第三章 紫外可见吸收光谱分析法

合集下载

第三章 紫外-可见吸收光谱分析

第三章   紫外-可见吸收光谱分析

2.不饱和脂肪烃 .
在不饱和烃类分子中,除含有σ键外,还含有π 键,它们可以产生 σ→σ*和π→π* 两种跃迁。 如果存在共轭体系,则随共轭系统的延长, 吸收带将明显向长波方 向移动,吸收强度也随之增强 在共轭体系中, π→π*跃迁产生的吸收带又称为K(Konjugation) 带。其特点是:强度大,εmax›104;位置一般在217~280nm λmax和εmax的大小与共轭链的长短及取代基的位置有关 根据K带是否出现,可判断分子中共轭体系的存在的情况。在紫外光 根据 带是否出现,可判断分子中共轭体系的存在的情况 带是否出现 谱分析中有重要应用。
紫外- §3-3 紫外-可见分光光度法的应用 一、 定性分析 二、纯度检查 三、结构推测 四、定量分析 单组分样品的定量分析 多组分样品的定量分析
一、 定性分析
1、依据:吸收光谱的特征——形状、波长、峰数目、强度、 吸光系数。 、依据:吸收光谱的特征 形状、 形状 波长、峰数目、强度、 吸光系数。 2、方法:对比法 、方法: (1) 对比吸收光谱特征数据 (2) 对比吸光度或吸光系数的比值
3.芳香烃 .
苯有三个吸收带 E1带180∼184nm ε=47000 E 2带200∼204 nm ε=7000 苯环上三个共扼双键的 π → π*跃迁特征吸收带 B带 230-270 nm
ε=200
π → π*与苯环振动引起; 含取代基时, B带简化,红移 当苯环上有取代基时,苯的三个特征谱带都会发生显著的变化, 其中影响较大的是E2带和B谱带。
化合物 H2O CH3OH CH3CL CH3I CH3NH2
λmax(nm) 167 184 173 258 215
εmax 1480 150 200 365 600

第三章紫外可见分光光度法

第三章紫外可见分光光度法
优点:自动记录, 快速全波段扫描。可 消除光源不稳定、检 测器灵敏度变化等因 素的影响,特别适合 于结构分析。仪器复 杂,价格较高。是目 前用的最多的分光光 度计。
23
3.双波长
将不同波长的两束单色光(λ 1、λ 2) 快束交替通 过同一吸收池而后到达检测器。产生交替信号。无需 参比池。△=1~2nm。两波长同时扫描即可获得导数 光谱。
max也作为定性的依据。不同物质
的λmax有时可能相同,但ε
定量分析的依据。
max不一定相同。
(6)吸收谱带强度与该物质分子吸收的光子数成正比,
10
3.紫外-可见吸收光谱的产生
由于分子吸收紫外-可见光区的电磁辐射,分 子中价电子(或外层电子)的能级跃迁而产生紫 外-可见吸收光谱。 电子能级间跃迁的同时总伴随有振动和转动
紫外分光光度计检测;可作为溶剂使用。
39
2、n→ζ*跃迁
所需能量较大。 吸收波长为150~250 nm,大部分在远紫外区 ,近紫外区仍不易观察到。
含非键电子的饱和烃衍生物(含N、O、S和卤
素等杂原子)均呈现n →ζ*跃迁。 如一氯甲烷、甲醇、三甲基胺n →ζ*跃迁的λ分 别为173 nm、183 nm和227 nm。
38
1、σ →σ *跃迁
所需能量最大,ζ电子只有吸收远紫外光的能量 才能发生跃迁。
饱和烷烃的分子吸收光谱出现在远紫外区。
吸收波长λ< 200 nm。 例:甲烷λmax为125 nm , 乙烷λmax为135 nm, 环丙烷(饱和烃中最长) λmax为190 nm。 在近紫外没有饱和碳氢化合物的光谱,需真空
8
2.能级跃迁的讨论
(1)转动能级间的能量差Δ Er:0.005~0.050 eV, 跃迁产生吸收光谱位于远红外区,称为远红外 光谱或分子转动光谱; (2)振动能级的能量差Δ Ev约为:0.05~1eV,跃

仪器分析课后习题答案

仪器分析课后习题答案

第三章 紫外-可见吸收光谱法1、已知丙酮的正己烷溶液的两个吸收峰 138nm 和279nm 分别属于л→л*跃迁和n →л*跃迁,试计算л、n 、л*轨道间的能量差,并分别以电子伏特(ev ),焦耳(J )表示。

解:对于л→л*跃迁,λ1=138nm =1.38×10-7m则ν=νC =C/λ1=3×108/1.38×10-7=2.17×1015s -1则E=hv=6.62×10-34×2.17×1015=1.44×10-18JE=hv=4.136×10-15×2.17×1015=8.98ev对于n →л*跃迁,λ2=279nm =2.79×10-7m则ν=νC =C/λ1=3×108/2.79×10-7=1.08×1015s -1则E=hv=6.62×10-34×1.08×1015=7.12×10-19JE=hv=4.136×10-15×1.08×1015=4.47ev答:л→л*跃迁的能量差为1.44×10-18J ,合8.98ev ;n →л*跃迁的能量差为7.12×10-19J ,合4.47ev 。

3、作为苯环的取代基,-NH 3+不具有助色作用,-NH 2却具有助色作用;-DH 的助色作用明显小于-O -。

试说明原因。

答:助色团中至少要有一对非键电子n ,这样才能与苯环上的л电子相互作用产生助色作用,由于-NH 2中还有一对非键n 电子,因此有助色作用,而形成-NH 3+基团时,非键n 电子消失了,则助色作用也就随之消失了。

