数控直流稳压电源系统设计
数控直流稳压电源设计
数控直流稳压电源设计1.数控直流稳压电源的概述现代电子装置在供电要求方面有着越来越高的要求,而数控直流稳压电源则是目前广泛应用的一种供电装置。
数控直流稳压电源不仅具有直流稳定的输出特性,而且还能实现数字化控制,具有更加高效、精确的供电能力和性能。
数控直流稳压电源适用于各种电子装置的开发和生产领域,如通信技术、医疗器械、军事通讯和工业自动化等。
2.数控直流稳压电源的设计原理数控直流稳压电源主要由下列几个模块组成。
2.1输入端输入端是稳压电源的第一步,它接收外部电源的直流或交流信号,并且对输入电压进行过滤和波形整形,以确保后续的电路可以正常工作。
2.2稳压模块稳压模块负责稳定输出电压的值。
在闭环控制下,稳压模块保证输出电压稳定在标准值附近,即使在输入电压波动或负载变化的条件下,它也能确保输出电压的稳定性和可靠性。
2.3数控模块数控模块为整个电源提供了数字化控制的功能。
它包括一个集成电路、显示屏、输入设备和计算机接口等组成部分。
通过输入输出端口与计算机相连,可实时监测和控制电源的电压、电流、功率等参数。
2.4保护模块保护模块负责保护电源免受外界环境的影响。
它包括四种保护措施:过压保护、过温保护、过载保护和短路保护,并采用相应的防护电路来实现保护功能。
3.数控直流稳压电源的设计流程数控直流稳压电源的设计流程包括以下几个步骤:3.1确定电源的基本参数这包括电源输出电压、电流、功率、负载范围等参数。
设计人员需要根据电路应用需要,确定电源所需的输出电压和电流等参数。
3.2选取和确认元件在确定电源的基本参数后,设计人员应选择与之相适应的元件,包括电容器、电感器、稳压管、集成电路等,这是设计数控直流稳压电源的关键步骤之一。
设计人员需要综合考虑元件的品质、供货和维护等方面的因素,以便在成本和性能之间取得平衡。
3.3进行电路设计在确定元件后,设计人员需要根据设计参数和基本电路原理,设计稳压电源的具体电路方案,逐步完善和优化电路。
数控直流稳压电源的设计和制作
数控直流稳压电源的设计和制作数控直流稳压电源,是一种集数字化控制、直流电源稳定输出功能于一体的电子制品,它广泛应用于各类实验、测试、仪器、通讯系统及各种机电设备中。
今天我们就来谈谈数控直流稳压电源的设计和制作的具体过程。
一、设计1.稳压芯片选型在设计数控直流稳压电源中,首先要选用一款适合的稳压芯片。
常见的稳压芯片有LM317、LM350、LM338等,选择其中的一种根据自己的需求进行选择。
例如,LM317适合安装功率较低的电路,LM350适合于安装功率较大的电路,而LM338的输出电流可达5A以上,是一种非常适合于实验室及大功率稳压电源设计的芯片。
2.规划电源输出模块在设计中需要考虑输出模块的功能设置与实际需要相符,因此需要详细了解电源输出模块的所有类型,包括DC稳压输出、DC包络线输出、交流输出、多路并联输出等的优劣之处,然后选用适合自己需要的类型进行设计。
3.阻容电路的设计在电源输出中需要设计阻容电路,其目的是为了保护电源不受怠工放置,以及电源的过载保护等,详见下面内容。
二、制作1.准备器材在制作数控直流稳压电源之前,需要准备相应的器材和材料,例如PCB板、元器件、焊接工具等。
2.电源输出模块的焊接在制作中需要用到数控直流稳压电源输出模块,首先在PCB板上进行焊接,接下来安装电容、二极管等元器件,进行一定量的基础防护。
3.安装稳压芯片安装稳压芯片需要考虑其散热问题,此时应该做好散热片附加硅脂,以保证芯片处于稳定状态。
4.接线在焊接和装配完成后,接线工作是必要的。
在接线时,必须要认真看清接线图,把电路板上的元器件和接线线路进行一一对应,以便拼接时不会出现误差。
5.开机测试制作数控直流稳压电源时,一定要经过开机测试。
在开机时,应该观察电源的工作状态是否正常,电压是否稳定,是否存在短路等问题。
这样可以在实际应用时更加安全和稳定。
以上就是数控直流稳压电源的设计和制作的具体过程,每一步都要做好方案设计和操作步骤的准备工作,以确保电源的稳定运行。
简易数控直流稳压电源设计
简易数控直流稳压电源设计数控直流稳压电源是一种能够提供稳定输出电压的电源装置,常用于电子设备的测试、实验和制造过程中。
下面是一个简易的数控直流稳压电源设计。
1.设计需求和规格在开始设计之前,我们需要明确电源的输出电压和电流需求。
假设设计目标为输出电压范围为0-30V,最大输出电流为5A。
2.选择电源变压器根据设计需求,我们需要选择一个合适的电源变压器。
变压器的选择应该满足以下条件:-输入电压范围为市电的电压范围;-输出电压是设计需求的两倍,即60V;-输出功率需大于最大输出功率,即300W。
3.整流电路设计使用桥式整流电路将交流输入电压转换为直流电压。
桥式整流电路由4个二极管组成,将交流输入电压的负半周和正半周均转换为正向电流。
4.滤波电路设计滤波电路用于减小输出电压中的纹波,并提供稳定的直流输出电压。
常见的滤波电路是使用电容滤波器。
根据设计需求,选择适当的电容来达到所需的输出纹波和稳定性。
5.稳压电路设计稳压电路用于控制输出电压在设定范围内稳定。
可以使用集成稳压器芯片,例如LM317,它可以根据外部电阻器和电容器的值来控制输出电压。
6.控制电路设计为了实现数控功能,可以使用微控制器或模拟电路来控制输出电压和电流。
