梯度散度旋度公式总结
(完整版)梯度、散度、旋度的关系
梯度散度散度(divergence)的概念:在矢量场F中的任一点M处作一个包围该点的任意闭合曲面S,当S 所限定的体积ΔV以任何方式趋近于0时,则比值∮F·d S/ΔV的极限称为矢量场F在点M处的散度,并记作div F由散度的定义可知,div F表示在点M处的单位体积内散发出来的矢量F的通量,所以div F描述了通量源的密度。
div F =▽·F气象学:散度指流体运动时单位体积的改变率。
简单地说,流体在运动中集中的区域为辐合,运动中发散的区域为辐散。
用以表示的量称为散度,值为负时为辐合,此时有利于天气系统的的发展和增强,为正时表示辐散,有利于天气系统的消散。
表示辐合、辐散的物理量为散度。
微积分学→多元微积分→多元函数积分: 设某量场由 A (x,y,z) = P(x,y,z)i + Q(x.y,z)j + R(x,y,z)k 给出,其中 P 、Q 、R 具有一阶连续偏导数,Σ 是场内一有向曲面,n 是 Σ 在点 (x,y,z) 处的单位法向量,则 ∫∫A ·n dS 叫做向量场 A 通过曲面 Σ 向着指定侧的通量,而 δP/δx + δQ/δy + δR/δz 叫做向量场 A 的散度,记作 div A ,即 div A = δP/δx + δQ/δy + δR/δz 。
上述式子中的 δ 为偏微分(partial derivative )符号。
散度(divergence )的运算法则:div (α A + β B ) = α div A+ β div B (α,β为常数)div (u A ) =u div A+ A grad u (u 为数性函数)旋度设有向量场A(x,y,z)=P(x,y,z)i+Q(x,y,z)j+R(x,y,z)k在坐标轴上的投影分别为δR/δy - δQ/δz , δP/δz - δR/δx ,δQ/δx - δP/δy的向量叫做向量场A 的旋度,记作 rot A 或curl A ,即rot A=(δR/δy - δQ/δz )i+(δP/δz - δR/δx )j+(δQ/δx - δP/δy)k式中的 δ 为偏微分(partial derivative )符号。
(梯度,散度,旋度)
P 2 + Q 2 + R2 = C
所以有: 所以有:
PPx + QQ x + RRx = 0,PPy + QQ y + RR y = 0, PPz + QQz + RRz = 0
i ∂ − A × rot ( A) = − ( P,Q, R ) × ∂x P j ∂ ∂y Q k ∂ =− ∂z R i P ∂R ∂Q − ∂y ∂z j Q ∂P ∂R − ∂z ∂x k R ∂Q ∂P − ∂x ∂y
义 斯托克斯公式的物理意 :
向量场 F 沿封闭曲线 Γ 的环流量 , 等于F
的旋度场 rotF通过 Γ 张成的曲面的通量 .
中 常 ; 性质: (1) ∇×(cF) = c ∇× F, 其 c为 数
(2) ∇×(F + F2 ) = ∇× F + ∇× F2; 1 1
( 3) 设ϕ是数量函数 , 则有
例1 设径向量 p = ( x , y , z ), 令p =|| p ||, 求梯度 ∇p.
2 2 2 2 解: Q p = p ⋅ p = x + y + z ,
∴ 2 p∇p = ∇p 2 = ∇ ( x 2 + y 2 + z 2 ) = 2( x , y , z ) = 2 p,
因此, 当 因此, p ≠ 0时,
k ∂ ∂z R
也可写成向量积的形式 : rotF = ∇× F
设 S 为双侧曲面 , Γ 为其边界曲线 , 其中 S 的 侧和 Γ 的方向满足 右手法则 .