由于氧负离子O -中的非键n 电子比羟基中的氧原子多了一对,因此其助色作用更为显著。

4、铬黑T 在PH<6时为红色(m ax λ=515nm ),在PH =7时为蓝色(m ax λ=615nm ), PH =9.5时与Mg 2+形成的螯合物为紫红色(m ax λ=542nm ),试从吸收光谱产生机理上给予解释。

仪器分析_紫外-可见分光光度和红外光谱法习题及参考答案

仪器分析_紫外-可见分光光度和红外光谱法习题及参考答案

第三章紫外可见吸收光谱法一、选择题1、人眼能感觉到的可见光的波长范围是()。

A、400nm~760nmB、200nm~400nmC、200nm~600nmD、360nm~800nm2、在分光光度法中,透射光强度(I)与入射光强度(I0)之比I/I0称为( )。

A、吸光度B、吸光系数C、透光度D、百分透光度3、符合朗伯-比尔定律的有色溶液在被适当稀释时,其最大吸收峰的波长位置( )。

A、向长波方向移动B、向短波方向移动C、不移动D、移动方向不确定·4、对于符合朗伯-比尔定律的有色溶液,其浓度为c0时的透光度为T0;如果其浓度增大1倍,则此溶液透光度的对数为( )。

A、T0/2B、2T0C、2lgT0D、5、在光度分析中,某有色物质在某浓度下测得其透光度为T;若浓度增大1倍,则透光度为( )。

A、T2B、T/2C、2TD、T1/26、某物质的摩尔吸光系数很大,则表明( )。

A、该物质溶液的浓度很大B、光通过该物质溶液的光程长C、该物质对某波长的光的吸收能力很强D、用紫外-可见光分光光度法测定该物质时其检出下限很低7、在用分光光度法测定某有色物质的浓度时,下列操作中错误的是( )。

A、比色皿外壁有水珠B、待测溶液注到比色皿的2/3高度处)C、光度计没有调零D、将比色皿透光面置于光路中8、下列说法正确的是( )。

A、透光率与浓度成正比B、吸光度与浓度成正比C、摩尔吸光系数随波长而改变D、玻璃棱镜适用于紫外光区9、在分光光度分析中,常出现工作曲线不过原点的情况。

与这一现象无关的情况有( )。

A、试液和参比溶液所用吸收池不匹配B、参比溶液选择不当C、显色反应的灵敏度太低D、被测物质摩尔吸光系数太大10、质量相等的A、B两物质,其摩尔质量M A>M B。

经相同方式发色后,在某一波长下测得其吸光度相等,则在该波长下它们的摩尔吸光系数的关系是( )。

A、εA>εBB、εA<εBC、εA=εBD、2εA>εB11、影响吸光物质摩尔吸光系数的因素是( )。

高分子材料研究方法--紫外可见吸收光谱 ppt课件

高分子材料研究方法--紫外可见吸收光谱  ppt课件

ppt课件
16
常用的是π→π*跃迁和n→π*,这两种跃迁都 需要分子中有不饱和基团提供π轨道。
n→π*跃迁与π→π*跃迁的比较如下:
π→π*
n→π*
吸收峰波长 与组成双键的
有关
原子种类基本无关
吸收强度 强吸收 104~105 弱吸收 <102
极性溶剂 向长波方向移动 向短波方向移动
ppt课件
O:
例:H C
H ppt课件
10
分子轨道有σ、σ*、π、 π*、n 能量高低σ<π<n<π*<σ*
σ* π*
n → σ* π→π* n→π*跃迁
n
π

σ→σ*

σ
ppt课件
11
主要有四种跃迁类型 跃迁所需能量为:
σ→σ* n→σ* π→π* n→π*
分子中电子的能级和跃迁
2
ppt课件
不同波长的光
ppt课件
L 4
A
图3-1 紫外可见吸收光谱示意图
末端吸收
最强峰
肩 峰
次强峰 峰谷
max
ppt课件
min

5
A
分析吸收曲线 可以看到:
1.同一浓度的 待测溶液对不 同波长的光有 不同的吸光度;
max
min

2. 对于同一待测溶液,浓度愈大,吸光度也愈大;
3. 对于同一物质,不论浓度大小如何,最大吸收峰所对应 的波长(最大吸收波长 λmax) 不变。并且曲线的形状也 完全相同。
CH3Br λmax=204nm
ppt课件
14
(3)π→π*跃迁
π电子跃迁到反键π* 轨道所产生的跃迁,这类跃迁 所需能量比σ→σ*跃迁小,若无共轭,与n→σ*跃迁 差不多。200nm左右