通过合理设置电容、电阻和电位器等元器件,可以设计出合适的控制电路。
7.保护电路设计为了确保电源和负载的安全,应设计适当的保护电路。
常见的保护电路包括过流保护、过压保护和过温保护。
可以使用电流检测器、过压保护器和温度传感器等元器件来实现这些保护功能。
8.PCB设计和制造根据上述电路设计,进行PCB布局和布线。
设计合适的PCB尺寸和布局,以容纳所有元器件,并确保电路的稳定性和可靠性。
完成设计后,可以选择将PCB文件发送给制造商进行制造。
9.组装和测试将制造好的PCB组装在电源箱中,接好输入电源线和输出连接线。
在保证安全的情况下,通电测试电源的稳定性、输出的准确性和保护电路的可靠性。
10.调试和优化根据实际测试结果,不断调试和优化电源的性能。
数控直流稳压电源设计(a)
数控直流稳压电源设计(a)数控直流稳压电源设计的目的是为了实现对电压的精确控制,使其稳定在所设定的值,保证被供电设备能够正常工作。
在本文中,将介绍数控直流稳压电源的设计及其原理。
一、设计原理数控直流稳压电源在设计中需要考虑多种原理,包括电子原理、电磁原理和控制原理等。
其主要工作原理是将交流电源变换成直流电源,通过控制电压稳定器的输出电压来实现对电压的精确控制。
二、电路图设计数控直流稳压电源的电路图分为两部分,分别是控制电路和电源电路。
其中,控制电路包括电压稳定器、电压比较器、AD转换器和单片机等部分,而电源电路则包括变压器、整流电路和滤波电路等部分。
在电源电路中,变压器的选取要根据负载电流和输出电压的大小来确定,整流电路一般采用桥式整流电路。
而在滤波电路中,选用大容值的电容器来实现对电源波动的滤波,达到稳压的效果。
在控制电路中,主要包括电压稳定器、电压比较器、AD转换器和单片机等部分。
电压稳定器的作用是将输入电压转换成稳定的输出电压,而电压比较器则用来比较设计值和实际输出值之间的差异。
AD转换器则用于将电压信号转换成数字信号,以便单片机进行处理。
在单片机中,通过对输入数据的计算和比较,控制输出电压稳定在设定值附近,从而实现对电压的精确控制。
四、稳压原理当输入电压发生变化时,电压稳定器会发挥作用,自动调节输出电压,使其保持稳定。
在电压变化较小的情况下,调节速度较快,反应时间较短。
需要注意的是,稳压电源在进行设计时,需要考虑到负载电流的大小和输出电压的稳定性。
同时,还需要考虑到设备的工作环境和安全问题,确保电源设计符合安全要求。
五、总结。
数控直流稳压电源的设计
目录1. 课题背景 (3)1.1 指导思想 (3)1.2 方案论证 (3)1.3基本设计任务 (3)1.4电路特点 (4)2 电路设计 (4)2. 1 总体方框图 (4)2. 2 工作原理 (5)3 各主要电路及部件工作原理 (5)3.1 74LS192 (5)3.2 DC0832 (7)3.3 CC4008 (8)3.4 CC4115 (8)3.5直流稳压电源 (3)4 原理总图 (9)5 元器件清单 (10)6 调试过程 (10)6.1 通电前检查 (10)6.2 数电部分调试 (10)6.3 模电部分 (11)7 小结 (11)8 设计体会及今后的改进意见 (11)8.1 体会 (11)8.2 本方案特点及存在的问题和改进意见 (12)参考文献 (10)1.课题背景随着人们生活水平的不断提高,数字化控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数控直流稳压电源就是一个很好的典型例子,但人们对它的要求也越来越高,要为现代人工作、科研,生活、提供更好的,更方便的设施就需要从数字电子技术入手,一切向数字化,智能化方向发展.。
本次所设计的数控直流稳压电源与传统的稳压电源相比,具有操作方便,电压稳定度高的特点,其输出电压大小采用数字显示,主要用于要求电源精度比较高的设备,或科研实验电源使用,并且此设计,没有用到单片机,只用到了数字技术中的可逆计数器,D/A转换器,译码显示等电路,具有控制精度高,制作比较容易等优点。
1.1指导思想操作人员通过按键对系统发出电压调整指令,该指令与输出电路的状态信号号一起送入数控部分电路,经过处理后产生符合指令要求的输出电压信号,并经输出电路功率驱动后输出驱动电流。
当输出电路的输出电流超过极限值时,由过流保护电路产生的信号送入数控电路,关闭系统的电压输出,对系统的输出电路进行保护。
另外,数控部分还产生显示信息送入显示电路,将输出电压或其它信息报告给操作人员。
基于单片机的数控直流稳压电源设计方案
基于单片机的数控直流稳压电源设计方案一、设计方案简介基于单片机的数控直流稳压电源设计方案主要是通过单片机控制开关电源的开关管,控制输出电压的稳定性和精度。
本设计方案采用闭环控制的方式,通过反馈电路将输出电压反馈给单片机,单片机根据反馈信号控制开关电源的开关管进行开关操作,以实现电源输出电压的稳定。
二、设计方案详细介绍1.系统总体设计:本设计方案将开关电源分为输入电源模块、控制模块和输出电源模块。
输入电源模块主要是对输入电压进行滤波和稳压,以保证输入电源的稳定性;控制模块主要是使用单片机进行控制,接收反馈电路的反馈信号,根据设定值进行比较,并控制开关电源的开关管进行开关操作;输出电源模块主要是将开关电源的输出电压经过滤波和稳压处理,以保证输出电压的稳定性和精度。
2.输入电源模块设计:输入电源模块主要是对输入电压进行滤波和稳压处理,保证输入电源的稳定性和安全性。
