闸门水力计算说明汇总

闸门水力计算说明汇总
闸门水力计算说明汇总

水闸水力计算说明

一、过流能力计算

1.1外海进水

外海进水时,外海水面高程取5.11m ,如意湖内水面高程取1.0m 。中间三孔放空闸,底板高程为-4.0m ,两侧八孔防潮闸底板高程为2.0m ,每孔闸净宽度为10m 。

表2 内海排水时计算参数特性表

1.1.1中间三孔放空闸段 a.判定堰流类型

27.511

.948

==

H

δ

式中δ为堰壁厚度,H 为堰上水头。 2.5<5.27<10,为宽顶堰流。 b.堰流及闸孔出流判定

11

.95

=

H e =0.549≤0.65,为闸孔出流。 式中,e 为闸门开启高度,H 为堰、闸前水头。 c.自由出流及淹没出流判定

闸孔出流收缩断面水深h c=ε1e=5.0×0.650=3.25m 。 式中,e 为闸门开启高度,为5.0m ;

ε1为垂向收缩系数,查《水利计算手册》(2006年第二版)中表3-4-1

得0.650。

收缩断面处水流速为

υc=)(20c h H g -?=)(25.311.981.9295.0-???=10.19m/s 。

式中,ψ为闸孔流速系数,查《水利计算手册》(2006年第二版)中表3-4-3,取0.95;

H 0为闸前总水头,为9.11m ; hc 为收缩断面水深。

收缩断面水深hc 的共轭水深

hc”=)181(22

-+c c c gh h ν=)125

.381.919.1081(225.32

-??+=6.83m ;

下游水深ht=5.0m <hc”=6.83m ,故为自由出流。 d.过流量计算

根据闸孔自由出流流量计算公式

Q 1=002gH be μ=11.981.92530503.0?????=1008.71m3/s 。 式中,μ0为流量系数,平板闸门流量系数可按经验公式 μ0=0.60-0.176

H

e

=0.60-0.176×0.549=0.503; b 为闸孔宽度,为3×10=30m 。 1.1.2两侧八孔防潮闸段 a.判定堰流类型

43.1511

.348

==

H

δ

>10,过渡为明渠流。 式中δ为堰壁厚度,H 为堰上水头。 b .过流量计算

因泄洪闸下游与陡坡相连,水利计算可按堰流计算方法进行。

H h t =11

.31-=-0.32<0.8,为自由泄流; 式中,h t 为堰顶下游水深,H 为堰顶上游水深。

因堰顶设有闸墩,应考虑侧收缩影响,采用宽顶堰流量公式计算泄流量: Q 2=2

3

02H g mnb c σ=2

311.381.92108377.0985.0??????=721.70m3/s 。 式中,m 为流量系数,因进口为斜坡式进口,P/H=7/3.11=2.25,cot θ=30/7=4.286,查《水利计算手册》(2006年第二版)中表3-2-1取m=0.377;

b 为每孔闸净宽,为10m ; n 为孔数,为8孔; H 0为堰上水头,为3.11m ;

σc 为侧收缩系数,为有底坎宽顶堰的侧收缩系数,可由别津斯基公式计算

σc =)/1()(/2.014/13

B b B

b

H P -+-α

式中,P 为上游堰高,取7.0m ;H 为堰前水头,为3.11m ;b 为两墩间净宽,为10m ;B 为上游引渠宽,为148m ,α为系数,取0.10。

多孔闸过流时,σc 的确定可取加权平均值

n

n cs

cm c σσσ+-=

)1(=0.985;

式中,n 为孔数,σcm 为中孔侧收缩系数,经计算取0.988,σcs 为边孔侧收缩系数,经计算取0.962。

计算中孔侧收缩系数时,b/B 用d

b b

+代替,d 为墩厚,为2.0m ;计算边孔侧收缩系数时,b/B 用

b

b b

?+代替,Δb 为边墩边缘线与建筑物上游引渠水边线之间的距离,为20m 。

因此,外海排水时,闸室过流量Q=Q 1+Q 2=1008.71+721.70=1730.41m3/s 。 1.2内海排水

内海排水时,内海水面高程取2.50m ,外海水面高程取-3.03m 。中间三孔放空闸,底板高程为-3.0m ,两侧八孔防潮闸底板高程为2.0m ,每孔闸净宽度为10m 。

表2 内海排水时计算参数特性表

1.2.1中间三孔放空闸段 a.判定堰流类型

38.75

.648

==

H

δ

式中δ为堰壁厚度,H 为堰上水头。 2.5<7.38<10,为宽顶堰流。 b.堰流及闸孔出流判定

5

.65=H e =0.77>0.65,为堰流。 式中,e 为闸门开启高度,H 为堰、闸前水头。 c.过流能力计算

H h t =5

.697.0=0.15<0.8,为自由泄流; 式中,h t 为堰顶下游水深,H 为堰顶上游水深。

因堰顶设有闸墩,应考虑侧收缩影响,采用宽顶堰流量公式计算泄流量: Q 2=2

302H g mnb c σ=2

35.681.92103368.0?????=810.38m3/s 。 式中,m 为综合流量系数,n

m n m m s

m +-=

)1(=0.368,查《水利计算手册》

表3-2-3得m m 为0.359,m s 为0.385,由此公式查表计算出流量系数,则侧收缩系数不再计算。

b 为每孔闸净宽,为10m ; n 为孔数,为3孔; H 0为堰上水头,为5.5m ;

σc 为侧收缩系数,无底坎宽顶堰, 多孔闸过流时,计算综合流量系数后不用计算侧收缩系数。

1.2.2两侧八孔防潮闸段 a.判定堰流类型

==

5

.048

H

δ

96>10,过渡为明渠流。 式中δ为堰壁厚度,H 为堰上水头。 b .过流量计算

因泄洪闸下游与陡坡相连,水利计算可按堰流计算方法进行。

H h t =5

.013.6-=-12.26<0.8,为自由泄流; 式中,h t 为堰顶下游水深,H 为堰顶上游水深。

因堰顶设有闸墩,应考虑侧收缩影响,采用宽顶堰流量公式计算泄流量: Q 2=2

3

02H g mnb c σ=2

35.081.92108374.0994.0??????=46.57m3/s 。 式中,m 为流量系数,因进口为斜坡式进口,P/H=5/0.5=10,cot θ=10/5=2,查《水利计算手册》(2006年第二版)中表3-2-1取m=0.374;

b 为每孔闸净宽,为10m ;

n 为孔数,为8孔; H 0为堰上水头,为0.5m ;