第三章 紫外-可见吸收光谱法

第三章    紫外-可见吸收光谱法

3-1 概述
3-1 概述
紫外光
波长为10-400nm的电磁辐射,分为远紫外光 的电磁辐射, 波长为 的电磁辐射 (10-200nm)和近紫外光(200-400nm)。 )和近紫外光( )。 远紫外光可被大气中的水气、 远紫外光可被大气中的水气、氮、氧和二氧化 碳所吸收,只能在真空中研究, 碳所吸收,只能在真空中研究,故又称真空紫 外光。我们讨论近紫外光谱。 外光。我们讨论近紫外光谱。
紫外-可见吸收光谱法 第三章 紫外 可见吸收光谱法
UltravioletUltraviolet-Visible Absorption Spectrometry UV-Vis UV-
章节内容
第一节 概述 紫外-可见吸收光谱 第二节 紫外 可见吸收光谱 第三节 紫外-可见分光光度计 紫外 可见分光光度计 紫外-可见吸收光谱法的应用 第四节 紫外 可见吸收光谱法的应用
(5)出射狭缝 紫外-可见分光光度计使用石英棱镜。 棱镜单色器的缺点在于色散率随波长变 化,得到的光谱呈非均匀排列,而且传递 光的效率较低。 光栅单色器在整个光学光谱区具有良好 的几乎相同的色散能力。因此现代紫外-可 见分光光度计 多采用光栅单色器。 (三)吸收池 (四)检测器 (五)信号显示器
二、分光光度计的构造类型
的配位体强度小于NH 如:H2O的配位体强度小于 3的, 的配位体强度小于 所以, ( 所以,Cu(H2O)6呈浅蓝色,吸收峰 ) 呈浅蓝色, 794nm;Cu(NH3)6深蓝色,吸收峰 深蓝色, ; ( 663nm。 。 一些常见配位体配位场强弱顺序: 一些常见配位体配位场强弱顺序: I-<Br-<Cl-<F-<OH-<C2O4-=H2O<SCN-< 吡啶=NH3<乙二胺 联吡啶 邻二氮菲 乙二胺<联吡啶 吡啶 乙二胺 联吡啶<邻二氮菲 <NO2-<CN-

紫外~可见光谱分析

紫外~可见光谱分析
4、n→π* 跃迁:主要是既含有C=C双 键,又含有C=O、C=S、N=O、N=N等杂原子的 有机分子,由于n与π*这两种分子轨道的能量 间距较小,因此,产生这种跃迁需要吸收的光 子在石英紫外区,其波长范围较宽,能被普通 的紫外可见光谱分析所利用。这类跃迁的几率 更低,其摩尔吸光系数约101~102 。
出射狭缝:使分析所需波长的单色光通过。
准光镜 光源
棱镜
成像物镜
入射狭缝
出射狭缝



棱镜单色器的结构原理示意
狭缝大小的影响
紫外-可见分光光度计
单色器中入射狭缝越窄,则光谱带上任 意一点的波长成分越纯,光谱的质量就越高; 出射狭缝越小,则产生单色光的带宽小、单色 性好、但能量小,影响仪器的信噪比。
第三章
第三章 紫外—可见吸收光谱分析(分子)
第一节 概述:
第二节 紫外-可见吸收光谱 与分子结构的关系
第三节 紫外-可见分光光度计的 基本组成与结

第四节 紫外-可见分光光度计的 性能
第五节 紫外-可见吸收光谱法的
第一节 概 述:
紫外~可见吸收光谱分析,简称UV-V IS。
利用分光光度计测量物质对紫外~可 见光的吸光度和通过物质的紫外~可见吸收光 谱来确定物质的组成、含量,推断物质结构的 分析方法,称紫外~可见吸收光谱分析,又称 为紫外~可见分光光度法。
(1)单色器的组成:
紫外-可见分光光度计
入射狭缝:只许光源分一束光进入。
准光镜:将光源产生的光转变为平行光束, 使其照射在色散元件上的入射角均相等。
色散元件:为棱镜或光栅,将复合光色散成 按一定波长顺序排列的单色光。
成像物镜:将色散原件产生的单色平行光, 在其焦平面的不同位置聚焦,成为出射狭缝对应波长 的单色光。

分析化学(仪器分析)第三章-仪器分析(UV)

分析化学(仪器分析)第三章-仪器分析(UV)

1
第一节
概述
一、紫外-可见吸收光谱法
根据溶液中物质的分子或离子对紫外和可见光谱
区辐射能的吸收来研究物质的组成和结构的方法。
包括比色分析法和紫外-可见分光光度法。 紫外-可见吸收光谱的产生:分子价电子能级跃迁。 波长范围:10-800 nm.
(1) 远紫外光区: 10-200nm
(2) 近紫外光区: 200-400nm (3) 可见光区:400-800nm
结束结束结束25一基本部件二分光光度计的构造原理26紫外可见分光光27光源单色器样品室检测器显示光源在整个紫外光区或可见光谱区可以发射连续光谱具有足够的辐射强度较好的稳定性较长的使用寿命
第三章 紫外-可见吸收光谱法
第一节 概述
第二节 紫外-可见吸收光谱
第三节 紫外-可见分光光度计
第四节 紫外-可见吸收光谱法的应用
金属离子的影响,将引起配位体 吸收波长和强度的变化。变化与成键 性质有关,若共价键和配位键结合, 则变化非常明显。
23
3.电荷转移吸收光谱
电荷转移跃迁:辐射下,分子中原定域在金属
M轨道上的电荷转移到配位体L的轨道,或按相反
方向转移,所产生的吸收光谱称为荷移光谱。
Mn+—Lbh M(n-1) +—L(b-1) h [Fe2+SCN]2+ [Fe3+SCN-]2+ 电子接受体
34
2. 定量分析
依据:朗伯-比耳定律—分子吸收光谱定量分析 的基本定律,它指出:当一束单色光穿过透明介质 时,光强度的降低同入射光的强度、吸收介质的厚 度以及光路中吸光微粒的数目成正比。
吸光度: A= e b c 透光度:-lgT = e b c
35

