导数的应用——利用单调性求参数的取值范围备课讲稿

合集下载

知识讲解_导数在函数性质中的应用——单调性

知识讲解_导数在函数性质中的应用——单调性

导数在函数性质中的应用——单调性编稿:张林娟审稿:孙永钊【学习目标】1. 知识与技能能用导数判断函数的单调性、求不超过三次的多项式函数的单调区间;掌握求函数单调区间的方法和步骤.2. 过程与方法通过利用导数研究函数的单调区间的过程,掌握利用导数研究函数性质的方法.总结求函数单调区间和极值的一般步骤,体会其中的算法思想,认识到导数在研究函数性质中的应用.3. 情感、态度与价值观通过用导数方法研究函数性质,认识到不同数学知识之间的内在联系,以及导数的应用价值.【要点梳理】要点一:函数的单调性与导数的关系我们知道,如果函数()f x在这一区间具有单调性.f x在某个区间是增函数或减函数,那么就说()已知函数2=-+的图象如图所示,f x x x()43由函数的单调性易知,当2f x是增函数.现在我们看看各个单f x是减函数;当2x<时,()x>时,()调区间内任意一点的切线情况:考虑到曲线()f x在改点的导数值,从图象可以看到:y f x=的在某点处切线的斜率就是函数()在区间(-∞,2)内,任意一点的切线的斜率为负,即'()240f x x =<时,()f x 为减函数.在区间(2,+∞)内,任意一点的切线的斜率为正,即'()240f x x =>时,()f x 为增函数.导数的符号与函数的单调性:一般地,设函数()y f x =在某个区间内有导数,则在这个区间上,(1)若()0f x '>,则()f x 在这个区间上为增函数;(2)若()0f x '<,则()f x 在这个区间上为减函数;(3)若恒有()0f x '=,则()f x 在这一区间上为常函数.反之,若()f x 在某区间上单调递增,则在该区间上有()0f x '≥恒成立(但不恒等于0);若()f x 在某区间上单调递减,则在该区间上有()0f x '≤恒成立(但不恒等于0).要点诠释:①导函数的正负决定了原函数的增减;②在区间(a ,b )内,'()0f x >(或()0f x '<)是()f x 在区间(a ,b )内单调递增(或减)的充分不必要条件.注意:只有当在某区间上有有限个点使'()0f x =时,()0f x '≥(或()0f x '≤)≡()f x 在该区间内是单调递增(或减).例如:32()'()30'(0)0,'()0(0)f x x f x x f f x x =⇒=≥=>≠,,而()f x 在R 上递增.③当在某区间内恒有()0f x '=,这个函数()y f x =在这个区间上才为常数函数.要点二:利用导数研究函数的单调性利用导数判断函数单调性的基本方法:设函数()y f x =在区间(a ,b )内可导,(1)如果恒有'()0f x >,则函数()f x 在(a ,b )内为增函数;(2)如果恒有'()0f x <,则函数()f x 在(a ,b )内为减函数;(3)如果恒有'()0f x =,则函数()f x 在(a ,b )内为常数函数.利用导数求函数()f x 单调区间的基本步骤(1)确定函数()f x 的定义域;(2)求导数'()f x ;(3)在函数()f x 的定义域内解不等式'()0f x >或'()0f x <;(4)确定()f x 的单调区间.或者:令'()0f x =,求出它在定义域内的一切实数根。

新教材老高考适用2023高考数学一轮总复习第四章第二节利用导数研究函数的单调性pptx课件北师大版

新教材老高考适用2023高考数学一轮总复习第四章第二节利用导数研究函数的单调性pptx课件北师大版
第四章
第二节 利用导数研究函数的单调性




01
强基础 增分策略
02
增素能 精准突破
课标解读
1.结合实例,借助几何直观了
解函数的单调性与导数的关
系.
2.能利用导数研究函数的单
调性,会求函数的单调区间.
3.能够利用导数解决与函数
单调性有关的问题.
衍生考点
核心素养
1.研究不含参函数的
单调性
数学抽象
+1
(2)若-1≤a<0,由于 ≤0,所以

+1
(- )
.
2

+1
,
+∞

+1
0,
.
f'(x)<0,即 f(x)的单调递减区间是(0,+∞).
;
+1
(3)若 a<-1, >0,当 x∈
当 x∈
+1
, +∞

+1
0,
时,f'(x)>0,所以 f(x)的单调递增区间是
且g(-2)=g(2)=2f(2)=0,g(0)=0.因为f(x)>0,所以当x>0时,由g(x)=xf(x)>0得
2.讨论含参函数的单
逻辑推理
调性
数学运算
3.与导数有关的函数
数学建模
单调性的应用
强基础 增分策略
知识梳理
1.函数的单调性与其导数的关系
导数的符号与函数的单调性之间具有如下的关系:
(1)若在某个区间内,函数y=f(x)的导数f'(x)>0,则在这个区间内,函数

导数的应用——利用单调性求参数的取值范围

导数的应用——利用单调性求参数的取值范围

导数的应用——利用单调性求参数的取值范围在解题中,我们首先要确定参数的取值范围是有限的,也就是参数不能无限制地取值。

然后我们利用导数的单调性来排除一些不符合要求的取值范围,从而找到参数的合理取值范围。

为了更好地理解这个方法,我们来看一个具体的例子:问题:已知函数f(x) = ax^2 + bx + c,其中a > 0。

如果函数f(x)在定义域内是递增函数,求参数b的取值范围。

解答:首先,我们要明确函数f(x)是递增函数的定义:对于任意的x1<x2,有f(x1)<f(x2)。

我们可以通过求函数f(x)的导函数f'(x)来判断函数f(x)的单调性。

在本例中,函数f(x)的导函数为f'(x) = 2ax + b。

由于函数f(x)为递增函数,所以f'(x)应该大于0。

即对于任意的x,有f'(x)>0。

我们可以把f'(x) > 0看作是一个一次函数y = 2ax + b > 0的解。

这个一次函数的解为x < -b/2a。

也就是说,对于任意的x<-b/2a,有f'(x)>0。

这样一来,我们就可以得出结论,函数f(x)在x<-b/2a的区间上是递增函数。

但是我们并不能马上就得出参数b的取值范围是x<-b/2a。

因为函数f(x)的定义域可能不包含这个区间。

为了求出参数b的取值范围,我们需要进一步考虑函数f(x)的定义域。

对于函数f(x) = ax^2 + bx + c来说,它的定义域是所有实数集合R。

因此,对于任意实数x,函数f(x)都有定义。

由于我们已经确定了函数f(x)在x<-b/2a的区间上是递增函数,所以我们只需要确定使得这个区间包含在定义域内的参数b的取值范围即可。

如果我们假设b/2a为一个实数k,那么我们可以得出-x>k。

即对于任意的x>-k,函数f(x)是递增的。

然而,x的取值范围是所有实数,所以我们可以把任意实数k当作是b/2a。

利用导数求参数的取值范围

利用导数求参数的取值范围

利用导数求参数的取值范围在微积分中,导数是用来描述一个函数在其中一点上的变化率的工具。

通过求导,我们可以研究函数的增减性、最值、拐点等性质。

而利用导数求参数的取值范围,我们主要关注函数的单调性和极值点,对于包含参数的函数,我们可以利用导数来研究参数的取值范围。

设函数$f(x)$为包含参数$a$的函数,我们的目标是求出参数$a$的取值范围,使得函数$f(x)$满足其中一特定条件。

下面将分别讨论求函数单调性和极值点的情况。

一、函数的单调性:1.1单调递增:要求函数$f(x)$在其中一区间上单调递增,即对于区间上的任意两个点$x_1$和$x_2$,若$x_1<x_2$,则$f(x_1)<f(x_2)$。

若函数$f(x)$在区间上是连续的并且可导的,其导函数$f'(x)$在该区间上恒大于零,则函数$f(x)$在该区间上是单调递增的。

因此,我们可以利用导数来求解参数$a$的取值范围,使得函数$f(x)$在其中一区间上单调递增。

具体步骤如下:1)求出函数$f(x)$的导函数$f'(x)$。

2)解方程$f'(x)>0$,求出与参数$a$有关的不等式。

3)解不等式,得到参数$a$的取值范围。

1.2单调递减:要求函数$f(x)$在其中一区间上单调递减,即对于区间上的任意两个点$x_1$和$x_2$,若$x_1<x_2$,则$f(x_1)>f(x_2)$。