σc 为侧收缩系数,为有底坎宽顶堰的侧收缩系数,可由别津斯基公式计算

σc =)/1()(/2.014/13

B b B

b

H P -+-α

式中,P 为上游堰高,取5.0m ;H 为堰前水头,为0.5m ;b 为两墩间净宽,为10m ;B 为上游引渠宽,为130m ,α为系数,取0.10。

多孔闸过流时,σc 的确定可取加权平均值

n

n cs

cm c σσσ+-=

)1(=0.994;

式中,n 为孔数,σcm 为中孔侧收缩系数,经计算取0.993,σcs 为边孔侧收缩系数,经计算取1。

计算中孔侧收缩系数时,b/B 用d

b b

+代替,d 为墩厚,为2.0m ;计算边孔侧收缩系数时,b/B 用

b

b b

?+代替,Δb 为边墩边缘线与建筑物上游引渠水边线之间的距离,为20m 。

因此,内海排水时,闸室过流量Q=Q 1+Q 2=810.38+46.57=856.95m3/s 。

二、消能防冲计算

2.1外海进水

外海进水时,外海水面高程取5.11m ,如意湖内水面高程取1.0m 。中间三孔放空闸,底板高程为-4.0m ,两侧八孔防潮闸底板高程为2.0m ,每孔闸净宽度为10m 。闸室泄流量为Q=1730.41m3/s ,泄槽段及消力池段宽度为B=130m ,单宽流量q=Q/B=1730.41÷130=13.31m3/s 。

2.1.1计算收缩断面水深

a .收缩断面水深hc 的基本计算公式: E 0=2

2

22c

c h g q h ?+

→9.11 =2

2

2

85.081.927.12c

c h h ??+

式中,E 0为以下游河床为基准面的泄水建筑物上游总水头,为9.11m ;

q 为收缩断面处的单宽流量,为13.31m3/s.m ; g 为重力加速度,取9.81m/s 2;

ψ为流速系数,查《水力计算手册》(2006年第二版)中表4-2-1,取0.85。

经计算,得收缩水深hc=1.26m 。 b .收缩断面水深hc 的共轭水深h c”计算 h c”=

)181(22

-+c c Fr h =)10.381(2

29.12-?+=4.87 式中,Fr c 为收缩断面弗劳德数,Fr c =c

c gh h q =3.0。

c .水流衔接状态的判别

hc ”=4.87>ht=3.0m ,为远离水跃,须采取工程措施,强迫水流发生临界或稍有淹没的水跃。

式中,ht 为下游水深 d .消力池的水力计算

消力池的池深S=σhc ”-ht-Δz=1.1×4.87-3-0.80=1.56m 式中,σ为安全系数,取1.1; ht 为下游水深,为3.0m ; Δz 为消力池出口水面落差。 Δz 2

22

2

22'2T

t

gh q h g q -

=

?=0.80m

ψ’为消力池末端升坎的流速系数,取0.95; h T 为池末局部水深,h T =σh c”=1.1×4.87=5.36m

消力池池长L=6.9(hc”-hc )=6.9×(4.87-1.26)=24.91m 。

消力池底板厚度可根据抗冲和抗浮要求,按下式计算,并取其大值: 抗冲:t='1H q k ?=11.431.1319.0=0.99m 。 抗浮:t=b

m

P W U k γ+-2

=25

86

.228.5033.602

.1+-=0.62m 。

式中,t 为消力池底板厚度;

ΔH ’闸孔泄水时的上、下游水位差,为4.11m ; k 1为消力池底板计算系数,取0.2; k 2为消力池底板安全系数,取1.2;

U 为作用在消力池底板地面的扬压力,经计算为60.33kPa ; W 为作用在消力池底板顶面的水重,经计算为50.28kPa ;

Pm 为作用在消力池底板上的脉动压力,其值可取跃前收缩断面流速水头的5%,经计算为2.86kPa ;

γb 为消力池底板的饱和重度,取25KN/m3。 取两者计算最大值,消力池底板厚度取0.99m 。 e .海漫长度计算 海漫长度按经验公式计算

L p =H q K ?=11.431.1312=62.33m K 为系数,取12;

ΔH 为水闸上下游水位差,为4.11m ; q 为消力池出口单宽流量,为13.31m3/s.m 。 f .海漫末端的河床冲刷坑深度d m 计算 d m =m m h v q -][1

.10=30

.331

.131.1-?=1.88m 。 式中,q m 为海漫末端的单宽流量,取13.31m3/s.m ;

v 0为河床土质允许不冲流速,因海漫下游抛填块石,取v 0=3.0m/s ; h m 为海漫末端河床水深,取3.0m 。 经计算,海漫末端的冲刷坑深度d m 为1.88m 。 2.2内海排水

内海排水时,内海水面高程取2.50m ,外海水面高程取-3.03m 。中间三孔放空闸,底板高程为-4.0m ,两侧八孔防潮闸底板高程为2.0m ,每孔闸净宽度为10m 。闸室泄流量为Q=856.95m3/s ,消力池段平均宽度取B=150m ,单宽流量q=Q/B=856.95÷150=5.71m3/s 。

2.1.1计算收缩断面水深

a .收缩断面水深hc 的基本计算公式:

E 0=2

2

22c

c h g q h ?+

→8.5 =2

2

2

85.081.9271.5c

c h h ??+

式中,E 0为以下游河床为基准面的泄水建筑物上游总水头,为8.5m ; q 为收缩断面处的单宽流量,为5.71m3/s.m ; g 为重力加速度,取9.81m/s 2;

ψ为流速系数,查《水力计算手册》(2006年第二版)中表4-2-1,取0.85。

经计算,得收缩水深hc=0.54m 。 b .收缩断面水深hc 的共轭水深h c”计算 h c”=

)181(22

-+c c Fr h =)159.481(2

54.02-?+=3.25 式中,Fr c 为收缩断面弗劳德数,Fr c =c

c gh h q =4.59。

c .水流衔接状态的判别

hc ”=3.25>ht=1.47m ,为远离水跃,须采取工程措施,强迫水流发生临界或稍有淹没的水跃。

式中,ht 为下游水深,为1.47m 。 d .消力池的水力计算

消力池的池深S=σhc ”-ht-Δz=1.1×3.25-1.47-0.72=1.39m 式中,σ为安全系数,取1.1; ht 为下游水深,为1.47m ; Δz 为消力池出口水面落差 Δz 2

22

2

22'2T

t

gh q h g q -

=

?=0.72m

ψ’为消力池末端升坎的流速系数,取0.95; h T 为池末局部水深,h T =σh c”=1.1×3.25=3.58m

消力池池长L=6.9(hc”-hc )=6.9×(3.11-0.58)=17.46m 。

消力池底板厚度可根据抗冲和抗浮要求,按下式计算,并取其大值: 抗冲:t='1H q k ?=53.571.519.0=0.69m 。

抗浮:t=b

m

P W U k γ+-2

=25

87

.286.2992.392

.1+-=0.62m 。

式中,t 为消力池底板厚度;

