2)/(7^3)^(1/2)3.已知a>0,求证:(a^(m/n))^(p/q)=a^((mp)/(nq))4.课堂小结5.课后反思教师根据课堂教学情况,反思教学效果,为下节课的教学做好准备。

四、教学反思本节课通过复习整数指数幂的概念和性质,引导学生类比得出分数指数幂的定义和性质。

在教学过程中,注重让学生通过举例验证分数指数幂的性质,培养学生的动手操作能力和思维能力。

在练习环节,让学生独立完成课堂练习和课后作业,巩固所学知识。

分数指数幂运算教案

分数指数幂运算教案

分数指数幂运算教案Teaching plan of fractional exponential power operation编订:JinTai College分数指数幂运算教案前言:本文档根据题材书写内容要求展开,具有实践指导意义,适用于组织或个人。

便于学习和使用,本文档下载后内容可按需编辑修改及打印。

2.1.1.2 分数指数幂的运算一、内容及其解析(一)内容:分数指数幂的运算。

(二)解析:本节课要学的内容有分数指数幂的概念以及运算,理解它关键就是能够利用次方根概念转化到分数指数幂的形式。

学生已经学过了根式概念和运算性质,对于转化到分数指数幂的形式难度不大,本节课的内容分数指数幂就是在此基础上的发展。

由于它还与有理数指数幂有必要的联系,所以在本学科有着比较重要的地位,是学习后面知识的基础,是本学科的一般内容内容。

教学的重点是利用次方根的性质转化成分数指数幂的形式,在利用有理数指数幂的运算性质化简指数幂的算式,所以解决重点的关键是利用分数有理指数幂的运算性质的'运算性质,计算、化简有理数指数幂的算式。

二、目标及其解析(一)教学目标1.理解分数指数幂的概念;2.掌握有理指数幂的运算性质;(二)解析1.理解分数指数幂的概念就是指通过复习已学过的整数指数幂的概念和根式的概念,推导出分数指数幂的概念;2.学会有理指数幂的运算性质,能够化简一般有理指数幂的算式。

三、问题诊断分析在本节课的教学中,学生可能遇到的问题是分数指数幂的运算性质,产生这一问题的原因是:学生对根式化简到分数指数幂的形式熟练程度低,对于整数指数幂的运算性质不够熟练,不能很好的结合从特殊到一般的思想。

要解决这一问题,就要在在练习中加深理解。

四、教学过程设计1、导入新课同学们,我们在初中学习了整数指数幂及其运算性质,那么整数指数幂是否可以推广呢?答案是肯定的.这就是本节的主讲内容,教师板书本节课题分数指数幂2、新知探究提出问题(1)整数指数幂的运算性质是什么?(2)观察以下式子,并总结出规律:① ;② ;③ ;④ .(3)利用(2)的规律,你能表示下列式子吗?,且n1)(4)你能用方根的意义来解释(3)的式子吗?(5)你能推广到一般情形吗?活动:学生回顾初中学习的整数指数幂及运算性质,仔细观察,特别是每题的开始和最后两步的指数之间的关系,教师引导学生体会方根的意义,用方根的意义加以解释,指点启发学生类比(2)的规律表示,借鉴(2)(3),我们把具体推广到一般,对写正确的同学及时表扬,其他同学鼓励提示.讨论结果:形式变了,本质没变,方根的结果和分数指数幂是相通的.综上我们得到正数的正分数指数幂的意义,教师板书:规定:正数的正分数指数幂的意义是 .提出问题(1)负整数指数幂的意义是怎么规定的?(2)你能得出负分数指数幂的意义吗?(3)你认为应该怎样规定零的分数指数幂的意义?(4)综合上述,如何规定分数指数幂的意义?(5)分数指数幂的意义中,为什么规定,去掉这个规定会产生什么样的后果?(6)既然指数的概念从整数指数推广到了有理数指数,那么整数指数幂的运算性质是否也适用于有理数指数幂呢?活动:学生回顾初中学习的情形,结合自己的学习体会回答,根据零的整数指数幂的意义和负整数指数幂的意义来类比,把正分数指数幂的意义与负分数指数幂的意义融合起来,与整数指数幂的运算性质类比可得有理数指数幂的运算性质,教师在黑板上板书,学生合作交流,以具体的实例说明的必要性,教师及时作出评价.讨论结果:有了人为的规定后指数的概念就从整数推广到了有理数.有理数指数幂的运算性质如下:对任意的有理数r,s,均有下面的运算性质:① ② ③变式训练求值:(1) ; (2)拓展提升五.小结(1)分数指数幂的意义就是:正数的正分数指数幂的意义是,正数的负分数指数幂的意义是零的正分数次幂等于零,零的负分数指数幂没有意义.(2)规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数.(3)有理数指数幂的运算性质:① ②【总结】20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文高一数学教案:分数指数幂的运算能给您带来帮助!-------- Designed By JinTai College ---------。

