有限元分析与应用大作业

合集下载

有限元分析大作业

有限元分析大作业

超静定梁的有限元分析本文分别通过材料力学解法和有限元解法,求出了超静定梁的支反力、最大位移及最大位移出现位置,并对两者进行了比较和误差分析。

一、超静定梁的材料力学解法梁的约束反力数目超过了有效平衡方程数,单纯使用静力平衡不能确定全部未知力的梁称为超静定梁。

超静定梁比静定梁有许多优点,如可用较少材料获得较大的刚度和强度,个别约束破坏后仍可工作等。

因而超静定梁在工程中得到较多的应用。

超静定梁的解法有很多种,本文采用力法的一种——变形比较法求解未知量。

图1图2选取C 点的支座为多余约束,Rc 为多余支座反力,则相应的基本静定梁为一外伸梁,如图2所示,其上受集中载荷P 、均布载荷q 和多余支座反力Rc 的作用。

相应的变形条件为:c cP cq cRc f f f f =++=其中316cP B Pl f l EI θ=⨯= 4724cq ql f EI =-323c cRc R l f EI =则316Pl EI 4724ql EI -+323c R l EI=0 将已知数据带入可求得 6.25c R =- 负号表示c R 的方向与假设的方向相反。

再列出平衡方程:0X =∑AX R =0A M =∑ 232022B C ql Pl R l R l ---=0C M =∑ 232022AY B ql PllR R l +--=带入已知条件求得:AX R = 393.75AY R = 812.5B R =用叠加法求最大位移:最大的向下位移在A 与B 两点中间:334410.7910481632C R l Pl ql f EI EI EI -=-++=-⨯最大的向上位移在B 与C 两点中间:3344213490.22525103248512C R l Pl ql f EI EI -=--=⨯二、超静定梁的有限元解法在ANSYS 平台上,求解超静定梁。

建模、单元划分、加载后结果如图3所示。

图3求解后可以通过图形和列表两种方式查看结果。

ansys有限元分析作业经典案例

ansys有限元分析作业经典案例

工程软件应用及设计实习报告实习时间:一.实习目的:1.熟悉工程软件在实际应用中具体的操作流程与方法,同时结合所学知识对理论内容进行实际性的操作.2.培养我们动手实践能力,将理论知识同实际相结合的能力,提高大家的综合能力,便于以后就业及实际应用.3.工程软件的应用是对课本所学知识的拓展与延伸,对我们专业课的学习有很大的提高,也是对我们进一步的拔高与锻炼. 二.实习内容(一)用ANSYS软件进行输气管道的有限元建模与分析计算分析模型如图1所示承受内压:1.0e8 PaR1=0.3R2=0.5管道材料参数:弹性模量E=200Gpa;泊松比v=0.26.图1受均匀内压的输气管道计算分析模型(截面图)题目解释:由于管道沿长度方向的尺寸远远大于管道的直径,在计算过程中忽略管道的断面效应,认为在其方向上无应变产生.然后根据结构的对称性,只要分析其中1/4即可.此外,需注意分析过程中的单位统一.操作步骤1.定义工作文件名和工作标题1.定义工作文件名.执行Utility Menu-File→Chang Jobname-3070611062,单击OK按钮.2.定义工作标题.执行Utility Menu-File→Change Tile-chentengfei3070611062,单击OK 按钮.3.更改目录.执行Utility Menu-File→change the working directory –D/chen2.定义单元类型和材料属性1.设置计算类型ANSYS Main Menu: Preferences →select Structural →OK2.选择单元类型.执行ANSYS Main Menu→Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 8node 82 →applyAdd/Edit/Delete →Add →select Solid Brick 8node 185 →OKOptions…→select K3: Plane strain →OK→Close如图2所示,选择OK接受单元类型并关闭对话框.图23.设置材料属性.执行Main Menu→Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic,在EX框中输入2e11,在PRXY框中输入0.26,如图3所示,选择OK并关闭对话框.图33.创建几何模型1. 选择ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS →依次输入四个点的坐标:input:1(0.3,0),2(0.5,0),3(0,0.5),4(0,0.3) →OK2. 生成管道截面.ANSYS 命令菜单栏: Work Plane>Change Active CS to>Global Spherical →ANSYS Main Menu: Preprocessor →Modeling →Create →Lines →In Active Coord →依次连接1,2,3,4点→OK 如图4图4Preprocessor →Modeling →Create →Areas →Arbitrary →By Lines →依次拾取四条边→OK →ANSYS 命令菜单栏: Work Plane>Change Active CS to>Global Cartesian 如图5图53.拉伸成3维实体模型Preprocessor →Modeling→operate→areas→along normal输入2,如图6所示图64.生成有限元网格Preprocessor →Meshing →Mesh Tool→V olumes Mesh→Tet→Free,.采用自由网格划分单元.执行Main Menu-Preprocessor-Meshing-Mesh-V olume-Free,弹出一个拾取框,拾取实体,单击OK按钮.生成的网格如图7所示.图75.施加载荷并求解1.施加约束条件.执行Main Menu-Solution-Apply-Structural-Displacement-On Areas,弹出一个拾取框,拾取前平面,单击OK按钮,弹出如图8所示的对话框,选择“U Y”选项,单击OK按钮.图8同理,执行Main Menu-Solution-Apply-Structural-Displacement-On Areas,弹出一个拾取框,拾取左平面,单击OK按钮,弹出如图8所示的对话框,选择“U X”选项,单击OK按钮.2.施加载荷.执行Main Menu-Solution-Apply-Structural-Pressure-On Areas,弹出一个拾取框,拾取内表面,单击OK按钮,弹出如图10所示对话框,如图所示输入数据1e8,单击OK按钮.如图9所示.生成结构如图10图9图103.求解.执行Main Menu-Solution-Solve-Current LS,弹出一个提示框.浏览后执行file-close,单击OK按钮开始求解运算.出现一个【Solution is done】对话框是单击close按钮完成求解运算.6.显示结果1.显示变形形状.执行Main Menu-General Posproc-Plot Results-Deformed Shape,弹出如图11所示的对话框.选择“Def+underformed”单选按钮,单击OK按钮.生成结果如图12所示.图11图122.列出节点的结果.执行Main Menu-General Posproc-List Results-Nodal Solution,弹出如图13所示的对话框.设置好后点击OK按钮.生成如图14所示的结果图13图143.浏览节点上的V on Mises应力值.执行Main Menu-General Posproc-Plot Results-Contour Plot-Nodal Solu,弹出如图15所示对话框.设置好后单击OK按钮,生成结果如图16所示.图15图167.以扩展方式显示计算结果1.设置扩展模式.执行Utility Menu-Plotctrls-Style-Symmetry Expansion,弹出如图17所示对话框.选中“1/4 Dihedral Sym”单选按钮,单击OK按钮,生成结果如图18所示.图17图182.以等值线方式显示.执行Utility Menu-Plotctrls-Device Options,弹出如图19所示对话框,生成结果如图20所示.图19图20结果分析通过图18可以看出,在分析过程中的最大变形量为418E-03m,最大的应力为994E+08Pa,最小应力为257E+09Pa.应力在内表面比较大,所以在生产中应加强内表面材料的强度.。