常用的电源滤波电路有LC滤波电路、RC滤波电路等。
同时,可以使用稳压芯片来实现输入电压的稳压。
3.控制模块设计:控制模块使用单片机进行控制,主要是通过反馈电路将输出电压反馈给单片机,并经过AD转换后与设定值进行比较。
根据比较结果,单片机控制开关电源的开关管进行开关操作,调整输出电压的稳定性。
在控制过程中,可以设置合适的控制算法,如PID控制算法,以提高控制的精度和稳定性。
4.输出电源模块设计:输出电源模块主要是对开关电源的输出电压进行滤波和稳压处理,以保证输出电压的稳定性和精度。
常用的电源滤波电路有LC滤波电路、RC滤波电路等。
可以使用稳压芯片或者反馈调节电路来实现输出电压的稳压。
5.电源保护设计:为了保护电源和设备的安全性,可以设计过压保护、欠压保护、过流保护、短路保护等保护电路。
过压保护可以使用过压保护芯片,欠压保护可以使用欠压保护芯片,过流保护可以通过电流传感器实现,短路保护可以通过保险丝或者短路保护芯片实现。
三、设计方案的优势和应用1.优势:本设计方案采用闭环控制的方式,通过反馈电路将输出电压反馈给单片机,使得输出电压的稳定性和精度得到保证。
基于单片机的数控直流稳压电源设计
基于单片机的数控直流稳压电源设计一、概述随着科技的飞速发展,电子设备在我们的日常生活和工业生产中扮演着越来越重要的角色。
这些设备的稳定运行离不开一个关键的组件——电源。
在各种电源类型中,直流稳压电源因其输出电压稳定、负载调整率好、效率高等优点,被广泛应用于各种电子设备和精密仪器中。
传统的直流稳压电源通常采用模拟电路设计,但这种方法存在着电路复杂、稳定性差、调整困难等问题。
为了解决这些问题,本文提出了一种基于单片机的数控直流稳压电源设计方案。
本设计采用单片机作为控制核心,通过编程实现对电源输出电压的精确控制和调整。
相比于传统的模拟电路设计,基于单片机的数控直流稳压电源具有以下优点:单片机具有强大的计算和处理能力,能够实现复杂的控制算法,从而提高电源的稳定性和精度单片机可以通过软件编程实现各种功能,具有很强的灵活性和可扩展性单片机的使用可以大大简化电路设计,降低成本,提高系统的可靠性。
本文将详细介绍基于单片机的数控直流稳压电源的设计原理、硬件电路和软件程序。
我们将介绍电源的设计原理和基本组成,包括单片机控制模块、电源模块、显示模块等我们将详细介绍硬件电路的设计和实现,包括电源电路、单片机接口电路、显示电路等我们将介绍软件程序的设计和实现,包括主程序、控制算法、显示程序等。
1. 数控直流稳压电源的应用背景与意义随着科技的快速发展,电力电子技术广泛应用于各个行业和领域,直流稳压电源作为其中的关键组成部分,其性能的稳定性和可靠性直接影响着整个系统的运行效果。
传统的直流稳压电源多采用模拟电路实现,其调节精度、稳定性以及智能化程度相对较低,难以满足现代电子设备对电源的高性能要求。
开发一种高性能、智能化的数控直流稳压电源具有重要意义。
数控直流稳压电源通过引入单片机控制技术,实现了对电源输出电压和电流的精确控制。
它可以根据实际需求,通过编程灵活调整输出电压和电流的大小,提高了电源的适应性和灵活性。
同时,数控直流稳压电源还具备过流、过压、过热等多重保护功能,有效提高了电源的安全性和可靠性。
简易数控直流稳压电源设计
简易数控直流稳压电源设计设计一台简易数控直流稳压电源可以分为以下几个步骤:1.确定电源的输出要求:确定电源的输出电压范围和电流范围。
根据实际需求,选择合适的电压和电流范围。
2.设计电源的整流电路:确定电源的输入电流和输入电压范围。
常用的整流电路包括桥式整流电路和中心点整流电路。
桥式整流电路更常见,效率较高。
3.设计电源的滤波电路:在电源的整流电路后加入滤波电容进行滤波,去除输出直流电压上的波动。
选取合适的滤波电容,使输出直流电压稳定。
4.设计电源的稳压调节电路:选择合适的稳压器件,根据需求设计稳压调节电路。
常见的稳压器件有三端稳压器和开关稳压器。
三端稳压器稳定性好,但效率较低;开关稳压器效率高,但稳定性较差。
5.设计电源的控制电路:根据需要设计数控电源的控制电路。
可以采用微处理器或者专用控制器来实现电源的数控功能,例如实现电源的开关机、电压和电流的调节、过压和过流保护等功能。
6.优化设计:根据实际需求对电源进行优化设计。
例如,可以增加短路保护、温度保护等功能。
7.制作测试:根据设计完成电源的制作和组装,进行测试。
测试包括输入输出电压电流的测试,以及控制电路的测试。
8.优化调整:根据测试结果对电源进行优化调整。
可以通过修改电路参数、更换稳压器件等方法进行优化调整。
9.最终调整:完成测试和优化调整后,进行最终调整,确保电源的稳定性和可靠性。
10.产品发布:在完成最终调整后,将电源进行产品化,进行包装和外观设计等工作,最终将产品发布市场。
需要注意的是,在设计数控直流稳压电源时,需要考虑以下几个方面:-输出电压范围和电流范围要与实际需求相匹配。
-整流电路和滤波电路的设计要使输出直流电压稳定,并且波纹尽可能小。
-稳压调节电路的选择要根据需求和性能进行考虑。
-控制电路的设计要实现所需的数控功能。
-电源的安全性和可靠性是设计时需要考虑的重要因素。
-电源的尺寸和散热量要注意合理安排,确保电源可以正常工作并且不过热。
简易数控直流稳压电源的设计