12.7分数指数幂教案.doc

12.7分数指数幂教案.doc
3.例题分析
例1把下列方根化为幂的形式:
(1) ; (2) ;
(3) ; (4)
每一题问:如何转化?谁做分数指数幂中指数的分母?
师:刚才将方根转化为分数指数幂,反过来分数指数幂可以转化为方根进行开方运算.
例2计算:
(1) ;(2) ;(3) ;(4) .
解:(1) ;
(2) ;
(3) ;
(4) .
小结:可将分数指数幂转化为方根的形式再求值,最后写成分数指数幂的形式.
2.思考:
把 表示为2的 次幂的形式.
引导分析:
(1)解决这个问题之前,先口答:(用幂的形式表示)
(2)这是以前所学的整数指数幂,负整数指数幂可以转化为正整数指数幂.到目前为止2的任何整数指数幂都是有理数,而 是一个无理数,可知 不是整数.因此必须将指数的取值范围扩大,才有可能把 表示为 的形式.
(3)假设 成立,问:在等式成立的前提下,如何消除根号进行转化呢?
通过练习掌握幂向方根形式的转化,体会方根与幂之间相互转化的关系,体现转化的数学思想.
利用分数指数幂的意义求幂的值,帮助学生进一步体会分数指数幂与方根的联系.同时提醒学生,当分数指数幂转化为方根形式时,如果根指数是偶数时,对应的是正的偶次方根;如果根指数是奇数时,则对应的是奇次方根.
熟练识记重用数的平方根和立方根.
2.将方根与指数幂互化.
问题引入,引发学生思考,为新知教学做铺垫.
温故而知新,让学生在已有知识的基础上体会从整数指数幂到分数指数幂,是幂的概念的又一次扩展.
让学生在已有经验的基础上体会:在扩大指数的范围时,原有的幂的运算性质应该保持不变.从过程中体会转化的数学思想.
感受方根与幂的形式的转化过程.
通过观察得出方根与幂的形式的转化,从而得出分数指数幂的意义.