设t = (cos α t , cos β t , cos γ t )是曲线 Γ正向上的单
位切向量 , 定义弧长元素向量 :
梯度、散度、旋度表达式推导
r r a • dr ∫
所以
lim
s →0
L
S
i r ∂ = ∇× a = ∂x ax
i r ∂ = ∇×a = ∂x ax
j ∂ ∂y ay
j ∂ ∂y ay
k ∂ ∂z az
k ∂ ∂z az
即
rotn a = lim
s →0
r r a • dr ∫
L
S
4. 曲线坐标系
a. 曲线坐标的引进,柱坐标系球坐标系 曲线坐标的引进, 空间中任一点 M 在直角坐标系中是由 (x, y, z) 三个数唯一决定的。此时矢经 r 的表达式是:
H 1 , H 2 , H 3 称为拉梅系数
4. 曲线坐标系
b .拉梅系数以及弧元素在曲线坐标坐标系中的表达式 拉梅系数以及弧元素在曲线坐标坐标系中的表达式
∂r 考虑到 ∂qi 的大小和方向后,可得下式:
r r r dr = H 1dq1e1 + H 2 dq2 e2 + H 3 dq3e3
这就是弧元素矢量在曲线坐标系中的表达式,它们 在坐标轴上的投影分别是:
L
S
i r ∂ = ∇×a = ∂x ax
j ∂ ∂y ay
k ∂ ∂z az
证明如下: 因为: L
r r ∫ a • dr =
∫ (a dx + a dy + a dz)
x y z L
3.旋度 .
b. 旋度 2) 表示形式 再由线积分转化为面积分可得: 上式=
∫ [(
L
∂a y ∂ax ∂a ∂a ∂az ∂a y − ) nx + ( x − z ) n y + ( − )n y ]dS ∂y ∂z ∂z ∂x ∂x ∂y
梯度、散度和旋度.
梯度、散度和旋度是矢量分析里的重要概念。
之所以是“分析”,因为三者是三种偏导数计算形式。
这里假设读者已经了解了三者的定义。
它们的符号分别记作如下:从符号中可以获得这样的信息:①求梯度是针对一个标量函数,求梯度的结果是得到一个矢量函数。
这里φ称为势函数;②求散度则是针对一个矢量函数,得到的结果是一个标量函数,跟求梯度是反一下的;③求旋度是针对一个矢量函数,得到的还是一个矢量函数。
这三种关系可以从定义式很直观地看出,因此可以求“梯度的散度”、“散度的梯度”、“梯度的旋度”、“旋度的散度”和“旋度的旋度”,只有旋度可以连续作用两次,而一维波动方程具有如下的形式(1)其中a为一实数,于是可以设想,对于一个矢量函数来说,要求得它的波动方程,只有求它的“旋度的旋度”才能得到。
下面先给出梯度、散度和旋度的计算式:(2)(3)(4)旋度公式略显复杂。
这里结合麦克斯韦电磁场理论,来讨论前面几个“X度的X度”。
I.梯度的散度:根据麦克斯韦方程有:而(5)则电势的梯度的散度为这是一个三维空间上的标量函数,常记作(6)称为泊松方程,而算符▽2称为拉普拉斯算符。
事实上因为定义所以有当然,这只是一种记忆方式。
当空间内无电荷分布时,即ρ=0,则称为拉普拉斯方程当我们仅需要考虑一维情况时,比如电荷均匀分布的无限大平行板电容器之间(不包含极板)的电场,我们知道该电场只有一个指向,场强处处相等,于是该电场满足一维拉普拉斯方程,即这就是说如果那边平行板电容器的负极板接地,则板间一点处的电压与该点距负极板的距离呈线性关系。
II.散度的梯度:散度的梯度,从上面的公式中可以看到结果会比较复杂,但是它的物理意义却是很明确的,因为从麦克斯韦方程可以看出空间某点处电场的散度是该点处的电荷密度,那么再求梯度就是空间中电荷密度的梯度。
这就好比说清水中滴入一滴红墨水,起初水面红色浓度最高,杯底浓度最低,这样水面与杯底形成一个浓度梯度,红墨水由水面向杯底扩散,最后均匀。
旋度梯度散度
旋度梯度散度旋度、梯度和散度是向量分析中的三个重要概念,它们在物理学、工程学和应用数学中具有广泛的应用。
本文将就旋度、梯度和散度这三个概念展开讨论,介绍它们的定义、性质以及在实际问题中的应用。