6.3 简易数控直流稳压电源6.3.1 设计任务和要求设计并制作有一定输出电压调节范围和功能的数控直流稳压电源。
基本要求如下:·输出直流电压调节范围5~15V,纹波小于10mV。
·输出电流为500mA。
·稳压系数小于0.2。
·直流电源内阻小于0.5Ω。
·输出直流电压能步进调节,步进值为1V。
·由“+”、“-”两键分别控制输出电压步进增减。
6.3.2 设计方案根据设计任务要求,数控直流稳压电源的工作原理框图如图6.3.1所示。
图6.3.1 简易数控直流稳压电源框图该图主要包括三大部分:数字控制部分、模拟/数字转换部分(D/A变换器)及可调稳压电源。
数字控制部分+、-按键控制—可逆二进制计数器,二进制计数器的输出输入到D/A 变换器,经D/A器转换成相应的电压,此电压经过放大到合适的电压之后,去控制稳压电源的输出,使稳压电源的输出电压以1V的步进值增或减。
6.3.3 电路设计1.整流、滤波电路设计首先确定整流电路结构为桥式电路;滤波选用电容滤波。
电路如图6.3.2所示。
图6.3.2 整流滤波电路为了使稳压电源能够正常工作,滤波电路的输出电压应满足下式:I RIP I U U U U U U ∆++-+≥min 0max 01)(式中,m ax 0U 是稳压电源输出最大值;min 0)(U U I -是集成稳压器输入输出最小电压差;RIP U 是滤波器输出电压的纹波电压值(一般取0U 、min 0)(U U I -之和的10%);I U ∆是电网波动引起的输出电压的变化(一般取0U 、min 0)(U U I -、RIP U 之和的10%)。
对于集成的三端稳压器,当V U U I 10~2)(min 0=-时,具有较好的稳压输出特性。
故滤波器输出电压值:V U I 2298.18.1315≥+++≥,取V U I 22=。
根据I U 可确定变压器次级电压2U ,即 V U U I 201.1222.1~1.12≈== 在桥式整流电路中,变压器次级电流与滤波器输出电流的关系为:A I I I I 75.05.05.1)2~5.1()2~5.1(02=⨯=≈=。
数控直流稳压电源的设计1
1. 设计任务和要求1.1设计要求1.1.1 任务设计出有一定输出电压范围和功能的数控电源。
其原理示意图如下:1.1.2 要求基本要求:(1)输出电压:范围0~+9.9V,步进0.1V,纹波不大于10mV;(2)输出电流:500mA;(3)输出电压值由数码管显示;(4)由“+”、“-”两键分别控制输出电压步进增减;(5)为实现上述几部件工作,自制一稳压直流电源,输出±15V,+5V。
发挥部分:(1)输出电压可预置在0~9.9V之间的任意一个值;(2)用自动扫描代替人工按键,实现输出电压变化(步进0.1V不变);(3)扩展输出电压种类(比如三角波、方波等)。
2 系统方案选择和论证2.1 系统基本方案通过对题目的任务、要求进行分析,我们将整个设计划分成三个部分:自制稳压电源部分,数控部分和输出显示部分。
其系统框图如图2.1所示:市电220V 50Hz图2.11.自制稳压电源部分自制稳压电源输入220v、50hz交流电,通过变压、整流、滤波和稳压电路,输出系统所需的三种直流电压:+15v、-15v、5v。
2.数控部分为完成题目要求制作可调节数控电源,需要有简单的人机接口界面,即需要按键输入和显示输出。
由于数控部分功能较多,较为复杂,对系统性能影响很大,采用了可编程控制器件来作为系统的核心,便可完成题目要求。
由于控制器部分为数字电路,而具体的输出部分为模拟电路,需要D/A 转换电路联系起来,实现电压的输出和调节。
数控部分由自制稳压电源部分供电。
3.输出部分将D/A器件发送过来的电压控制字转换成稳定电压输出,电路主要为D/A转换,稳压输出等组成。
单片机控制电压值通过LED数码管显示出来。
2.2 各模块方案的选择和论证2.2.1 控制器模块作用:各按键信号的辨认,控制电压的输出、显示电压值、各种类波形输出等。
方案1:采用FPGA或CPLD作为系统的控制器。
优点:可以实现复杂逻辑功能,规模大,速度快,密度高,体积小,稳定性高,容易实现仿真、调试和功能扩展。
毕业设计:数控直流稳压电源设计
数控直流电流源设计摘要AVR 系列的单片机不仅具有良好的集成性能, 而且都具有在线编程接口, 其中的Mega 系列还具有JTAG 仿真和下载功能; 含有片内看门狗电路、片内Flash、同步串行接口SPI; 多数AVR 单片机还内嵌了A/D 转换器、EEPROM、模拟比较器、PWM 按时计数器等多种功能; AVR 单片机的I/O 接口具有很强的驱动能力, 灌入电流可直接驱动继电器、LCD 等元件, 从而省去驱动电路, 节约系统本钱。
关键词:直流稳压电源;AVR单片机;液晶显示。
一、前言数控电源是从80年代才真正的进展起来的,期间系统的电力电子理论开始成立。
在以后的一段时刻里,数控电源技术有了长足的进展。
但其产品存在数控程度达不到要求、分辨率不高、功率密度比较低、靠得住性较差的缺点。
因此数控电源要紧的进展方向,是针对上述缺点不断加以改善。
单片机技术及电压转换模块的显现为精准数控电源的进展提供了有利的条件。
新的变换技术和操纵理论的不断进展,各类类型专用集成电路、数字信号处置器件的研制应用,到90年代,己显现了数控精度达到0.05V的数控电源,功率密度达到每立方英寸50W 的数控电源。