有限元分析大作业报告

有限元分析大作业报告

有限元分析大作业报告一、引言有限元分析是工程领域中常用的数值模拟方法,通过将连续的物理问题离散为有限个子区域,然后利用数学方法求解,最终得到数值解。

有限元分析的快速发展和广泛应用,为工程领域提供了一种强大的工具。

本报告将介绍在大作业中所进行的有限元分析工作及结果。

二、有限元模型建立本次大作业的研究对象是工程结构的应力分析。

首先,通过对结构进行几何建模,确定了结构的尺寸和形状。

然后,将结构离散为有限个单元,每个单元又可以看作一个小的子区域。

接下来,为了求解结构的应力分布,需要为每个单元确定适当的单元类型和单元属性。

最后,根据结构的边界条件,建立整个有限元模型。

三、材料属性和加载条件在建立有限元模型的过程中,需要为材料和加载条件确定适当的参数。

本次大作业中,通过实验获得了结构材料的弹性模量、泊松比等参数,并将其输入到有限元模型中。

对于加载条件,我们选取了其中一种常见的加载方式,并将其施加到有限元模型中。

四、数值计算和结果分析为了求解结构的应力分布,需要进行数值计算。

在本次大作业中,我们选用了一种常见的有限元求解器进行计算。

通过输入模型的几何形状、材料属性和加载条件,求解器可以根据有限元方法进行计算,并得到结构的应力分布。

最后,我们通过对计算结果进行分析,得出了结论。

五、结果讨论和改进方法根据计算结果,我们可以对结构的应力分布进行分析和讨论。

根据分析结果,我们可以得出结论是否满足设计要求以及结构的强度情况。

同时,根据分析结果,我们还可以提出改进方法,针对结构的特点和问题进行相应的优化设计。

六、结论通过对工程结构进行有限元分析,我们得到了结构的应力分布,并根据分析结果进行了讨论和改进方法的提出。

有限元分析为工程领域提供了一种有效的数值模拟方法,可以帮助工程师进行结构设计和分析工作,提高设计效率和设计质量。

【1】XXX,XXXX。

【2】XXX,XXXX。

以上是本次大作业的有限元分析报告,总结了在建立有限元模型、确定材料属性和加载条件、数值计算和结果分析等方面的工作,并对计算结果进行讨论和改进方法的提出。

有限元分析大作业

有限元分析大作业

有限元大作业一题目要求:图1所示为一悬臂梁,在端部承受载荷,材料弹性模量为E,泊松比为1/3,悬臂梁的厚度(板厚)为t,若该粱被划分为两个单元,单元和节点编号如图所示,试按平面应力问题计算各个节点位移计支反力。

一、单元划分1.计算简图及单元划分如下所示:2.进行节点及单元编号节点i j m单元① 2 3 4② 3 2 13.节点坐标值节点号1 2 3 4坐标值X 2 2 0 0Y 1 0 1 0二、计算单元刚度矩阵1、计算每个单元面积△以及i b ,i c (m j i i ,,=) ①②单元的面积相等,即12121=⨯⨯=∆ 单元①的i b ,i c⎩⎨⎧=--==-=0)(1m j i m j i y x c y y b ⎩⎨⎧=--==-=2)(0i m ji m j x x c y y b ⎩⎨⎧-=--=-=-=2)(1j i mj i m y x c y y b 对平面应力问题,其表达式为[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+-+-+∆-=s r s r sr s r s r s r s r s r b b uc c cb u b uc b c u c ub c c u b b u Et Krs 21212121)1(42 然后对单元①求解单元刚度子矩阵2==i r 2==i s []⎥⎦⎤⎢⎣⎡=3/1001329)1(22Et K 2==i r 3==j s []⎥⎦⎤⎢⎣⎡=03/23/20329)1(23Et K2==i r 4==m s []⎥⎦⎤⎢⎣⎡----=3/13/23/21329)1(24Et K 3==j r 3==j s []⎥⎦⎤⎢⎣⎡=4003/4329)1(33Et K 3==j r 2==i s []⎥⎦⎤⎢⎣⎡=03/23/20329)1(32Et K 3==j r 4==m s []⎥⎦⎤⎢⎣⎡----=43/23/23/4329)1(34Et K 4==m r 4==m s []⎥⎦⎤⎢⎣⎡=3/133/43/43/7329)1(44Et K 4==m r 2==i s []⎥⎦⎤⎢⎣⎡----=3/13/23/21329)1(42Et K 4==m r 3==j s []⎥⎦⎤⎢⎣⎡----=43/23/23/4329)1(43Et K由子矩阵[]e rs K 合成单元刚度矩阵[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------------=3/133/443/23/13/23/43/73/23/43/2143/24003/23/23/403/43/203/13/203/23/103/213/2001329)1(Et K将单元①的单元刚度矩阵补零升阶变为单元刚度矩阵,其在总体刚度矩阵中的位置为:节点号→单元②的i b ,i c⎩⎨⎧=--=-=-=0)(1m j im j i y x c y y b ⎩⎨⎧-=--==-=2)(0i m ji m j x x c y y b ⎩⎨⎧=--==-=2)(1j i mj i m y x c y y b 然后对单元 求解单元刚度子矩阵:3==i r 3==i s []⎥⎦⎤⎢⎣⎡=3/1001329)2(33Et K 3==i r 2==j s []⎥⎦⎤⎢⎣⎡=03/23/20329)2(32Et K 3==i r 1==m s []⎥⎦⎤⎢⎣⎡----=3/13/23/21329)2(31Et K 1 2 3 412[])1(22K[])1(23K[])1(24K3[])1(32K[])1(33K[])1(34K4[])1(42K[])1(43K[])1(44K2==j r 2==j s []⎥⎦⎤⎢⎣⎡=4003/4329)2(22Et K 2==j r 3==i s []⎥⎦⎤⎢⎣⎡=03/23/20329)2(23Et K 2==j r 1==m s []⎥⎦⎤⎢⎣⎡----=43/23/23/4329)2(21Et K 1==m r 1==m s []⎥⎦⎤⎢⎣⎡=3/133/43/43/7329)2(11Et K 1==m r 3==i s []⎥⎦⎤⎢⎣⎡----=3/13/23/21329)2(13Et K 1==m r 2==j s []⎥⎦⎤⎢⎣⎡----=43/23/23/4329)2(12Et K 由子矩阵[]e rs K 合成单元刚度矩阵[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------------=3/133/443/23/13/23/43/73/23/43/2143/24003/23/23/403/43/203/13/203/23/103/213/2001329)2(Et K将单元②的单元刚度矩阵补零升阶变为单元贡献矩阵,其在总体刚度矩阵中的位置为:节点号→1 2 3 41 [])2(11K[])2(12K[])2(13K2 [])2(21K[])2(22K[])2(23K3 [])2(31K [])2(32K [])2(33K 4三、计算总体刚度矩阵总体刚度矩阵是由各单元的贡献矩阵迭加而成)2()1(][][][][K K K K e +==∑四、进行节点约束处理根据节点约束情况,在总刚矩阵中可采用划行划列处理约束的方法,由题目易知,节点3和4的已知水平位移和垂直位移都为零,划去其相对应的行和列,则总刚矩阵由8阶变为4阶,矩阵如下:⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧--=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------2/02/03/13043/203/73/23/443/23/133/43/23/43/43/73292211p p v u v u Et329][Et K =1 2 3 413/133/43/43/743/23/23/4----3/13/23/21----000243/23/23/4----3/13003/73/43/403/13/23/21----33/13/23/21----3/43/403/13003/743/23/23/4----40003/13/23/21----43/23/23/4----3/133/43/43/7化简⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧--=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------Et p Et p v u v u 3/1603/160130122072412213424472211 五、求解线性方程组方法:采用LU 分解法 1.求解矩阵[]U 各元素⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------75/10775/640075/6475/353007/767/27/7502447~7/877/87/7607/87/337/207/767/27/7502447~13012207241221342447⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----353/44900075/6475/353007/767/27/7502447~ 得到的[]U 矩阵如下:[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=353/44900075/6475/353007/767/27/7502447U 2.求解矩阵[]L 各元素⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----13012207241221342447353/44900075/6475/353007/767/27/75024471353/6475/767/20175/27/40017/40001 得到的[]L 矩阵如下:[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=13012207241221342447L3.进行求解⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧---=⇒⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧--=Et p Et p Et p y Et p Et p Ly 79425/850800225/323/1603/1603/160⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧---=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----⇒=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡Et p Et p Et p v u v u y v u v u U 79425/850800225/323/160353/44900075/6475/353007/7675/27/750244722112211 解得Et p v /422.82-= Et p u /497.12-= Et p v /028.91-= Et p u /897.11=于是求得各节点的位移为:⎩⎨⎧-==Etp v Etp u /028.9/897.111 ⎩⎨⎧-=-=Etp v Etp u /422.8/497.122 ⎩⎨⎧==033v u ⎩⎨⎧==044v u 六、求解相应的支反力(运用静力学的平衡方程进行求解)3号节点和4号节点的支反力如下图所示:。