第三章紫外光谱和质谱

第三章紫外光谱和质谱

③ π-π*跃迁
是π电子从π成键向反键π*轨道的跃迁,含有π电子基团的不饱和有 机化合物,都会发生π-π*跃迁,如有 、 等的有机化合
物。π-π*跃迁所需的能量比σ-σ*跃迁小,也一般比n-σ*跃迁小,吸收 峰一般在200nm附近。
π-π*还具有以下特点:
吸收波长一般受组成不饱和键的原子影响不大,如 及 的λmax 都是 175 nm;摩尔吸光系数都比较大,通常在104以上,为强吸收带;
特点:光谱原理简单,识谱容易,信息量较少, 应用仍较广泛。
一、基本原理
1.紫外光谱的产生 E = E0 + E平动 + E转动 + E振动 + E电子 图中A、B表示不同能量的两个电 子能级,在每个电子能级中还分 布着若干振动能量不同的振动能 级,它们的振动量子数V=0、1、 2、3…表示,而在同一电子能级 和同一电子能级和同一振动能级 中,还分布着若干能量不同的转 动能量,它们的转动能级数J=0、 1、2、3……表示。 在分子能级跃迁所产生的能级变化ΔE中,电子能级跃 迁的能量变化ΔEe是最大的,一般在1~20eV之间, 它对应的电磁辐射能量主要在紫外-可见光区。
3.某些常见化合物的吸收光谱 ① 饱和烃及其取代衍生物 饱和烃中只有σ键,即只有σ电子,因此只能产生σ-σ*跃 迁,饱和烃的取代衍生物引入具有未成键n电子的杂原子, 可以产生n -σ*跃迁,吸收波长变大 。 如CH4的吸收波长为125 nm,而CH3Cl、CH3Br和CH3I的 吸收波长分别为173、204 和258 nm。 饱和烃是测定紫外-可见光谱时的良好溶剂。 ② 不饱和烃及共轭烯烃 可以产生σ-σ*跃迁和π-π*跃迁,一般在近紫外光区,为强吸收带在 分析上较有实用价值。 不饱和烃中,如果存在着共轭体系,共轭使电子离域大,-*能 量降低,跃迁几率增加,吸收波长变长,吸收变大。共轭程度越大, 则λmax越大,εmax也越大。 如:乙烯(193 nm),1,3-丁二烯(217 nm),己三烯(258 nm),辛四 烯(300 nm) 在共轭体系下,π-π*跃迁所产生的吸收带,又称为K带。

第三章 紫外可见吸收光谱

第三章  紫外可见吸收光谱
第三章 紫外可见吸收光谱
Ultraviolet and visible spectrophotometry
UV—Vis
1
泰山学院化学系分析化学教研室
第三章 紫外可见吸收光谱
2
泰山学院化学系分析化学教研室
第三章 紫外可见吸收光谱
3
泰山学院化学系分析化学教研室
第三章 紫外可见吸收光谱
太阳极紫外辐射
27
泰山学院化学系分析化学教研室
第三章 紫外可见吸收光谱
B吸收带:有苯环必有B吸收带 230~270nm之间 有一系列吸收峰,中吸收,芳香 族化合物的特征吸收峰 苯环上有取代基并与苯环共轭,精细结构消失
28
泰山学院化学系分析化学教研室
第三章 紫外可见吸收光谱
4)取代基:红移或蓝移。
取代基为含孤对电子,如-NH2、-OH、-Cl,可使分子红移; 取代基为斥电子基,如-R,-OCOR,则使分子蓝移。 苯环或烯烃上的H被各种取代基取代,多产生红移。
泰山学院化学系分析化学教研室
23
第三章 紫外可见吸收光谱
5)pH值:红移或蓝移
苯酚在酸性或中性水溶液中,有210.5nm及270nm两个吸
18
泰山学院化学系分析化学教研室
第三章 紫外可见吸收光谱
(4) n→π*跃迁
• n电子跃迁到反键π* 轨道所产生的跃迁,这类跃迁所 需能量较小,吸收峰在200 ~ 400 nm左右 • 吸收强度小,<102,弱吸收 • 含杂原子的双键不饱和有机化合物 C=S O=N- -N=Nλmax=280 nm 例:丙酮
15
泰山学院化学系分析化学教研室
第三章 紫外可见吸收光谱
* * E n 图3.2 分子的电子能级和跃迁 n→ * → * n→ *

第三章 紫外吸收光谱分析

第三章 紫外吸收光谱分析

b. 滤光片单色器
组成:
性能: 吸收滤片 光谱通带宽度(nm) 20-30 透 过 率(T% ) 5-20%
准直镜
入口狭缝、 滤光片、出口狭缝
干涉滤光片 10-15 40-60%
狭缝
c. 棱镜和光栅单色器 光谱通带宽度 少于 1nm 组成: 狭缝、色散元件、准直元件( 透镜 、反射镜 )
棱镜和光栅单色器比较
空紫外分光光度计,故在实际应用中受到一定的限制。
我们通常所说的紫外-可见分光光度法,实际上是指近非 真空紫外、可见分光光度法(200 ~ 800 nm)。
3.2 化合物紫外—可见光谱的产生
在紫外和可见光谱区范围内,有机化合物的吸收带主要由五种分
子轨道间的下述四种跃迁:σ→σ*、π → π*、n →σ *、n →π *及电荷
分子能级的能量间隔各异,因此不
同物质将选择性地吸收不同波长或
能量的外来辐射,这是UV-Vis定性 分析的基础。
苯蒸气的吸收曲线
2. 紫外-可见光谱的仪器原理
2.1. 紫外吸收仪器原理图
以下分别是单光束、双光束分光光度计的示意图以及仪器照片
2.2 仪器部件介绍
0.575
光源
单色器
检测器
显示 器
吸收池
吸收带:通常,分子是处在基态振动能级上。当用紫 外、可见光照射分子时,电子可以从基态激发到激发态的 任一电子能级上。因此,电子能级跃迁产生的吸收光谱, 包括了大量谱线,并由于这些谱线的重叠而成为连续的吸 收带,这就是为什么分子的紫外-可见光物质结构不同或者说其
E. 信号指示系统 它的作用是放大信号并以适当方式指示或记录下来。 常用的信号指示装置有直读检流计、电位调节指零装置 以及数字显示或自动记录装置等。很多型号的分光光度 计装配有微处理机,一方面可对分光光度计进行操作控 制,另一方面可进行数据处理。 总 结 :