若函数$f(x)$在区间上是连续的并且可导的,其导函数$f'(x)$在该区间上恒小于零,则函数$f(x)$在该区间上是单调递减的。

因此,我们可以利用导数来求解参数$a$的取值范围,使得函数$f(x)$在其中一区间上单调递减。

具体步骤如下:1)求出函数$f(x)$的导函数$f'(x)$。

2)解方程$f'(x)<0$,求出与参数$a$有关的不等式。

3)解不等式,得到参数$a$的取值范围。

专题12 利用导数解决函数的单调性

专题12 利用导数解决函数的单调性

专题12导数与函数的单调性问题【高考地位】在近几年的高考中,导数在研究函数的单调性中的应用是必考内容,它以不但避开了初等函数变形的难点,定义法证明的繁杂,而且使解法程序化,优化解题策略、简化运算,具有较强的工具性的作用.导数在研究函数的单调性中的应用主要有两方面的应用:一是分析函数的单调性;二是已知函数在某区间上的单调性求参数的取值范围.在高考中的各种题型中均有出现,其试题难度考查相对较大.类型一求无参函数的单调区间例1已知函数()ln xf x e=.(1)当1a =时,判断()f x 的单调性;【解析】(1)当1a =时,()ln 1xx f x e+=,第一步,计算函数()f x 的定义域:()0,+∞.第二步,求出函数()f x 的导函数'()f x :()1ln 1xx x f x e --'=第三步,令()1ln 1g x x x=--,则()g x 在()0,∞+上为减函数,且()10g =所以,当()0,1x ∈时,()0g x >,()0f x '>,()f x 单调递增;当()1,x ∈+∞时,()0g x <,()0f x '<,()f x 单调递减.故()f x 递增区间为()0,1;()f x 递减区间为()1,+∞【变式演练1】函数()2sin sin 2f x x x =⋅,0,2x π⎡⎤∈⎢⎥⎣⎦的单调递增区间为__________.【答案】(0,)3π;(区间两端开闭都可以)【分析】利用三角恒等变换得32sin y =,再利用换元法设sin [0,1]t x =∈,利用导数和复合函数的单调性解不等式0sin x <<,即可得到答案;【详解】令223sin sin 22sin cos sin 2sin y x x x x x =⋅=⋅=,设sin [0,1]t x =∈,则3()2h t t =,∴()'362h t tt =',2242246122346t t t t t t---=,[0.1)t∈,∴()002h t t >⇒<<',∴0sin 03x x π<<<<,∴()f x 在区间(0,)3π单调递增.故答案为:(0,)3π.【点睛】本题考查复合函数的单调性与导数的结合,考查运算求解能力,求解时注意复合函数的单调性是同增异减的原则.【变式演练2】已知函数()()2ln 1x xf x x e e -=+++,则不等式()()2210f x f x --+≤的解集为___________.【答案】(]1,3,3⎡⎫-∞-+∞⎪⎢⎣⎭【分析】首先根据题意得到()f x 是偶函数,利用导数和奇偶性得到函数()f x 的单调区间,再利用单调性和奇偶性解不等式即可.【详解】因为()()2ln 1x xf x x e e -=+++,x ∈R ,所以()()()2ln 1x xf x x e e f x -+-=++=,所以()f x 是偶函数.因为()22222111x x xx x x e f x e e x x e-'==++-+-+当0x >时,()0f x '>,所以()f x 在()0,∞+上单调递增.又因为()f x 是偶函数,所以()f x 在(),0-∞上单调递减.所以()()2210f x f x --+≤,即()()221f x f x -≤+,所以221x x -≤+,即23830x x +-≥,解得3x ≤-或13x ≥.故答案为:(]1,3,3⎡⎫-∞-+∞⎪⎢⎣⎭.【变式演练3】已知函数()2sin f x x x =-+,若a f =,(2)b f =--,2(log 7)c f =,则,,a b c 的大小关系为()A .a b c <<B .b c a<<C .c a b<<D .a c b<<【答案】D 【解析】【分析】求得函数()f x 单调性与奇偶性,再结合指数函数与对数函数的性质,得出2log 72>>,得到()22(log 7)(f f f >>,进而得到2(2)(log 7)(f f f -->>,即可得到答案.【详解】由题意,函数()2sin f x x x =-+的定义域为R ,且()2()sin()2sin ()f x x x x x f x -=-⋅-+-=-=-,即()()f x f x -=-,所以函数()f x 是R 上的奇函数,又由()2cos 0f x x '=-+<,所以函数()f x 为R 上的单调递减函数,又因为133>=,22log 7log 42>=且22log 7log 83<=,即22log 73<<,所以2log 72>>,可得()22(log 7)(f f f >>,又由函数()f x 是R 上的奇函数,可得()(2)2f f --=,所以2(2)(log 7)(f f f -->>,即a c b <<.故选:D.【点睛】本题主要考查了函数的奇偶性与函数的单调性,以及指数函数与对数函数的图象与性质的综合应用,其中解答中熟练应用函数的基本性质,结合指数函数与对数函数的性质求得自变量的大小关系式解答的关键,着重考查了推理与运算能力.【变式演练4】定义在R 上的连续函数()f x ,导函数为()f x '.若对任意不等于1-的实数x ,均有()()()10x f x f x '+->⎡⎤⎣⎦成立,且()()211xf x f x e -+=--,则下列命题中一定成立的是()A .()()10f f ->B .()()21ef f -<-C .()()220e f f -<D .()()220e f f ->【答案】B 【解析】【分析】构造函数()()x f x g x e=,利用导数分析出函数()y g x =在(),1-∞-上单调递增,在()1,-+∞上单调递减,并推导出函数()()x f x g x e=的图象关于直线1x =-对称,进而可判断出各选项的正误.【详解】构造函数()()xf xg x e=,则()()()x f x f x g x e '-'=,当1x ≠-时,()()()10x f x f x '+->⎡⎤⎣⎦.当1x >-时,则()()0f x f x '->,()0g x '<;当1x <-时,则()()0f x f x '-<,()0g x '>.所以,函数()()xf xg x e=在(),1-∞-上单调递增,在()1,-+∞上单调递减.又()()211xf x f x e-+=--,所以()()1111xxf x f x ee-+---+--=,即()()11g x g x -+=--,故函数()()x f x g x e=的图象关于直线1x =-对称.对于A 选项,()()10g g ->,即()()10ef f ->,()1f -与()0f 的大小关系不确定,A 选项错误;对于B 选项,()()21g g -<-,即()()221e f ef -<-,即()()21ef f -<-,B 选项正确;对于C 、D 选项,()()20g g -=,即()()220e f f -=,C 、D 选项错误.故选:B .【点睛】本题考查利用构造函数法判断函数值的大小关系,根据导数不等式的结构构造新函数是解题的关键,考查推理能力,属于难题.类型二判定含参数的函数的单调性例2已知函数()()2ln 21f x x x ax a R =+-+∈.(1)讨论()f x 的单调性;【解析】(1)第一步,计算函数()f x 的定义域并求出函数()f x 的导函数'()f x :()2122122(0)'x ax x x x xf a x -+=+-=>,记()2221g x x ax =-+.第二步,讨论参数的取值范围,何时使得导函数'()f x 按照给定的区间大于0或小于0:当0a ≤时,因为0x >,所以()1g x >,所以函数()f x 在()0,∞+上单调递增;当0a <≤时,因为()2420a ∆=-≤,所以()0g x ≥,函数()f x 在()0,∞+上单调递增;当a >时,由()00x g x >⎧⎨>⎩,解得22,22a a x ⎛+∈⎪⎝⎭,第三步,根据导函数的符号变换判断其单调区间:所以函数()f x 在区间22,22a a ⎛-+⎝⎭上单调递减,在区间20,2a ⎛- ⎪⎝⎭和22a ⎛⎫++∞⎪ ⎪⎝⎭上单调递增.【变式演练5】(主导函数是一次型函数)已知函数()=1,f x nx ax a R -∈.(1)讨论函数f x ()的单调性;【解析】(1)因为()ln (0)f x x ax x =->,所以11()'-=-=ax f x a x x,当0a时,()0f x '>,即函数()f x 在(0,)+∞单调递增;当0a >时,令()0f x '>,即10ax ->,解得10x a<<;令()0f x '<,即10ax -<,解得1x a>,综上所述:当0a 时,函数()f x 在(0,)+∞单调递增;当0a >时,函数()f x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减.【变式演练6】(主导函数为类一次型)已知函数()xf x e ax -=+.(I )讨论()f x 的单调性;【解析】(Ⅰ)函数()y f x =的定义域为R ,且()xf x a e -'=-.①当0a ≤时,()0f x '<,函数()y f x =在R 上单调递减;②当0a >时,令()0f x '<,可得ln x a <-;令()0f x '>,可得ln x a >-.此时,函数()y f x =的单调递减区间为(),ln a -∞-,单调递增区间为()ln ,a -+∞;【变式演练7】(主导函数为二次型)【2020届山西省高三高考考前适应性测试(二)】已知函数()2ln af x x a x x=--,0a ≥.(1)讨论()f x 的单调性;【解析】(1)函数()2ln a f x x a x x =--的定义域为()0,∞+,()222221a a x ax af x x x x-+'=+-=.令()22g x x ax a =-+,244a a ∆=-.①当2440a a ∆=-≤时,即当01a ≤≤时,对任意的0x >,()0g x ≥,则()0f x '≥,此时,函数()y f x =在()0,∞+上单调递增;②当2440a a ∆=->时,即当1a >时,方程()0g x =有两个不等的实根,设为1x 、2x ,且12x x <,令220x ax a -+=,解得10x a =>,20x a =+>.解不等式()0f x '<,可得a x a <<+解不等式()0f x '>,可得0x a <<-或x a >+此时,函数()y f x =的单调递增区间为(0,a ,()a ++∞,单调递减区间为(a a -+.综上所述,当01a ≤≤时,函数()y f x =的单调递增区间为()0,∞+,无递减区间;当1a >时,函数()y f x =的单调递增区间为(0,a ,()a ++∞,单调递减区间为(a a -+;【变式演练8】(主导函数是类二次型)已知函数2()(1)x f x k x e x =--,其中k ∈R.(1)当k 2≤时,求函数()f x 的单调区间;【解析】(1)()2(2)x x f x kxe x x ke '=-=-,当0k ≤时20x ke -<,令'()0f x >得0x <,令'()0f x <得0x >,故()f x 的单调递增区间为(0)()f x -∞,,的单调递减区间为(0)+∞,当02k <≤时,令'()0f x =得0x =,或2ln 0x k=≥,当02k <<时2ln0k >,当'()0f x >时2ln x k >或0x <;当'()0f x >时20ln x k <<;()f x 的单调递增区间为()2,0,ln ,k ⎛⎫-∞+∞ ⎪⎝⎭;减区间为20ln k ⎛⎫ ⎪⎝⎭,.当2k =时2ln0k=,当0x >时'()0f x >;当0x <时'()0f x >;()f x 的单调递增区间为(),-∞+∞;【变式演练9】已知函数()22ln f x x x =-,若()f x 在区间()2,1m m +上单调递增,则m 的取值范围是()A .1,14⎡⎫⎪⎢⎣⎭B .1,4⎡⎫+∞⎪⎢⎣⎭C .1,12⎡⎫⎪⎢⎣⎭D .[)0,1【答案】A 【分析】利用导数求出函数()f x 的单调递增区间为1,2⎛⎫+∞ ⎪⎝⎭,进而可得出()12,1,2m m ⎛⎫+⊆+∞ ⎪⎝⎭,可得出关于实数m的不等式组,由此可解得实数m 的取值范围.【详解】因为()22ln f x x x =-的定义域为()0,∞+,()14f x x x'=-,由()0f x '>,得140x x ->,解得12x >,所以()f x 的递增区间为1,2⎛⎫+∞ ⎪⎝⎭.由于()f x 在区间()2,1m m +上单调递增,则()12,1,2m m ⎛⎫+⊆+∞ ⎪⎝⎭,所以12122m mm +>⎧⎪⎨≥⎪⎩,解得114m ≤<.因此,实数m 的取值范围是1,14⎡⎫⎪⎢⎣⎭.故选:A.【点睛】方法点睛:利用函数()f x 在区间D 上单调递增求参数,可转化为以下两种类型:(1)区间D 为函数()f x 单调递增区间的子集;(2)对任意的x D ∈,()0f x '≥恒成立.同时也要注意区间左端点和右端点值的大小关系.类型三由函数单调性求参数取值范围例3.若()()21ln 242f x x b x =-++在()2,-+∞上是减函数,则实数b 的范围是()A .(],1-∞-B .(],0-∞C .(]1,0-D .[)1,-+∞【答案】A【解析】第一步:计算函数()f x 的定义域并求出函数()f x 的导函数'()f x :因为()()21ln 242f x x b x =-++,故可得()2b f x x x '=-++,第二步根据题意转化为相应的恒成立问题:因为()f x 在区间()2,-+∞是减函数,故02bx x -+≤+在区间()2,-+∞上恒成立.因为20x +>,故上式可整理化简为()2b x x ≤+在区间()2,-+∞上恒成立,因为()2y x x =+在区间()2,-+∞上的最小值为1-,第三步得出结论:故只需b ≤-1.故选:A.【点睛】本题考查根据函数的单调性,利用导数求解参数范围的问题,属基础题.【变式演练11】(转化为任意型恒成立)【四川省绵阳市2020高三高考数学(文科)三诊】函数2()(2)x f x e x ax b =-++在(1,1)-上单调递增,则2816a b ++的最小值为()A .4B .16C .20D .18【答案】B 【解析】【分析】由函数()()22xf x exax b =-++在()1,1-上单调递增得:()2402a x a b x -+-++≥在()1,1-上恒成立,转化成26020a b b +-≥⎧⎨+≥⎩,结合线性规划知识求解即可【详解】因为函数()()22xf x e xax b =-++在()1,1-上单调递增,所以()()()()22''22'xx f x ex ax b e x ax b =-+++-++=()2402x a x a b e x ⎡⎤+-++≥⎣⎦-在()1,1-上恒成立.又0x e >,所以()2402a x a b x -+-++≥在()1,1-上恒成立.记()()224g x a x x a b -=+-++,则()()()()12401240g a a b g a a b ⎧-=---++≥⎪⎨=-+-++≥⎪⎩,整理得:26020a b b +-≥⎧⎨+≥⎩,把横坐标看作a 轴,纵坐标看作b 轴,作出不等式组表示的区域如下图,令2816a z b =++,则2288a z b =-+-,抛物线28a b =-恰好过图中点()4,2G -,由线性规划知识可得:当抛物线2288a zb =-+-过点()4,2G -时,28z -最小,此时z 取得最小值.所以()2min 4821616z =+⨯-+=故选B【点睛】本题主要考查了单调性与导数的关系,还考查了恒成立问题及线性规划求最值,考查计算能力及转化能力,属于中档题.【变式演练12】(转化为变号零点)已知函数2()ln 1f x x a x =-+在(1,2)内不是单调函数,则实数a 的取值范围是()A .[)2,8B .[]2,8C .(][),28,-∞+∞ D .()2,8【答案】D【解析】【分析】函数()f x 的定义域为(0,)+∞,22()2a x a f x x x x-'=-=,根据题意可得到,12<<,从而可得答案.【详解】解: 函数2()1f x x alnx =-+,定义域{|0}x x >,∴22()2a x a f x x x x-'=-=,当0a时,()0f x '>,()f x 在(0,)+∞上是增函数,不符合题意,当0a >时,在⎫+∞⎪⎪⎭上,()0f x '>,()f x 单调递增,在⎛ ⎝上,()0f x '<,()f x 单调递减, 函数2()1f x x alnx =-+在(1,2)内不是单调函数,12∴<<,28a ∴<<,故选:D .【点睛】本题考查利用导数研究函数的单调性,依题意得到02a -是关键,也是难点所在,属于中档题.【变式演练13】(直接给给定单调区间)已知函数()32113f x x mx nx =+++的单调递减区间是()3,1-,则m n +的值为()A .-4B .-2C .2D .4【答案】B【解析】【分析】根据()f x 的单调区间,得到导函数()'fx 的零点,结合根与系数关系,求得m n +的值.【详解】依题意()'22f x x mx n =++,由于函数()32113f x x mx nx =+++的单调递减区间是()3,1-,所以3x =-,1x =是()'22fx x mx n =++的两个零点,所以3121313m m n n -+=-=⎧⎧⇒⎨⎨-⨯==-⎩⎩,所以2m n +=-.故选:B【点睛】本小题主要考查利用导数研究函数的单调性,属于中档题.【变式演练14】(转化为存在型恒成立)若f (x )321132x x =-++2ax 在(1,+∞)上存在单调递增区间,则a 的取值范围是()A .(﹣∞,0]B .(﹣∞,0)C .[0,+∞)D .(0,+∞)【答案】D【解析】【分析】f (x )在(1,+∞)上存在单调递增区间,等价于()f x '>0在(1,+∞)上有解.因此结合()f x '的单调性求出其在(1,+∞)上的最值,即可得出结论.【详解】f (x )321132x x =-++2ax 在(1,+∞)上存在单调递增区间,只需()f x '>0在(1,+∞)上有解即可.由已知得2()2f x x x a '=-++,该函数开口向下,对称轴为12x =,故()f x '在(1,+∞)上递减,所以(1)f '=2a >0,解得a >0.故选:D.【点睛】本题主要考查了函数单调性的应用,难度不大.。

利用导数判断函数的单调性教案

利用导数判断函数的单调性教案

选修1-1《3.1.3利用导数判断函数单调性》例习题设计 内蒙呼和浩特二中 杨艳华例题、练习是数学教学中的重要组成部分,它是学生巩固、理解、掌握并熟练运用所学 知识,发展数学能力,培养数学思维及创新精神的重要途径。

恰到好处的题目,能使学生快速的理解所学知识并达到熟练运用, 逐步掌握多种数学思想方法,提高数学解题能力, 举一反三、触类旁通的效果。

因此要想充分发挥例题、练习的功能,教师必须在新课标的理 念下精心设计好例题、练习,才能实现有效地教学。

下面以一节课的例题设计为例进行分析 说明:一、授课内容:人教B 版选修1-1第三章第三节导数的应用----利用导数判断函数单调 性。

/(x) = —(1 +4凸疋 +24吃(a > 1)例题:(09年全国二卷)设函数',讨论函 数的单调性。

1 ? ,—ax +4a?;+ 24a (a > 1) 丰『、 练习:设函数一 I,讨论函数-'单调性; 变式1: 」八;在 (3,4)内为减函数,求 肚的取值范围;.|| _练习:已知i 对'■ ■- - J 恒成立,求黑的取值范围; 变式2:」 」:在(3,4)内不单调,求二的取值范围;练习: - 有3个不相等实根,,求 二的取值范围。

作业:(08年全国一)已知函数(1) 讨论函数-的单调区间;(2010 全国二)已知函数■-(I) 设Li =-,求-的单调区间;(n)设-'■1 ■在区间(2,3)中至少有一个极值点,求 &的取值范围。