从组成上,数控电源可分成器件、主电路与操纵等三部份。
电源采纳数字操纵,具有以下明显优势:1)易于采纳先进的操纵方式和智能操纵策略,使电源模块的智能化程度更高,性能更完美。
2)操纵灵活,系统升级方便,乃至能够在线修改操纵算法,而没必要改动硬件线路。
3)操纵系统的靠得住性提高,易于标准化,能够针对不同的系统(或不同型号的产品),采纳统一的操纵板,而只是对操纵软件做一些调整即可。
二、系统功能系统电压调剂范围为0~12V,最大输出电流1A,具有过载和短路爱惜功能。
输出电压可用1602LCD液晶显示。
键盘设有6个键,复位键,步进增减1V两个键,步进增减0.1V两个键和确认键。
复位键用于启动参数设定状态(5V),步进增减键用于设定参数数值,确认键用于确认输出设定值[2,3].电源开机设定电压输出默许值为5V。
数控直流稳压电源毕业设计
数控直流稳压电源毕业设计智能控制设计大赛数控直流稳压电源目录摘要 (3)一、方案论证与比较 (4)1. 1系统供电部分 (4)1.2 控制器部分 (4)1. 3 显示部分 (4)1.4 键盘部分 (4)1. 5 数模/模数转换部分 (4)1. 6 掉电记忆部分 (5)二、系统的具体设计及实现 (5)2.1系统总框图 (5)2.2硬件设计 (6)2.2.1电源模块 (6)2.2.2DA转换模块 (6)2.2.3电压调整模块 (7)2.2.4键盘模块 (8)2.2.5EEPROM拓展模块 (8)2.2.6显示模块 (9)2.3软件设计 (10)2.3.1主程序流程 (10)2.3.2键盘程序流程 (11)2.3.3EEPROM读写流程 (12)2.3.4DAC0832程序流程 (13)2.3.5TLC1543程序流程 (13)三、测试、结果及分析 (14)3.1基本功能 (14)3.2发挥功能部分 (14)3.3其他发挥部分 (15)3.4详细的测试数据 (15)四、总结 (16)参考文献 (17)附录一、完整的系统原理图............................................................18附录二、完整的系统源代码 (19)数控直流稳压电源设计任务与要求一、设计任务设计并制作一个直流可调稳压电源。
二、设计要求1、基本要求:1)当输入交流电压为220v±10%时,输出电压在3-13v可调;2)额定电流为0.5A,且纹波不大于10mV;3)使用按键设定电压,同时具有常用电平快速切换功能(3v、5v、6v、9v、12v),设定后按键可锁定,防止误触;4)显示设定电压和测量电压,显示精度为0.01v。
2、扩展要求:1)输出电压在0-13v可调;2)额定电流为1A,且纹波不大于1mV;3)掉电后可记忆上次的设定值;4)两级过流保护功能,当电流超过额定值的20%达5秒时,电路作断开操作;当电流超过额定值的50%时,电路立即断开。
数控直流稳压电源毕业设计
数控直流稳压电源毕业设计数控直流稳压电源毕业设计随着现代电子技术的不断发展,直流稳压电源在各个领域得到了广泛应用。
本文将探讨数控直流稳压电源的毕业设计,包括设计原理、关键技术和实现方法等。
一、设计原理数控直流稳压电源是一种能够提供稳定直流电压输出的电源设备。
其设计原理基于反馈控制系统,通过对输入电压进行采样和比较,调整输出电压以达到稳定的目标值。
数控直流稳压电源的核心是稳压电路,它可以根据输入电压的变化自动调整输出电压,确保输出电压的稳定性。
二、关键技术1. 采样电路:采样电路是数控直流稳压电源的重要组成部分,它能够实时监测输入电压的变化。
常见的采样电路有电压分压器和电流采样电路。
电压分压器能够将输入电压降低到适合采样的范围,而电流采样电路则可以监测电源输出的电流情况。
2. 比较器:比较器是数控直流稳压电源中的核心元件之一,它能够将采样到的电压与设定的目标电压进行比较,并产生误差信号。
比较器的输出信号将作为反馈信号,用于调整稳压电路的工作状态。
3. 控制电路:控制电路是数控直流稳压电源中的关键部分,它能够根据误差信号对稳压电路进行精确的调整。
控制电路通常采用微处理器或者专用的控制芯片,通过编程或者配置参数来实现对稳压电源的控制。
三、实现方法1. 硬件设计:数控直流稳压电源的硬件设计包括电源输入和输出端的连接、稳压电路的设计以及控制电路的设计等。
在设计过程中需要考虑电源的功率、效率、输出电压范围和负载能力等因素。
2. 软件设计:数控直流稳压电源的软件设计主要包括控制算法的设计和编程。
控制算法需要根据输入电压和输出电压的变化情况来调整稳压电路的工作状态,以实现稳定的输出电压。
3. 系统测试:在完成硬件和软件设计后,需要对数控直流稳压电源进行系统测试。
测试过程中需要验证电源的输出电压是否稳定、负载能力是否满足设计要求以及系统的响应速度等。
四、应用领域数控直流稳压电源在电子设备制造、通信、医疗、工业自动化等领域有着广泛的应用。
数控直流稳压电源的设计
数控直流稳压电源的设计数控直流稳压电源是一种用于供应直流电子设备的电源装置,其主要功能是将市电转换为稳定的直流电,并通过控制电路对输出电压进行调节和稳定。
在设计数控直流稳压电源时,需要考虑电源的输入特性、输出特性、保护功能和控制电路等方面。
首先,我们需要确定数控直流稳压电源的输入电压范围。
大多数电子设备的工作电压为12V、24V或48V等,因此输入电压范围通常选择110V 至230V的交流电源。