第三章 紫外可见吸收光谱法

第三章 紫外可见吸收光谱法

3.金属离子影响下配体的 p → p* 跃迁 显色剂大多含有生色团和助色团,与金属离子 配位时,其共轭结构发生变化导致吸收光谱发生红 移或蓝移。 例:茜素磺酸钠 弱酸性-黄色- λmax=420nm 弱碱性-紫红色- λmax=560nm
pH为4~5时与Al3+配位后,为红色,λmax=475nm,相对于 酸性茜素磺酸钠吸收峰红移,相对于碱性茜素磺酸钠吸收峰 蓝移。
480-490
490-500 500-560 560-580 580-610 610-650 650-780
绿蓝
蓝绿 绿 黄绿 黄

红 红紫 紫 蓝


绿蓝
蓝绿
3.特点:
(1) 灵敏度较高,可达10-4~10-7g/mL; (2) 准确度较高,一般为1% ~5%; (3) 仪器价格较低,操作简便、快速; (4)应用范围广。既能进行定量分析,又可进行 定性分析和结构分析;既可用于无机物化合 物分析,也可用于有机物化合物分析;还可 用于络合物组成、酸碱解离常数的测定等。
标准谱图库:46000种化合物紫外光谱的标准谱图 有一定局限性,需与红外、核磁、质谱等法相结合 进行准确鉴定。
(二)结构分析
紫外—可见吸收光谱中有机物发色体系信息分析的一般规律: (1)若在220~280nm内无吸收峰,可推断化合物不含苯环、共轭 双键、醛基、酮基、溴和碘(饱和脂肪族溴化物在200-210nm有 吸收)。
必须在配体的配位场作用下才可能产生;
一般的规律:轨道分裂能随场强增加而增加,吸 收峰波长则发生紫移。 例如:水合铜离子(Ⅱ)是浅蓝色的λmax=794nm ,而 它的氨络合物却是深蓝色的λmax=663nm 。
摩尔吸收系数ε很小,对定量分析意义不大。但可 用于络合物的结构及无机络合物的键合理论研究。

紫外-可见吸收光谱.

紫外-可见吸收光谱.
饱和烃的取代衍生物如卤代烃,其卤素原子上存 在n电子,可产生n* 的跃迁。 n* 的能量 低于*。例如,CH3Cl、CH3Br和CH3I的n* 跃迁分别出现在173、204和258nm处。
3.有机化合物的吸收光谱与分子结构
(2)不饱和烃及共轭烯烃
在不饱和烃类分子中,除含有键外,还含有 键,它们可以产生*和*两种跃迁。 *跃迁的能量小于 *跃迁。例如,在 乙烯分子中, *跃迁最大吸收波长为180nm。
第一节 紫外-可见吸收光谱 一、分子吸收光谱的产生
过程:
运动的分子外层电子---吸收外来辐射--产生电子能级跃迁----分子吸收光谱。
M h I0 M * It
一、分子吸收光谱的产生
在分子中,除了电子 相对于原子核的运动 外,还有核间相对位 移引起的振动和转动。 这三种运动能量都是 量子化的,并对应有 一定能级。左图为分 子的能级示意图。
丙酮
例:KMnO4紫红色,吸收的是绿光,λmax=525nm。它 对其它颜色的光吸收极小。吸收曲线形状是物质特有 的。当KMnO4的量不同,只使曲线沿纵座标上下移动, 但曲线形状不变。
图 KMnO----4的吸收光谱图 浓度:5、10、20、40μg/ml,1cm厚比色杯
四、分子跃迁类型及吸收光谱
max 较大 (104以上),可用于定量分析。
2.几个概念
生色团(Chromogenesis group)
有机化合物分子中含有非键或键的电子体系,
能吸收外来辐射时并引起n-* 和-*跃迁,可产生 此类跃迁或吸收的结构单元,称为生色团。
是一些具有不饱和健和含有孤对电子的基团。
如-C=C-、-C ≡ C-、—CH=O、—N=N—、-N=O 、—C≡N、—NO2等

紫外-可见吸收光谱分析

紫外-可见吸收光谱分析

• 分子、原子或离子具有不连续的量子化能级,仅当
照射光光子的能量(hυ)与被照射物质粒子的基态和 激发态能量之差相当时才能发生吸收。不同的物质微粒 由于结构不同而具有不同的量子化能级,其能量差也不 相同。所以物质对光的吸收具有选择性。
三、吸收曲线(吸收光谱)
• 吸光度(A)--波长(λ)曲线称--。 • 光吸收程度最大处的波长叫 • 最大吸收波长,用λmax表示。 • 高锰酸钾的λmax=525nm。 • 浓度不同时,光吸收曲线形状不同,最大吸收波长
1852年,比耳(Beer)发现:
• 当单色光通过液层厚度b一
• 定的有色溶液时,溶液的吸
• 光度A与溶液浓度C成正比:

A= lg(I0/I)= k2 C
• --- 比耳定律

( C--有色溶液的浓度 k2--比例常数 )
• 将朗白定律与比耳定律合并起来:

A = lg(I0/I) = K b c
物质颜色
黄绿 黄 橙 红
紫红 紫 蓝
绿蓝 蓝绿
吸收光
颜色
波长范围

40/0n-m450

450-480
绿蓝
480-490
蓝绿
490-500
绿
500-560
黄绿
560-580

580-600

600-650

650-700
二、物质对光的选择性吸收
当一束光照射到某物质或其溶液时,组成该物质的 分子、原子或离子与光子发生“碰撞”,光子的能量就 转移到分子、原子上,使这些粒子由最低能态(基态) 跃迁到较高能态(激发态):M + hυ → M* 这个作用叫物质对光的吸收。