二、教学目标:1、知识目标:( 1)掌握判断含参系数函数的单调性问题;( 2)掌握函数单调性的逆问题的处理方法。

达到 (2)设函数了⑺)在区间I2 n了 /丿内是减函数,求7的取值范围2. 能力目标:(1)通过上节课对具体函数单调性的处理,逐步过渡到对含参系数函数单调性的处理上,并使学生领会数形结合的思想,培养学生提出问题,分析问题以及数学表达的能力;(2)培养学生由具体到抽象、特殊到一般的归纳能力。

利用函数的单调性求参数的取值范围(使用)

利用函数的单调性求参数的取值范围(使用)

例1:已知函数f (x) x3 ax2 3x 1在[2,4]上是单调递增函数, 求参数a的取值范围.
解 f '(x) 3x2 2ax 3, x [2,4]
: 则f '(x) 0在[2,4]上恒成立
即3x2 2ax 3 0,恒成立x [2,4]
方法:(分离参数)2ax 3x2 3恒成立
f '(x) ax (2a 1) 2 (ax 1)(x 2)
x
x
(1)当a 0时,f '(x) 2 x x
所以f (x)在(0,2)上递增,在(2, )上递减。
(2)当a
0时,令f
'(x)
0,
得x1
1 a
0.x2
2
结合二次函数图象知 f (x)在(0,2)上递增;
在(2, )递减。
(3)当a
即3x2 a 3 0,恒成立x [0,)
方法:(分离参数)
a 3x2 3恒成立
a (3x2 3)min a 3
练习 若函数f (x) x3 ax2 1在(0,2)内单调递减, 2: 求实数a的取值范围.
解析: f '(x) 3x2 2ax, x (0,2)
则f '(x) 0在(0,2)上恒成立
利用函数单调性求参数的 取值范围
复习
1 用导数判断函数单调性法则:

如果在(a,b)内,f
(x)>0,则f
(x)在此区间是增函数;
如果在(a,b)内,f (x)<0,则f (x)在此区间是减函数。
2、求函数单调区间的一般步骤 是
1、求定义 域2、求导
f'(x) 3、令f'(x)>0,求出增区间,令f'(x)<0, 求出减区间。

已知函数单调性求参数范围公开课教案

已知函数单调性求参数范围公开课教案

肥东锦弘中学高中部数学公开课教案已知函数单调性求参数范围教学目标1.知识与技能:学会利用导数来解决已知单调性求参数范围问题;2.过程与方法:通过实例讲解,归纳,解决问题的方法;3.情感与态度:通过问题的解决,体会转化思想的应用. 教学重点已知单调性,利用导数求参数范围.教学难点不同问题的处理方法.教学过程(一)知识梳理函数y =f (x )的导数为)('x f y =,对于区间(a ,b ).1.若y =f (x )的单调区间为(a ,b ),则⎩⎨⎧==0)('0)('b f a f 2.若y =f (x )在区间(a ,b )上单调递增(递减),则)0)('(0)('≤≥x f x f 在(a ,b )上恒成立.(二)典例分析例1 函数)(ln )(22R a ax x a x x f ∈+-=的单调递减区间是),1(+∞,求a 的值.例2 函数)(ln )(22R a ax x a x x f ∈+-=在),1(+∞上是减函数, 求a 的取值范围.例3 函数)0(221ln )(2<--=a x ax x x f 在定义域内单调递增,求a 的取值范围.例4 函数1331)(223+-+=x m mx x x f 在区间)3,2(-上是减函数,求m 的取值范围.例5已知R a ∈,函数3)1()(223+-+-=x a ax x x f 在)0,(-∞和),1(+∞上都是增函数, 求a 的取值范围.(三)课时小结本节课主要介绍了已知函数单调性来利用导数求参数范围.(四)备用练习1.函数)0(3)(223>+-+=a x a ax x x f 在[-1,1]上没有极值点, 求a 的值.2.函数)0(1)(2>+=a axe xf x在R 上为单调函数, 求a 的取值范围.3.函数1)5()1()(23-++-+=x k x k x x g 在区间)(3,0上有极值点,求参数k 的取值范围。

利用导数探求参数的范围问题(教案)-备战2018届高考数学三轮难点讲义

利用导数探求参数的范围问题(教案)-备战2018届高考数学三轮难点讲义

利用导数探求参数的范围问题利用导数探求参数的取值范围是高考考查的重点和热点,由于导数是高等数学的基础,对于中学生来说运算量大、思维密度强、解题方法灵活、综合性高等特点,成为学生感到头疼和茫然的一类型题,究其原因,其一,基础知识掌握不够到位(导数的几何意义、导数的应用),其二,没有形成具体的解题格式和套路,从而导致学生产生恐惧心理,成为考试一大障碍,本文就高中阶段该类题型和相应的对策加以总结. 【类型一】与函数零点有关的参数范围问题【概要】函数()f x 的零点,即()0f x =的根,亦即函数()f x 的图象与x 轴交点横坐标,与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图像,讨论其图象与x 轴的位置关系(或者转化为两个熟悉函数交点问题),进而确定参数的取值范围. 【题型示例】例1【2018届浙江省嘉兴市第一中学高三上学期期中】已知函数()()22xx f x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围. 【答案】(1)详见解析;(2)0<a<1.(2)1ln 0f a ⎛⎫< ⎪⎝⎭即可()2111111ln 2ln 1ln 0f a a a a a a a a ⎛⎫⎛⎫=+--=--< ⎪ ⎪⎝⎭⎝⎭令1t a=,令()1ln g t t t =--在()0,+∞上为减函数 又因为: ()10g =,所以1t >,所以11a>, 所以:a 的取值范围为01a <<.【点睛】求函数的单调区间,先求出函数的定义域,在对函数求导,在定义域下解不等式()0f x '>和()0f x '<,求出增区间和减区间;如果含参数则需对参数讨论,分情况说明函数的单调区间和单调性;函数的零点问题转化为函数图像与x 轴的交点问题解决,利用导数研究函数的单调性和极值,根据零点的个数的要求,限制极值的正负,列不等式求出参数的范围.例2【2017届浙江省杭州高级中学高三2月高考模拟】设函数()()23,2f x x ax a g x ax a =-++=-.(1)若函数()()()h x f x g x =-在[]2,0-上有两个零点,求实数a 的取值范围; (2)若存在0x R ∈,使得()00f x ≤与()00g x ≤同时成立,求实数a 的最小值.【答案】(1) 312a -≤<;(2)7(2)由已知, ()()2000301{202x ax a ax a -++≤-≤ ()()12+得203x a ≤-,得3a ≥,再由()2得02x ≤,由()1得()20013a x x -≥+,得01x >于是,问题等价于: 3a ≥,且存在(]01,2x ∈满足20030x ax a -++≤令(]010,1t x =-∈, 2003421x a t x t+≥=++-因为 ()42t t tϕ=++ 在(]0,1 上单调递减, 所以 ()()17t ϕϕ≥=,即 7a ≥ 故实数a 的最小值为 7.【类型二】与曲线的切线有关的参数取值范围问题【概要】函数()y f x =在点0x x =处的导数'0()f x 就是相应曲线在点00(,())x f x 处切线的斜率,即'0()k f x =,此类试题能与切斜角的范围,切线斜率范围,以及与其他知识综合,往往先求导数,然后转化为关于自变量0x 的函数,通过求值域,从而得到切线斜率k 的取值范围,或者切斜角范围问题. 【题型示例】 例3函数()21ln 2f x x x ax =++存在与直线30x y -=平行的切线,则实数a 的取值范围是__________. 【答案】(],1-∞例4已知函数()2x f x e ax bx =++.(1)当0 1a b ==-,时,求()f x 的单调区间; (2)设函数()f x 在点()()() 01P t f t t <<,处的切线为l ,直线l 与y 轴相交于点Q ,若点Q 的纵坐标恒小于1,求实数a 的取值范围. 【答案】(1);(2)12a ≥-.即2ea ≤-时,20t e a +<,所以,当()0 1t ∈,时,()'0g t <,即()g t 在()0 1,上单调递减,所以()()00g t g <=,所以2e a ≤-不满足题意.③若21e a -<<-,即122e a -<<-时,()0ln 21a <-<,则t 、()'g t 、()g t 的关系如下表:所以()()()ln 200g a g -<=,所以122e a -<<-不满足题意,结合①②③,可得,当12a ≥-时,()()001g t t ><<时,此时点Q 的纵坐标恒小于1.点评:该题考查导数的几何意义、斜率的定义等基础知识,考察学生基本运算能力、灵活运用导数知识处理问题的能力,需要注意的是解决问题的途径是将存在问题转化为方程有解问题.利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题 【类型三】与不等式恒成立问题有关的参数范围问题【概要】含参数的不等式()()f x g x >恒成立的处理方法:①()y f x =的图象永远落在()y g x =图象的上方;②构造函数法,一般构造()()()F x f x g x =-,min ()0F x >;③参变分离法,将不等式等价变形为()a h x >,或()a h x <,进而转化为求函数()h x 的最值. 3.1参变分离法将已知恒成立的不等式由等价原理把参数和变量分离开,转化为一个已知函数的最值问题处理,关键是搞清楚哪个是变量哪个是参数,一般遵循“知道谁的范围,谁是变量;求谁的范围,谁是参数”的原则. 【题型示例】例5【安徽省淮南市2018届第四次联考】已知函数()()()336x f x e ax x a R =-+∈(e 为自然对数的底数)(Ⅰ)若函数()f x 的图像在1x =处的切线与直线0x y +=垂直,求a 的值; (Ⅱ)对(]0,4x ∈总有()f x ≥0成立,求实数a 的取值范围. 【答案】13(1);(2).48a a e =≥综合性较高,需要具备良好的数学素质,第二问中参变分离时,要考虑符号.利用导数解决不等式恒成立问题的“两种”常用方法(1)分离参数法:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围.一般地,f(x)≥a 恒成立,只需f(x)min≥a 即可;f(x)≤a 恒成立,只需f(x)max≤a 即可.(2)函数思想法:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值(最值),然后构建不等式求解. 3.2 构造函数法参变分离后虽然转化为一个已知函数的最值问题,但是有些函数解析式复杂,利用导数知识无法完成,或者是不易参变分离,故可利用构造函数法. 【题型示例】例6【2018届浙江省台州市高三上学期期末】已知函数()()21x f x x x e -=-+⋅.(1)求函数()f x 的单调区间;(2)当[]0,2x ∈时, ()22f x x x m ≥-++恒成立,求m 的取值范围.【答案】(1)单调递减区间为()(),1,2,-∞+∞,单调递增区间为()1,2;(2)11m e≤- 【解析】试题分析:(Ⅰ)求出()'f x ,令()'0f x >求得x 的范围,可得函数()f x 增区间, ()'0f x <求得x 的范围,可得函数()f x 的减区间;(Ⅱ) []0,2x ∈时, ()22f x x x m ≥-++恒成立,等价于()()222212x m f x x x x x e x x -≤+-=-+⋅+-, ()()2212x g x x x e x x -=-+⋅+-,利用导数研究函数的单调性,求出()()min 111g x g e==-,从而可得结果.试题解析:(Ⅰ)函数()f x 的定义域为{}| x x R ∈, ()()()21xf x x x e -'=---,0x e -> , ()0f x ∴'<,解得1x <或2x >, ()f x 为减函数,()0f x '>,解得12x <<, ()f x 为增函数,()f x ∴的单调递减区间为()(),1,2,-∞+∞,单调递增区间为()1,2;【类型四】与函数单调区间有关的参数范围问题【概要】若函数()f x 在某一个区间D 可导,'()0f x >⇒函数()f x 在区间D 单调递增;'()0f x <⇒函数()f x 在区间D 单调递减.若函数()f x 在某一个区间D 可导,且函数()f x 在区间D 单调递增⇒'()0f x ≥恒成立;函数()f x 在区间D 单调递减⇒'()0f x ≤恒成立.4.1 参数在函数解析式中转化为'()0f x ≥恒成立和'()0f x ≤恒成立问题后,利用恒成立问题的解题方法处理【题型示例】例7【2018届浙江省嘉兴市第一中学高三9月基础测试】已知函数()()21ln ,2f x x a x a R =-∈. (I )若()y f x =在2x =处的切线方程为y x b =+,求,a b 的值; (II )若()f x 在()1,+∞上为增函数,求a 得取值范围. 【答案】(1) 2{22a b ln ==- (2) 1a ≤4.2 参数在定义域中函数解析式确定,故可先确定其单调区间,然后让所给定义域区间包含在单调区间中. 【题型示例】 例8. 若函数()21ln 2f x x a x =-在其定义域内的一个子区间()2,2a a -+上不单调,则实数a 的取值范围是__________.【答案】[)2,4【类型五】与函数极(最)值有关的参数范围问题【概要】】(1)可导函数y =f(x)在点0x 处取得极值的充要条件是f ′(0x )=0,且在0x 左侧与右侧f ′(x)的符号不同.(2)若f(x)在(a ,b)内有极值,那么f(x)在(a ,b)内绝不是单调函数,即在某区间上单调增或减的函数没有极值. 【题型示例】例9.【2017江苏,20】 已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数()f x '的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:23b a >;(3)若()f x ,()f x '这两个函数的所有极值之和不小于72-,求a 的取值范围.【答案】(1)3a >(2)见解析(3)36a <≤列表如下故()f x 的极值点是12,x x . 从而3a >,因此2239a b a=+,定义域为(3,)+∞.(2)由(1+设23()=9t g t t +,则22223227()=99t g t t t-'-=.当)t ∈+∞时,()0g t '>,从而()g t 在)+∞上单调递增.因为3a >,所以>(g g因此2>3b a .。