在选择输入电压范围时,需要考虑所处地区的电网电压波动范围,以及用户对电源的要求。
其次,数控直流稳压电源的输出电压范围也需要确认。
根据电子设备的需求,输出电压通常为可调范围内的恒定值,例如0-30V或0-60V等。
同时也要考虑输出电流的范围,以满足电子设备对电流的需求,常见输出电流范围为0-2A或0-5A等。
在设计数控直流稳压电源的输出电路时,可以采用开环控制电路或闭环控制电路。
开环控制电路的简单,但稳定性较差,难以保证输出电压的精度和稳定性。
闭环控制电路通过反馈控制,可以实现对输出电压的精确控制和稳定性。
为了保护电源装置和电子设备的安全,数控直流稳压电源通常需要具备过压保护、过流保护和短路保护等功能。
过压保护可以防止输出电压超过设定范围,过流保护可以防止输出电流超过设定范围,短路保护可以防止输出端短路时对电源装置和电子设备造成损害。
在控制电路方面,可以使用微处理器或单片机进行数控调节。
通过采集输入输出电压信号,经过对比和计算,控制电路可以实现对输出电压的调节并保持在设定范围内。
此外,还可以添加显示屏或数码管等显示装置,以实时显示输入输出电压和电流的数值。
最后,在设计数控直流稳压电源时,还需要考虑散热和尺寸等问题。
电源装置的散热设计要充分考虑电源内部的热量产生和散发,以保证电源的长时间稳定工作。
同时,电源装置的尺寸要适度,以适应不同的应用场合和安装空间。
总的来说,设计数控直流稳压电源需要综合考虑输入特性、输出特性、保护功能和控制电路等方面,以满足电子设备对电源的需求,并提供稳定的直流电源供应。
数控直流稳压电源的设计
数控直流稳压电源的设计数控直流稳压电源是一种常用的电源设备,用于提供稳定的电压和电流,以供电子设备工作。
在电子行业和各种制造业中广泛使用。
本篇文档将着重介绍数控直流稳压电源的设计。
一、需求分析在设计数控直流稳压电源时,需要对实际需求进行分析,以选择合适的电源参数。
通常,需要考虑以下因素:1. 输入电压范围2. 输出电压范围3. 输出电流范围4. 稳定性要求在以上因素中,输入电压范围和输出电压范围是最关键的因素。
输入电压应该能够满足设备需要的电源,而输出电压应该与设备所需的直流电压匹配。
二、设计要点在设计数控直流稳压电源时,需要考虑以下要点:1. 电源拓扑结构2. 运算放大器的选择3. 稳定性设计4. 容量和功率需求5. 保护措施1. 电源拓扑结构数控直流稳压电源的设计通常采用基于反馈电路的电源拓扑结构。
其中,最常用的电源拓扑结构是基于线性稳压器的设计。
此外,还有基于开关稳压器的设计。
两种设计各有优劣,需要根据具体需求进行选择。
2. 运算放大器的选择在反馈电路中,运算放大器是一个非常关键的因素。
运算放大器为反馈电路提供放大器,并将反馈信号传递给反馈节点。
当电压或电流发生变化时,运算放大器可以快速检测到并调整输出,以保持恒定的电压和电流。
3. 稳定性设计为保证电源稳定性,需要进行稳定性设计。
在基于线性稳压器的设计中,输出电压稳定性可以通过选择合适的线性稳压器电路进行实现。
在基于开关稳压器的设计中,可以采用PID反馈控制实现稳定性。
4. 容量和功率需求容量和功率需求应该根据设备需要的功率和电流选择。
需要选择合适的电源变压器和其他元件,并计算合适的功率。
5. 保护措施在电源设计中需要加入保护措施,以防止故障和损坏。
常见的保护措施包括过载保护、过压保护和过流保护,等等。
三、实施步骤通过实施步骤可以设计出稳定且可靠的数控直流稳压电源:1. 确定功率、电压和电流需求2. 选择最合适的电源拓扑结构3. 选择合适的运算放大器4. 进行稳定性设计5. 计算容量和功率需求6. 加入保护措施7. 编写电源控制程序8. 调试并测试电源四、结论在本篇文档中,我们介绍了数控直流稳压电源的设计要点和实施步骤。
基于单片机的数控直流稳压电源的设计设计
基于单片机的数控直流稳压电源的设计设计数控直流稳压电源是一种能够为电子设备提供稳定直流电压的电源,可以用于实验室、生产线以及科研等领域。
本文将基于单片机对数控直流稳压电源进行设计。
1.设计目标设计一个数控直流稳压电源,具有以下特点:-输入电压范围广,能够适应各种电源电压。
-输出电压范围广,能够满足不同设备的需求。
-输出电压稳定性好,能够保持输出电压在设定值附近波动范围内。
-控制方式灵活,能够通过数控手段来调整输出电压。
2.硬件设计-电源输入部分:使用变压器降低输入电压,并通过整流电路将交流电转换为直流电。
-过滤电路:用电容器对直流电进行滤波,减小纹波。
-脉宽调制(PWM)控制器:使用单片机的PWM输出,控制开关管的导通时间,从而调整输出电压。
-反馈电路:采集输出电压并与设定值进行比较,通过PWM控制器调整开关管的导通时间,使输出电压稳定在设定值上。
3.软件设计-单片机程序设计:编写单片机程序,实现输入输出控制,包括读取输入电压、设定输出电压以及调整PWM输出。
-降压控制算法:根据输入输出电压以及电流等参数,通过控制PWM 输出的占空比,实现对输出电压的调整和稳定。
4.输出保护-过压保护:当输出电压超出设定范围时,通过单片机程序停止PWM 输出,避免对设备的损坏。
-过流保护:当输出电流超过额定值时,通过监测电流大小,控制PWM输出,避免过大电流对设备的损坏。