一、旋度的定义和性质旋度是一个向量场的一个重要特征,它描述了向量场的旋转性质。
在三维空间中,给定一个向量场F(x, y, z),其旋度定义为:rot F = (∂Fz/∂y - ∂Fy/∂z, ∂Fx/∂z - ∂Fz/∂x, ∂Fy/∂x - ∂Fx/∂y)其中,Fx、Fy、Fz分别表示向量场F在x、y、z方向上的分量。
旋度的几何意义是:旋度的大小表示向量场的旋转速率,而旋度的方向表示旋转轴的方向。
换言之,旋度可以告诉我们向量场在某一点上是否存在旋转,并且可以确定旋转轴的方向。
旋度具有一些重要的性质。
首先,旋度是一个向量,它的方向垂直于曲面元素的法向量,并且符合右手法则。
其次,旋度与向量场的平面性质相关,当旋度为零时,向量场是无旋的,即向量场在任意闭合路径上的线积分为零;当旋度不为零时,向量场是有旋的,即向量场在某些路径上的线积分不为零。
二、梯度的定义和性质梯度是一个标量场的一个重要特征,它描述了标量场的变化率和变化方向。
在三维空间中,给定一个标量场φ(x, y, z),其梯度定义为:grad φ = (∂φ/∂x, ∂φ/∂y, ∂φ/∂z)梯度的几何意义是:梯度的大小表示标量场变化最快的方向,而梯度的方向与变化率最大的方向一致。
梯度具有一些重要的性质。
首先,梯度是一个向量,它的方向指向标量场变化最快的方向,并且变化率最大;其次,梯度的大小表示标量场变化的速率,大小越大表示变化越快;最后,梯度是无旋的向量场,即梯度场的旋度为零。
三、散度的定义和性质散度是一个向量场的一个重要特征,它描述了向量场的发散性质。
在三维空间中,给定一个向量场F(x, y, z),其散度定义为:div F = ∂Fx/∂x + ∂Fy/∂y + ∂Fz/∂z散度的几何意义是:散度的大小表示向量场在某一点上的发散程度,正值表示向外发散,负值表示向内汇聚。
直角坐标系梯度散度旋度公式大全
直角坐标系梯度散度旋度公式大全梯度、散度和旋度是数学中的向量运算符,它们在直角坐标系中具有重要的应用。
本文将介绍直角坐标系下梯度、散度和旋度的定义以及它们的具体计算公式。
梯度梯度是一个向量,它表示标量函数在空间中变化最快的方向和速率。
在直角坐标系中,梯度可以使用以下公式进行计算:grad(f) = (∂f/∂x)i + (∂f/∂y)j + (∂f/∂z)k其中,f是一个标量函数,i、j和k分别表示直角坐标系中的单位向量。
散度散度是一个标量,它表示向量场的源或汇在给定点的密度。
在直角坐标系中,散度可以使用以下公式进行计算:div(F) = ∂Fx/∂x + ∂Fy/∂y + ∂Fz/∂z其中,F是一个向量场,Fx、Fy和Fz分别表示该向量场在x、y和z方向的分量。
旋度旋度也是一个向量,它表示向量场在给定点的旋转程度。
在直角坐标系中,旋度可以使用以下公式进行计算:curl(F) = ( ∂Fz/∂y - ∂Fy/∂z )i + ( ∂Fx/∂z - ∂Fz/∂x )j + ( ∂Fy/∂x - ∂Fx/∂y )k其中,F是一个向量场,Fx、Fy和Fz分别表示该向量场在x、y和z方向的分量。
梯度、散度和旋度的物理意义梯度、散度和旋度在物理学和工程学中有广泛的应用。
梯度描述了标量场的变化速率和方向,它在物理学中常用于描述场的势能分布、温度分布或者电势分布。
散度描述了向量场的源和汇的密度,它在物理学中常用于描述电场分布中的电荷密度或者流体力学中的流体源。
旋度描述了向量场的旋转程度,它在物理学中常用于描述流体力学中的涡旋运动或者电磁场中的涡旋流。
结语本文介绍了直角坐标系下梯度、散度和旋度的定义和计算公式,以及它们在物理学和工程学中的应用。
这些向量运算符在求解偏微分方程、分析场的性质和描述物理现象中起着重要的作用。
对于深入理解这些概念,进一步探索它们在不同领域和问题中的应用非常有帮助。
1-3梯度-散度-旋度
∂ ∂φ
如何记忆?