利用导数研究含参函数的单调性【公开课教学PPT课件】

利用导数研究含参函数的单调性【公开课教学PPT课件】

3
2
y
y
y
-1 0 x
-1 a 0 x a -1 0 x
①当a=-1时
②当a>-1时
③当a<-1时
小结:当两根的大小不确定时,应进行分类讨论.
探究二
变式二:讨论函数f ( x) 1 x2 +(1 a)x a ln x的单调性. 2
y
y
0a
x a0 x
①当a>0时
②当a≤0时
小结:当根大小不确定时,应讨论根的大小及根是否在定义域内.
2、已知函数f ( x) ln x a ,求f ( x)的单调区间 x
3、已知函数f ( x) 1 ax2 x (a 1)ln x,讨论f ( x)的单调性 2
感谢您的指导
邱奉美
第三章 导数应用
利用导数研究含参函数的单调性
(第1课时)
探究一
变式一:讨论函数f ( x) 1 x3 1 a x2 ax 1的单调性.
3
2

探究一
变式一:讨论函数f ( x) 1 x3 1 a x2 ax 1的单调性.
0,x2
1
1)当 1 1即a 1时,f (x)在(0, )上递增.
a
10 0a1 00
10
1 1
x 11
xx
1
xx
aa
2)当1 1即a 1时,f (x)在(0,1)和(1, )上递增; f (x)在( 1 ,1)上递减.
a
a
a
3)当1 1即0 a 1时,f (x)在(0,1)和(1, )上递增; f (x)在(1,1 )上递减.
探究二
变式三:讨论函数f ( x) 1 x2 (a 1)x a ln x的单调性. 2

高中数学 第一章 导数及其应用 1.3.1 导数在研究函数中的应用—单调性说课稿2 苏教版选修2-2

高中数学 第一章 导数及其应用 1.3.1 导数在研究函数中的应用—单调性说课稿2 苏教版选修2-2

导数在研究函数中的应用—单调性一、教材分析本节课,是苏教版选修2-2第一章第3节课。

它承接导数的定义和运算,开启了导数在函数中应用的研究,是导数应用的基础知识,地位重要.二、学情分析学生前面已经学习了导数的定义和简单函数四则运算的导数公式,尤其是已经有了“割线逼近切线”这种数学思想,这为本节课提供了充分的思想方法准备.并且,在本节课开头设置的三个问题中,有的问题可以用单调性定义解决,有些通过观察可以直接判断,而有些则并不能一眼看出单调性,这就触动学生要寻找新的解题方法,探索新的思路。

通过数学问题的导引,带领学生走进课堂.在实际教学中,考虑到学生比较容易局限于观察图象,得出结论,缺乏严谨的推理。

事实上,图象只能提供直观感受,并不能作为说理依据。

教师就要引导学生共同思考:怎样从已有的单调性的定义中,找出合理、可行、有效的方法。

师生共同观察、思考、猜想、证明,最终得出结论,比较圆满地完成一个数学知识的学习过程,体验数学发现的乐趣,拓宽师生的数学视野.三、教学目标1 .探索并了解函数的单调性和函数导数的关系;2.比较初等方法与导数方法在研究函数性质过程中的异同,体现导数方法在研究函数性质中的一般性和有效性.四、教学重点、难点我认为本节课的重点是从单调性的定义出发,逐步建立单调性与导数之间的关系。

其间,既有代数变形,又有图形直观;既有大胆的猜想,又有严密推理。

教师和学生在这些思想方法之间灵活穿梭、切换,既有激烈地思想交锋,又有严密地逻辑推理,让看似平静的课堂充满了智慧的碰撞。

五、教学方法与教学手段教师从课本章头图引入课题,自然地把导数和单调性结合起来。

教师通过设置问题串,从“会”到“不会”,激发学生学习兴趣,展开探究。

教师利用多媒体PPT和几何画板,动态演示,确定研究方向,最终得出结论。

六、教学过程教师为了能够真正体现“要提高学生独立获取数学知识,并用数学语言表达问题的能力”这个新课程理念,设计了10个环节。

函数的单调性与导数讲义

函数的单调性与导数讲义

导数的应用讲义一、知识梳理1.函数的单调性在某个区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f′(x)<0,那么函数y =f(x)在这个区间内单调递减.2.函数的极值(1)一般地,求函数y=f(x)的极值的方法解方程f′(x)=0,当f′(x0)=0时:①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.(2)求可导函数极值的步骤①求f′(x);②求方程f′(x)=0的根;③考查f′(x)在方程f′(x)=0的根附近的左右两侧导数值的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(3)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.注意:1.在某区间内f′(x)>0(f′(x)<0)是函数f(x)在此区间上为增(减)函数的充分不必要条件.2.可导函数f(x)在(a,b)上是增(减)函数的充要条件是对∀x∈(a,b),都有f′(x)≥0(f′(x)≤0)且f′(x)在(a,b)上的任何子区间内都不恒为零.3.对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值的必要不充分条件.二、基础检测题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.()(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.()(3)函数的极大值不一定比极小值大.()(4)对可导函数f (x ),f ′(x 0)=0是x 0点为极值点的充要条件.( )(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( )题组二:教材改编2.如图是函数y =f (x )的导函数y =f ′(x )的图象,则下面判断正确的是( )A .在区间(-2,1)上f (x )是增函数B .在区间(1,3)上f (x )是减函数C .在区间(4,5)上f (x )是增函数D .当x =2时,f (x )取到极小值3.[设函数f (x )=2x +ln x ,则( ) A .x =12为f (x )的极大值点 B .x =12为f (x )的极小值点 C .x =2为f (x )的极大值点 D .x =2为f (x )的极小值点4.]函数f (x )=x 3-6x 2的单调递减区间为__________.5.函数y =x +2cos x 在区间]2,0[ 上的最大值是__________.题组三:易错自纠6.函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( )A .无极大值点、有四个极小值点B .有三个极大值点、一个极小值点C .有两个极大值点、两个极小值点D .有四个极大值点、无极小值点7.已知定义在实数集R 上的函数f (x )满足f (1)=3,且f (x )的导数f ′(x )在R 上恒有f ′(x )<2(x ∈R ),则不等式f (x )<2x +1的解集为____________.8.设a ∈R ,若函数y =e x +ax 有大于零的极值点,则实数a 的取值范围是________.三、典型例题(一)导数与函数的单调性题型一不含参数的函数的单调性1.函数y =4x 2+1x的单调增区间为 2.已知函数f (x )=x ln x ,则f (x )( )A .在(0,+∞)上单调递增B .在(0,+∞)上单调递减C .在)1,0(e 上单调递增D .在)1,0(e 上单调递减3.已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间是______________________. 思维升华:确定函数单调区间的步骤(1)确定函数f (x )的定义域.(2)求f ′(x ).(3)解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间.(4)解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.题型二:含参数的函数的单调性典例 已知函数f (x )=ln(e x +1)-ax (a >0),讨论函数y =f (x )的单调区间.思维升华:(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的点和函数的间断点. 跟踪训练 已知函数f (x )=e x (ax 2-2x +2)(a >0).试讨论f (x )的单调性.题型三:函数单调性的应用问题命题点1:比较大小或解不等式典例 (1)已知定义在)2,0(π上的函数f (x )的导函数为f ′(x ),且对于任意的x ∈)2,0(π,都有f ′(x )sin x <f (x )cos x ,则( ) A.3f )4(π>2f )3(πB .f )3(π>f (1) C.2f )6(π<f )4(π D.3f )3(π<f )3(π (2)设f (x )是定义在R 上的奇函数,f (2)=0,当x >0时,有xf ′(x )-f (x )x 2<0恒成立,则不等式x 2f (x )>0的解集是__________________.命题点2:根据函数单调性求参数典例:已知函数f (x )=ln x ,g (x )=12ax 2+2x (a ≠0). (1)若函数h (x )=f (x )-g (x )存在单调递减区间,求a 的取值范围;(2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围.引申探究:本例(2)中,若函数h (x )=f (x )-g (x )在[1,4]上单调递增,求a 的取值范围.2.本例(2)中,若h (x )在[1,4]上存在单调递减区间,求a 的取值范围.思维升华:根据函数单调性求参数的一般思路(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上,f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则漏解.(3)函数在某个区间存在单调区间可转化为不等式有解问题.跟踪训练:已知函数f (x )=3x a -2x 2+ln x 在区间[1,2]上为单调函数,求a 的取值范围. 四、反馈练习1.函数f (x )=x 2-2ln x 的单调递减区间是( )A .(0,1)B .(1,+∞)C .(-∞,1)D .(-1,1)2.已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图所示,则下列叙述正确的是( )A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e )C .f (c )>f (b )>f (a )D .f (c )>f (e )>f (d )3.已知m 是实数,函数f (x )=x 2(x -m ),若f ′(-1)=-1,则函数f (x )的单调增区间是( )A.)0,34(-B.)34,0(C.)34,(--∞,(0,+∞)D.)34,(--∞∪(0,+∞) 4.已知函数f (x )=12x 3+ax +4,则“a >0”是“f (x )在R 上单调递增”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞)6.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f )21(,c =f (3),则( ) A .a <b <cB .c <b <aC .c <a <bD .b <c <a7.若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为(-1,3),则b +c =________.8.已知函数f (x )(x ∈R )满足f (1)=1,f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为________________. 9.已知g (x )=2x+x 2+2a ln x 在[1,2]上是减函数,则实数a 的取值范围为__________. 10.设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是____________.11.已知函数f (x )=ln x +k e x(k 为常数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. (1)求实数k 的值;(2)求函数f (x )的单调区间.12.已知函数f (x )=b ex -1(b ∈R ,e 为自然对数的底数)在点(0,f (0))处的切线经过点(2,-2).讨论函数F (x )=f (x )+ax (a ∈R )的单调性.13.已知f (x )是可导的函数,且f ′(x )<f (x )对于x ∈R 恒成立,则( )A .f (1)<e f (0),f (2 017)>e 2 017f (0)B .f (1)>e f (0),f (2 017)>e 2 017f (0)C .f (1)>e f (0),f (2 017)<e 2 017f (0)D .f (1)<e f (0),f (2 017)<e 2 017f (0)14.若函数f (x )=-13x 3+12x 2+2ax 在)32[∞+,上存在单调递增区间,则a 的取值范围是________. 15.已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则t 的取值范围是________. 16.已知函数f (x )=a ln x -ax -3(a ∈R ).(1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎡⎦⎤f ′(x )+m 2在区间(t,3)上总不是单调函数,求m 的取值范围.。

原创1:3.3.1 利用导数判断函数的单调性

原创1:3.3.1 利用导数判断函数的单调性
数 f(x)的单调区间,实质 上是转化为解不等式 f′(x)>0 或 f′(x)<0,不等式的解集就 是函数的单调区间.
(2)如果函数的单调区间不止一个时,应用“及”、 “和”等连接,而不能写成并集的形式.如本例(2)中的单调 减区间不能写成(0,π)∪32π,2π.
1-3x2<0,解得
x<-
33或
x>
3 3.
因此,函数
f(x)







-∞,-
3 3

33,+∞.
(2)f′(x)=cos x+sin x+1= 2sinx+4π+1. 令 2sinx+4π+1>0,得 0<x<π 或32π<x<2π. 因此函数的单调增区间为(0,π)与32π,2π. 令 2sinx+4π+1<0,得 π<x<32π, 因此函数的单调减区间为π,32π.
第三章 导数及其应用
§3.3 导数的应用
3.3.1 利用导数判断函数的单调性
1.通过实例了解函数导数的符号与函数单调性之间的关系; 2.能够利用导数研究函数的单调性; 3.会求函数的单调区间.
1.利用导数研究函数的单调性,求函数的单调区间.(重点) 2.利用数形结合思想理解导函数与函数单调性之间的关系.(难点) 3.常与方程、不等式等结合命题.
题目类型三、由单调性求参数的取值范围
例3.若函数f(x)=ax3-x2+x-5在R上单调递增,求实数a的 取值范围.
[题后感悟] (1)一般地,已知函数的单调性,如何求参数的取值范 围?
函数在区间[a,b] 上单调递增减
―→
f′x≥0f′x≤0在 区间[a,b]上恒成立

1.3.1导数在研究函数中的应用—单调性教案12017-2018学年高中数学苏教版选修2-2

1.3.1导数在研究函数中的应用—单调性教案12017-2018学年高中数学苏教版选修2-2

1.3.1导数在研究函数中的应用—单调性教案12017-2018学年高中数学苏教版选修2-2导数在研究函数中的应用——单调性【教学分析】1.教材分析本节课是高中数学苏教版教材选修2-2第1.3.1节导数在研究函数单调性中的应用.这节内容是导数作为研究函数的工具的起点,是本节的重点,学生对本节的收获直接影响着后面极值、最值的学习.函数单调性是高中阶段讨论函数“变化”的一个最基本的性质.学生在中学阶段对于单调性的学习共分为三个阶段:第一阶段,在初中以具体函数为载体,从图形直观上感知单调性;第二阶段在高中学习必修一时,用运算的性质研究单调性;第三阶段就是在本节课中,用导数的性质研究单调性.本节内容属于导数的应用,是本章的重点,学生在学习了导数的概念、几何意义、基本函数的导数、导数的四则运算的基础上学习本节内容.学好它既可加深对导数的理解,又为研究函数的极值和最值打好基础,具有承前启后的重要作用.研究过程蕴含了数形结合、分类讨论、转化与化归等数学思想方法,以及研究数学问题的一般方法,即从特殊到一般,从简单到复杂,培养了学生应用导数解决实际问题的意识.2.学情分析《普通高中数学新课程标准(实验)》中要求:结合实例,借助几何直观探索并了解函数的单调性与导数间的关系.对于函数的单调性学生已经掌握图象、定义两种判断方法,但是图象和定义法不是万能的.对于不能用这两种方法解决的单调性问题学生需要思考.学生之前学习了导数的概念,经历过从平均变化率到瞬时变化率的过程,研究过导数的几何意义是函数图象在某点处的切线,从数和形的角度认识了导数也是刻画函数变化陡峭程度的量,但是沟通导数和单调性之间的练习对学生来说是教学中要突破的难点和重点.3. 教学目标(1)了解函数的单调性与导数的关系,能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间.(2)通过实例,借助几何直观、数形结合探索函数的单调性与导数的关系;通过初等方法与导数方法研究函数性质过程中的比较,体会导数在研究函数性质中的一般性和有效性,同时感受和体会数学自身发展的一般规律.(3)通过教师指导下的学生交流探索活动,激发学生的学习兴趣,培养学生转化与化归的思维方式,并引导学生掌握从特殊到一般,从简单到复杂的思维方法,用联系的观点认识问题,提高学生提出问题、分析问题、解决问题的能力.4. 教学重点:利用导数研究函数的单调性5. 教学难点:发现和揭示导数的正负与函数单调性的关系.6. 教学方法与教学手段:问题教学法、合作学习法、多媒体课件等【教学过程】1.创设情境,激发兴趣情境一:过山车章头图情境二:观看过山车视频【设计意图】通过章头图拉近学生与数学的关系,让学生感受到生活处处有数学,也为本节课的研究埋下伏笔。