(完整word版)有限元分析大作业报告要点

(完整word版)有限元分析大作业报告要点

有限元分析大作业报告试题1:一、问题描述及数学建模图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较:(1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;(2)分别采用不同数量的三节点常应变单元计算;(3)当选常应变三角单元时,分别采用不同划分方案计算。

该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图所示。

二、采用相同单元数目的三节点常应变单元和六节点三角形单元计算1、有限元建模(1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences 为Structural(2)选择单元类型:三节点常应变单元选择的类型是Solid Quad 4 node182;六节点三角形单元选择的类型是Solid Quad 8 node183。

因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。

(3)定义材料参数:弹性模量E=2.1e11,泊松比σ=0.3(4)建几何模型:生成特征点;生成坝体截面(5)网格化分:划分网格时,拾取lineAB和lineBC,设定input NDIV 为15;拾取lineAC,设定input NDIV 为20,选择网格划分方式为Tri+Mapped,最后得到600个单元。

(6)模型施加约束:约束采用的是对底面BC 全约束。

大坝所受载荷形式为Pressure ,作用在AB 面上,分析时施加在L AB 上,方向水平向右,载荷大小沿L AB 由小到大均匀分布。

以B 为坐标原点,BA 方向为纵轴y ,则沿着y 方向的受力大小可表示为:}{*980098000)10(Y y g gh P -=-==ρρ2、 计算结果及结果分析 (1) 三节点常应变单元三节点常应变单元的位移分布图三节点常应变单元的应力分布图(2)六节点三角形单元六节点三角形单元的变形分布图六节点三角形单元的应力分布图①最大位移都发生在A点,即大坝顶端,最大应力发生在B点附近,即坝底和水的交界处,且整体应力和位移变化分布趋势相似,符合实际情况;②结果显示三节点和六节点单元分析出来的最大应力值相差较大,原因可能是B点产生了虚假应力,造成了最大应力值的不准确性。

有限元分析大作业

有限元分析大作业

《有限元分析及应用》大作业——齿根弯曲应力计算报告班级:无可奉告姓名:无可奉告学号:无可奉告指导老师:无可奉告目录目录 (2)1.概述 (3)1.1工程问题描述 (3)1.2问题分析 (3)2.建模过程 (4)2.1几何建模 (4)2.2CAE网格划分与计算 (5)2.3后处理 (8)3.多方案比较与结果分析 (9)3.1多方案比较 (9)3.2结果分析 (11)1.概述1.1工程问题描述我在本次作业中的选题为齿根弯曲应力的计算与校核。

通过对机械设计的学习,我们可以知道,齿轮的失效形式主要是齿面接触疲劳和齿根弯曲断裂,而闭式传动硬齿面齿轮的失效形式以齿根弯曲断裂,这个时候进行齿根弯曲应力的校核才比较有意义,在设计问题的时候应当选取这种类型的算例。

设计计算的另一个主要思路是将有限元计算的结果与传统机械设计的结算结果进行对比,以从多方面验证计算结果的准确性。

综上,我们最终选取了《机械原理》(第三版)P50例3-1中的问题进行校核计算。

已知起重机械用的一对闭式直齿圆柱齿轮,传动,输入转速n1=730r/min,输入功率P1=35kW,每天工作16小时,使用寿命5年,齿轮为非对称布置,轴的刚性较大,原动机为电动机,工作机载荷为中等冲击。

z1=29,z2=129,m=2.5mm,b1=48mm,b2=42mm,大、小齿轮均为20CrMnTi,渗碳淬火,齿面硬度为58~62HRC,齿轮精度为7级,试验算齿轮强度。

齿面为硬齿面,传动方式为闭式传动。

根据设计手册查出的许用接触应力为1363.6Mpa,计算结果为1260Mpa,强度合格。

根据设计手册查出的许用弯曲应力为613.3MPa,计算结果为619Mpa,强度略显不够。

1.2问题分析大小齿轮啮合,小齿轮受载荷情况较为严峻,故分析对象应当为小齿轮。

可以看出,由于齿轮单侧受载荷,传动过程中每个齿上载荷的变化过程是相同的,故问题可被简化为反对称问题,仅需研究单个齿。

有限元法理论及应用参考答案(推荐文档)

有限元法理论及应用参考答案(推荐文档)

有限元法理论及应用大作业1、试简要阐述有限元理论分析的基本步骤主要有哪些?答:有限元分析的主要步骤主要有:(1)结构的离散化,即单元的划分;(2)单元分析,包括选择位移模式、根据几何方程建立应变与位移的关系、根据虚功原理建立节点力与节点位移的关系,最后得到单元刚度方程;(3)等效节点载荷计算;(4)整体分析,建立整体刚度方程;(5)引入约束,求解整体平衡方程。

2、有限元网格划分的基本原则是什么?指出图示网格划分中不合理的地方。

题2图答:一般选用三角形或四边形单元,在满足一定精度情况,尽可能少一些单元。

有限元划分网格的基本原则:1.拓扑正确性原则。

即单元间是靠单元顶点、或单元边、或单元面连接2.几何保持原则。

即网络划分后,单元的集合为原结构近似3.特性一致原则。

即材料相同,厚度相同4.单元形状优良原则。

单元边、角相差尽可能小5.密度可控原则。

即在保证一定精度的前提下,网格尽可能的稀疏一些。

(a)(b)中节点没有有效的连接,且(b)中单元边差相差很大。

(c)中没有考虑对称性,单元边差很大。

3、分别指出图示平面结构划分为什么单元?有多少个节点?多少个自由度?题3图答:(a )划分为杆单元, 8个节点,12个自由度。

(b )划分为平面梁单元,8个节点,15个自由度。

(c )平面四节点四边形单元,8个节点,13个自由度。

(d )平面三角形单元,29个节点,38个自由度。

4、什么是等参数单元?。

答:如果坐标变换和位移插值采用相同的节点,并且单元的形状变换函数与位移插值的形函数一样,则称这种变换为等参变换,这样的单元称为等参单元。

5、在平面三节点三角形单元中,能否选取如下的位移模式,为什么?(1).⎪⎩⎪⎨⎧++=++=26543221),(),(y x y x v yx y x u αααααα (2). ⎪⎩⎪⎨⎧++=++=2652423221),(),(yxy x y x v yxy x y x u αααααα 答:(1)不能,因为位移函数要满足几何各向同性,即单元的位移分布不应与人为选取的 坐标方位有关,即位移函数中的坐标x,y 应该是能够互换的。

有限元分析大作业精华-实验报告

有限元分析大作业精华-实验报告

平面刚架问题如图示,一个平面刚架右端固定,在左端施加一个y方向的-3000N的力P1,中间施加一个Y方向的-1000N的力P2,试以静力来分析,求解各接点的位移。

已知组成刚架的各梁除梁长外,其余的几何特性相同。

横截面积:A=0.0072 m²横截高度:H=0.42m惯性矩:I=0.0021028m4x弹性模量:E=2.06x10n/ m²/泊松比:u=0.3用ANSYS 分析平面刚架1.设定分析模块选择菜单路径:MainMenu—preference 弹出“PRreferences for GUI Filtering”对话框,如图示,在对话框中选取:Structural”,单击[OK]按钮,完成选择。