d ⇒∇ dl
笛卡儿坐标系中微分长度 G G
G
G
dl = axdx + aydy + azdz
∇
=
G ax
∂ ∂x
+
G ay
∂ ∂y
+
G az
∂ ∂z
dU ⇒ ∇ dl
柱面坐标系中微分长度
G dl
=
G ar
dr
+
G aφ
(
r
⋅
dφ
)
+
G az
dz
∇
=
G ar
∂ ∂r
+
G aφ
1 r
v∫
GG A • dS
=
∫ (∇ •
AG) dV
=
∫ 源dV
S
V
V
Example: Net positive flux
v∫
G A
•
G dS
>
0
S
Streamlines are directed away from the origin
4
矢量的“环量”
矢量的环量:该矢量沿闭合路径的标量线积分
G
GG
∫ 矢量 A沿G闭合路径 C的环量= A •dl
G ∇×B
=
G∂ ax(∂y
Bz
−
∂ ∂z
By)
G +ay
∂ ( ∂z
Bx
−?Bz
)
+aGz(∂∂x
By
−?Bx)
∇
=
G ax
∂ ∂x
+
G ay
梯度、散度、旋度的关系
麦克斯韦方程组向量场数量场有源场无源场保守场(无旋场)有旋场(非保守场)保守场=有势场=无旋场------环流等于零!有源场-------闭合曲面的通量不等于零!------这些是指场的宏观特性!3.含时磁场可以感生出电场4.含时电场可以感生处磁场上面四个方程可逐一说明如下:在电磁场中任一点处(1)电位移的散度 == 该点处自由电荷的体密度;(2)磁感应强度的散度 --- 处处等于零。
(3)电场强度的旋度 == 该点处磁感强度变化率的负值;(4)磁场强度的旋度 == 该点处传导电流密度与位移电流密度的矢量和\把不明白的字母列举一下:E 是电场强度矢量D 是电位移矢量(也叫电感应强度)应该还有一个电传导向量 E=D+?B 是磁感应强度矢量H 是磁场强度矢量 H=B+?其中内在的联系是:D=εEB=μH注意上面这些大写字母都是矢量物理都是循序渐进的,你看看懂麦克斯韦方程组,必须学过微积分和数学物理方程。
∮是环路积分,求是对闭合的回路求积分▽是哈密顿算符,就是对XYZ三个方向求全导数(偏导数就是如果有几个变量,其他的不变,只求一个的导数,全导数就是把不同变量的偏导数全求出来,再加起来)·是点乘,×是叉乘,不一样的,这是微积分里的第一个说的是,电场的源是电荷。
<你看它的微分形式,是不是:电场三个方向都求散度后的结果是电荷的密度,(散度通俗理解就是对三个空间方向求微分)这样就说明了电场不能凭空产生,它是有一个源头的,源头就是电荷。
这与我们通常的理解也是一样的,到目前为止我们也没有发现,单独的正电荷或负电荷,电场线都是从正电荷出发负电荷截止。
第二个方程,知道第一个方程的含义第二个就很好理解了,他就是说磁场是无源的,也就是说磁场是没有源头的,即磁场线是一条连续的曲线。
它不像电场线一样,必须从一个东西发出到一个东西结束。
第三个公式,也是看微分形式。
这里对电场取了旋度,<旋度就相当于在电场线的垂直方向上求导>我们看到最后它等于磁场对时间的求导。
梯度散度旋度公式大全
梯度散度旋度公式大全1. 梯度公式梯度是矢量场的一个重要概念,它表示了场在各个方向上的变化率。
对于一个标量场f(x, y, z),梯度可以通过以下公式计算得到:∇f = (∂f/∂x)i + (∂f/∂y)j + (∂f/∂z)k其中,∇表示梯度算子,i、j、k分别表示空间坐标轴的单位向量。