《3.1.1分数指数幂》教案新部编本

《3.1.1分数指数幂》教案新部编本

教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校《3.1.1分数指数幂》教案教学目标:(一)知识与技能目标:理解分数指数幂的概念(二)过程与方法目标:掌握有理指数幂的运算性质(三)情感与态度目标:让学生感受从特殊到一般的数学思想方法(正整数指数幂→正分数指数幂→负分数指数幂→有理数指数幂→无理数指数幂),增强学生对数学本质的认识。 教学重点:利用正分数有理指数幂的运算性质,计算、化简有理数的指指数幂的算式。教学难点:正分数有理指数幂的运算性质的理解教具:多媒体课件、板书教学过程:一.复习前面一节课学习的重要知识点1.n 次方根的定义 记法 n 是奇数n 是偶数2.根式3.运算性质 n 为奇数n 为偶数巩固强化知识点,为本节课的教学奠定知识基础二.回顾正整数指数幂导出探究的问题思考1. 能否这样表示? nan a±==n n nn a a a )(a ==412510)2()1(a a 34432552)()(aa a a ==412510a a ==)0()0(>>a a =32a 132a )0()0(>>b a指出当根式的被开方数能被根指数整除时,根式可以表示为分数指数幂的形式,能否将这个结论推广到正数的正分数指数幂的形式上去?定义 正数的正分数指数幂的意义 正数的负分数指数幂的意义 注意:0的正分数指数幂等于0,0的负分数指数幂没有意义规定了正数的分数指数幂的意义以后,指数的概念就从整数推广到了分数。例1.有理数指数幂的运算性质利用类比的思想方法,将整数指数幂的运算性质类比为有理数指数幂的运算性质,体现了合情推理,便于学生对知识的整体建构。三、例题讲解,巩固重点 利用有理数指数幂的运算性质要求这些式子的值,既熟悉了运算性质,又体现了这些运算性质的计算优势。利用适当的板书讲解这些例题,巩固利用有理指数幂的性质求值的一般步骤。 )1,,,0(>∈>=*n N n m a a a n m n m 且)1,,,0(1>∈>=*-n N n m a a a n mn m 且=⨯==⨯223243)21(2)3()2)(2(22)1(232)43()212(22⨯⨯+),0,0())(3(),,0())(2(),,0()1()(Q r b a b a ab Q s r a a a Q s r a a a a r r r rs s r s r s r ∈>>⋅=∈>=∈>=⋅+43521-32811621258.2--),(),(,求值例33223)3()2()1()03a a a a a a a ⋅⋅⋅>示下列各式(其中用分数指数幂的形式表例27213213a a a a ==⋅=+38322322a a a a ==⋅=+32342131)()(a a a a ==⋅=四.有理数指数幂推广到无理数指数幂,进而推广到整个实数范围五.课堂小结1.正数的正分数指数幂的意义2.正数的负分数指数幂的意义3.运算性质4.作业布置。

分数指数幂公开课教案

分数指数幂公开课教案

分数指数幂公开课教案《分数指数幂》教学设计陈炜明(2013/3/5公开课)一、教学目标:知识与技能:理解分数指数幂的含义,了解分数指数幂的运算性质,掌握根式与分数指数幂的互化。

通过具体实例了解实数指数幂的意义。

过程与方法:回顾整数指数幂的定义过程,学生通过观察,模仿,并进行合作交流,对整数指数幂进行推广,寻求分数指数幂最合理自然的规定方式。

情感、态度与价值观:通过对指数的推广,感受从特殊到一般的思想方法,提高数学的基本运算能力,体会数学的理性精神以及数学的美学意义。

二、教学重点:分数指数幂的意义和运算性质三、教学难点:分数指数幂的概念四、教学过程:发震时刻:2013年02月19日 17:31:16 纬度:39.6°经度:77.2°深度:8 千米震级:3.1参考位置:新疆维吾尔自治区喀什地区伽师县引导学生提出问题:当指数为分数时,应该如何定义?又该如何计算?(此时教师在黑板上画出函数2,xy x Z=∈的图像辅助说明该问题的提出)【温故知新】问题一:ma 表示什么含义(当m 为正整数的时候)?当指数为正整数时候,指数的运算都有哪些运算性质?答:m 个a 相乘。

,,(,0)(),()m n m n m m nn m n mn m m ma a a a a m n a aa a ab a b +-==>≠== (此处板书)在这里,m n 均为正整数。

问题二:若在计算m na -时,遇到m n =时,有无意义?怎样计算?得出什么结果?若m n <呢?答:当扩展到整数指数幂时候,若要求维持原来的运算性质,可以得到01a=(0)a ≠。