数学教案 北师大版选修2-2 同步备课-第3章导数应用第1节导数的单调性与极性

数学教案 北师大版选修2-2 同步备课-第3章导数应用第1节导数的单调性与极性

§1函数的单调性与极值1. 1 导数与函数的单调性学习目标核心素养1.掌握函数的单调性与导数的关系.2.能利用导数研究函数的单调性.(重难点)3.会求不超过三次的多项式函数的单调区间和其它函数的单调区间.(重点) 1.借助图象认识函数的单调性与导数的关系,提升学生的直观想象的核心素养.2.通过利用导数研究函数的单调性的学习,培养学生的数学抽象和数学运算的核心素养.1.函数的单调性与其导数正负的关系一般地,在区间(a,b)内函数的单调性与导数有如下关系:导数函数的单调性f′(x)>0单调递增f′(x)<0单调递减f′(x)=0 常数函数2.函数图像的变化趋势与导数值大小的关系一般地,设函数y=f(x),在区间(a,b)上:导数的绝对值函数值变化函数的图像越大大比较“陡峭”(向上或向下)越小小比较“平缓”(向上或向下) 思考:如果在区间(a,b)内恒有f′(x)=0,则f(x)有什么特性?[提示]函数f(x)为常函数.1.若在区间(a,b)内,f′(x)>0,且f(a)≥0,则在(a,b)内有( )A.f(x)>0 B.f(x)<0C.f(x)=0 D.不能确定A[由条件可知,f(x)在(a,b)内单调递增,∵f(a)≥0,∴在(a,b)内有f(x)>0.]2.已知函数y=f(x)的图像是下列四个图象之一,且其导函数y=f′(x)的图像如图所示,则该函数的图像是( )B [由f′(x)图像可知,f′(x)>0,函数单调递增,且开始和结尾增长速度慢,故应选B.] 3.已知函数f(x)=12x 2-x ,则函数f(x)的单调增区间是( )A .(-∞,-1)和(0,+∞)B .(0,+∞)C .(-1,0)和(1,+∞)D .(1,+∞)D [法一:f(x)=12x 2-x =12(x -1)2-12,对应的抛物线开口向上,对称轴为直线x =1,可知函数f(x)的单调增区间是(1,+∞).法二:f′(x)=x -1,令f′(x)>0,解得x>1.故函数f(x)的单调增区间是(1,+∞).]单调性与导数的关系【例1】 (1)函数y =f(x)的图像如图所示,给出以下说法: ①函数y =f(x)的定义域是[-1,5]; ②函数y =f(x)的值域是(-∞,0]∪[2,4]; ③函数y =f(x)在定义域内是增函数; ④函数y =f(x)在定义域内的导数f′(x)>0. 其中正确的序号是( ) A .①② B .①③ C .②③D .②④(2)设函数f(x)在定义域内可导,y =f(x)的图像如图所示,则导函数y =f′(x)的图像可能为( )A BC D思路探究:研究一个函数的图像与其导函数图像之间的关系时,注意抓住各自的关键要素,对于原函数,要注意其图像在哪个区间内单调递增,在哪个区间内单调递减;而对于导函数,则应注意其函数值在哪个区间内大于零,在哪个区间内小于零,并分析这些区间与原函数的单调区间是否一致.(1)A (2)D[(1)由图像可知,函数的定义域为[-1,5],值域为(-∞,0]∪[2,4],故①②正确,选A.(2)由函数的图像可知:当x<0时,函数单调递增,导数始终为正;当x>0时,函数先增后减再增,即导数先正后负再正,对照选项,应选D.]1.利用导数判断函数的单调性比利用函数单调性的定义简单得多,只需判断导数在该区间内的正负即可.2.通过图像研究函数单调性的方法(1)观察原函数的图像重在找出“上升”“下降”产生变化的点,分析函数值的变化趋势;(2)观察导函数的图像重在找出导函数图像与x轴的交点,分析导数的正负.1.(1)设f′(x)是函数f(x)的导函数,将y=f(x)和y=f′(x)的图像画在同一个直角坐标系中,不正确的是( )A B C D(2)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图像可能是( )(1)D (2)D [(1)A ,B ,C 均有可能;对于D ,若C 1为导函数,则y =f(x)应为增函数,不符合;若C 2为导函数,则y =f(x)应为减函数,也不符合.(2)根据函数的导数的正负与单调性的关系,对照图像可知,答案应选D.]利用导数求函数的单调区间【例2】 求函数f(x)=x +ax(a≠0)的单调区间.思路探究:求出导数f′(x),分a>0和a<0两种情况.由f′(x)>0求得单调增区间,由f′(x)<0求得单调减区间.[解] f(x)=x +ax的定义域是(-∞,0)∪(0,+∞),f′(x)=1-ax 2.当a>0时,令f′(x)=1-ax2>0,解得x>a 或x<-a ;令f′(x)=1-a x 2<0,解得-a<x<0或0<x<a ;当a<0时,f′(x)=1-ax2>0恒成立,所以当a>0时,f(x)的单调递增区间为(-∞,-a)和(a ,+∞);单调递减区间为(-a ,0)和(0,a).当a<0时,f(x)的单调递增区间为(-∞,0)和(0,+∞).利用导数求函数单调区间的步骤1.确定函数f(x)的定义域. 2.求导数f′(x).3.由f′(x)>0(或f′(x)<0),解出相应的x 的范围.当f′(x)>0时,f(x)在相应区间上是增函数;当f′(x)<0时,f(x)在相应区间上是减函数.4.结合定义域写出单调区间.2.(1)函数f(x)=e x-ex ,x∈R 的单调递增区间为( ) A .(0,+∞) B .(-∞,0) C .(-∞,1)D .(1,+∞)(2)函数f(x)=ln x -x 的单调递增区间是( ) A .(-∞,1) B .(0,1) C .(0,+∞)D .(1,+∞)(1)D (2)B [(1)∵f′(x)=(e x-ex)′=e x-e , 由f′(x)=e x-e>0,可得x>1.即函数f(x)=e x -ex ,x∈R 的单调增区间为(1,+∞),选D. (2)函数的定义域为(0,+∞),又f′(x)=1x -1,由f′(x)=1x-1>0,得0<x<1,所以函数f(x)=ln x -x 的单调递增区间是(0,1),选B.]已知函数的单调性求参数的取值范围1.函数f(x)=x 3+ax 2+bx +c ,其中a ,b ,c 为实数,当a 2-3b<0时,f(x)的单调性如何? [提示] 求函数的导函数f′(x)=3x 2+2ax +b ,导函数对应方程f′(x)=0的Δ=4(a 2-3b)<0,所以f′(x)>0恒成立,故f(x)是增函数.2.函数单调性的充要条件如何?[提示] (1)在某个区间内,f′(x)>0(f′(x)<0)是函数f(x)在此区间内单调递增(减)的充分条件,而不是必要条件.例如,函数f(x)=x 3在定义域(-∞,+∞)上是增函数,但f′(x)=3x 2≥0.(2)函数f(x)在(a ,b)内单调递增(减)的充要条件是f′(x)≥0(f′(x)≤0)在(a ,b)内恒成立,且f′(x)在(a ,b)的任意子区间内都不恒等于0.这就是说,在区间内的个别点处有f′(x)=0并不影响函数f(x)在该区间内的单调性.【例3】 已知关于x 的函数y =x 3-ax +b.(1)若函数y 在(1,+∞)内是增函数,求a 的取值范围; (2)若函数y 的一个单调递增区间为(1,+∞),求a 的值.思路探究:(1)函数在区间(1,+∞)内是增函数,则必有y′≥0在(1,+∞)上恒成立,由此即可求出a 的取值范围.(2)函数y 的一个单调递增区间为(1,+∞),即函数单调区间的端点值为1,由此可解得a 的值. [解] y′=3x 2-a.(1)若函数y =x 3-ax +b 在(1,+∞)内是增函数.则y′=3x 2-a≥0在x∈(1,+∞)时恒成立, 即a≤3x 2在x∈(1,+∞)时恒成立, 则a≤(3x 2)min . 因为x>1,所以3x 2>3.所以a≤3,即a 的取值范围是(-∞,3].(2)令y′>0,得x 2>a3.若a≤0,则x 2>a3恒成立,即y′>0恒成立,此时,函数y =x 3-ax +b 在R 上是增函数,与题意不符. 若a>0,令y′>0,得x>a3或x<-a 3. 因为(1,+∞)是函数的一个单调递增区间,所以a3=1,即a =3.1.将本例(1)改为“若函数y 在(1,+∞)上不单调”,则a 的取值范围又如何? [解] y′=3x 2-a ,当a<0时,y′=3x 2-a>0,函数在(1,+∞)上单调递增,不符合题意.当a>0时,函数y 在(1,+∞)上不单调,即y′=3x 2-a =0在区间(1,+∞)上有根.由3x 2-a =0可得x =a3或x =-a3(舍去). 依题意,有a3>1,∴a>3, ∴a 的取值范围是(3,+∞).2.本例(1)中函数改为f(x)=x 3-ax 2-3x.区间“(1,+∞)”改为“[1,+∞),a 的取值范围如何? [解] 由f(x)=x 3-ax 2-3x 得 f′(x)=3x 2-2ax -3,∵f(x)在x∈[1,+∞)上是增函数, ∴3x 2-2ax -3≥0, ∴a 3≤x 2-12x. 令g(x)=x 2-12x,x∈[1,+∞),g′(x)=x 2+12x2>0,即g(x)在[1,+∞)上单调递增,∴g(x)≥g(1)=0, ∴a 的取值范围为a≤0.1.解答本题注意可导函数f(x)在(a ,b)上单调递增(或单调递减)的充要条件是f′(x)≥0(或f′(x)≤0)在(a ,b)上恒成立,且f′(x)在(a ,b)的任何子区间内都不恒等于0.2.已知f(x)在区间(a ,b)上的单调性,求参数取值范围的方法(1)利用集合的包含关系处理f(x)在(a ,b)上单调递增(减)的问题,则区间(a ,b)是相应单调区间的子集;(2)利用不等式的恒成立处理f(x)在(a ,b)上单调递增(减)的问题,则f′(x)≥0(f′(x)≤0)在(a ,b)内恒成立,注意验证等号是否成立.3.已知函数f(x)=2ax 3+4x 2+3x -1在R 上是增函数,求实数a 的取值范围. [解] f′(x)=6ax 2+8x +3.∵f(x)在R 上是增函数,∴f′(x)≥0在R 上恒成立, 即6ax 2+8x +3≥0在R 上恒成立,∴⎩⎪⎨⎪⎧64-72a≤0,a>0,解得a≥89.经检验,当a =89时,只有个别点使f′(x)=0,符合题意.故实数a 的取值范围为⎣⎢⎡⎭⎪⎫89,+∞.1.函数的单调性与导数符号的关系 设函数y =f(x)在区间(a ,b)内可导,(1)如果在(a ,b)内,f′(x)>0,则f(x)在此区间是增函数,(a ,b)为f(x)的单调增区间; (2)如果在(a ,b)内,f′(x)<0,则f(x)在此区间是减函数,(a ,b)为f(x)的单调减区间. 2.利用导数求函数的单调区间的步骤求函数的单调区间,就是解不等式f′(x)>0或f′(x)<0,不等式的解集就是所求的单调区间,其步骤如下:(1)求函数f(x)的定义域; (2)求出f′(x);(3)解不等式f′(x)>0可得函数f(x)的单调增区间,解不等式f′(x)<0可得函数f(x)的单调减区间. 3.函数f(x)在(a ,b)内单调递增(减)的充要条件是f ′(x)≥0(f′(x)≤0)在(a ,b)内恒成立,且f′(x)在(a,b)的任意区间内都不恒等于0.这就是说,在区间内的个别点处有f′(x)=0并不影响函数f(x)在该区间内的单调性.1.判断(正确的打“√”,错误的打“×”)(1)函数f(x)在定义域上都有f′(x)>0,则函数f(x)在定义域上单调递增.(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”.(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.[答案](1)×(2)×(3)√2.已知函数f(x)=x+ln x,则有( )A.f(2)<f(e)<f(3)B.f(e)<f(2)<f(3)C.f(3)<f(e)<f(2)D.f(e)<f(3)<f(2)A[因为在定义域(0,+∞)上f′(x)=12x +1x>0,所以f(x)在(0,+∞)上是增函数,所以有f(2)<f(e)<f(3).故选A.]3.函数f(x)=2x3-9x2+12x+1的单调减区间是________.(1,2)[f′(x)=6x2-18x+12,令f′(x)<0,即6x2-18x+12<0,解得1<x<2.] 4.已知函数f(x)=x3-ax-1.(1)是否存在a,使f(x)的单调减区间是(-1,1);(2)若f(x)在R上是增函数,求a的取值范围.[解]f′(x)=3x2-a.(1)∵f(x)的单调减区间是(-1,1),∴-1<x<1是f′(x)<0的解,∴x=±1是方程3x2-a=0的两根,所以a=3.(2)∵f(x)在R上是增函数,∴f′(x)=3x2-a≥0对x∈R恒成立,即a≤3x2对x∈R恒成立.∵y=3x2在R上的最小值为0.∴a≤0,∴a的取值范围是(-∞,0].1.2 函数的极值学习目标核心素养1.理解函数的极大值和极小值的概念.