ΔH ’闸孔泄水时的上、下游水位差,为5.53m ; k 1为消力池底板计算系数,取0.19; k 2为消力池底板安全系数,取1.2;

U 为作用在消力池底板地面的扬压力,经计算为39.92kPa ; W 为作用在消力池底板顶面的水重,经计算为29.86kPa ;

Pm 为作用在消力池底板上的脉动压力,其值可取跃前收缩断面流速水头的5%,经计算为2.87kPa ;

γb 为消力池底板的饱和重度,取25KN/m3。 取两者计算最大值,消力池底板厚度取0.69m 。 e .海漫长度计算 海漫长度按经验公式计算

L p =H q K ?=53.571.512=43.97m K 为系数,取12;

ΔH 为水闸上下游水位差,为5.53m ; q 为消力池出口单宽流量,为5.71m3/s.m 。 f .海漫末端的河床冲刷坑深度d m 计算 d m =m m h v q -][1

.10=47.10

.371

.51.1-?=0.63m 。 式中,q m 为海漫末端的单宽流量,取5.71m3/s.m ;

v 0为河床土质允许不冲流速,因海漫下游抛填块石,取v 0=3.0m/s ; h m 为海漫末端河床水深,取1.47m 。 经计算,海漫末端的冲刷坑深度d m 为0.63m 。

给水排水管道系统水力计算汇总

第三章给水排水管道系统水力计算基础 本章内容: 1、水头损失计算 2、无压圆管的水力计算 3、水力等效简化 本章难点:无压圆管的水力计算 第一节基本概念 一、管道内水流特征 进行水力计算前首先要进行流态的判别。判别流态的标准采用临界雷诺数Re k,临界雷诺数大都稳定在2000左右,当计算出的雷诺数Re小于2000时,一般为层流,当Re大于4000时,一般为紊流,当Re介于2000到4000之间时,水流状态不稳定,属于过渡流态。 对给水排水管道进行水力计算时,管道内流体流态均按紊流考虑 紊流流态又分为三个阻力特征区:紊流光滑区、紊流过渡区及紊流粗糙管区。 二、有压流与无压流 水体沿流程整个周界与固体壁面接触,而无自由液面,这种流动称为有压流或压力流。水体沿流程一部分周界与固体壁面接触,另一部分与空气接触,具有自由液面,这种流动称为无压流或重力流 给水管道基本上采用有压流输水方式,而排水管道大都采用无压流输水方式。 从水流断面形式看,在给水排水管道中采用圆管最多 三、恒定流与非恒定流 给水排水管道中水流的运动,由于用水量和排水量的经常性变化,均处于非恒定流状态,但是,非恒定流的水力计算特别复杂,在设计时,一般也只能按恒定流(又称稳定流)计算。 四、均匀流与非均匀流 液体质点流速的大小和方向沿流程不变的流动,称为均匀流;反之,液体质点流速的大小和方向沿流程变化的流动,称为非均匀流。从总体上看,给水排水管道中的水流不但多为非恒定流,且常为非均匀流,即水流参数往往随时间和空间变化。 对于满管流动,如果管道截面在一段距离内不变且不发生转弯,则管内流动为均匀流;而当管道在局部有交汇、转弯与变截面时,管内流动为非均匀流。均匀流的管道对水流的阻力沿程不变,水流的水头损失可以采用沿程水头损失公式进行计算;满管流的非均匀流动距离一般较短,采用局部水头损失公式进行计算。

管道水力计算

管道水力计算 新大技术研究所:戴颂周 2012 年3 月2 日

目录 第一章单相液体管内流动和管道水力计算 (3) 第一节流体总流的伯努利方程 (3) 一、流体总流的伯努利方程 (3) 二、流体流动的水力损失 (3) 第二节流体运动的两种状态 (6) 一、雷诺实验 (6) 二、雷诺数 (7) 三、圆管中紊流的运动学特征—速度分布 (7) 四、雷诺数算图 (8) 第三节沿程水力损失 (9) 一、计算方法: (9) 第四节局部水力损失 (14) 第五节管道的水力计算 (17) 一、管道流体的允许流速(经济流速供参考) (17) 二、简单管道的水力计算 (19) 第二章玻璃钢管道水力计算 (20) 第一节玻璃钢管道水力计算公式 (20) 一、玻璃钢管道水力计算公式 (20) 二、管道水力压降曲线 (21) 三、常用液体压降的换算 (21) 四、常用管件压降 (23) 第二节油气集输管道压降计算 (24) 第三节玻璃钢输水管线的水力学特性 (25) 一、玻璃钢输水管水流量计算 (25) 二、玻璃钢输水管水击强度计算 (25) 第三章管道水力学计算中应注意的几个问题 (28) 一、热油管道的工艺计算 (28) 二、油水两相液体的工艺计算 (28) 三、地形变化时的水力坡降 (30)

第一章 单相液体管内流动和管道水力计算 第一节 流体总流的伯努利方程 一、流体总流的伯努利方程 1. 流体总流的伯努利方程式(能量方式) =++g c g P Z 22 1111αρw h g c g P Z +++22 2222αρ 2. 方程的分析 (1) 方程的意义 物理意义:不可压缩的实际流体在管道内流动时的能量守恒,或者说,上游机械能=下游机械能+能量的损失。 (2) 各项的意义 -21,z z 单位重量流体所具有的位能,或位置水头,m ,即起点、终点标高。-g p g p ρρ/,/21单位重量流体所具有的压能,或压强水头,m ;即P 1 P 2为起点、 终点液流压力,-g c g c 2/,2/2 22211αα单位重量流体所具有的动能,或速度水头, m ;即C 1 C 2为液流起、终点的流速。 -21,αα单位重量流体的动能修正系数;-w h 单位重量流体流动过程的水力损失,m 。 二、流体流动的水力损失 1. 水力损失的计算 液体所以能在管道中流动,是由于泵或自然位差提供的能量。液体流动过程中与各种管道、阀件、管件发生摩擦或撞击而产生阻力。同时液体质点间的互相摩擦和撞击也要产生阻力。为了使液体继续流动,就必须供给能量,以克服这些阻力。用于克服液流阻力的能量,就是管路摩阻损失。水力损失一般包括两项,即沿程损失 f h 与局部损失 m h 。因此,流体流动时上、下游截面间的总水力损失 w h 应等于两截面间的所有沿程损失与局部损失之和,即