2. 散度公式散度描述了矢量场在某点的流入或流出情况,它是梯度的一种推广。
对于一个矢量场F(x, y, z) = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k,散度可以通过以下公式计算得到:∇·F = (∂P/∂x) + (∂Q/∂y) + (∂R/∂z)其中,·表示点乘运算。
3. 旋度公式旋度用于描述矢量场的旋转情况,对于一个矢量场F(x, y, z) = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k,旋度可以通过以下公式计算得到:∇×F = (∂R/∂y - ∂Q/∂z)i + (∂P/∂z - ∂R/∂x)j + (∂Q/∂x - ∂P/∂y)k其中,×表示叉乘运算。
4. 梯度、散度和旋度的关系梯度、散度和旋度之间存在一定的关系,这是基于矢量分析的一个重要结论。
根据向量分析的基本定理,我们可以得到以下等式:∇×(∇f) = 0 (梯度的旋度为零)∇·(∇×F) = 0 (旋度的散度为零)这两个等式说明了梯度和旋度的性质,即梯度场是无旋场,旋度场是无散场。
5. 应用示例梯度、散度和旋度在物理学和工程学中具有广泛的应用。
以下是一些应用示例:5.1 流体力学在流体力学中,梯度场描述了流速在各个方向上的变化率,散度场描述了流体在某点的流入或流出情况,旋度场描述了流体的旋转情况。
这些概念对于流体的运动和力学特性的分析具有重要意义。
5.2 电磁学在电磁学中,梯度场描述了电势的变化率,散度场描述了电场的流入或流出情况,旋度场描述了磁场的旋转情况。
1.2 散度-旋度-梯度
u u( x, y, z) u(r ) C
如同温层,等位面,等高线
a
b
等值面
d c
2
方向导数
如何了解标量场 中某一点的标量 函数U沿某一方 向的变化情况?
b a
等值面
d c
方向导数:标量函数在给定点沿 某一方向对距离的变化率
U l
3
方向导数
z
ez
z
U l
M ( x 0 x , y0 y, z 0 z )
1 1 ( ) 的梯度 R R
z
r
Q ( x , y , z ) R
o
r
P ( x, y, z )
y
x
16
源点与场点
• 源点: • 场点:
( x, y, z) ( x, y, z )
源点 r'
R
场点
r
O
17
例题
1 1 距离矢量 R r r ,求标量场 R 的梯度 ( ) R z Q ( x , y , z )
数学描述:矢量 A 沿某一有向曲面 S 的面积分
A dS A en dS A cos θdS
s s s
通量(Flux)
dS en dS
S
C
有向曲面:开表面, 右螺旋
闭合曲面,外法线
通量:穿过曲面s的矢量线的总数
22
通量的应用
• 判断闭合曲面内源的性质
ey ez 直角坐标系中: ex x y z 1 柱面坐标系中: e e ez z 1 1 球面坐标系中: eR e e R R R sin
梯度散度和旋转速度——定义及公式
梯度散度和旋转速度——定义及公式梯度是标量场的一个向量值函数,它描述了函数在其中一点的变化率和方向。
对于一个标量场 f(x, y, z),其梯度可以表示为∇f 或grad(f),其中∇=(∂/∂x,∂/∂y,∂/∂z)是称为向量微分算子的 nabla符号。