2.选择单元类型并定义单元的实常数(1)新建单元类型并定(2)定义单元的实常数在”Real Constants for BEAM3”对话框的AREA中输入“0。

0072”在IZZ中输入“0。

0002108”,在HEIGHT中输入“0.42”。

其他的3个常数不定义。

单击[OK]按钮,完成选择3.定义材料属性在”Define Material Model Behavier”对话框的”Material Models Available”中,依次双击“Structural→Linear→Elastic→Isotropic”如图在如下图的对话框EX中输入“2.06e11”,在PRXY框中输入“0.3”,完成材料模型的定义。

4建立平面刚架节点和单元(1)生成节点选择菜单路,生成节点于目前坐标系统命令,单击以后弹出如图对话框,在对话框的Node number 中输入“1“接着依序输入第一点XYZ的坐标值”2,0,0,然后单击[APPL Y]按钮继续生成第二点,如图接着在对话框的Node number 中输入“2“接着依序输入第一点XYZ的坐标值”6,0,0,然后单击[APPL Y]按钮继续生成第三点,如图接着在对话框的Node number 中输入“3“接着依序输入第一点XYZ的坐标值”0,2,0,然后单击[APPL Y]按钮继续生成第四点,如图接着在对话框的Node number 中输入“4“接着依序输入第一点XYZ的坐标值”4,2,0,然后单击[APPL Y]按钮继续生成第五点,如图接着在对话框的Node number 中输入“5“接着依序输入第一点XYZ的坐标值”8,2,0,然后单击[OK]按钮,完成第五点的生成,系统显示生成的五个点的位置,如图校验所输入的节点坐标的正确与否,可以选择菜单路径:弹出如图所示一个文本窗口,如图,列出了所有的节点及其坐标。

有限元分析在工程设计中的应用案例分析

有限元分析在工程设计中的应用案例分析

有限元分析在工程设计中的应用案例分析有限元分析,简称FEA(Finite Element Analysis),是一种利用数值计算方法对复杂结构进行力学分析的技术。

它基于物理学原理,利用离散化方法将连续的结构在有限元上分解成多个互相联系但是局部地独立的单元,再通过数学算法进行求解,最终得到整个结构的力学行为。

因为它可以减少试错周期、降低开发成本和提高产品性能,所以有限元分析已经成为当今工程设计和生产领域一项非常重要的技术。

本文将介绍一些有限元分析在工程设计中的具体应用案例。

1.汽车发动机壳体优化汽车发动机壳体是承载引擎所有关键部件的重要结构,其制造复杂度很高。

为了减少开发过程中的试验成本和时间,一家风机厂专门利用有限元分析技术对汽车发动机壳体进行优化设计。

更改前发动机壳体在经过一定的较高频振动时会存在密封性能下降的现象,需要进行加强设计。

利用有限元分析技术,他们对发动机壳体进行了动力学分析,并计算了各部位的振动位移和应力分布,通过不断地修改控制点的位置和形状来提高振动阻尼性能和密封性能。

最终确定了优化方案,成功地减少了振动,提高了发动机壳体的防震性能和密封性能。

2.建筑物钢框架分析建筑物钢框架是建筑结构的重要组成部分,其承载能力和组装结构设计都需要严格控制。

如何选取更好的工艺和材料来设计出更安全可靠的钢框架结构,被许多建筑设计公司所思考。

有限元分析技术的应用可以帮助工程师确定结构的承载能力,最大应力极限和变形情况,进而实现结构的优化。

一家建筑设施的设计公司利用有限元分析技术来优化钢框架的结构,计算具体承载状况,最终确定钢框架结构的有效设计方案。

这一个优化设计方案进一步增强了建筑物钢框架的承载能力,提高了项目的整体优势性。

3.飞机负荷分析航空工业是重要的现代国家产业之一。

飞机设计、测试和生产都需要极高的准确性,而这需要大量的场地、人力和物资投入。

一家工程公司成功地利用有限元分析技术对飞机进行负荷分析并评估整体结构的强度和刚度。

有限元分析及应用大作业

有限元分析及应用大作业

有限元分析及应用大作业作业要求:1)个人按上机指南步骤至少选择习题中3个习题独立完成,并将计算结果上交;也可根据自己科研工作给出计算实例。

2)以小组为单位完成有限元分析计算;3)以小组为单位编写计算分析报告;4)计算分析报告应包括以下部分:A、问题描述及数学建模;B、有限元建模(单元选择、结点布置及规模、网格划分方案、载荷及边界条件处理、求解控制)C、计算结果及结果分析(位移分析、应力分析、正确性分析评判)D、多方案计算比较(结点规模增减对精度的影响分析、单元改变对精度的影响分析、不同网格划分方案对结果的影响分析等)题一:图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较:1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;(注意ANSYS中用四边形单元退化为三节点三角形单元)2)分别采用不同数量的三节点常应变单元计算;3)当选常应变三角单元时,分别采用不同划分方案计算。

解:1.建模:由于大坝长度>>横截面尺寸,且横截面沿长度方向保持不变,因此可将大坝看作无限长的实体模型,满足平面应变问题的几何条件;对截面进行受力分析,作用于大坝上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力,满足平面应变问题的载荷条件。

因此该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况P=98000-9800*Y;建立几何模型,进行求解;假设大坝的材料为钢,则其材料参数:弹性模量E=,泊松比σ=;2:有限元建模过程:进入ANSYS :程序→ANSYS APDL设置计算类型 :ANSYS Main Menu: Preferences →select Structural →OK选择单元类型 :ANSYS Main Menu: Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 4node 182(三节点常应变单元选择Solid Quad 4node 182,六节点三角形单元选择Solid Quad 8node 183) →OK (back to Element Types window) →Option →select K3: Plane Strain →OK→Close (the Element Type window)定义材料参数:ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:, PRXY: →OK生成几何模型:生成特征点:ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS →依次输入四个点的坐标:input:1(0,0),2(10,0),3(1,5),4,5) →OK生成坝体截面:ANSYS Main Menu: Preprocessor →Modeling →Create →Areas →Arbitrary →Through KPS →依次连接四个特征点,1(0,0),2(6,0),3(0,10) →OK网格划分:ANSYS Main Menu: Preprocessor →Meshing →Mesh Tool→(Size Controls) lines: Set →依次拾取两条直角边:OK→input NDIV: 15 →Apply→依次拾取斜边:OK →input NDIV: 20 →OK →(back to the mesh tool window)Mesh:Areas, Shape: tri, Mapped →Mesh →Pick All (in Picking Menu) →Close( the Mesh Tool window)模型施加约束:给底边施加x和y方向的约束:ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Displacement →On lines →pick the lines →OK →select Lab2:UX, UY →OK给竖直边施加y方向的分布载荷:ANSYS 命令菜单栏: Parameters →Functions →Define/Edit →1) 在下方的下拉列表框内选择x ,作为设置的变量;2) 在Result窗口中出现{X},写入所施加的载荷函数:98000-9800*{Y}; 3) File>Save(文件扩展名:func) →返回:Parameters →Functions →Read from file:将需要的.func文件打开,参数名取meng,它表示随之将施加的载荷→OK →ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Pressure →On Lines →拾取竖直边;OK →在下拉列表框中,选择:Existing table →OK →选择需要的载荷为meng参数名→OK分析计算:ANSYS Main Menu: Solution →Solve →Current LS →OK(to close the solve Current LoadStep window) →OK结果显示:ANSYS Main Menu: General Postproc →Plot Results →Deformed Shape… → select Def + Undeformed →OK (back to Plot Results window)→Contour Plot →Nodal Solution→select:DOF solution, UX,UY,Def + Undeformed , Stress ,SX,SY,SZ, Def + Undeformed →OK:结果分析:(第一小题)图为采用三节点常应变单元,200个单元,左下图为位移变形图;右下图为应力变形图图为采用六节点三角形单元,200个单元,左下图为位移变形图;右下图为应力变形图根据位移和应力图可得:单元类型Min(位移)Max(位移)Min(应力)Max(应力)常应变三节点05461392364六节点三角形0607043对比分析可得:最大位移都发生在A点,即大坝顶端,最大应力发生在B点附近,即坝底和水的交界处,且整体应力和位移变化分布趋势相似,符合实际情况;结果显示三节点和六节点单元分析出来的最大应力值相差较大根据结果显示,最小三节点和六节点单元分析出来的最小应力值相差极为悬殊,结合理论分析,实际上A点不承受载荷,最小应力接近于零,显然六节点三角形单元分析在这一点上更准确。