铸铁镶铜闸门说明书

铸铁镶铜闸门

永嘉县中诚阀门有限公司 铸铁镶铜闸门 一.概述及用途: 铸铁镶铜闸门是我厂吸收国内外先进结构和工艺,而进行设计改进的一种给排水和污水处理的理想设备。本闸门的制造加工符合建设部CJ/T300-1992标准和美国AWW A标准。广泛应用于市政、石油、化工、电站、冶金、煤碳、轻工、食品、制药、水利、污水处理等给排水工程中。对公称压力为0.1Mpa以下的用在管道口和交汇窖井、泥沙地、污水渠道、原站井水口、清水池等,用以截止、疏通水流或调节水位。并可与手动、电动、液动启闭机组合配套使用,实现现场操作或远距离集中控制,还可与微机联动控制。 二.结构特点: 本闸门是由门框、闸板、导轨、密封条、可调整密封机构等部件组成。本闸门具有结构简单,密封性好、耐磨性强、操作简单、安装方便,使用寿命长、规格齐全、适应性广等特点。 三.闸门主要技术参数: 注:水头超过10m的闸门需另外注明 四.主要零件材料

五.安装形式: 六.墙式预埋螺栓处理方法:

七.启闭机与闸门布置:

注:1、水头(H)指最高水位至闸门底部高度; 2、以上表中启闭力为承受正压力状态下; 3、表中吨位已含闸板自重,不含予启力; 4、预气力大小与闸门的块数量,斜度及加工精度有关,一般为开启力的60%~100%; 5、选用启闭机的力一般取1.6~2倍的开启力; 6、其它规格闸门的启闭力根据承压力面积参考本表取近似值。 八.安装事宜: 1、安装前,要首先检查竖框与横框之间、闸板与闸板之间(指多块闸板组合的闸门)的连接螺丝,是否在运输装卸中引起松动,它们的接茬是否错牙,要调整成一个平面,检查闸板与闸槽的间隙,保证闸槽与闸板的间隙不大于0.08mm,如有间隙可以调节闭紧装置。上紧各连接螺栓。 2、安装时闸门整体竖入预留槽,在两边立框的下面垫上调整垫(严禁垫下横梁),两立框用手动葫芦和斜拉立稳,将闸门找直找平,各地脚孔内串上地脚螺栓,调节好闸门的位置,支好模板进行二期浇注。 3、浇注混凝土时,流进闸板、闸框、斜铁、挡板间的灰浆应彻底清除,以防止灰浆凝固后影响闸门启闭。 4、清除加固物。闸门出厂前,为使闸板、闸框贴合紧凑,安装后减少间隙,2m以上的闸门在上下框上安装了4-6个紧闭装置压铁,注意在间隙调整后,闭紧压铁拆除,以便闸门启闭。 5、按预埋图中的要求预留闸门及启闭机安装位置; 6、用吊铅锤直线方法预埋预埋件,保证其表面和垂直度为1.5~3‰范围内; 7、用螺栓将门框、导轨固定在预埋件上; 8、当螺杆细长比(提升杆长度/螺杆外径)4H/d>200时应设置轴导架,轴导架距闸门吊耳距离 应大于闸门最大开启度。 九.选用须知: 1、选用闸门时应注明H值(闸门中心至启闭机底部平台高度); 2、启闭机应根据表中启闭力及自动化程度确定,具体可参考启闭机样本。 3、平台设计负荷应考虑正反双向承受(关闭力参考开启力)。 4、轴导架是根据井深不同而设定的,设计时应与联轴器不干涉; 5、工作时整条螺杆,联轴器、闸板都做上下移动为明杆闸门,工作是螺杆不移动,闸板上下 移动称为暗杆闸门。 6、方向承压闸门应选用时应注明,正向承压闸门当用于随受么向水压时,水头应<2.5m; 7、暗杆闸门宜装于风景区或道路中间的窖井内,此种闸门自带开启装置,不需专用启闭机; 8、订货时应注明H,并注明单独闸门(与配套启闭机)的具体名称、型号、规格; 9、本厂可承制其它材料(不锈钢、碳钢、铝合金、塑料)或特殊形工闸门; 10、本厂供货不含任何预埋件,所以闸门布置参照上页; 11、本厂所提供样本如有修订不另行通知。

鸿业暖通-系统图水管水力计算使用说明

使用说明书 ——系统图水管水力计算 一、加载 1.将KtCnPub.dll拷入系统软件目录下。 2.加载ACSSgSlJs.arx之前请先加载KtCnCad.arx:。 二、运行 1.在命令行键入(XTTSGJS),回车,将出现程序的主界面。 2.界面说明 流量单位:根据用户选择不同的流量单位,显示的流量进行单位换算。 计算控制:程序在计算中根据用户选择的控制类型选取合适的管径,采暖系统中只按照比摩阻控制。 控制数据设定:可以新建控制数据方案,可以更改已有的控制方案。 计算管段列表:显示所有计算的管段。 3.使用说明 a.从图面上提取数据 单击图面提取按钮 命令行提示: “ESC返回 / 搜索计算管道[自动搜索(A)/手动搜索(M)] :” 默认为自动搜索,如果选择自动搜索,则提示: “ESC返回 / 请选择要搜索的起始干管或立管的远端:”

选择要搜索的起始端,程序会自动搜索出供水干管和供水立管或者回水干管和回水立管。 如果选择手动搜索,则提示: “回车返回 / 选择要添加的干管或立管:” 选择添加的干管或者立管后,继续提示: “选择承担的负荷(散热器或者管道)。” 这时候选择该干管或者立管所承担负荷的管段和散热器(或者选择与其负荷相等的管段)。 b.从文件中提取数据(如果是从图面上提取数据则这步可以跳过) 单击打开按钮 从打开文件对话框从选取要计算的文件,确定即可。 c.对于控制数据设定按钮:单击此按钮,将会出现如下对话框:

在此对话框中,可以修改已有的方案,可以添加新的控制数据方案。注意:默认方案是不可以修改和删除的。 单击新建方案按钮,会出现新建方案对话框: 提示用户数据新的方案名称。 注意:新方案名称不能和已有的方案名称同名。

流体力学 第五章 压力管路的水力计算资料

流体力学第五章压力管路的水力计算

第五章压力管路的水力计算 主要内容 长管水力计算 短管水力计算 串并联管路和分支管路 孔口和管嘴出流 基本概念: 1、压力管路:在一定压差下,液流充满全管的流动管路。(管路中的压强可以大于大气压,也可以小于大气压) 注:输送气体的管路都是压力管路。 2、分类: 按管路的结构特点,分为 简单管路:等径无分支 复杂管路:串联、并联、分支 按能量比例大小,分为 长管:和沿程水头损失相比,流速水头和局部水头损失可以忽略的流动管路。短管:流速水头和局部水头损失不能忽略的流动管路。