第三章紫外可见吸收光谱法

第三章紫外可见吸收光谱法
吸收谱带的强度与分子偶极矩变化、跃迁几率有关,也提 供分子结构的信息。通常将在最大吸收波长处测得的摩尔 吸光系数εmax也作为定性的依据。不同物质的λmax有时可能 相同,但εmax不一定相同;
吸收谱线强度A与该物质分子吸收的光子数成正比,即与 该物质的浓度C成正比,这是定量分析的依据。
A bc
s*
收远紫外光的能量才能发生跃
p*
迁;
E
n
饱和烷烃的分子吸收光谱出现
p
在远紫外区;
s
吸收波长λ<200 nm;
例:甲烷的λmax为125 nm , 乙烷λmax为135 nm。只能被真 空紫外分光光度计检测到;故可作为溶剂使用。
- 18 -
1.2 n→σ*跃迁
所需能量较大; 吸收波长为150~250 nm,大部分在远紫外区,近紫外区
光聚焦至出射狭缝; 出射狭缝
- 43 -
色散元件:
光学系统的核心部分,起分光的作用。其性能直接影响 入射光的单色性,影响测定灵敏度、选择性及校准曲线的线 性关系等。
棱镜:依据不同波长光通过棱镜时折射率不同而将不同波 长的光分开,缺点是波长分布不均匀,分辨能力较低。
光栅:利用光的衍射与干涉作用制成,它可用于紫外、可 见及红外光域,而且在整个波长区具有几乎均匀一致的高 分辨能力。它具有色散波长范围宽、分辨本领高、成本低、 便于保存和易于制备等优点。缺点是各级光谱会重叠而产 生干扰。
远紫外光区:10-200 nm; 近紫外光区:200-400 nm; 可见光区:400-780 nm。
紫外可见吸收光谱法特点:
仪器较简单,价格较便宜; 分析操作简单; 分析速度较快。
-2-
2. 紫外可见吸收光谱的产生
紫外可见吸收光谱:分子价电子能级跃迁(伴随着振 动能级和转动能级跃迁)。

紫外-可见吸收光谱

紫外-可见吸收光谱

第二节 紫外—可见吸收光谱
一、有机化合物的紫外-可见吸收光谱 二、无机化合物的紫外-可见吸收光谱
一、有机化合物的紫外-可见吸收光谱
(一)电子跃迁类型 分子轨道理论:一个成键轨道必定有一 个相应的反键轨道。通常外层电子均处 于分子轨道的基态,即成键轨道或非键 轨道上。
当外层电子吸收紫外或可见辐射后,就 从基态向激发态(反键轨道)跃迁。主要有四 种跃迁所需能量ΔΕ大小顺序为:n→π* < π→π* < n→σ* < σ→σ*
羧酸及羧酸的衍生物虽然也有n*吸 收带,但是, 羧酸及羧酸的衍生物的羰基 上的碳原子直接连结含有未共用电子对的 助色团,如-OH、-Cl、-OR等,由于这些助 色团上的n电子与羰基双键的电子产生 n共轭,导致*轨道的能级有所提高, 但这种共轭作用并不能改变n轨道的能级, 因此实现n* 跃迁所需的能量变大,使 n*吸收带蓝移至210nm左右。
2. 配位场跃迁 配位场跃迁包括d - d 跃迁和f - f 跃迁。元素周期表中第四、五周期的过度金 属元素分别含有3d和4d轨道,镧系和锕系元 素分别含有4f和5f轨道。在配体的存在下, 过度元素五 个能量相等的d轨道和镧系元素 七个能量相等的f轨道分别分裂成几组能量 不等的d轨道和f轨道。
当它们的离子吸收光能后,低能态的 d电子或f电子可以分别跃迁至高能态的d 或f轨道,这两类跃迁分别称为d - d 跃 迁和f - f 跃迁。由于这两类跃迁必须 在配体的配位场作用下才可能发生,因 此又称为配位场跃迁。
⑶ π→π*跃迁
所需能量较小,吸收波长处于远紫外 区的近紫外端或近紫外区,摩尔吸光系数 εmax一般在104L·mol-1·cm-1以上,属于 强吸收。不饱和烃、共轭烯烃和芳香烃类均 可发生该类跃迁。如乙烯π→π*跃迁的 λmax为162nm,εmax为1×104L·mol-1·cm -1。

紫外可见吸收光谱

紫外可见吸收光谱

2. 电荷迁移跃迁
——指配合物中配位体与金属离子之间,一个电子
由一方的一个轨道跃迁到另一方相关的轨道上。 ——产生电荷迁移跃迁的必要条件:一组分是电子
给予体,另一组分是电子接收体。
例: [Fe3+ (SCN-)]2+ h [Fe2+(SCN)]2+
电子接受体 电子给予体
——电荷迁移跃迁光谱的很大,一般在104以上,
——当苯环上有羟基、氨基等取代基时,吸收峰红移, 吸收强度增大.像羟基、氨基等一些助色团,至少 有一对非键n电子,这样才能与苯环上的电子相互 作用,产生助色作用.
——取代基不同,变化程度不同,可由此鉴定各种 取代基
例: 苯
λmax B带 254
λmax
E2
204
甲苯
262
208
苯酚
271
213
苯甲酸
(一)紫外可见吸收光谱 由紫外可见分光光度计获得
光源——单色器——吸收池——检测器——显示器
ΔE电 = h 光 (200—800 nm)
激发态 基态
吸收曲线
将不同波长的光透过某一固定浓度和 厚度的待测溶液,测量每一波长下待测溶 液对光的吸收程度(即吸光度),然后以 波长为横坐标,以吸光度为纵坐标作图, 可得一曲线。这曲线描述了物质对不同波 长的吸收能力,称吸收曲线或吸收光谱。
不同波长的光
L
图3-1紫外可见吸收光谱示意图
A
末端吸收
最强峰
肩 峰
次强峰 峰谷
max
min