(难点) 2.掌握求极值的步骤,会利用导数求函数的极值.(重点、难点) 1.借助图象理解函数的极大值和极小值,提升了学生的直观想象的核心素养.2.通过利用导数求函数的极值的学习,培养了学生的逻辑推理和数学运算的核心素养.1.极大值点与极大值如图,在包含x0的一个区间(a,b)内,函数y=f(x)在任何一点的函数值都小于或等于x0点的函数值,称点x0为函数y=f(x)的极大值点,其函数值f(x0)为函数的极大值.2.极小值点与极小值如图,在包含x0的一个区间(a,b)内,函数y=f(x)在任何一点的函数值都大于或等于x0点的函数值,称点x0为函数y=f(x)的极小值点,其函数值f(x0)为函数的极小值.[提醒]在一个给定的区间上,函数可能有若干个极值点,也可能不存在极值点;函数可以只有极大值,没有极小值,或者只有极小值没有极大值,也可能既有极大值,又有极小值.极大值不一定比极小值大,极小值不一定比极大值小.3.极值的判断方法如果函数y=f(x)在区间(a,x0)上是增加的,在区间(x0,b)上是减少的,则x0是极大值点,f(x0)是极大值;如果函数y=f(x)在区间(a,x0)上是减少的,在区间(x0,b)上是增加的,则x0是极小值点,f(x0)是极小值.4.求函数y=f(x)极值点的步骤(1)求出导数f′(x).(2)解方程f′(x)=0.(3)对于方程f′(x)=0的每一个解x0,分析f′(x)在x0左、右两侧的符号(即f(x)的单调性),确定极值点:①若f′(x)在x0两侧的符号“左正右负”,则x0为极大值点;②若f′(x)在x0两侧的符号“左负右正”,则x0为极小值点;③若f′(x)在x0两侧的符号相同,则x0不是极值点.思考:导数为0的点都是极值点吗?[提示]不一定,如f(x)=x3,f′(0)=0,但x=0不是f(x)=x3的极值点.所以,当f′(x0)=0时,要判断x =x 0是否为f(x)的极值点,还要看f′(x)在x 0两侧的符号是否相反.1.下列四个函数中,在x =0处取得极值的函数是( ) ①y=x 3;②y=x 2+1;③y=|x|;④y=2x. A .①② B .②③ C .③④D .①③B [y′=3x 2≥0恒成立,所以函数y =x 3在R 上单调递增,无极值点,①不符合;y′=2x ,当x>0时,函数y =x 2+1单调递增,当x<0时,函数y =x 2+1单调递减,②符合;结合该函数图像可知,函数y =|x|在(0,+∞)上单调递增,在(-∞,0]上单调递减,③符合;函数y =2x在R 上单调递增,无极值点,④不符合.]2.函数y =x 3-3x 2-9x(-2<x <2)有( ) A .极大值5,极小值-27 B .极大值5,极小值-11 C .极大值5,无极小值 D .极小值-27,无极大值C [由y′=3x 2-6x -9=0,得x =-1或x =3.当x <-1或x >3时,y′>0;由-1<x <3时,y′<0, ∴当x =-1时,函数有极大值5;3∉(-2,2),故无极小值.] 3.函数f(x)=x 3-3x 2+1在x =__________处取得极小值. 2 [由f(x)=x 3-3x 2+1, 得f′(x)=3x 2-6x =3x(x -2).当x∈(0,2)时,f′(x)<0,f(x)为减函数;当x∈(-∞,0)和(2,+∞)时,f′(x)>0,f(x)为增函数. 故当x =2时,函数f(x)取得极小值.]求函数的极值(1)f(x)=x 2-2x -1; (2)f(x)=x 44-23x 3+x22-6;(3)f(x)=|x|.[解] (1)f′(x)=2x -2,令f′(x)=0,解得x =1. 因为当x<1时,f′(x)<0,当x>1时,f′(x)>0, 所以函数在x =1处有极小值, 且f(x)极小值=-2.(2)f′(x)=x 3-2x 2+x =x(x 2-2x +1)=x(x -1)2.令f′(x)=0,解得x 1=0,x 2=1.所以当x 变化时,f′(x),f(x)的变化情况如下表:x (-∞,0)0 (0,1) 1 (1,+∞)f′(x) - 0 + 0 + f(x)单调 递减↘极小 值单调 递增↗无极值单调 递增↗所以当x =0时,函数取得极小值,且f(x)极小值=-6.(3)f(x)=|x|=⎩⎪⎨⎪⎧x ,x≥0,-x ,x<0.显然函数f(x)=|x|在x =0处不可导, 当x>0时,f′(x)=x′=1>0,函数f(x)=|x|在(0,+∞)内单调递增; 当x<0时,f′(x)=(-x)′=-1<0, 函数f(x)=|x|在(-∞,0)内单调递减. 故当x =0时,函数取得极小值, 且f(x)极小值=0.极值点与导数的关系1.可导函数的极值点一定是导数值为0的点,导数值为0的点不一定是极值点. 点x 0是可导函数f(x)在区间(a ,b)内的极值点的充要条件: (1)f′(x 0)=0;(2)点x 0两侧f′(x)的符号不同.2.不可导的点可能是极值点(如本例(3)中x =0点),也可能不是极值点(如y =x ,在x =0处不可导,在x =0处也取不到极值),所以函数的极值点可能是f′(x)=0的根,也可能是不可导点.1.已知函数f(x)=x 2-2ln x ,则f(x)的极小值是________. 1 [∵f′(x)=2x -2x ,且函数定义域为(0,+∞),令f′(x)=0,得x =1或x =-1(舍去), 当x∈(0,1)时,f′(x)<0, 当x∈(1,+∞)时,f′(x)>0,∴当x =1时,函数有极小值,极小值为f(1)=1.]利用函数的极值求参数【例2】 已知f(x)=x 3+ax 2+bx +c 在x =1与x =-3时都取得极值.(1)求a ,b 的值;(2)若f(-1)=32,求f(x)的单调区间和极值.思路探究:(1)求导函数f′(x),则由x =1和x =-23是f′(x)=0的两根及根与系数的关系求出a ,b.(2)由f(-1)=32求出c ,再列表求解.[解] (1)f′(x)=3x 2+2ax +b ,令f ′(x)=0,由题设知x =1与x =-23为f′(x)=0的解.∴⎩⎪⎨⎪⎧1-23=-23a ,1×⎝ ⎛⎭⎪⎫-23=b 3,∴a=-12,b =-2.(2)由(1)知f(x)=x 3-12x 2-2x +c ,由f(-1)=-1-12+2+c =32,得c =1,∴f(x )=x 3-12x 2-2x +1,∴f′(x)=3x 2-x -2.当x 变化时,f′(x),f(x)的变化情况如下表:x (-∞,⎭⎪⎫-23 -23 ⎝ ⎛⎭⎪⎫-23,1 1 (1,+∞)f′(x) + 0 - 0 + f(x)单调递增 ↗4927单调递减 ↘-12单调递增 ↗∴f(x)的递增区间为⎝ ⎛⎭⎪⎫-∞,-3和(1,+∞),递减区间为⎝ ⎛⎭⎪⎫-3,1.当x =-23时,f(x)有极大值为f ⎝ ⎛⎭⎪⎫-23=4927;当x =1时,f(x)有极小值为f(1)=-12.已知函数极值求解析式的两点注意(1)根据极值点处导数值为0和极值两个条件列方程组,利用待定系数法求解;(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.2.已知函数f(x)=13x 3-12(m +3)x 2+(m +6)x(x∈R,m 为常数)在区间(1,+∞)内有两个极值点,求实数m 的取值范围.[解] f′(x)=x 2-(m +3)x +m +6. 因为函数f(x)在(1,+∞)内有两个极值点,所以导数f′(x)=x 2-(m +3)x +m +6在(1,+∞)内与x 轴有两个不同的交点,如图所示.所以⎩⎪⎨⎪⎧Δ=(m +3)2-4(m +6)>0,f′(1)=1-(m +3)+m +6>0,m +32>1,解得m>3,故实数m 的取值范围是(3,+∞).函数极值的综合应用[探究问题]1.函数f(x)的定义域为开区间(a ,b),导函数f′(x)在(a ,b)内的图像如图所示,则函数f(x)在开区间(a ,b)内有几个极小值点?[提示] 一个.x 1,x 2,x 3是极值点,其中x 2是极小值点,x 1,x 3是极大值点. 2.函数y =f(x)在给定区间(a ,b)内一定有极值点吗?[提示] 不一定,若函数y =f(x)在区间(a ,b)内是单调函数,就没有极值点.【例3】 已知函数f(x)=x 3-3x +a(a 为实数),若方程f(x)=0有三个不同实根,求实数a 的取值范围.思路探究:求出函数的极值,要使f(x)=0有三个不同实根,则应有极大值大于0,极小值小于0,由此可得a 的取值范围.[解] 令f′(x)=3x 2-3=3(x +1)(x -1)=0, 解得x 1=-1,x 2=1. 当x<-1时,f′(x)>0; 当-1<x<1时,f′(x)<0; 当x>1时,f′(x)>0.所以当x =-1时,f(x)有极大值f(-1)=2+a ; 当x =1时,f(x)有极小值f(1)=-2+a. 因为方程f(x)=0有三个不同实根,所以y =f(x)的图像与x 轴有三个交点,如图.由已知应有⎩⎪⎨⎪⎧2+a>0,-2+a<0,解得-2<a<2,故实数a 的取值范围是(-2,2).1.本例中,若把“三个不同实根”改为“唯一一个实根”,结果如何? [解] 由已知应有 2+a<0或-2+a>0. 即a>2或a<-2.2.本例中,若把“三个不同实根”改为“恰有两个实根”,结果如何? [解] 由条件可知,只要 2+a =0或-2+a =0即可, 即a =±2.转化的思想求导数范围的应用方程f(x)=0的根就是函数y =f(x)的零点,是函数图像与x 轴交点的横坐标,研究方程的根的问题可以转化为函数图像与x 轴交点的问题.我们可以根据函数图像在坐标轴中的位置不同,结合极值的大小确定参数的范围.3.设a 为实数,函数f(x)=x 3-x 2-x +a. (1)求f(x)的极值;(2)当a 在什么范围内取值时,曲线y =f(x)与x 轴仅有一个交点?[解] (1)f′(x)=3x 2-2x -1. 令f′(x)=0,则x =-13或x =1.当x 变化时,f′(x),f(x)的变化情况如下表:x ⎝ ⎛⎭⎪⎫-∞,-13 -13 ⎝ ⎛⎭⎪⎫-13,1 1 (1,+∞)f′(x) + 0 - 0 + f(x)单调递 增↗极大值单调递 减↘极小值单调递 增↗所以f(x)的极大值是f ⎝ ⎛⎭⎪⎫-13=527+a ,极小值是f(1)=a -1.(2)函数f(x)=x 3-x 2-x +a =(x -1)2(x +1)+a -1,由此可知,x 取足够大的正数时,有f(x)>0, x 取足够小的负数时,有f(x)<0, 所以曲线y =f(x)与x 轴至少有一个交点.由(1)知f(x)极大值=f ⎝ ⎛⎭⎪⎫-13=527+a ,f(x)极小值=f(1)=a -1.∵曲线y =f(x)与x 轴仅有一个交点, ∴f(x)极大值<0或f(x)极小值>0, 即527+a<0或a -1>0,∴a<-527或a>1, ∴当a∈⎝⎛⎭⎪⎫-∞,-527∪(1,+∞)时,曲线y =f(x)与x 轴仅有一个交点.1.函数的极值是一个局部性的概念,是仅对某一点的左右两侧附近的点而言的.由图可以看出,极大值的对应点是局部的“高峰”,极小值的对应点是局部的“低谷”.2.极值点是函数定义域内的自变量的值,而函数定义域的端点绝不是函数的极值点.3.函数在定义域内可能有许多极大值或极小值,但极大值不一定比极小值大,极小值也不一定比极大值小.4.若函数f(x)在[a ,b]上有极值且函数图像连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样,相邻两个极小值点之间必有一个极大值点.1.判断(正确的打“√”,错误的打“×”)(1)函数f(x)=x 3+ax 2-x +1必有两个极值. ( ) (2)在可导函数的极值点处,切线与x 轴平行或重合. ( ) (3)函数f(x)=1x 有极值.( )[答案] (1)√ (2)√ (3)×2.已知a 为函数f(x)=x 3-12x 的极小值点,则a =( ) A .-4 B .-2 C .4D .2D [由题意得f′(x)=3x 2-12,令f′(x)=0得x =±2,∴当x<-2或x>2时,f′(x)>0;当-2<x<2时,f′(x)<0,∴f(x)在(-∞,-2)上为增函数,在(-2,2)上为减函数,在(2,+∞)上为增函数.∴f(x)在x =2处取得极小值,∴a=2.]3.设a ∈R,若函数y =e x+ax(x∈R)有大于零的极值点,则a 的取值范围为________. (-∞,-1) [∵y=e x+ax ,∴y′=e x+a ,令y′=e x+a =0,则e x=-a , 即x =ln(-a),又∵x>0,∴-a >1,即a <-1.] 4.求函数y =x 4-4x 3+5的极值. [解] y′=4x 3-12x 2=4x 2(x -3). 令y′=4x 2(x -3)=0,得x 1=0,x 2=3. 当x 变化时,y′,y 的变化情况如下表:故当x 极小值。