第一节管路的特性曲线 一、定义:水头损失与流量的关系曲线称为管路的特性曲线。 二、特性曲线 l l L g V d L g V d l l g V d l d l g V d l g V h h h f j w + = = + = ?? ? ? ? ? + = + = + = 当 当 当 其中, 2 2 2 2 2 2 2 2 2 2 λ λ λ λ λ ζ (1) 把2 4 d Q A Q V π = = 代入上式得: 2 2 5 2 2 2 28 4 2 1 2 Q Q d g L d Q g d L g V d L h w α π λ π λ λ= = ? ? ? ? ? = = (2) 把上式绘成曲线得图。 第二节长管的水力计算 一、简单长管 1、定义:由许多管径相同的管子组成的长输管路,且沿程损失较大、局部损失 较小,计算时可忽略局部损失和流速水头。 2、计算公式:简单长管一般计算涉及公式 2 2 1 1 A V A V=(3) f h p z p z+ + + γ γ 2 2 1 1 = (4) g V D L h f2 2 λ = (5) 说明:有时为了计算方便,h f的计算采用如下形式:

水流量计算公式

水管网流量简单算法如下: 自来水供水压力为市政压力大概平均为0.28mpa。 如果计算流量大概可以按照以下公式进行推算,仅作为推算公式, 管径面积×经济流速(DN300以下管选1.2m/s、DN300以上管选1.5m/s)=流量如果需要准确数据应按照下文进行计算。 水力学教学辅导 第五章有压管道恒定流 【教学基本要求】 1、了解有压管流的基本特点,掌握管流分为长管流动和短管流动的条件。 2、掌握简单管道的水力计算和测压管水头线、总水头线的绘制,并能确定管道的压强分布。 3、了解复杂管道的特点和计算方法。 【容提要和学习指导】 前面几章我们讨论了液体运动的基本理论,从这一章开始将进入工程水力学部分,就是运用水力学的基本方程(恒定总流的连续性方程、能量方程和动量方程)和水头损失的计算公式,来解决实际工程中的水力学问题。本章理论部分容不多,主要掌握方程的简化和解题的方法,重点掌握简单管道的水力计算。 有压管流水力计算的主要任务是:确定管路过的流量Q;设计管道通过的流量Q所需的作用水头H和管径d;通过绘制沿管线的测压管水头线,确定压强p沿管线的分布。 5.1 有压管道流动的基本概念 (1)简单管道和复杂管道 根据管道的组成情况我们把它分为简单管道和复杂管道。直径单一没有分支而且糙率不变的管道称为简单管道;复杂管道是指由两根以上管道组成管道系统。复杂管道又可以分

为串联管道、并联管道、分叉管道、沿程泄流管和管网。 (2) 短管和长管 在有压管道水力计算中,为了简化计算,常将压力管道分为短管和长管: 短管是指管路中水流的流速水头和局部水头损失都不能忽略不计的管道; 长管是指流速水头与局部水头损失之和远小于沿程水头损失,在计算中可以忽略的管 道为,一般认为( )<(5~10)h f %可以按长管计算。 需要注意的是:长管和长管不是完全按管道的长短来区分的。将有压管道按长管计算,可以简化计算过程。但在不能判断流速水头与局部水头损失之和远小于沿程水头损失之前,按短管计算不会产生较大的误差。 5.2简单管道短管的水力计算 (1)短管自由出流计算公式 (5—1) 式中:H 0是作用总水头,当行近流速较小时,可以近似取H 0 = H 。 μ称为短管自由出流的流量系数。 (5—2) (2)短管淹没出流计算公式 (5—3) 式中:z 为上下游水位差,μc 为短管淹没出流的流量系数 (5—4) 请特别注意:短管自由出流和淹没出流的计算关键在于正确计算流量系数。我们比较短管自由出流和淹没出流的流量系数(5—2)和(5—4)式,可以看到(5—2)式比(5—4)式在分母中多一项“1”,但是计算淹没出流的流量系数μc 时,局部水头损失系数中比自由出流多一项管道出口突然扩大的局部水头损失系数“1”,在计算中不要遗忘。 (3)简单管道短管水力计算的类型 简单管道短管水力计算主要有下列几种类型: 1)求输水能力Q:可以直接用公式(5—1)和(5—3)计算。 2)已知管道尺寸和管线布置,求保证输水流量Q 的作用水头H 。 这类问题实际是求通过流量Q 时管道的水头损失,可以用公式直接计算,但需要计算管流速,以判别管是否属于紊流阻力平方区,否则需要进行修正。 3)已知管线布置、输水流量Q 和作用水头H ,求输水管的直径 d 。 j h g v ∑+22 02gH A c Q μ=ζλμ∑++= d l 11 z g A c Q 2μ=ζλμ∑+=d l c 1

气动闸门使用说明书及维修手册

TZMQ气动闸门 使 用 说 明 书 及 维 护 手 册 无锡市中良设备工程有限公司

目录 一、气动闸门简图 二、气动闸门的基本结构 三、结构性能 四、气动闸门的使用与保养 五、故障的检查与维修 六、气缸的安装与使用 七、气缸的维护与保养

闸门简图

二、气动闸门的基本结构 气动闸门主要有框体、闸板、托轮、气缸、行程开关等组成。 三、结构性能 闸门的框体是闸门的主体,要有足够的刚度和强度,以保证与进料管和出料管的联接和承受自重和物料重,因此由14—18#槽钢和6—10mm的钢板相对而成,同时要保证闸板在其内不受刮、碰影响的开关和翻转,供物料通过。 闸板是关闭和开通物料流量的主要部件,因此要求有足够的刚度、强度和耐磨性,因此选用8--12mm厚的钢板制成。 闸门托轮是为了减少在开关闸板时的摩擦力,达到易开关的目的,因此托轮安装时保证轮面都在同一水平面上,使每个托轮都均衡受力,托轮选用耐摸磨的尼龙材料车制。 气缸是闸板开关的动力源,其闸板的开关收气缸的伸缩来完成。 四、气动闸门的使用与保养 气动闸门在使用前,首先检查其内部有无异物,卡刮闸板,气源压力应达到额定气压,管路应严密无泄漏,压缩空气应干净,应有过滤器和油雾器,活塞杆应灵活自如。连接点螺栓、螺母不得有松动,气缸不得有泄露,检查行程开关控制的位置是否合适,如不正确应调整行程开关的位置。 五、故障的检查与维修 见下表:

六、气缸的安装和使用要求 1、气缸在安装前应首先检查气缸在运输时是否损坏,连接部件 是否松动,调整好后再行安装。 2、安装时气缸活塞杆不得承受偏心载荷或横向载荷,应使载荷 方向与活塞杆轴线一致。 3、无论采用何种安装型式,都必须保证缸体不变形,气缸的安 装底座要有足够的刚度,不允许负载和活塞杆的连接用电焊 焊接。 4、气缸水平安置时,特别是长行程气缸,用水平仪进行三点位 置(活塞杆全部伸出、中间及全部退回)检验。 5、速度调整,首先将速度控制阀(单向节流阀)的开度放在调