同理,可以对负分数指数幂进行规定。

小结:负整指数幂的实质是分式(或分数)形式。

在将正整数指数幂推广到整数指数幂时,保持了原有的运算性质不变。

(对刚刚运算性质的板书修改)。

问题三:为什么对于熟悉的分式还需要用负指数幂来表示呢?答:引入负指数幂可以使我们对许多数学问题书写方便,计算简单。

分数指数幂教案及反思

分数指数幂教案及反思

12.7分数指数幂教学目标:1、理解分数指数幂的意义,能将方根与分数指数幂互化。

2、了解幂指数从正整数到整数到有理数的发展过程,并能用分数指数幂解决简单的计算问题。

3、亲历分数指数幂意义的推导过程,体验数域拓展的一般规律和数学知识的内在逻辑。

教学重点及难点理解分数指数幂的意义,能将方根与指数幂互化. 教学过程设计一、 复习练习(口答)(1)101522=⨯ (2)532=() (3)1π-= (4)2=( (5)6= (6)6= 复习整数指数幂的运算性质: (1)同底数幂的乘除 m n m n a a a += (2)幂的乘方 ()m n mn a a = (3)积的乘方 ()m m m ab a b =二、新课探索思考:?=通过分析引出分数指数幂的意义:(其中m 、n 为整数,1>n ).(0)(0)m nmna a a a -=≥=>上面规定中的nm a 和nm a -叫做分数指数幂,a 是底数.指导学生浏览教材上的概念并做圈划。

2.例题例1 把下列方根化为幂的形式: (1)35; (2)435; (3)3251; (4(5;例2 把下列幂化为方根的形式:(1)137; (2)137-; (3)437; (4)437-;三、巩固练习1、课本P32练习12.7 1、22、计算:(1))()412343810.027---① ② ③(2)()1122112124-⎛⎫⨯- ⎪⎝⎭1123①427 ②(3)1113228116⎛⎫- ⎪⎝⎭回顾思考引例. 四、拓展练习利用分数指数幂计算(结果用方根形式表示)(1÷(2五、课堂小结1、在理解分数指数幂意义的基础上能熟练将方根与指数幂互化;2、体会数学的内在逻辑.五、作业布置教学反思:分数指数幂这节课是在学生在已经学过了整数指数幂和n次方根的基础上,从具体的实例出发,和学生共同亲历分数指数幂的指数从正整数到整数再到有理数的发展过程和推导过程,让学生能体验数域拓展的一般规律和内在逻辑联系,在教学过程中由于从问题出发,采取了分数指数幂和整数指数幂的类比,学生在原有认知的基础上进行了探究,其学习是主动的、积极的,知识的形成也是自然的,同时在学习和探究的过程中,从解决问题到方法使用,让学生体会到从特殊到一般的数学思想,同时也培养了学生缜密的数学逻辑思维能力,引导和帮助学生在这样的数学学习过程中高效、有序地学习数学,让学生真正体会到在问题解决中学习,在交流中学习,使之成为一种学习习惯。