5.调试与测试-利用示波器等测试工具,对电源的输入输出进行测试,验证稳定性和精度。
-对于过压、过流等保护功能,进行测试验证其可靠性和及时性。
总结本设计基于单片机实现了数控直流稳压电源,能够根据输入和输出的要求,实现电压的调整和稳定。
同时,通过保护电路、控制算法等设计,确保了电源的可靠性和安全性。
在实际应用中,可以根据具体需求进行扩展和优化,以满足更多应用场景的需求。
数控稳压电源制作
数控稳压电源制作数控直流电源制作一、系统组成与原理概述本文所设计的数控直流电源与传统稳压电源相比,具有操作方便、电压稳定度高的特点,其输出电压大小采用数字显示,原理方框组成图见图1。
它共由六部分组成。
输出电压的大小调节通过“+”、“-”两键操作,控制可逆计数器分别作加、减计数,可逆计数器的二进制数字输出分两路运行:一路用于驱动数显电路,指示电源输出电压的大小值;另一路进入D/A转换电路,D/A转换器将数字量按比例转换成模拟电压,然后经过射极跟随器控制调整输出级输出所需的稳定电压。
为了实现上述几部分电路的正常工作,需另制±15V和±5V的稳压直流电源及一组未经稳压的12~17V的直流电压。
二、具体实现电路根据以上数控直流电源的方框图,采用集成电路设计了输出电压为0~9.9V的数控电源,详细电路原理如图2所示。
1.电路简介两按钮开关作为电压调整键与可逆计数器的加计数和减计数输入端相连,可逆计数器采用两片四位十进制同步加/减计数集成块74LS192级联而成,把第一块的进位和借位输出端分别接到下一组的加计数端和减计数端。
两级计数器总计数范围从00000000至10011001(即0~99)。
数显译码驱动采用两块74LS248集成块,74LS248为四线-七段译码器/驱动器,内部输出带上拉电阻,它把从计数器传送来的二-十进制的8421码转换成十进制码,并驱动数码管显示数码。
数模转换电路采用两块DAC0832集成块,它是一个8位数/模转换器,这里只使用高4位数字量输入端。
由于DAC0832不包含运算放大器,所以需要外接一个运算放大器相配,才构成完整的DAC,低位DAC输出模拟量经9∶1的分流器分流后与高位DAC输出模拟量相加后送入运放,运放将其转换成与数字端输入的数值成正比的模拟输出电压,运放采用具有调零端的低噪声高速率优质运放NE5534。
调整输出级采用运放作射极跟随器,使调整管的输出电压精确地与D/A转换器输出电压保持一致。
数控直流稳压电源设计
数控直流稳压电源设计一、设计背景先别急着翻篇,这个话题其实很有趣,虽然名字一听就让人有点头晕目眩的感觉。
不过别担心,今天我们就轻松聊聊什么是数控直流稳压电源设计,怎么搞它,能做什么用,咱们都一一捋清楚。
你知道,电源在我们的日常生活中简直无处不在,手机充电、电脑运行、各种小电器、电子产品啥的,通通都离不开电源的“支持”。
你能想象没有电源的世界吗?那简直就是无头苍蝇乱飞,啥都做不成!什么叫“数控直流稳压电源”呢?字面上看,可能挺复杂,其实就是说一种能够提供稳定直流电压的电源设备。
这个“数控”可不是普通的控制,而是通过数字控制来调节电压输出。
你明白了吗?就好比你家里的调温器,不是调热水温度嘛,数控稳压电源就是通过数字方式精准调节输出电压,让它既稳定又可靠。
能提供高精度的电流和电压控制,给各种电子设备提供充足又稳定的电力。
二、设计要求我们先扯扯它的设计要求。
说到设计要求,那就是搞定几个硬性的“条件”。
你得确保电源输出是稳定的。
如果你给电子设备提供的电压忽高忽低,搞不好就会把设备弄坏,甚至烧掉。
这可不是开玩笑,谁敢拿自己的设备试验那种不靠谱的电源啊?咱们还要确保电源的效率。
效率低?那电源是不是要热得像个小太阳,吃电就像打水漂,浪费多了谁受得了?所以,设计时得想办法提高效率,让它尽量节省能源。
然后,稳定性也是设计中必须考虑的重点。
你可别小看了稳定性,假如电源频繁地出现波动,设备的运行肯定会受到影响,甚至引发系统故障。
哦对了,电源的负载能力也是要考虑的。
别看它体积小小的,想想如果你有大功率的设备,电源得有足够的能力来应对啊。
所以,如何在保证输出稳定的也能承载各种不同的负载,才是设计时的一个挑战。
三、设计流程我们都知道了要求,接下来就是“怎么做”的问题了。
咱们得了解电路结构。
一个合格的电源,必须有合适的变压、整流、滤波、稳压模块。
这些部分就像是电源的“骨架”,缺一不可。
变压部分是用来调节电压的,整流部分是把交流电转换成直流电,滤波模块则是为了去掉电压中的波动,确保输出电流干净清晰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1 稳压电源的分类
稳压电源的分类方法繁多,按输出电源的类型分有直流稳压电源和交流稳压电源;按稳压电路与负载的连接方式分有串联稳压电源和并联稳压电源;按调整管的工作状态分有线性稳压电源和开关稳压电源;按电路类型分有简单稳压电源和反馈型稳压电源,等等。如此繁多的分类方式会让我们摸不着头脑,不知道从哪里入手。我们必须弄清楚各个类别的特点,才能从中选出最佳方案。
二、系统功能
系统电压调节围为0~12V,最大输出电流1A,具有过载和短路保护功能。输出电压可用1602LCD液晶显示。键盘设有6个键,复位键,步进增减1V两个键,步进增减0.1V两个键以及确认键。复位键用于启动参数设定状态(5V),步进增减键用于设定参数数值,确认键用于确认输出设定值.