鸿业暖通-风管水力计算使用说明

目录 目录 目录 (1) 第 1 章风管水力计算使用说明 (2) 1.1 功能简介 (2) 1.2 使用说明 (3) 1.3 注意 (8) 第 2 章分段静压复得法 (9) 2.1 传统分段静压复得法的缺陷 (9) 2.2 分段静压复得法的特点 (10) 2.3 分段静压复得法程序计算步骤 (11) 2.4 分段静压复得法程序计算例题 (11)

鸿业暖通空调软件 第 1 章 风管水力计算使用说明 1.1 功能简介 命令名称: FGJS 功 能: 风管水力计算 命令交互: 单击【单线风管】【水力计算】,弹出【风管水力计算】对话框,如图1-1所示: 图1-1 风管水力计算对话框 如果主管固定高度值大于0,程序会调整风系统中最长环路 的管径的高度为设置值。

第 1 章风管水力计算使用说明 如果支管固定高度值大于0,程序会调整风系统中除开最长 环路管段外的所有管段的管径的高度为设置值。 控制最不利环路的压力损失的最大值,如果程序算出的最不 利环路的阻力损失大于端口余压,程序会提醒用户。 当用户需要从图面上提取数据时,点取搜索分支按钮,根据 程序提示选取单线风管。当成功搜索出图面管道系统后,最 长环路按钮可用,单击可以得到最长的管段组。 计算方法程序提供的三种计算方法,静压复得法、阻力平衡法、假定 流速法,可以改变当前的选项卡,就会改变下一步计算所用 的方法,而且在标题栏上会有相应的提示。 计算结果显示包含搜索分支里面选取的管段的一条回路的各个管段数 据。 1.2使用说明 1.从图面上提取数据 单击按钮 2.从文件中提取数据(如果是从图面上提取数据则这步可以跳过) 单击按钮 从打开文件对话框从选取要计算的文件,确定即可。

给水部分水力计算

2.2给水系统 2.2.1 给水用水定额及时变化系数 本设计建筑用水主要为住宅部分和商场卫生间。因为本商住楼一层商业区用 水量由市政供水管网直接供水,住宅区采用水泵并联分区供水的方式。参考《建 筑给水排水设计规范》 (GB50015-2003)的有关规定的用水量标准及时变化系数,本设计中采用的用 水量标 准见表2-1: 用水量表2-1 序号用水类别用水量标准使用单位数使用时间时变化系数 1 住宅200L/人.d 476人1 2 2.5 2 商场6L/m2.d 1210m224 1.5 注:在此住宅用水人数是按每套房 3.5 人计 2.2.2 最高日用水量 Q d=m·q d ? 式中:Q d——最高日用水量,L/d; m——用水单位数; q d——最高日生活用水定额,(L/人·d) 则: Q d1=m1·q d1=476×200=95200L/s=95.2m3/d Q d2=m2·q d2=1210×6=7260L/s=7.26m3/d 未预见用水量按总用水量的10%计算,即: Qd'=10%×(Q d1+Q d2)=(95.2+7.26)=10.25m3/d 2.2.3则本建筑的最高日用水量为: Q d=Q d1+Q d2+Q d'=95.2+7.26+10.25=112.71m3/d Q h=K h·Q p 式中: Q h——最大小时用水量,m3/h; K h ——小时变化系数; Q p ——平均小时用水量,m3/h 。 则: Q h1=K h1·Q p1=2.5×95.2÷24=9.58m3/h Q h2=K h2·Q p2=1.5×7.26÷24=0.45m3/h Q'=10%(Qh1+Q h2)=(Q h1+Q h2)=10%(9.58+0.45)=1.00m3/h Q h=Q h1+Q h2+Q'=9.58+0.45+1.00=11.00m3/h 2.2.4设计秒流量 进行给水管网最不利管段的水力计算,目的是算出各管段的设计秒流量,各

空调水管水力计算

一、空调水系统的设计原则: 1、力求水力平衡; 2、防止大流量小温差; 3、水输送符合规范要求; 4、变流量系统宜采用变频调节; 5、要处理好水系统的膨胀与排气; 6、解决好水处理与水过滤; 7、切勿忽视管网的保冷与保温效果。 二、冷冻水、冷却水管的计算 1、压力式水管道管径计算 D=103πνL 4(mm ) 公式中 L------水流量(m 3/s ) v-------计算流速(m/s ) 一般水管系统的管内水流速可参考表13-12的推荐值取用 表13-13选择。 2、直线管段的阻力计算 Δh=d l λ×2 2v ρ=R ×l 式中Δh---长度为l (m )的直管段的摩擦阻力(Pa ) λ---水与管内壁间的摩擦阻力系数; l----直管段的长度(m ); d----管内径(m ); ρ----水的密度(kg/m 3),当4℃时为1000kg/m 3 R-----长度为1m 直管段的摩擦阻力(Pa/m ) 三、空调设备流量计算 由Q=CM ΔT 可得出:M=Q/C*ΔT (Kg/S ) Q-----空调制冷或制热量(Kw ) C-----水的比热容,4.2KJ/Kg*℃ ΔT---进出空调设备的供回水温差,ΔT =T G -T H 四、风机盘管选择 1、计算室内空调冷负荷Q (W ),简单依单位面积指标及经验估算。 2、考虑机组的盘管用后积垢积尘对传热的影响,对空调冷负荷要进行修正,冷负荷应乘以系数a 仅冷却使用 a=1.10 作为加热、冷却两用 a=1.20 仅作为加热用 a=1.15 3、依据空调冷负荷选择风机盘,一般按中档运行能力选择。 4、校核风量:L=) (3600s n h h Q -ρ L-----风机盘管名义风量(m 3/h )

机械设计课程设计闸门启闭机说明书

机械设计课程设计闸门启闭机说明书

目录 一、设计题目- - - - - - - - - - - - - - - - - - - - - - - -2 二、系统总体方案确定 1.人字闸门启闭机功能分析 - - - - - - - - - - - - - - - - - -4 2.执行机构设计 - - - - - - - - - - - - - - - - - - - - - - -4 3.传动机构设计 - - - - - - - - - - - - - - - - - - - - - - -5 三、执行机构的尺寸设计和运动分析 1.执行机构的尺寸设计 - - - - - - - - - - - - - - - - - - - 6 2.执行机构的运动分析 - - - - - - - - - - - - - - - - - - -8 四、传动机构的分析和传动件的工作能力计算 1.电动机选择 - - - - - - - - - - - - - - - - - - - - - - - -19 2.计算传动装置传动比,并分配各级传动比 - - - - - - - - - - -20 3.计算传动装置的运动和动力参数 - - - - - - - - - - - - - - -20 4.蜗轮蜗杆的设计和计算 - - - - - - - - - - - - - - - - - - -22 5.开式斜齿轮的设计和计算 - - - - - - - - - - - - - - - - - -25 6.开式锥齿轮的设计和计算 - - - - - - - - - - - - - - - - - -30 五、减速器结构设计 1.蜗杆轴的设计 - - - - - - - - - - - - - - - - - - - - - - -33 2.蜗轮轴的设计和计算 - - - - - - - - - - - - - - - - - - - -35 3.轴的校核和计算 - - - - - - - - - - - - - - - - - - - - - -37 4.轴承的设计和计算 - - - - - - - - - - - - - - - - - - - - -40