有限元方法及CAE软件应用(ANSYS)实验作业

有限元方法及CAE软件应用(ANSYS)实验作业

有限元分析大作业姓名学号任课教师2018年11月28日目录1.问题 (2)2.建模 (2)3.求解 (18)4.后处理 (21)5.结论 (23)1.问题对一个位移控制加载的轴对称咬接装配问题进行分析。

设偏移量为0.4dm,即4cm。

绿色部分选择材料为ABS,弹性模量为0.2GPa,泊松比为0.394;红色部分材料为尼龙,弹性模量为8.3GPa,泊松比为0.28。

2.建模1.启动ANSYS软件,工作路径为缺省,工作文件名为“Homework”。

2.在XOY平面第一象限内生成最下方图形1,其坐标点为:2.1.创建关键点,将所有的点建立出来。

Main Menu > Preprocessor > Modeling > Create > Keypoints > In Active CS >…按照上图的坐标点数值,输入到ANSYS中,然后点保存。

或用命令:/PREP7K, ,0.163,0,,K, ,0.163,0.032,,K, ,0.15,0.045,,K, ,0.15,0.086,,K, ,0.16,0.086,,K, ,0.16,0.084,,K, ,0.163,0.077,,K, ,0.163,0.0715,,K, ,0.16,0.0715,,K, ,0.16,0.0695,,K, ,0.163,0.0625,,K, ,0.163,0.0565,,K, ,0.16,0.0565,,K, ,0.16,0.0495,,K, ,0.162,0.0475,,K, ,0.2025,0.0475,,K, ,0.2025,0.0255,,K, ,0.1925,0.0255,,K, ,0.1925,0.0375,,K, ,0.1765,0.0375,,K, ,0.17,0.0265,,K, ,0.17,0,,SA VE2.2.将界面调整适合于窗口:点击右侧工具栏的Fit View。

有限元分析与应用大作业

有限元分析与应用大作业

有限元分析与应用大作业-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII有限元分析及应用大作业课程名称: 有限元分析及应用班级:姓名:试题2:图示薄板左边固定,右边受均布压力P=100Kn/m作用,板厚度为0.3cm;试采用如下方案,对其进行有限元分析,并对结果进行比较。

1)三节点常应变单元;(2个和200个单元)2)四节点矩形单元;(1个和50个单元)3)八节点等参单元。

(1个和20个单元)图2-1 薄板结构及受力图一、建模由图2-1可知,此薄板长和宽分别为2m和1.5m,厚度仅为0.3cm,本题所研究问题为平面应力问题。

经计算,平板右边受均匀载荷P=33.33MPa,而左边被固定,所以要完全约束个方向的自由度,如图2-2所示。

取弹性模量E=2.1×11Pa,泊松比μ=0.3。

P=33.33MPa图2-2 数学模型二、第一问三节点常应变单元(2个和200个单元)三节点单元类型为PLANE42,设置好单元类型后,实常数设置板厚为0.3M。

采用2个单元的网格划分后的结果如图2-3,200个单元的网格划分图如图2-6所示。

约束的施加方式和载荷分布如图2-2中所示。

约束右边线上节点全部自由度。

计算得到的位移云图分别如图2-4、7所示,应力云图如图2-5、8所示。

图2-3 2个三角形单元的网格划分图图2-4 2个三角形单元的位移云图图2-5 2个三角形单元的应力云图图2-6 200个三角形单元的网格划分图图2-7 200个三角形单元的位移云图图2-8 200个三角形单元的应力云图三、第二问四节点矩形单元的计算四节点单元类型为PLANE42,设置好单元类型后,实常数设置板厚为0.3M。

采用1个单元的网格划分后的结果如图2-9,50个单元的网格划分图如图2-12所示。

约束的施加方式和载荷分布如图2-2中所示。

约束右边线上节点全部自由度。

计算得到的位移云图分别如图2-10、11所示,应力云图如图2-13、14所示。

有限元分析技术课程大作业

有限元分析技术课程大作业

有限元分析技术课程大作业1 工程介绍现需要对某露天大型玻璃平面舞台的钢结构进行分析,该钢结构布置在xy 平面内。

学生序号为079,分格的列数(x向分格)=0×10+7+5=12,分格的行数(y向分格)=9+4=13,共有156个分格。

每个分格x方向尺寸为1m,y方向尺寸为1m。

钢结构的主梁为高160宽100厚14的方钢管;次梁为直径60厚10的圆钢管(单位为毫米),材料均为碳素结构钢Q235;该结构固定支撑点位于左右两端主梁和最中间的次梁的两端。

玻璃采用四点支撑与钢结构连接(采用四点支撑表明垂直作用于玻璃平面的面载荷将传递作用于玻璃所在钢结构分格四周的节点处,表现为点载荷;试对在垂直于玻璃平面方向的22/KN m的面载荷(包括玻璃自重、钢结构自重、活载荷(人员与演出器械载荷)、风载荷等)作用下的舞台进行有限元分析(每分格面载荷对于每一支撑点的载荷可等效于0.5KN的点载荷)。

作业提交的内容:(1)屏幕截图显示该结构的平面布置结构;(2)该结构每个支座的支座反力;(3)该结构节点的最大位移及其所在位置;(4)对该结构中最危险单元(杆件)进行强度校核。

2有限元模型的建立该钢结构中每一分格x方向尺寸为1m,y方向尺寸为1m,x方向分格数量为12,y方向分格数量为13。

该钢结构由主梁和次梁构成,其中主梁为高160mm、宽100mm、厚14mm的方钢管,次梁为直径60mm、厚10mm的圆钢管。

由于在该结构中所有构件均为梁单元,而Ansys程序中提供了多种梁单元,以模拟不同场合的应用,且对于每种梁单元类型都有特定的算法。

在本次建模过程中,考虑到需要对该结构中的危险单元进行强度校核,因此,选择了BEAM188单元类型来建立本钢架结构,进而对其进行有限元分析。

BEAM188为三维线性有限应变梁单元,该单元基于铁木辛哥的梁结构理论,考虑了剪切变形的影响,能够满足本次分析的需求。

以下为基于ANSYS图形界面(Graphic User Interface , GUI)的菜单操作流程(1) 进入ANSYS(设定工作目录和工作文件)程序→ ANSYS → ANSYS Interactive → Working directory(设置工作目录)→Initial Jobname(设置工作文件名):Analysis → Run → OK(2) 设置计算类型ANSYS Main Menu:Preferences → Structural → OK(3) 定义单元类型ANSYS Main Menu:Preprocessor → Element Type → Add/Edit/Delete... → Add → Beam: 3D 2node 188 → OK(返回到Element Types窗口)→ Close(4) 定义材料参数ANSYS Main Menu: Preprocessor → Material Props → Material Models → Structural → Linear → Elastic → Isotropic → input EX: 2.0E5, PRXY: 0.3(定义泊松比及弹性模量) → OK → Close(关闭材料定义窗口)(5)定义梁单元截面ANSYS Main Menu:Preprocessor →Sections→Beam→Common Sections→Beam Tool(6) 构造梁模型生成舞台几何模型ANSYS Main Menu:Preprocessor → Modeling → Create → Keypoints → In Active CS → NPT Keypoint number:1,X,Y,Z Location in active CS:0,0,0 → Apply 通过复制关键点操作,形成14行13列的关键点。

华科大有限元分析题及大作业题答案――船海专业_图文.