电源开机设定电压输出默认值为5V。通过步进增减按键功能选择可在不同的设定参数之间切换,再按确认键进入设定电压输出状态。若按复位键,则电压输出恢复5V。系统设有自动识别功能,将不接受超出使用围(0~12V)的设定值。
2.5输出电压采集反馈电路模块15
五、系统的软件设计15
1 程序设计15
2.程序流程图16
六.结束语16
七.参考文献17
附录1(电路原理图)18
附录2(电子万年历程序)19
摘要
将单片机数字控制技术,有机地融入直流稳压电源的设计中,设计出一款数字化通用直流稳压电源。该电源具有液晶显示、数字输入调压、电压调节精度高的特点。通过软件编程,易于实现功能的扩展。
关键词:直流稳压电源;AVR单片机;液晶显示
一、前言
电源技术尤其是数控电源技术是一门实践性很强的工程技术,服务于各行各业。电力电子技术是电能的最佳应用技术之一。当今电源技术融合了电气、电子、系统集成、控制理论、材料等诸多学科领域。随着计算机和通讯技术发展而来的现代信息技术革命,给电力电子技术提供了广阔的发展前景,同时也给电源提出了更高的要求。随着数控电源在电子装置中的普遍使用,普通电源在工作时产生的误差,会影响整个系统的精确度。电源在使用时会造成很多不良后果,世界各国纷纷对电源产品提出了不同要求并制定了一系列的产品精度标准。只有满足产品标准,才能够进入市场。随着经济全球化的发展,满足国际标准的产品才能获得进出的通行证。数控电源是从80年代才真正的发展起来的,期间系统的电力电子理论开始建立。这些理论为其后来的发展提供了一个良好的基础。在以后的一段时间里,数控电源技术有了长足的发展。但其产品存在数控程度达不到要求、分辨率不高、功率密度比较低、可靠性较差的缺点。因此数控电源主要的发展方向,是针对上述缺点不断加以改善。单片机技术及电压转换模块的出现为精确数控电源的发展提供了有利的条件。新的变换技术和控制理论的不断发展,各种类型专用集成电路、数字信号处理器件的研制应用,到90年代,己出现了数控精度达到0.05V的数控电源,功率密度达到每立方英寸50W的数控电源。从组成上,数控电源可分成器件、主电路与控制等三部分。目前在电力电子器件方面,几乎都为旋纽开关调节电压,调节精度不高,而且经常跳变,使用麻烦。数字化智能电源是针对传统电源的不足设计的,数字化能够减少生产过程中的不确定因素和人为参与的环节数,有效地解决电源模块中诸如可靠性、智能化和产品一致性等工程问题,极提高生产效率和产品的可维护性。
从上世纪九十年代末起,随着对系统更高效率和更低功耗的需求,电信与数据通讯设备的技术更新推动电源行业中直流/直流电源转换器向更高灵活性和智能化方向发展。整流系统由以前的分立元件和集成电路控制发展为微机控制, 从而使直流电源智能化, 基本实现了直流电源的无人值守。直流稳压电源是最常用的仪器设备, 在科研及实验中都是必不可少的。数控电源采用按键盘,可对输出电压进行设置, 输出由单片机通过D/A,控制驱动模块输出一个稳定电压。同时稳压方法采用单片机控制, 单片机通过A/D 采样输出电压, 与设定值进行比较, 若有偏差则调整输出, 越限则输出报警信号并截流。工作过程中, 稳压电源的工作状态(输出电压、电流等各种工作状态) 均由单片机输出驱动LCD显示, 由键盘控制进行动态逻辑切换。以单片机为核心的智能化高精度简易直流电源的设计,电源采用数字调节、输出精度高, 特别适用于各种有较高精度要求的场合。
一、前言4
二、系统功能5
三、方案论证6
3.1 稳压电源的分类6
3.2 稳压电源部分方案6
3.3 三端集成稳压芯片8
3.4 数字显示部分9
四、系统硬件设计9
1、电路原理9
2、硬件模块分析Biblioteka 02.1 ATmage16单片机模块9
2.2 L6203驱动模块12
2.3 5V系统电源模块14
2.4 1602液晶显示模块14
AVR系列的单片机不仅具有良好的集成性能,而且都具备在线编程接口,其中的Mega系列还具备JTAG仿真和下载功能;含有片看门狗电路、片程序Flash、同步串行接口SPI;多数AVR单片机还嵌了A/D转换器、EEPROM
、模拟比较器、PWM定时计数器等多种功能; AVR单片机的I/O接口具有很强的驱动能力,灌入电流可直接驱动继电器、LCD等元件,从而省去驱动电路,节约系统成本。
在家用电器和其他各类电子设备中,通常都需要电压稳定的直流电源供电。但在实际生活中,都是由220V 的交流电网供电。这就需要通过变压、整流、滤波、稳压电路将交流电转换成稳定的直流电。滤波器用于滤去整流输出电压中的纹波,一般传统电路由滤波扼流圈和电容器组成,若由晶体管滤波器来替代,则可缩小直流电源的体积,减轻其重量,且晶体管滤波直流电源不需直流稳压器就能用作家用电器的电源,这既降低了家用电器的成本,又缩小了其体积,使家用电器小型化。传统的直流稳压电源通常采用电位器和波段开关来实现电压的调节,并由电压表指示电压值的大小. 因此,电压的调整精度不高,读数欠直观,电位器也易磨损.而基于单片机控制的直流稳压电源能较好地解决以上传统稳压电源的不足。
电源采用数字控制,具有以下明显优点:
1)易于采用先进的控制方法和智能控制策略,使电源模块的智能化程度更高,性能更完美。
2)控制灵活,系统升级方便,甚至可以在线修改控制算法,而不必改动硬件线路。
3)控制系统的可靠性提高,易于标准化,可以针对不同的系统(或不同型号的产品),采用统一的控制板,而只是对控制软件做一些调整即可。