燃气管道水力计算

1.高压、中压燃气管道水力计算公式: Z T T d Q L P P 0 5 210 2 2 2 110 27.1ρ λ ?=- 式中:P 1 — 燃气管道起点的压力(绝对压力,kPa ); P 2 — 燃气管道终点的压力(绝对压力,kPa ); Q — 燃气管道的计算流量(m 3/h ); L — 燃气管道的计算长度(km ); d — 管道内径(mm ); ρ — 燃气的密度(kg/m 3);标准状态下天然气的密度一般取0.716 kg/m 3。 Z — 压缩因子,燃气压力小于1.2MPa (表压)时取1; T — 设计中所采用的燃气温度(K ); T0 — 273.15(K )。 λ— 燃气管道的摩擦阻力系数; 其中燃气管道的摩擦阻力系数λ的计算公式: 25 .06811.0??? ? ??+ =e R d K λ K — 管道内表面的当量绝对粗糙度(mm );对于钢管,输送天然 气和液化石油气时取0.1mm ,输送人工煤气时取0.15mm 。 R e — 雷诺数(无量纲)。流体流动时的惯性力Fg 和粘性力(内摩擦 力)Fm 之比称为雷诺数。用符号Re 表示。层流状态,R e ≤ 2100;临界状态,R e =2100~3500;紊流状态,R e >3500。 在该公式中,燃气管道起点的压力1P ,燃气管道的计算长度L ,燃气密度ρ,燃气温度T ,压缩因子Z 为已知量,燃气管道终点的压力2P ,燃气管道的计算流量Q ,燃气管道内径d 为参量,知道其中任意两个,都可计算其中一个未知量。 如燃气管道终点的压力2P 的计算公式为: ZL T T d Q P P 0 5 210 2 1210 27.1ρ ?-= 某DN100中压输气管道长0.19km ,起点压力0.3MPa ,最大流量1060 m 3/h ,输气温度为20℃,应用此公式计算,管道末端压力2P =0.29MPa 。

管道摩擦阻力计算

长距离输水管道水力计算公式的选用 1. 常用的水力计算公式: 供水工程中的管道水力计算一般均按照均匀流计算,目前工程设计中普遍采用的管道水力计算公式有: 达西(DARCY )公式: g d v l h f 22 **=λ (1) 谢才(chezy )公式: i R C v **= (2) 海澄-威廉(HAZEN-WILIAMS )公式: 87 .4852.1852.167.10d C l Q h h f ***= (3) 式中h f ------------沿程损失,m λ―――沿程阻力系数 l ――管段长度,m d-----管道计算内径,m g----重力加速度,m/s 2 C----谢才系数 i----水力坡降; R ―――水力半径,m Q ―――管道流量m/s 2 v----流速 m/s C n ----海澄――威廉系数 其中大西公式,谢才公式对于管道和明渠的水力计算都适用。海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。三种水力计算公式中 ,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。 2. 规范中水力计算公式的规定 3. 查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐采用的水力 计算公式也有所差异,见表1: 表1 各规范推荐采用的水力计算公式

3.1达西公式 达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截面形状的光滑或粗糙管内的层流和紊流。公式中沿程阻力系数λ值的确定是水头损失计算的关键,一般采用经验公式计算得出。舍维列夫公式,布拉修斯公式及柯列勃洛克(C.F.COLEBROOK)公式均是针对工业管道条件计算λ值的著名经验公式。舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10-6 m2/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用教广.

鸿业暖通-水管水力计算使用说明

使用说明书 ——水管水力计算 一、加载 1.将KtCnPub.dll拷入系统软件目录下。 2.加载ACSSgSlJs.arx之前请先加载KtCnCad.arx:。 二、运行 1.在命令行键入SgJs,回车,将出现程序的主界面。 2.界面说明 搜索分支:当用户需要从图面上提取数据时,点取搜索分支按钮,根据程序提示选取计算水管。当成功搜索出图面管道系统后,最长环路按钮可用,单击可以得到最长的管段组。 冷凝水量:当计算水管系统是冷凝水管系统时,该项可用,冷凝水管的水量是根据水管承担的负荷和用户设定的冷凝水量两者数据计算出来。 设备缺省水阻:风机盘管或者空调器的设备水阻,程序计算时会将此阻力计入到小计中去。 末端局阻系数:风机盘管或者空调器接管出一般还有阀门、过滤网等局阻系数,在此输入此局阻系数。相对于设备的水阻,此数值较小。 流量单位:根据用户选择不同的流量单位,显示的流量进行单位换算。

计算控制:程序在计算中根据用户选择的控制类型选取合适的管径。 控制数据设定:可以新建控制数据方案,可以更改已有的控制方案。 计算结果:显示包含搜索分支里面选取的管段的一条回路的各个管段数据。 3.使用说明 a.从图面上提取数据 单击搜索分支按钮 命令行提示: 命令: sgjs ESC返回 / 请选择要计算水管的远端: 选取要计算的水管的远端以后,程序返回到主界面。主界面如下: b.从文件中提取数据(如果是从图面上提取数据则这步可以跳过) 单击打开按钮 从打开文件对话框从选取要计算的文件,确定即可。

c.对于控制数据设定按钮:单击此按钮,将会出现如下对话框: 在此对话框中,可以修改已有的方案,可以添加新的控制数据方案。 注意:默认方案是不可以修改和删除的。 单击新建方案按钮,会出现新建方案对话框: 提示用户数据新的方案名称。 注意:新方案名称不能和已有的方案名称同名。