华科大有限元分析题及大作业题答案――船海专业_图文.

姓名:学号:班级:有限元分析及应用作业报告一、问题描述图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较:1分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;2分别采用不同数量的三节点常应变单元计算;3当选常应变三角单元时,分别采用不同划分方案计算。

二、几何建模与分析图1-2力学模型由于大坝长度>>横截面尺寸,且横截面沿长度方向保持不变,因此可将大坝看作无限长的实体模型,满足平面应变问题的几何条件;对截面进行受力分析,作用于大坝上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力,满足平面应变问题的载荷条件。

因此该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图1-2所示,建立几何模型,进行求解。

假设大坝的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比σ=0.3三、第1问的有限元建模本题将分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算。

1设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences为Structural2选择单元类型:三节点常应变单元选择的类型是PLANE42(Quad 4node42,该单元属于是四节点单元类型,在网格划分时可以对节点数目控制使其蜕化为三节点单元;六节点三角形单元选择的类型是PLANE183(Quad 8node183,该单元属于是八节点单元类型,在网格划分时可以对节点数目控制使其蜕化为六节点单元。

因研究的问题为平面应变问题,故对Element behavior(K3设置为plane strain。

3定义材料参数4生成几何模a. 生成特征点b.生成坝体截面5网格化分:划分网格时,拾取所有线段设定input NDIV 为10,选择网格划分方式为Tri+Mapped,最后得到200个单元。

有限元分析与应用大作业

有限元分析与应用大作业

有限元分析及应用大作业课程名称: 有限元分析及应用班级:姓名:试题2:图示薄板左边固定,右边受均布压力P=100Kn/m作用,板厚度为0.3cm;试采用如下方案,对其进行有限元分析,并对结果进行比较。

1)三节点常应变单元;(2个和200个单元)2)四节点矩形单元;(1个和50个单元)3)八节点等参单元。

(1个和20个单元)图2-1 薄板结构及受力图一、建模由图2-1可知,此薄板长和宽分别为2m和1.5m,厚度仅为0.3cm,本题所研究问题为平面应力问题。

经计算,平板右边受均匀载荷P=33.33MPa,而左边被固定,所以要完全约束个方向的自由度,如图2-2所示。

取弹性模量E=2.1×11Pa,泊松比μ=0.3。

P=33.33MPa图2-2 数学模型二、第一问三节点常应变单元(2个和200个单元)三节点单元类型为PLANE42,设置好单元类型后,实常数设置板厚为0.3M。

采用2个单元的网格划分后的结果如图2-3,200个单元的网格划分图如图2-6所示。

约束的施加方式和载荷分布如图2-2中所示。

约束右边线上节点全部自由度。

计算得到的位移云图分别如图2-4、7所示,应力云图如图2-5、8所示。

图2-3 2个三角形单元的网格划分图图2-4 2个三角形单元的位移云图图2-5 2个三角形单元的应力云图图2-6 200个三角形单元的网格划分图图2-7 200个三角形单元的位移云图图2-8 200个三角形单元的应力云图三、第二问四节点矩形单元的计算四节点单元类型为PLANE42,设置好单元类型后,实常数设置板厚为0.3M。

采用1个单元的网格划分后的结果如图2-9,50个单元的网格划分图如图2-12所示。

约束的施加方式和载荷分布如图2-2中所示。

约束右边线上节点全部自由度。

计算得到的位移云图分别如图2-10、11所示,应力云图如图2-13、14所示。

图2-9 1个四边形单元的网格划分图图2-10 1个四边形单元的位移云图图2-11 1个四边形单元的应力云图图2-12 50个四边形单元的网格划分图图2-13 50个四边形单元的位移云图图2-14 50个四边形单元的应力云图四、第三问八节点等参单元的计算四节点单元类型为PLANE82,设置好单元类型后,实常数设置板厚为0.3M。

有限元分析大作业报告要点

有限元分析大作业报告要点

有限元分析大作业报告试题1:一、问题描述及数学建模图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较:(1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;(2)分别采用不同数量的三节点常应变单元计算;(3)当选常应变三角单元时,分别采用不同划分方案计算。

该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图所示。

二、采用相同单元数目的三节点常应变单元和六节点三角形单元计算1、有限元建模(1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences为Structural(2)选择单元类型:三节点常应变单元选择的类型是Solid Quad 4 node182;六节点三角形单元选择的类型是Solid Quad 8 node183。

因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。

(3)定义材料参数:弹性模量E=2.1e11,泊松比σ=0.3(4)建几何模型:生成特征点;生成坝体截面(5)网格化分:划分网格时,拾取lineAB 和lineBC ,设定input NDIV 为15;拾取lineAC ,设定input NDIV 为20,选择网格划分方式为Tri+Mapped ,最后得到600个单元。

(6)模型施加约束:约束采用的是对底面BC 全约束。

大坝所受载荷形式为Pressure ,作用在AB 面上,分析时施加在L AB 上,方向水平向右,载荷大小沿L AB 由小到大均匀分布。

以B 为坐标原点,BA 方向为纵轴y ,则沿着y 方向的受力大小可表示为:}{*980098000)10(Y y g gh P -=-==ρρ2、 计算结果及结果分析 (1) 三节点常应变单元三节点常应变单元的位移分布图三节点常应变单元的应力分布图(2)六节点三角形单元六节点三角形单元的变形分布图六节点三角形单元的应力分布图(3)计算数据表单元类型最小位移(mm)最大位移(mm)最小应力(Pa)最大应力(Pa)三节点0 0.0284 5460.7 392364六节点0 0.0292 0.001385 607043 (4)结果分析①最大位移都发生在A点,即大坝顶端,最大应力发生在B点附近,即坝底和水的交界处,且整体应力和位移变化分布趋势相似,符合实际情况;②结果显示三节点和六节点单元分析出来的最大应力值相差较大,原因可能是B点产生了虚假应力,造成了最大应力值的不准确性。

有限元分析大作业

有限元分析大作业

基于ANSYS软件的有限元分析报告机制1205班杜星宇U201210671一、概述本次大作业主要利用ANSYS软件对桌子的应力和应变进行分析,计算出桌子的最大应力和应变.然后与实际情况进行比较,证明分析的正确性,从而为桌子的优化分析提供了充分的理论依据,并且通过对ANSYS软件的实际操作深刻体会有限元分析方法的基本思想,对有限元分析方法的实际应用有一个大致的认识。

二、问题分析已知:桌子几何尺寸如图所示,单位为mm。

假设桌子的四只脚同地面完全固定,桌子上存放物品,物品产生的均匀分布压力作用在桌面,压力大小等于300Pa,其中弹性模量E=9。

3GPa,泊松比μ=0。

35,密度ρ=560kg/m3,分析桌子的变形和应力.将桌脚固定在地面,然后在桌面施加均匀分布的压力,可以看作对进行平面应力分析,桌脚类似于梁单元。

由于所分析的结构比较规整且为实体,所以可以将单元类型设为八节点六面体单元。

操作步骤如下:1、定义工作文件名和工作标题(1)定义工作文件名:执行UtilityMenu/ File/ChangeJobname,在弹出Change Jobname 对话框修改文件名为Table。