梯度的每个分量表示相应方向上的变化率,即变化最快的方向和速率的大小。
梯度的公式可以表示为:∇f=(∂f/∂x,∂f/∂y,∂f/∂z)其中,∂f/∂x,∂f/∂y和∂f/∂z是f对各个坐标的偏导数。
梯度的长度表示函数在其中一点的变化率大小,即梯度的模表示了函数在该点的变化速率。
因此,梯度可以用来描述场的变化方向和速率。
散度是矢量场的一个标量值函数,它描述了矢量场的发散和收敛情况。
对于一个矢量场 F(x, y, z) = (F_x, F_y, F_z),其散度可以表示为∇·F 或 div(F)。
散度描述了矢量场在其中一点的源头和汇聚情况,即矢量场的流入和流出情况。
散度的公式可以表示为:∇·F=(∂F_x/∂x+∂F_y/∂y+∂F_z/∂z)其中,∂F_x/∂x,∂F_y/∂y和∂F_z/∂z分别是F_x,F_y和F_z对各个坐标的偏导数。
散度的大小表示了场在其中一点的流入和流出速率,正值表示流出速率大于流入速率,负值表示流入速率大于流出速率。
旋转速度是矢量场的一个矢量值函数,它描述了矢量场的旋转和曲率情况。
对于一个矢量场 F(x, y, z) = (F_x, F_y, F_z),其旋转速度可以表示为∇×F 或 curl(F)。
旋转速度描述了矢量场的环流和涡旋情况,即矢量场围绕其中一点或曲线旋转的程度和方向。
旋转速度的公式可以表示为:∇×F=((∂F_z/∂y-∂F_y/∂z),(∂F_x/∂z-∂F_z/∂x),(∂F_y/∂x-∂F_x/∂y))其中,∂F_z/∂y-∂F_y/∂z,∂F_x/∂z-∂F_z/∂x和∂F_y/∂x-∂F_x/∂y分别是F_x,F_y和F_z对各个坐标的偏导数之差。
梯度、散度、旋度表达式的推导
旋度
在电场和磁场中,旋度用于描述 电场和磁场的变化产生的涡旋效 应,即电场和磁场的变化产生的 旋转运动。
图像处理中的应用
01
梯度
在图像处理中,梯度用于描述图像像素值的斜率,即像素值变化的方向
和大小。通过计算图像的梯度,可以提取图像中的边缘、轮廓等特征。
02
散度
散度在图像处理中主要用于判断像素点附近的局部变化情况,可以用于
梯度的几何意义
梯度表示函数图像在某一点的切线斜率。 在二维空间中,梯度向量可以看作是切线斜率最大的方向向量。
梯度运算的性质
梯度的线性性质
若$f(x,y)$和$g(x,y)$在某点可微,则$[f(x,y)+g(x,y)]'$等 于$f'(x,y)$和$g'(x,y)$的线性组合。
梯度的乘积性质
若$f(x,y)$和$g(x,y)$在某点可微,则$[f(x,y)g(x,y)]'$等于 $f'(x,y)g(x,y)+f(x,y)g'(x,y)$。
旋度用于描述流体场中旋转运动 的强度和方向,即涡旋的强度和 旋转方向。在流体力学中,旋度 可以用于判断流体场的旋转运动
特性。
电场和磁场中的应用
梯度
在电场和磁场中,梯度用于描述 电场强度E和磁场强度H随空间位 置的变化率,即电场和磁场的方 向和大小。
散度
在电场和磁场中,散度用于描述 电通量和磁通量在某点附近的净 流量,即流入和流出的通量之差。
散度的定义公式
设向量场为 F(x, y, z),则散度在某一 点 P(x, y, z)的值即为向量 F 在该点的 方向导数的最大值。
散度的几何意义
散度表示向量场中某点处单位体积内流出(或流入)的向量 数量。