分数指数幂教案

分数指数幂教案

分数指数幂教案教案标题:分数指数幂教案教学目标:1. 理解分数指数幂的概念和性质。

2. 掌握计算分数指数幂的方法。

3. 能够应用分数指数幂解决实际问题。

教学重点:1. 理解分数指数幂的定义和运算规则。

2. 掌握分数指数幂的计算方法。

3. 能够运用分数指数幂解决实际问题。

教学难点:1. 理解分数指数幂的概念和性质。

2. 掌握计算分数指数幂的方法。

教学准备:1. 教材:包含有关分数指数幂的知识点和例题的教材。

2. 教具:黑板、白板、彩色粉笔/白板笔、教案、练习题、实例题。

3. 学具:计算器。

教学过程:Step 1:导入新知1. 引入分数指数幂的概念,通过实例引发学生对分数指数幂的思考。

2. 提问学生:你们对分数指数幂有什么了解?它们与整数指数幂有何异同?Step 2:概念解释与讲解1. 通过示意图和实例,解释分数指数幂的定义和性质。

2. 引导学生理解分数指数幂的运算规则,并进行实例演示。

Step 3:练习与巩固1. 分发练习题,让学生进行个人或小组练习。

2. 指导学生解答练习题,解答过程中注重引导学生运用分数指数幂的计算方法。

Step 4:拓展与应用1. 提供一些实际问题,引导学生运用分数指数幂解决实际问题。

2. 鼓励学生思考并讨论其他应用场景,并进行分享和讨论。

Step 5:归纳总结1. 综合学生的学习情况,对分数指数幂的概念、性质和运算规则进行归纳总结。

2. 强调分数指数幂的重要性和应用价值。

Step 6:作业布置1. 布置相关的作业题目,巩固学生对分数指数幂的掌握程度。

2. 鼓励学生自主学习,通过课外阅读或网络资源进一步了解分数指数幂的应用。

教学延伸:1. 针对学生的学习情况,可以提供更多的练习题和拓展问题,以加深对分数指数幂的理解和应用。

2. 可以组织学生进行小组讨论或展示,分享他们在实际生活中发现的分数指数幂的应用案例。

教学评价:1. 课堂练习:通过学生在课堂上的练习情况,评估他们对分数指数幂的掌握程度。

高中数学人教A版 必修1《 4.1.1 n次方根与分数指数幂》教案 Word

高中数学人教A版 必修1《 4.1.1 n次方根与分数指数幂》教案 Word

4.1.1 n次方根与分数指数幂教学设计1.掌握n次方根及根式的概念,正确运用根式的运算性质进行根式的运算;2.了解分式指数幂的含义,学会根式与分数指数幂之间的相互转化;3.理解有理数指数幂的含义及其运算性质.教学重难点【教学重点】理解n次方根及根式的概念,掌握根式的性质.(重点)【教学难点】能利用根式的性质对根式进行运算.(重点、难点、易错点)课前准备引导学生复习回顾初中相关知识,做好衔接,为新知识的学习奠定基础.二、教学过程:(一)自主预习——探新知:问题导学预习教材P104-P109,并思考以下问题:1.n次方根是怎样定义的?2.根式的定义是什么?它有哪些性质?3.有理数指数幂的含义是什么?怎样理解分数指数幂?4.有理指数幂有哪些运算性质?(二)创设情景,揭示课题(1)以牛顿首次使用任意实数指数引入,激发学生的求知欲望和学习指数概念的积极性.(2)简单复习正整数指数幂的概念和运算,并且思考一下问题:4的平方根是什么?任何一个实数都有平方根吗?一个数的平方根有几个? -27的立方根是什么?任何一个实数都有立方根吗?一个数的立方根有几个?如果x2=a,那么x叫做a的平方根,如果x3=a,那么x叫做a的立方根,类似的,(±2)4=16,我们可以把±2叫做16的4次方根,(2)5=32,2叫做32的5次方根?推广到一般情形,a的n次方根是一个什么概念?给出定义.(3)当n是奇数时,a的n n是偶数时,若a>0,则a的n次方根为若a=0,则a的n次方根为0;若a<0,则a的n次方根不存在.即:负数没有偶次方根, 0的任何次方根都是0.,1)n N n ∈>叫做根式,其中n 叫做根指数,a 叫做被开方数. (4)一起看354分别等于什么?一般地n等于什么?n a =由n 次方根的意义,可得 ,换一下呢?n na 等于什么?当na =; 当n||a =,然后对a 的正负分类考虑,以夏天、冬天穿衣服为例子帮助记忆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《分数指数幂》教学设计
陈炜明(2013/3/5公开课)
一、教学目标:
知识与技能:理解分数指数幂的含义,了解分数指数幂的运算性质,掌握根式与分数指数幂的互化。

通过具体实例了解实数指数幂的意义。

过程与方法:回顾整数指数幂的定义过程,学生通过观察,模仿,并进行合作交流,对整数指数幂进行推广,寻求分数指数幂最合理自然的规定方式。

情感、态度与价值观:通过对指数的推广,感受从特殊到一般的思想方法,提高数学的基本运算能力,体会数学的理性精神以及数学的美学意义。

二、教学重点:分数指数幂的意义和运算性质
三、教学难点:分数指数幂的概念
四、教学过程:
【问题情境】
里氏震级是目前国际通用的地震震级标准。

它是根据离震中一定距离所观测到的地震波幅度和周期,并且考虑从震源到观测点的地震波衰减,经过一定公式,计算出来的震源处地震的大小。

假设第0级地震所释放的能量为1,且在估算能量的时候,里氏震级每增加1级,释放的能量大约增加31.6227倍,则
(1)第3级地震所释放的能量为多少?
31.6227
答:3
(2)第x级地震所释放的能量为多少?
y
答:31.6227x
(3)上一问中的x会出现为分数的情况吗?
教师举例
引导学生提出问题:当指数为分数时,应该如何定义?又该如何计算?
(此时教师在黑板上画出函数2,x y x Z =∈的图像辅助说明该问题的提出)
【温故知新】
问题一:m a 表示什么含义(当m 为正整数的时候)?当指数为正整数时候,指数的运
算都有哪些运算性质?
答:m 个a 相乘。