选择New log anderrorfiles复选框。

(2)定义工作标题:Utility Menu/File/Change Title,将弹出ChangeTit le对话框修改工作标题名为The analysis of table。

(3)点击:Plot/Replot。

2、设置计算类型(1)点击:Main Menu/Preferences,选择Structural,点击OK。

3、定义单元类型和材料属性(1)点击:Main Menu/Preprocessor/Element Type/Add/Edit/Delete,点击Add,选择Solid〉Brick 8node 185,点击OK,点击Close。

(2)点击Main menu/preprocessor/Material Props/Material Models / Structural/ Linear/ Elastic/Isotropic,设置EX为9.3e9,PRXY为0。

有限元分析大作业

有限元分析大作业

机电工程学院有限元分析及应用直齿圆柱齿轮的模态分析学号:S314070064专业:机械工程学生姓名:***任课教师:*** 教授2014年12月一 研究目的齿轮传动是机械工程领域应用最广泛的传动之一,模态分析技术已经成为振动系统分析与设计中广泛使用的重要手段,它是研究结构动力特性的一种近代方法,是系统辨别方法在工程振动领域中的应用。

模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。

齿轮在传递运动和动力时,传动系统通过各种外部激励和内部激励传递给齿轮系统,从而使齿轮在传动过程中产生振动。

齿轮的固有频率是齿轮的动态特性之一,对动载荷的产生与传递以及系统的振动形式有很重要的影响,因此分析齿轮的动态特性,对齿轮的设计和改进以及整个传递系统的动态性能的改进都有非常重要的实际意义。

二 齿轮模态求解分析齿轮副在啮合过程中,因加工误差、齿侧间隙和轮齿受载弹性变形及热变形,会产生啮合合成基节误差,使轮齿啮合时产生转速差异与突变,引起振动,也就是固有频率,从传统的静力学分析,固有频率可有下式近似计算mk f π210= (1) 式中:m 和k 分别为齿轮的等效质量和刚度系数,其大小根据查阅手册选取或据经验而定。

传统的模态分析技术无法有效地处理含有接触关系的非线性系统的装配体模态分析问题,为处理此问题,人们采取了一些线性化的近似处理方法,例如将装配体视为单一实体零件,或在将零件间的联接简化成线性弹簧等。

这种线性化的简化分析方法,难以对含有非线性接触联接的装配体进行准确分析。

而且往往要多次计算,消耗大量人力物力,为此在材料力学基础上产生了弹性力学的有限元法。

其中,齿轮系统的运动微分方程为()t F KX X C X M =++ (2)式中:M,C,K 分别是齿轮系统质量矩阵、阻尼矩阵和刚度矩阵,F 为收到外界激振力向量。

若无外力作用,即F(t)=0,则是系统自由振动方程,刚度矩阵与约束有关,但由于啮合部位的接触面积不断变化,K 也会发生相应变化,用传统的线性分析方法不易分析,有限元采用分段逼近方法,模拟连续体的约束条件是求解问题的关键。

有限元在生活中的应用例子

有限元在生活中的应用例子

有限元在生活中的应用例子有限元法是一种通过将连续物体离散化为有限个小单元来近似求解连续问题的数值方法。

它在工程领域有着广泛的应用,可以用于模拟和分析各种力学行为。

下面将列举10个生活中的应用例子。

1. 汽车碰撞分析:有限元法可以用来模拟汽车碰撞时的力学行为,帮助工程师评估车身结构的强度和安全性能,从而设计更安全的汽车。

2. 建筑结构分析:有限元法可以用来分析建筑物在地震或风灾等自然灾害中的抗震和抗风性能,从而指导结构设计和改进。

3. 飞机机身设计:有限元法可以用来评估飞机机身结构的强度和刚度,从而优化设计,提高飞机的性能和安全性。

4. 桥梁结构分析:有限元法可以用来分析桥梁在荷载作用下的变形和应力分布,从而评估桥梁的安全性和耐久性。

5. 船舶结构设计:有限元法可以用来分析船舶结构在波浪和水流作用下的响应,从而指导船舶设计和改进。

6. 电子设备散热分析:有限元法可以用来模拟电子设备在工作过程中产生的热量分布,从而优化散热设计,提高设备的可靠性和性能。

7. 医学领域:有限元法可以用来模拟人体器官的力学行为,从而帮助医生诊断病情和指导手术。

8. 地下水污染传输分析:有限元法可以用来模拟地下水中污染物的传输和扩散,从而评估污染物的迁移路径和影响范围。

9. 电力系统分析:有限元法可以用来分析电力系统中的电压和电流分布,从而评估电力设备的运行状态和安全性能。

10. 摩擦材料分析:有限元法可以用来分析摩擦材料在接触过程中的力学行为,从而优化摩擦材料的设计和性能。

通过以上例子可以看出,有限元法在工程领域的应用非常广泛,可以帮助工程师和科学家解决各种力学和物理问题,优化设计和改进产品。

随着计算机技术的不断发展,有限元法将在更多领域得到应用,为人们的生活和工作带来更多便利和创新。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有限元分析及应用大作业课程名称: 有限元分析及应用班级:姓名:试题2:图示薄板左边固定,右边受均布压力P=100Kn/m作用,板厚度为0.3cm;试采用如下方案,对其进行有限元分析,并对结果进行比较。

1)三节点常应变单元;(2个和200个单元)2)四节点矩形单元;(1个和50个单元)3)八节点等参单元。

(1个和20个单元)图2-1 薄板结构及受力图一、建模由图2-1可知,此薄板长和宽分别为2m和1.5m,厚度仅为0.3cm,本题所研究问题为平面应力问题。

经计算,平板右边受均匀载荷P=33.33MPa,而左边被固定,所以要完全约束个方向的自由度,如图2-2所示。

取弹性模量E=2.1×11Pa,泊松比μ=0.3。

图2-2 数学模型二、第一问三节点常应变单元(2个和200个单元)三节点单元类型为PLANE42,设置好单元类型后,实常数设置板厚为0.3M。

采用2个单元的网格划分后的结果如图2-3,200个单元的网格划分图如图2-6所示。

约束的施加方式和载荷分布如图2-2中所示。

约束右边线上节点全部自由度。

计算得到的位移云图分别如图2-4、7所示,应力云图如图2-5、8所示。

P=33.33MPa图2-3 2个三角形单元的网格划分图图2-5 2个三角形单元的应力云图图2-7 200个三角形单元的位移云图三、第二问四节点矩形单元的计算四节点单元类型为PLANE42,设置好单元类型后,实常数设置板厚为0.3M。

采用1个单元的网格划分后的结果如图2-9,50个单元的网格划分图如图2-12所示。

约束的施加方式和载荷分布如图2-2中所示。

约束右边线上节点全部自由度。

计算得到的位移云图分别如图2-10、11所示,应力云图如图2-13、14所示。

图2-9 1个四边形单元的网格划分图图2-11 1个四边形单元的应力云图图2-12 50个四边形单元的网格划分图图2-13 50个四边形单元的位移云图图2-14 50个四边形单元的应力云图四、第三问八节点等参单元的计算四节点单元类型为PLANE82,设置好单元类型后,实常数设置板厚为0.3M。

采用1个单元的网格划分后的结果如图2-15,50个单元的网格划分图如图2-18所示。

约束的施加方式和载荷分布如图2-2中所示。

约束右边线上节点全部自由度。

计算得到的位移云图分别如图2-16、17所示,应力云图如图2-19、20所示。

图2-15 1个八节点等参单元的网格划分图图2-16 1个八节点等参单元的位移云图图2-17 1个八节点等参单元的应力云图图2-19 20个八节点等参单元的位移云图四、计算结果对比单元数最大位移(m) 最大应力(MPa) 最小应力(MPa)三节点常应变单元2 0.247E-3 33.6 28.7 200 0.246E-3 36.8 28.8四节点矩形单元1 0.243E-3 36.1 29.6 50 0.244E-3 37.6 28.2八节点等参单元1 0.242E-3 35.1 32.7 20 0.244E-3 43.7 27.4表2-1 计算结果对比对于三节点常应变单元,两种网格划分情况的最大位移,最大应力和最小应力在数值上都差别不是很大,但是应力分布却存在较大的差别。