高考数学大一轮复习第三章导数及其应用2第2讲导数与函数的单调性课件文新人教A版

高考数学大一轮复习第三章导数及其应用2第2讲导数与函数的单调性课件文新人教A版

利用导数求函数单调区间的方法 (1)当导函数不等式可解时,解不等式 f′(x)>0 或 f′(x)<0 求出 单调区间. (2)当方程 f′(x)=0 可解时,解出方程的实根,按实根把函数的 定义域划分区间,确定各区间 f′(x)的符号,从而确定单调区间. (3)当导函数的方程、不等式都不可解时,根据 f′(x)结构特征, 利用图象与性质确定 f′(x)的符号,从而确定单调区间. [提醒] 所求函数的单调区间不止一个时,这些区间之间不能 用“∪”及“或”连接,只能用“,”及“和”隔开.
1.函数 f(x)的定义域为 R,f(-1)=2,对任意 x∈R,f′(x)>
2,则 f(x)>2x+4 的解集为( )
A.(-1,1)
B.(-1,+∞)
C.(-∞,-1)
D.(-∞,+∞)
解析:选 B.由 f(x)>2x+4,得 f(x)-2x-4>0,设 F(x)=f(x)
-2x-4,则 F′(x)=f′(x)-2,因为 f′(x)>2,所以 F′(x)>0 在
判断正误(正确的打“√”,错误的打“×”) (1)若函数 f(x)在(a,b)内单调递增,那么一定有 f′(x)>0.( ) (2)如果函数 f(x)在某个区间内恒有 f′(x)=0,则 f(x)在此区间内 没有单调性.( )
答案:(1)× (2)√
函数 f(x)=cos x-x 在(0,π)上的单调性是( )
2.由函数的单调性与导数的关系可得的结论 (1)函数 f(x)在(a,b)内可导,且 f′(x)在(a,b)任意子区间内都不 恒等于 0,当 x∈(a,b)时: f′(x)≥0⇔函数 f(x)在(a,b)上单调递增; f′(x)≤0⇔函数 f(x)在(a,b)上单调递减. (2)f′(x)>0(<0)在(a,b)上成立是 f(x)在(a,b)上单调递增(减)的 充分条件. [提醒] 利用导数研究函数的单调性,要在定义域内讨论导数 的符号.

导数的应用讲义

导数的应用讲义

11.3 导数的应用1.3.1 利用导数判断函数的单调性【知识提炼】函数的单调性与其导数符号的关系 设函数y=f(x)在区间(a ,b)内可导,(1)如果在(a ,b)内,f′(x)>0,则f(x)在此区间是_______,(a ,b)为f(x)的___________. (2)如果在(a ,b)内,f′(x)<0,则f(x)在此区间是_______,(a ,b)为f(x)的___________. 【题型探究】类型一 判断或证明函数的单调性【典例】1.已知函数f(x)=x +lnx ,则有 ( )A.f(2)<f(e)<f(3)B.f(e)<f(2)<f(3)C.f(3)<f(e)<f(2)D.f(e)<f(3)<f(2)2.证明:函数y=lnx+x 在其定义域内为增函数.类型二 利用导数求函数的单调区间【典例】找出函数14)(23-+-=x x x x f 的单调区间.类型三 已知函数单调性求参数的取值范围【典例】1.已知函数f(x)=x 3-kx 在区间(-3,-1)上不单调,则实数k 的取值范围是 . 2.已知函数f(x)=x 3-ax+6在(1,+∞)上为增函数,求a 的取值范围.易错案例 利用导数求函数的单调区间 【典例】函数f(x)=lnx+x1的单调减区间是 ( ) A.(-∞,0),(1,+∞) B.(-∞,1) C.(1,+∞)D.(0,1)【失误案例】【错解分析】分析解题过程,你知道错在哪里吗?提示:单调区间应是定义域的子区间,因此要先求定义域,再利用导数求单调区间,确保单调区间在定义域内.【自我矫正】选D.函数的定义域为(0,+∞),2因为=')(x f 211x x -, 令0)(<'x f ,即0112<-xx ,解得x<1, 因为函数的定义域为(0,+∞), 所以0<x<1,故函数的定义域为(0,1). 【跟踪训练】1.设f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能是( )2.函数f(x)=x·e -x 的一个单调递增区间是( )A.(1,+∞)B.(-∞,1)C.[1,2]D.[0,2]3.设函数f(x)=ln(1+x)-x ,记a=f(1),b=f(3),c=f(7),则( )A.b<a<cB.b<c<aC.a<b<cD.a<c<b 4.函数y=ax 3-x 在R 上是减函数,则( )A.a≥31B.a=1C.a=2D.a≤05.若函数y=f(x)在R 上可导,且满足不等式xf′(x)>-f(x)恒成立,且常数a ,b 满足a<b ,则下列不等式一定成立的是( )A.af(b)>bf(a)B.af(a)>bf(b)C.af(a)<bf(b)D.af(b)<bf(a)6.函数f(x)=2x 2-lnx 的单调减区间是 .7.已知函数f(x)=21++x ax 在(-2,+∞)内是减函数,则实数a 的取值范围为 . 8.设f(x)=ax x x 2213123++-.若f(x)在),32[∞+上存在单调递增区间,则a 的取值范围为 .9.求下列函数的单调区间:(1)f(x)=x-x 3. (2)f(x)=x 2-lnx.10已知函数f(x)=ax 3+bx 2的图象经过点M(1,4),曲线在点M 处的切线恰好与直线x+9y=0垂直.(1)求实数a ,b 的值.(2)若函数f(x)在区间[m ,m+1]上单调递增,求m 的取值范围.【链接高考】 (2016课标全国I ,12)若函数x a x x x f sin 2sin 31)(+-=在R 上单调递增,则a 的取值范围是( ) A.[]1,1-B.⎥⎦⎤⎢⎣⎡-31,1C.⎥⎦⎤⎢⎣⎡-31,31 D.⎥⎦⎤⎢⎣⎡--31,1(2014课标全国II ,11)若函数x kx x f ln )(-=在区间()+∞,1单调递增,则k 的取值范围是( ) A.(]2,-∞-B.(]1,-∞-C.[)+∞,2D.),1[∞+1.3.2利用导数研究函数的极值第1课时利用导数研究函数的极值【知识提炼】1.函数极值的定义满足条件:已知函数y=f(x),设x0是定义域(a,b)内任一点,存在__________________.(1)极大值点与极大值①条件:对于开区间内所有点x,都有__________;②结论:f(x)在点x处取得_______,为函数f(x)的一个极大值点;③记作:y极大值=_____.(2)极小值点与极小值①条件:对于开区间内所有点x,都有__________;②结论:f(x)在点x处取得_______,为函数f(x)的一个极小值点;③记作:y极小值=_____.(3)极值与极值点①极值:_______________统称为极值;②极值点:___________________统称为极值点.2.函数的单调性与极值(1)x0是(a,b)上的极大值点且f(x)在x=x0是可导的①f′(x0)=__;②x∈(a,x0)时,f′(x)__0,f(x)是_____的;③x∈(x0,b)时,f′(x)__0,f(x)是_____的.(2)x0是(a,b)上的极小值点且f(x)在x=x0是可导的①f′(x0)=__;②x∈(a,x0)时,f′(x)__0,f(x)是_____的;③x∈(x0,b)时,f′(x)__0,f(x)是_____的.3.求可导函数y=f(x)的极值的步骤(1)求导数_______.(2)求方程_________的所有实数根.(3)对每个实数根进行检验,判断在每个根的_______,导函数f′(x)的符号如何变化.①如果f′(x)的符号_________,则f(x0)是极大.值②如果f′(x)的符号_________,则f(x0)是极小值.③如果在f′(x)=0的根x=x0的左右侧_________,则f(x0)不是极值.【题型探究】类型一求函数的极值点和极值【典例】1.设三次函数f(x)的导函数为f′(x),函数y=x·f′(x)的图象的一部分如图所示,则()A.f(x)极大值为,极小值为f( B.f(x)极大值为f(,极小值为C.f(x)极大值为f(-3),极小值为f(3)D.f(x)极大值为f(3),极小值为f(-3)2.已知函数4431)(3+-=xxxf.求函数的极值,并画出函数的大致图象.类型二已知函数极值求参数的值(范围)【典例】已知f(x)=x3+3ax2+bx+a2在x=-1时有极值0,求常数a,b的值.34类型三 函数极值的综合应用【典例】1已知f(x)=x 3+ax 2+bx+c 在x=1与x=23-时都取得极值.若f(-1)=32则f(x)的单调减区间是 .2.已知函数f(x)= 21313+x (a-1)x 2+ax(a ∈R).(1)若f(x)在x=2处取得极值,求f(x)的单调增区间.(2)若f(x)在区间(0,1)内有极大值和极小值,求实数a 的取值范围.【跟踪训练】1.函数y=f(x)是定义在R 上的可导函数,则下列说法不正确的是( )A.若函数在x=x 0时取得极值,则f′(x 0)=0B.若f′(x 0)=0,则函数在x=x 0处取得极值C.若在定义域内恒有f′(x)=0,则y=f(x)是常数函数D.函数f(x)在x=x 0处的导数是一个常数 2.函数y=1+3x-x 3有( )A.极小值-1,极大值1B.极小值-2,极大值3C.极小值-2,极大值2D.极小值-1,极大值33.已知函数f(x)=x 3+ax 2+(a+6)x+1有极值,则实数a 的取值范围是( )A.-1<a<2B.-3<a<6C.a<-1或a>2D.a<-3或a>64.函数f(x)=x 3-ax 2-bx+a 2在x=1时有极值10,则a ,b 的值为( )A.a=3,b=-3或a=-4,b=11B.a=-4,b=2或a=-4,b=11C.a=-4,b=11D.以上都不对5.已知f(x)=x 3-px 2-qx 的图象与x 轴切于(1,0),则f(x)的极值情况是( )A.极大值为f )31(,极小值为f(1)B.极大值为f(1),极小值为f )31(C.极大值为f )31(,没有极小值D.极小值为f(1),没有极大值6.函数f(x)=x 3+3mx 2+nx+m 2在x=-1时有极值0,则m+n= .7.设a ∈R ,若函数y=e x +ax ,x ∈R 有大于零的极值点,则a 的取值范围为 . 8.若函数f(x)=x+asinx 在R 上递增,则实数a 的取值范围为 . 9.已知函数f(x)=e x (4x+4)-x 2-4x ,求:(1)f(x)的单调区间. (2)f(x)的极大值.10.已知函数f(x)=ln(x+a)-x 2-x 在x=0处取得极值,(1)求实数a 的值. (2)若关于x 的方程f(x)=25-x+b 在区间[0,2]上有两个不同的实根,求实数b 的取值范围.第2课时利用导数研究函数的最值【知识提炼】1.函数y=f(x)在闭区间[a,b]上的最值(1)前提条件:在区间[a,b]上函数y=f(x)的图象是一条的曲线.(2)结论:函数y=f(x)必有最大值和最小值,若函数在(a,b)是可导的,该函数的最值必在或取得.2.求可导函数y=f(x)在[a,b]上的最值的步骤(1)求f(x)在开区间(a,b)内所有使=0的点.(2)计算函数f(x)在区间内使=0的所有点和端点的函数值,其中最大的一个为,最小的一个为.【题型探究】类型一求函数的最值【典例】求函数f(x)=x+2cosx在区间[0,π]上的最大值.类型二含参数的最值问题【典例】设函数0,ln)(>+=mxmxxf.求)(xf的最小值为2时m的值.类型三与函数最值有关的综合问题【典例】已知函数f(x)=-2xlnx+x2-2ax+a2,其中a>0.(1)设g(x)是f(x)的导函数,讨论g(x)的单调性.(2)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.56【跟踪训练】1.函数f(x)=lnx-x 在区间[0,e]上的最大值为( )A.-1B.1-eC.-eD.02.已知函数f(x)=x 3+ax 2+3x-9在x=-3时取得极值,则a=( )A.2B.3C.4D.53.函数f(x)=x+2cosx 在区间]0,2[π-上的最小值是( )A.2π-B.2C.36+πD.13+π4.函数f(x)=x 2·e x+1,x ∈[-2,1]的最大值为( )A.4e -1B.1C.e 2D.3e 25.已知f(x)=2x 3-6x 2+m(m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是( )A.-37B.-29C.-5D.以上都不对6.函数f(x)=11+x +x(x ∈[1,3])的值域为 . 7.函数f(x)=ax 4-4ax 2+b(a>0,1≤x≤2)的最大值为3,最小值为-5.则a= ,b= . 8.f(x)=e ax -x-1,其中a≠0,若对于一切实数x ∈R ,f(x)≥0恒成立,则a 的取值范围是 . 9.已知函数f(x)=2alnx-x 2+1.(1)若a=1,求函数f(x)的单调减区间.(2)若a>0,求函数f(x)在区间[1,+∞)上的最大值.10.已知f(x)=x 321-x 2-2x+5,当x ∈[-1,2]时,f(x)<a 恒成立,求实数a 的取值范围.【延伸探究】把本题中的条件“f(x)<a”改为“f(x)≥a”,求实数a 的取值范围.1.3.3 导数的实际应用【知识探究】知识点生活中的最优化问题观察如图所示内容,回答下列问题:问题:利用导数解决生活中的最优问题的思路是什么?【题型探究】类型一平面几何中的最值问题【典例】横截面为矩形的横梁的强度同它的断面高的平方与宽的积成正比. 要将直径为d的圆木锯成强度最大的横梁,断面的宽度和高度应是多少?类型二立体几何中的最值问题【典例】如图所示,现有一块边长为a的正方形铁板,如果从铁板的四个角各截去一个相同的小正方形,做成一个长方体形的无盖容器. 为使其容积最大,截下的小正方形边长应为多少?类型三实际生活中的优化问题角度1:实际应用中的最大值问题【典例】已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且⎪⎪⎩⎪⎪⎨⎧>-≤<-=10,31000108,100,3018.10)(22xxxxxxR(1)求年利润W(万元)关于年产量x(千件)的函数解析式.(2)当年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大,并求出最大值.78角度2:实际应用中的最小值问题【典例】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层. 某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=)100(53≤≤+x x k(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元. 设f(x)为隔热层建造费用与20年的能源消耗费用之和. (1)求k 的值及f(x)的表达式.(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.【跟踪训练】1.已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为y=31-x 3+81x-234,则使该生产厂家获取最大年利润的年产量为( )A.13万件B.11万件C.9万件D.7万件2.做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最省,则圆柱的底面半径为( )A.3B.4C.6D.53.某箱子的体积与底面边长x 的关系为V(x)=x 2)260(x-(0<x<60),则当箱子的体积最大时,箱子底面边长为( )A.30B.40C.50D.604.已知球O 的半径为R ,圆柱内接于球,当内接圆柱的体积最大时,高等于( )A.332R B.33R C.23RD.3R5.某厂生产某产品x(万件)的总成本C(x)=1200+752x 3(万元),已知产品单价的平方与产品件数x 成反比,生产100万件这样的产品时单价为50万元,产量定为( )时总利润最大.A.23万件B.25万件C.50万件D.75万件6.要做一个圆锥形漏斗,其母线长为20cm ,要使其体积最大,则高应为 .7.某超市中秋前30天,月饼销售总量f(t)与时间t(0<t≤30,t ∈Z)的关系大致满足f(t)=t 2+10t+12,则该超市前t 天平均售出(如前10天的平均售出为10)10(f )的月饼最少为 . 8.海轮每小时使用的燃料费与它的航行速度的立方成正比,已知某海轮的最大航速为30海里/小时,当速度为10海里/小时时,它的燃料费是每小时25元,其余费用(无论速度如何)都是每小时400元.如果甲、乙两地相距800海里,则要使该海轮从甲地航行到乙地的总费用最低,它的航速应为 .【链接高考】(2013年重庆,20,12分) 某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度)该蓄水池的底面半径为r 米,高为h 米,体积为V 立方体,假设建造成本仅与表面积有关,侧面是建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率). (1)将V 表示成r 的函数V(r),并求定义域. (2)讨论函数V(r)的单调性,并确定r 和h 为何值时该蓄水池的体积最大.1.4 定积分与微积分基本定理91.4.1 曲边梯形面积与定积分【知识提炼】 1.曲边梯形的面积 (1)曲边梯形的概念曲线与平行于____的直线和____所围成的图形. (2)曲边梯形面积的求法求连续曲线y=f(x)对应的曲边梯形面积S 的方法 ①分割;②近似代替;③求面积的和; ④取极限S=_____________. 2.弹簧在拉伸过程中所做的功弹簧在拉伸过程中,力的函数为F=f(x)(x 为伸长量),当a≤x≤b 时也可以利用“分割、近似代替、求和、取极限”的方法求弹簧拉力的变力所做的功W=____________. 3.定积分的有关概念与基本性质 (1)函数定积分的定义设函数y=f(x)定义在区间[a ,b]上(如图),用分点a=x 0<x 1<x 2<…<x n-1<x n =b ,把区间[a ,b]分为n 个小区间,其长度依次为Δx i =x i+1-x i ,i=0,1,2,…,n-1.记λ为这些小区间长度的最大者,当λ趋近于0时,所有的小区间长度都趋近于0,在每个小区间内任取一点ξi ,作和式I n =__________.当λ→0时,如果和式的极限存在,我们把和式I n 的极限叫做函数f(x)在区间[a ,b]上的定积分,记作__________. (2)定积分的定义式()()n 1biiai 0f x dx lim f x .-λ→==ξ∆∑⎰(3)定积分的相关名称(4)①⎰badx x cf )(= (c 为常数).②⎰+badx x g x f )]()([= .【题型探究】类型一 定积分的概念及应用 【典例】1.定积分⎰abdx x f )(的大小 ( )A.与f(x)和积分区间有关,与ξi 的取法无关B.与f(x)有关,与区间及ξi 的取法无关C.与f(x)及ξi 的取法有关,与区间无关D.与f(x)、积分区间和ξi 的取法都有关2.求曲线2x y =与直线0,1==y x 所围成的区域的面积.类型二 利用性质求定积分 【典例】1.已知定积分⎰=68)(dx x f ,且)(x f 为偶函数,则⎰-66)(dx x f =( )A.0B.16C.12D.82.已知⎰⎰==ee e dx x e xdx 003223,2,求下列定积分的值:(1)⎰+edx x x 02)2(;(2) ⎰+-edx x x 02)12(.类型三 利用定积分的几何意义求定积分 【典例】利用定积分的几何意义求下列各式的值.(1)dx x ⎰--2224= .(2) ⎰+20)12(dx x = .易错案例 计算定积分【典例】定积分⎰---22))1(1(dx x =.【失误案例】10【错解分析】分析解题过程,你知道错在哪里吗? 提示:错误的根本原因是没有正确理解定积分的几何意义,即当f(x)≤0时定积分与面积的关系理解有误.【自我矫正】曲线y=2)1(1---x 表示圆心在点(1,0),半径为1的圆在x 轴下方的部分,⎰---22))1(1(dx x 等于在积分区间[0,2]上,由x=0,x=2,y=0及2)1(1---=x y 围成的半圆面积的相反数.所以2121)1(1(22ππ-=⨯⨯-=-=---⎰S dx x .答案:2π-【跟踪训练】 1.函数f(x)=x 2在区间]1,1[nn i -上( ) A.f(x)的值变化很小 B.f(x)的值变化很大C.f(x)的值不变化D.当n 很大时,f(x)的值变化很小 2.定积分dx ⎰-31)3(等于() A.-6B.6C.-3D.33.函数f(x)在区间[a ,b]上连续,用分点a=x 0<x 1<…<x i-1<x i <…<x n =b ,把区间[a ,b]等分成n 个小区间,在每个小区间[x i-1,x i ]上任取一点ξi (i=1,2,…,n),作和式∑=∆=ni in x f S 1)(ξ(其中Δx 为小区间的长度),那么S n 的大小( )A.与f(x)和区间[a ,b]有关,与分点的个数n 和ξi 的取法无关B.与f(x),区间[a ,b]和分点的个数n 有关,与ξi 的取法无关C.与f(x),区间[a ,b]和分点的个数n ,ξi 的取法都有关D.与f(x),区间[a ,b]和ξi 取法有关,与分点的个数n 无关4.已知函数f(x)=sin 5x+1,根据函数的性质、积分的性质和积分的几何意义,探求⎰-22)(ππdxx f 的值,结果是( )A.261π+B.πC.1D.05.设⎰⎰⎰===1132131,,dx x c dx x b dx x a ,则a ,b ,c 的大小关系是()A.c>a>bB.a>b>cC.a=b>cD.a>c>b6.定积分⎰015201422014dx = .7.如图所示阴影部分的面积用定积分表示为 .8.求定积分dx x )12(12⎰-+= .9.已知⎰=1341dx x ,⎰=213415dx x ,⎰=21237dx x ,⎰=422356dx x , 求:(1)⎰233dx x (2)⎰4126dx x (3)⎰-2132)23(dx x x .10.根据定积分的几何意义求下列定积分的值:(1)⎰-11xdx . (2)⎰π20cos xdx . (3)dx x ⎰-11.111.4.2 微积分基本定理【知识提炼】 微积分基本定理1.条件:F′(x)=f(x),且f(x)在[a,b ]上可积.2.结论:⎰badx x f )(= .3.符号表示:⎰badx x f )(= = .【题型探究】 类型一 求定积分 【典例】计算:(1)⎰411dx x(2)⎰+22)1(dx x类型二 定积分基本定理的应用 【典例】1.设函数f(x)=ax 2+c(a≠0).若⎰≤≤=10010),()(x x f dx x f ,则0x 的值为 .2.已知t>0,f(x)=2x-1,若⎰=tdx x f 06)(,则t= .类型三 利用定积分求面积【典例】(1)求x y sin =在],0[π上阴影部分的面积S.(2)求曲线x y sin =与x 轴在区间]2,0[π上所围成阴影部分的面积S.【变式训练】 求由曲线x y =,x y -=2,x y 31-=围成图形的面积.【跟踪训练】1计算⎰--22)cos 1(ππdx x =( )A.π+2B.π2-C.πD.2-2.若⎰=+102)2(dx k x ,则k 等于( )A.0B.1C.2D.33.已知⎪⎩⎪⎨⎧>≤≤=,1,1,10,)(x xx x x f 则⎰20)(dx x f =( )A.29B.2ln 221+ C.2ln 21+ D.2ln 45- 4.由曲线x y =,直线2-=x y 及y 轴所围成的图形的面积为( )A.310B.4C.316D.6125.若⎰=2121dx x s ,s 2=⎰211dx x,s 3=⎰21dx e x 则s 1,s 2,s 3的大小关系为( )A.s 1<s 2<s 3B.s 2<s 1<s 3C.s 2<s 3<s 1D.s 3<s 2<s 16.⎰-2)1(dx x =.7.如图所示,函数y=-x 2+2x+1与y=1相交形成一个闭合图形(图中的阴影部分),则该闭合图形的面积是 .8.已知函数y=x 2与y=kx(k>0)的图象所围成的阴影部分(如图所示)的面积为34,则k= .9.计算下列定积分.(1)dx x ⎰-+342. (2)⎰+-1211e dx x .10.求曲线y=x 2,直线y=x ,y=3x 围成的图形的面积.【链接高考】(2015天津11)曲线2x y =与直线x y =所围成封闭图形的面积为 .。