A
分析吸收曲线 可以看到:
1.同一浓度的 待测溶液对不 同波长的光有 不同的吸光度;
max
min

第三章紫外吸收光谱

第三章紫外吸收光谱

溶剂的影响
C
∆Εn<∆Εp
O
C
C
π∗
∆Ε n > ∆Ε p π∗
∆Ε n n C
π∗ ∆Ε p
π∗ ∆Ε n π ∆Ε p
O 非极性
C
极性
C
π 极性
非极性
n → π*跃迁:兰移; λ↓ ;ε↑ 兰移; 兰移
λmax(正己烷) λmax(氯仿)
π → π*跃迁:红移; λ↑;ε↓ λ↑;
λmax(甲醇) λmax(水)
C H3 C O
n π∗ ; R带
π
π∗ ; K带
生色团与助色团
生色团: 生色团: 最有用的紫外—可见光谱是由π→π*和n→π*跃迁产生的 。这两种跃迁均要求有机物分子中含有不饱和基团。这类含 有π键的不饱和基团称为生色团。简单的生色团由双键或叁键 体系组成,如乙烯基、羰基、亚硝基、偶氮基—N=N—、乙 炔基、腈基—C㆔N等。 助色团: 助色团: 有一些含有n电子的基团(如—OH、—OR、—NH2、— NHR、—X等),它们本身没有生色功能(不能吸收λ>200nm的 光),但当它们与生色团相连时,就会发生n—π共轭作用,增 强生色团的生色能力(吸收波长向长波方向移动,且吸收强度 增加),这样的基团称为助色团。
基本值 217 基本值 253 增加值 +30 +5 +5 0 +6 +30 +5 +60
解析示例
有一化合物C10H16由红外光谱证明有双键和异丙基存在, 其紫外光谱λ max=231 nm(ε 9000),此化合物加氢只能吸收2 克分子H2,,确定其结构。 解:①计算不饱和度Ω = 3;两个双键;共轭?加一分子氢 ②λmax=231 nm, ③可能的结构 ④计算λ max
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ε1(CrO42- ) 1.84×103 4.81×103 1.88×103
ε2(Cr2O72- ) 10.7×102 7.24×102 1.89×102
求1.00×10-4 、 2.00×10-4 、 3.00×10-4 、4.00×10-4 M K2Cr2O7 溶液在 PH 5.60缓冲溶液中,用一厘米比色池在345、 370、400nm波长处测定时的吸光度?并分别于345 nm, 370 nm 及400 nm作吸光度对浓度的曲线,比较偏离吸收定律的原因。
按用途分: 常用比色池 0.5, 1.0, 1.5, 2.0厘米 微 量 池 0.5毫升以下 流 动 池 5-11微升
按材料不同分:
玻璃池
340-1000nm
石英池
200-340nm
紫外级石英池 185-220nm
吸收池的光学面必须严格垂直于光束方向。
(四) 检测器 ( Detectors )
作用: 光信号转变为电信号。
(CH3)3N 227
140 2520 600 100 900
C.n→π*跃迁 和π→π*跃迁
● ●
产生有机物最为有用的吸收光谱,n电子和π电子比较 容易激发,吸收峰波长>200nm,该两类跃迁要求分子中含有 不饱和的官能团,含有π键的基团就称为生色团或发色团。
这两类跃迁的吸收峰强度不同,前者的摩尔吸收系数 很低,仅在10-100范围内 ,后者这比前者大100-1000倍。
A. 几种光检测器性能的比较
光电池
光电管
波长(nm)
(Wavelength)
(photocells)
400-750
响应速度

(Speed of response)
(phototubes)
190-650(蓝敏) 600-1000(红敏)
约10-8 秒
性能:
吸收滤片 光谱通带宽度(nm) 20-30 透 过 率( T% ) 5-20%
干涉滤光片 10-15 40-60%
3. 棱镜和光栅单色器
光谱通带宽度 少于 1nm 组成: 狭缝、色散元件、准直元件( 透镜 、反射镜 )
棱镜和光栅单色器比较
●棱镜有玻璃和石英两种材料。它们的色散原理是依据不同 波长的光通过棱镜时有不同的折射率而将不同波长分开。由 于玻璃会吸收紫外光,所以玻璃棱镜只适用于350~3200nm的 可见和近红外光区波长范围。石英棱镜适用的波长范围较宽, 为185~4000nm,即可用于紫外、可见、红外三个光谱区域。
由n→σ* 跃迁而产生的吸收
化合物 最大波长 摩尔吸收系数 化合物 最大波长 摩尔吸收系数
(nm)
(nm)
H2O
167
CH3OH 184
CH3Cl 173
CH3Br 204
CH3I
258
1480 150 200 200 365
(CH3)2S
229
(CH3)2O 184
CH3NH2 215
(CH3)2NH 220
例 子 溶 剂 λmax(nm) 摩尔吸收系数 跃迁类型
烯烃 C6H13CH=CH2 正庚烷 177 178
13000 π→π* 10000
炔 C5H11≡CCH3 正庚烷
196
225
2000 165
π→π*
酮 (CH3)2C=O
280
醛 CH3CH=O
293
其它 CH3C(NH2)=O
214
CH3NO2
280
CH3N=NCH3
339
16
n→π*
12
n→π*
60
n→π*
22
n→π*
5
n→π*
3.分子结构和光谱的相互关系
A.共轭效应(Conjugation effect )
当分子含有多个π键,并且被单键隔开时,共轭 效应增加,π→π* 跃迁能量更低,吸收光谱最大吸 收峰向长波方向移动,摩尔吸收系数增大。称红移 效应(red shift effect)。
放电十分稳定,光强度且恒定。氘灯的灯管内充有氢同位素氘,其光谱分布与氢灯类似, 但光强度比同功率的氢灯大3~5倍,是紫外光区应用最广泛的一种光源。
(二) 单色器
1. 要求特性
A.高效能 B.宽波长范围 C.容易调节波长 D.好的波长精度和重现性 E.高的光谱纯度 F.好的机械稳定性
2. 滤光片单色器 组成: 入口狭缝、 滤光片、 出口狭缝