2单元的最大位移位于薄板的右边角附近。

而200个单元的最大位移分布在整个右边上。

最大应力两单元的位于左边的上角点处,而200单元的位于薄板左边的上下角点处。

最小应力2单元的位于左下角处,而200单元的位于左边的中部。

2单元网格划分的网格结构也不具有对称性,模型存在较大的误差。

对于四节点矩形单元,两种网格划分情况的最大位移,最大应力和最小应力在数值上差别不是很大。

两种划分方式下的最大位移都位于薄板的右边。

最大应力1单元的位于右边上,而50单元的位于薄板左边的上下角点处。

但是最小应力1单元的位于左边上,而50单元的位于左边的中部。

另外,应变和应力对于1个单元的从右至左呈均匀分布,而50个单元的却不是均匀分布的。

对于八节点矩形单元,两种网格划分情况的最大位移,最小应力在数值上差别不是很大。

最大应力却有着些许的不同,这大概是对于高阶的单元更能准确的模拟上下左边角处的应力集中现象。

两种划分方式下的最大位移都位于薄板的右边。

最大应力1单元的位于右边上,而20单元的位于薄板左边的上下角点处。

但是最小应力1单元的位于左边上,而20单元的位于左边的中部。

另外,应变和应力对于1个单元的从右至左呈均匀分布,而20个单元的却不是均匀分布的。

五、计算命令采用八节点矩形单元的划分20个网格命令流如下:/FILNAME,shiti9/TITLE,ANALYSIS OF PLATE STRESS!前处理/PREP7ET,l,plane82MP,EX,1,2.1E11MP,PRXY,1,0.3RECTNG,0,1.5,0,2/PNUM,AREA,1APLOT/TITLE,GEOMETRIC MODELAPLOT/PNUM,KP,1/PNUM,line,1LPLOTlesize,1,,,4lesize,2,,,5lesize,3,,,4lesize,4,,,5!mshape,1amap,1,1,2,3,4/TITLE,ELEMENTS IN MODEL EPLOTFINISH!求解/SOLUANTYPE,STATIC/PNUM,LINE,1LPLOTLSEL,S,LINE, ,4NSLL,S,1D,ALL,allLSEL,S,LINE,,2NSLL,S,1SF,ALL,PRES,-33300000 ALLSELOUTPR,BASIC,ALLSOLVEFINISH!后处理/POST1PLDISP,2PLNSOL,U,SUMPLNSOL,S,EQVFINISH!/EXIT试题 3:图示图示为一带圆孔或方孔的单位厚度(0.1M)的正方形平板,在x方向作用均布压力0.25Mpa,试用三节点常应变单元和六节点三角形单元对平板进行有限元分析,并分别就圆孔和方孔结构对以下几种计算方案的计算结果进行比较:1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;2)分别采用不同数量的三节点常应变单元计算;3)比较圆孔和方孔孔边应力水平;在Y轴上,圆孔边的应力的精确解为:在X轴上,圆孔边的应力的精确解为:图3-1 平板结构及受力图一、建模由图3-1可知,本题所研究问题为平面应力问题,又此平板结构关于图示中X、Y轴对称,可以利用此对称性,取截面的四分之一进行分析计算。

此时要约束掉下水平边的Y方向自由度和竖直左边的X方向自由度。

载荷为均布压力,平均分布在右边上,大小为0.25MPa。

弹性模量E=2.1×11Pa,泊松比μ=0.3.数学模型简图如图3-2所示。

图3-2 数学模型二、单元数相同类型不同的圆孔板计算结果分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算:本文采用的三节点单元类型为PLANE42,该单元是四节点类型的,但是可以退化为三节点单元。

六节点单元类型选择PLANE82,该单元为八节点四边形单元,但是可以退化为六节点三角形单元。

设置好单元类型后,实常数设置板厚为1M。

网格设置:对各个line进行网格控制,设置各线1、2、3、4、5的分割份数(Ndiv)分别为20、20、15、40、40。

网格划分方式为Tri+free。

划分后的网格结果如图3-3。

约束的施加方式和载荷分布如图3-2中所示。

分别约束线号为4和5上节点的Y和X方向自由度。

在线号为1的节点上施加均布压力0.25MPa。

经计算,常应变三节点三角形单元的位移云图如图3-4所示,总体应力云图(von mises stress)如图3-5所示,局部应力云图如图3-6所示。

图3-3 三角形单元的网格划分图3-图3-4 位移云图图3-5 总体应力云图图3-6 孔边周围局部应力云图六节点三角形单元的位移云图如图3-7所示,总体应力云图(von mises stress)如图3-8所示,局部应力云图如图3-9所示。

图3-7 位移云图图3-8 总体应力云图图3-9 孔边周围局部应力云图经分析可知,不同的单元类型计算得来的应力和位移云图分布情况是基本一致的。

最大位移在点1处附近,最小位移在点5处附近。

最大的应力发生在点5处,最小应力发生在孔边上某段圆弧位置,该位置具体见各图中所示。

DMX SMN SMX三节点0.309e-4 0.396e-5 0.309e-4 -0.696 0.259六节点0.309e-4 0.391e-5 0.309e-4 -0.773 0.268理论值-0.75 0.25表3-1,计算结果对比表由上表3-1可以看出,在单元数目相同的情况,六节点三角形单元的分析精度要高于三节点常应变三角形单元。

由此可得出结论,同样的单元形状和大小,高阶单元的计算精度要高于低阶单元。

三、不同数量的三节点常应变单元的计算单元类型选择plane42,仅改变单元的分割段数,其他不变。

即第一次加密设置各线1、2、3、4、5的分割份数(Ndiv)分别为30、30、20、60、60,第二次加密设置各线1、2、3、4、5的分割份数(Ndiv)分别为40、40、30、80、80。

第一次加密后划分后网格为图3-10所示。

计算后的位移云图如图3-11所示,应力云图如图3-12所示。

第二次加密后划分后网格为图3-13所示。

计算后的位移云图如图3-14所示,应力云图如图3-15所示。

图3-10 第一次加密后网格划分情况图3-11 第一次网格加密后位移云图图3-12 第一次网格加密后应力云图图3-13 加密后网格划分情况图3-14 网格加密后位移云图图3-15 网格加密后应力云图DMX SMN SMX不加密0.309e-4 0.396e-5 0.309e-4 -0.696 0.259第一次加密0.309e-4 0.391e-5 0.309e-4 -0.725 0.269第二次加密0.309e-4 0.395e-5 0.309e-4 -0.779 0.266理论值-0.75 0.25表2 不同密度的网格计算结果对比表由上表可知,虽然常应变三角形单元的计算结果没有高阶单元的计算结果精确,但是随着单元数目的增多,计算结果逐渐的接近高阶单元的计算结果。

但是随着单元数量的增加,其计算的时间也会相应的增加。

三、方孔和圆孔的应力水平比较为了使结果具有对比性,采用相同的单元类型plane82,并采用全局网格控制,大小为0.2。

圆孔的计算结果如图3-16,17所示。

方孔的计算结果如图3-18,19所示。

圆孔的最大应力分布在圆孔与Y轴的交点附近,其大小为0.776MPa,而方孔的最大应力分布在四个角处,其大小为0.956 MPa,方孔的最大应力要比圆孔的大。

相关文档
最新文档