高考数学一轮复习第3章一元函数的导数及其应用2利用导数研究函数的单调性课件新人教版

高考数学一轮复习第3章一元函数的导数及其应用2利用导数研究函数的单调性课件新人教版

π
π
-π,, 0,
____________.
2
2
由题意可知 f'(x)=sin x+xcos x-sin x=xcos x.
令 f'(x)=xcos x>0,解得其在区间(-π,π)内的解集为
即 f(x)的单调递增区间为
π
-π,- 2
,
π
0, 2
.
π
-π,2

π
0,
2
,
解题心得利用导数讨论函数单调性或求单调区间的方法
等,都需要考虑函数的单调性,所以也是高考必考知识.应用时,要注意函数
的定义域优先,准确求导变形,转化为导函数在某区间上的符号问题.常用
到分类讨论和数形结合的思想,对数学运算核心素养有一定的要求.




01
第一环节
必备知识落实
02
第二环节
关键能力形成
03
第三环节
学科素养提升
第一环节
必备知识落实
【知识筛查】
(2)若函数f(x)在区间[1,2]上为单调函数,求a的取值范围.
解 (1)若a=1,则f(x)=3x-2x2+ln x的定义域为(0,+∞),
1
-42 +3+1
故 f'(x)= -4x+3=


=
-(4+1)(-1)
(x>0).

当x∈(0,1)时,f'(x)>0,即函数f(x)=3x-2x2+ln x单调递增;



1
2
7
7
即 g(x)在区间[1,4]上单调递增,g(x)max=g(4)= − =- ,即 a≥- .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数的应用——利用单调性求参数的取值
范围
导数的应用——利用单调性求参数的取值范围
1、已知3)2(3
123++++=x b bx x y 是R 上的单调增函数,则b 的取值范围是( )
A. 21>-<b b ,或
B.21≥-≤b b ,或
C. 21<<-b
D. 21≤≤-b
2.设函数f(x)=kx 3+3(k -1)x 22k -+1在区间(0,4)上是减函数,则k 的取值范围( )
A 、13
k < B 、103k <≤ C 、103k ≤≤ D 、13
k ≤
3.已知函数f(x)=
lna +lnx x 在[1,+∞)上为减函数,则实数a 的取值范围是( ) A .0<a<1e
B .0<a ≤e
C .a ≤e
D .a ≥e
4.已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的
( ) A.),3[]3,(+∞--∞ B.]3,3[- C. ),3()3,(+∞--∞ D. )3,3(-
5、函数ax x x f -=3)(在[1,+∞)上是单调递增函数,则a 的最大值是
____________.
6、已知函数53
123-++=ax x x y (1)若函数在()+∞∞-,总是单调函数,则a 的取值范围是 . 若函数在),1[+∞上总是单调函数,则a 的取值范围 .若函数在区间(-3,1)上单调递减,则实数a 的取值范围是 .
7、已知函数f (x )=2ax -21x
,x ∈(0,1],若f (x )在x ∈(0,1]上是增函数,则a 的取值范围是 ;
8、如果函数y=
2
12x +lnx-ax 在定义域为增函数,则a 的取值范围是 9.如果函数f(x)=x+
x a 在(2,∞)上是增函数,则a 的取值范围是
10、若函数1
4)(2+=x x x f 在区间)1,(+m m 上是单调递增函数,则实数m 的取值范围为 .
11、已知向量x f t x x x ⋅=-=+=)(),,1(),1,(2若函数在区间(-1,1)上是增函数,则t 的取值范围是 .
13.已知函数x x x f 12)(3
-=,若)(x f 在区间)1,2(+m m 上单调递减,则实数m 的取值范围是_________________
14. 若函数y =-43
x 3+ax 有三个单调区间,则a 的取值范围是________.
15. 已知函数f (x )=kx 3-3(k +1)x 2-k 2+1(k >0).若f (x )的单调递减区间为(0,4),单调递增区间为(-∞,0)与(4,+∞),则k 的值是 .
16、已知函数()0ln )(2>--=a x ax x x f
(1)若曲线)(x f y =在点()()1,1f 处的切线斜率为2-,求a 的值以及切线方程;
(2)若)(x f y =是单调函数,求a 的取值范围。

相关文档
最新文档