C.n键轨道

如: -C-Br: -C—O:H -C-N:H
D. σ*反键轨道
E. π*反键轨道
σ,π,n 键轨道为基态轨道 σ*,π*为激发态轨道
2、分子电子能级和跃迁
σ→σ*,n→σ*,π→σ*,n→π* , σ→π* , π→π*.
σ*
π*
σ→σ*
π→σ* n→σ*
σ→π* π→π*
n→π*
基团中含有n 电子且与π相邻时,同 样也发生类似的红移现象。
λmax 165(nm)
H
CHl
CC
H
H
λmax 170(nm)
H
Cl
CC
H
H
B. 含有n电子芳香体系,最大吸收向紫外方向移 动。称蓝移效应(blue shift effect)。
N
S
N
O
H
254nm 250nm 232nm 217nm 210nm
解: ∵ K=[Cr2O72- ] / [CrO42-]2×[H+]2 = 4.2×1014……. ① 又∵ PH 5.60 故可求出[H+]。 设[Cr2O72- ] =X, [CrO42-]= 4.00×10-4 M -X 代入①式即可求出[Cr2O72- ] 、[CrO42-]的浓度。 又 ∵ Atotal =A1 +A2=ε1C1L+ε2C2L 不同波长下的 ε1、C1、L、ε2 、C2、均已知,故可
E( * ) E(n * ) E( * ) E(n * )
由n→π*, π→π*跃迁而产生的吸收
Molecule Acetone O
‖ CH3-C-CH3
transition n→π*
λmax(nm) 290
Benzene
π→π*
254
生色团
n→π* 和π→π* 跃迁的吸收特征

π
σ
激发态
Hale Waihona Puke 基态A.σ→σ* 跃迁△E 较大,跃迁发生在远紫外区,波长范围低于 200nm。如甲烷(125nm),乙烷 (135 nm)。
B.n→σ* 跃迁
● ●
△E 较σ→σ* 跃迁要小,跃迁发生在150--250nm波 长范围内,如含有杂原子饱和烃衍生物。摩尔吸收系 数一般在100-300范围内。
钨灯
钨卤灯
使用范围(nm) 330-2500 200-900
输出能量 15%在可见区 高
与V4成正比
寿命


氘灯 190-370


钨灯和碘钨灯可使用的波长范围为340~2500nm。这类光源的辐射能量与施加的外加电压 有关,在可见光区,辐射的能量与工作电压的4次方成正比,光电流也与灯丝电压的n次方 (n>1)成正比。因此,使用时必须严格控制灯丝电压,必要时须配备稳压装置,以保证光 源的稳定。氢灯和氘灯可使用的波长范围为160~375nm,由于受石英窗吸收的限制,通常 紫外光区波长的有效范围一般为200~375nm。灯内氢气压力为102Pa时,用稳压电源供电,
正常时: T=I/I0 ,但当有杂散光I1时: T =(I + I 1)/(I0 + I1)
➢ 非单色光对比尔定律产生偏离:
➢ 化学因素的影响:
例: 2CrO42- + 2H+ = Cr2O72- + H2O 已知:平衡常数为4.2×1014。 不同波长测定时的摩尔吸收系数为:
λ(nm) 345 370 400
求出各波长下的吸光度A。
3、偏离Beer-Lambert定律的因素
A
偏离线性
通常当C<0.01M时,呈线性
偏离线性
C
原因:A. 定律本身偏离线性 K=f(n) n=f(C) ∴ K=f(C) , 故K不是常数。
B. 定律本身的假设难以满足 严格的单色光 理想溶液
C. 由仪器性能引起 如仪器的杂散光(非吸收光)引起偏离线性。
C. 助色团: 一些原子和原子团不吸收200-800nm范围
内的光,但与生色团结合后,具有能使生色团的吸 收峰向长波或短波方向移动的作用,这样的原子 或原子团称为助色团。
-CH3
-OH -NH2 -NO2
H
C H
C C
H
HH
H
Cl
CC
H
H
助色团可以产生以下效应:
λmax向长波方向移动,即红移效应; λmax向短波方向移动,即蓝移效应。 εmax增大,即增色效应; εmax减小,即减色效应。
OH
NH2
λmax 256nm 270nm
εmax 200
1450
280nm 1430
二、定量分析的基础-Beer - Lambert定律
吸收
入射 (I0)
荧光(If)
透过 (I)
反射(Ir)
← L→
I ───=T
I0
T 透过率
散射(Is)
1. 比尔-朗伯定律
当令A=- logT时
可以得到 A= KCL
常用的光源有热辐射光源和气体放电光源。利用固体灯丝材料高温放热产生的辐射作为光源的是热辐射光源。如钨灯、 卤钨灯。两者均在可见区使用,卤钨灯的使用寿命及发光效率高于钨灯。气体放电光源是指在低压直流电条件下,氢或
相关文档
最新文档