,
,(,0)(),
()m n m n m
m n n m n mn m m m
a a a a a m n a a
a a a
b a b +-==>≠== (此处板书) 在这里,m n 均为正整数。

问题二:若在计算m n a -时,遇到m n =时,有无意义?怎样计算?得出什么结果?
若m n <呢?
答:当扩展到整数指数幂时候,若要求维持原来的运算性质,可以得到
01a =(0)a ≠。

同理,可以对负分数指数幂进行规定。

小结:负整指数幂的实质是分式(或分数)形式。

在将正整数指数幂推广到整数指数幂时,保持了原有的运算性质不变。

(对刚刚运算性质的板书修改)。

问题三:为什么对于熟悉的分式还需要用负指数幂来表示呢?
答:引入负指数幂可以使我们对许多数学问题书写方便,计算简单。

(可口头举几个简单的例子)
【意义建构】
问题四:类似上面的推广,当把整数指数幂推广到分数指数幂的时候,你想保留什么性质不变?用具体的例子试一试。

1
11112222a a a a a +⨯===
a =
12a =
1
111111333333a
a a a a a ++⨯⨯===
a =
1
3a =一般地,1
_____n a =(形式上的认为)
同理
2
222222333333a a a a
a ++⨯⨯== 2
323()a a =
2
3a = 一般地,______m
n a =(形式上的认为)
【数学理论】
假设指数运算律“()(,)k n kn
a a k n Z =∈”对分数指数幂运算也适用。

令m k n =,*()n N ∈,那么()()m m
n k n n m n n a a a a ===,由n 次方根的定义,就可以把m n a 看成m a 的n
次方根,即m n a
=一般地,我们规定
m
n a =0,,a m n >均为正整数)
仿照负整数指数幂的意义,我们规定
1
m
n m
n a a -=(0,,a m n >均为正整数)
问题五:分数指数幂的意义中,为什么规定0a >,去掉这个规定会产生什么后果? (可先举具体的例子让学生感知)
答:根式与分数指数幂既有联系,又有区别。

分数指数幂的实质是根式。

只要根式有意义,不论a 为何值,都可以写成分数指数幂的形式。

但是要注意的此时指数m n
是一种记法形式,不具有数的性质,不是真正意义的分数,不能参与约分,通分等运算。

当0a >时,对指数
m n
进行约分,通分等运算的结果和把分数指数幂化成根式后进行运算的结果一致。

此时m n 与传统意义上的分数作用效果是相同的。

这时把指数m n 看作普通分数是合理的。

注:绝大部分根式计算,尤其是只有乘除,乘方,开放的根式运算,化为分数指数幂按幂的运算法则去计算要简便的多。

有了分数指数幂的意义以后,指数幂的概念就从整数指数推广到有理数指数,对有理数指数幂,原整数指数幂的运算性质保持不变。

【数学运用】
例1求下列各式的值
(1)
1
2
100(2)
2
3
8(3)
3
2
9-(4)
3
4
1
()
81
-
例2用分数指数幂的形式表示下列各式(0
a>)
(1)a(2
【反思与提升】
1.分数指数幂是根式的另一种写法。

2.熟练掌握有理数指数幂的运算法则,它是化简的基础。

3.含有根式的式子化简,一般要先把根式转化为分数指数幂后再计算。

4.分数指数幂和整数指数幂的运算性质是一致的。

5.继续推广到实数指数幂(P61)。

【练习与作业】
课本P62 2,3,4,5
创新课时训练P35-36 数学之友P29-30。

相关文档
最新文档