管网水力计算说明

7.5.2配水管道水力计算 7.5.2.1 配水管网平面布置 干、支管沿现有路、沟、渠布置,并考虑永丰乡村镇规划的要求。本项目供水区范围比较小,南北长度约10km ,东西长度8km ,以水厂为圆点,最远距离约8.0km ,局部主干管破坏后维修恢复速度快,不会造成大的损失,因此,本项目主管网按树枝状布置。具体管网布置见永丰乡管网平面布置图。 受地形条件限制,本项目管网输水距离较远,用户水龙头的最大静水头控制在40m 不能全部满足要求,因此采取安装减压阀进行降压的措施,在静水压力超过40m 的各自然村、管网末梢等处设置减压阀2处。 7.5.2.2 管网水力计算成果 由于供水区范围小,采用树枝状管网,管网配水流量按最高日最高时用水量和秒流量法两种方法所得大值作为管段流量进行设计。 A )最高日最高时用水量计算 1、设计流量: Q 配=(W -W 1)×K 时/24 式中: W ——村镇的最高日用水量,m 3/d ; W 1——大用户的用水量之和,m 3/d ; K 时——时变化系数,取2.0。 2、人均用水当量: q =Q 配/P 3、管网水力计算 ①按最不利点复核进行平差计算,水头损失计算公式按海澄-威廉公式进行如下: ()()5.0075.0/44.0gDi C R C e ?=υ νυ/D R e = 计算水温采用13℃,ν=0.000001; ②计算节点出流量:Q 节 =q×节点设计人口+大用户用水量;

B )秒流量法计算公式如下: 1、最大用水时卫生器具给水当量出流概率: (%)3600 2.000***=T N mK q U R h 式中:Uo ——生活给水管道的最大用水时卫生器具给水当量平均出流概率(%); q 0——最高日的用水定额; m ——每户用水人数,取3.5人; K h ——小时变化系数,取2.0; N g ——每户设置的卫生器具当量数; T ——用水小时数。 2、管段的卫生器具给水当量的同时出流概率: () (%)1149.0g g c N N U -+=α 式中:U ——计算管段的卫生器具给水当量同时出流概率(%); αc ——对应于不同U 0时的系数; N g ——计算管段的的卫生器具当量总数。 3、计算管段的设计秒流量: )/(2.0s L N U q g g **= 式中:q g ——计算管段的设计秒流量(L/s )。 C )管网水头损失计算 控制流速:υ 为经济流速,为0.6~1.2m/s 。 管径:πυQ D 4= 单位管长水头损失:774.4774 .1000915.0d Q i = 管道水头损失:h = 沿程损失+局部水头损失=(1+0.1)×i×L ,其中L 为管段长度,局部损失率为10%。

闸门安装使用说明书

系列闸门、系列堰门 说明书 南通华新环保设备工程有限公司

一、概述 我公司生产的系列闸门包括:铸铁镶铜升杆(暗杆)式(圆形、方形及矩形)闸门、不锈钢(圆形、方形及矩形)闸门、不锈钢渠道闸门等;系列堰门有:垂直升降式铸铁(不锈钢)堰门、不锈钢旋转式堰门。根据闸门规格的大小及业主的要求配套单吊点(双吊点)手动或手电两用启闭机。 二、安装 1、在安装各种型号的闸门、堰门过程中,首先应对闸门、堰门安装处的土建尺寸按图进行验收,如不符合安装及图纸设计要求,则应对土建进行修整,以满足设备安装要求。 2、在安装时先将闸门(堰门)安全起吊放至安装位置上,再进行闸门(堰门)就位校正,要求如下:闸门(垂直升降堰门)门框导轨铅垂线偏差不大于1/1000mm,闸门(垂直升降堰门)水平度偏差不大于1/500mm;旋转堰门的侧板铅垂线偏差不大于1/1000mm,堰板水平度偏差不大于1/500mm。校正结束后,将基础螺栓与预埋板焊接,焊接焊缝应无虚焊、漏焊、焊缝高度8~10毫米,或采用膨胀螺栓固定。 3、大型闸门(堰门)在安装时:门框上部横向螺栓不得高于门框密封面,当其高于密封面时,必须予以切割,否则会造成闸门门板的铜密封面损坏,及不能提升门板。连接上部副导轨时,必须保证副导轨上的铜条与门框上的铜条在同一平面上,不得高于或低于门框铜条,侧面导向槽也应与门框导向槽垂直对齐;在连接副导轨时,副导轨下部与门框同宽,上部稍大于下部导向的2~4毫米,两导向不得同向倾斜或者歪斜,以确保闸板上下运行灵活自如。 4、安装丝杆和启闭机时应注意:丝杆与启闭机垂直度偏差不大于1/1000mm。启闭机底板水平度偏差不大于1/500,确保丝杆与启闭机输出孔同轴度偏差不大于2mm,调整结束后将启闭机底板于平台预埋钢板焊固。 5、以上部件安装结束后,在二次浇筑之前,必须对门框与门板得密封面间隙进行调整。间隙调整要求按建设部行业标准进行验收。验收范围在0.08mm~0.10mm范围以内即可。 6、调整间隙方法如下: A:闸门(堰门)安装以后,在门框反面用塞尺进行检查,如达不到要求应在闸门(堰门)正面松开相应部位的基础螺栓之螺母,然后用斜铁在门框与土

输水管道水力计算公式

输水管道水力计算公式 1.常用的水力计算公式: 供水工程中的管道水力计算一般均按照均匀流计算,目前工程设计中普遍采用的管道水力计算公式有: 达西(DARCY )公式: g d v l h f 22 **=λ (1) 谢才(chezy )公式: i R C v **= (2) 海澄-威廉(HAZEN-WILIAMS )公式: 87 .4852.1852.167.10d C l Q h h f ***= (3) 式中 h f -----------沿程损失,m λ----------沿程阻力系数 l -----------管段长度,m d-----------管道计算内径,m g-----------重力加速度,m/s 2 C-----------谢才系数 i------------水力坡降; R-----------水力半径,m Q-----------管道流量m/s 2 v------------流速 m/s C n -----------海澄―威廉系数 其中达西公式、谢才公式对于管道和明渠的水力计算都适用。海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。三种水力计算公式中 ,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。 2.规范中水力计算公式的规定 3.查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐 采用的水力计算公式也有所差异,见表1: 表1 各规范推荐采用的水力计算公式

3.1达西公式 达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截面形状的光滑或粗糙管内的层流和紊流。公式中沿程阻力系数λ值的确定是水头损失计算的关键,一般采用经验公式计算得出。舍维列夫公式,布拉修斯公式及柯列勃洛克(C.F.COLEBROOK )公式均是针对工业管道条件计算λ值的著名经验公式。 舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10-6 m 2/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用较广. 柯列勃洛可公式)Re 51.27.3lg(21 λ λ+?*-=d (Δ为当量粗糙度,Re 为雷诺数)是根据大量工业管道试验资料提出的工业管道过渡区λ值计算公式,该式实际上是泥古拉兹光滑区公式和粗糙区公式的结合,适用范围为4000

铸铁镶铜闸门说明书

青岛炼化公司防洪排涝设施完善铸铁镶铜闸门方案 江苏赛欧环保设备有限公司 2015年 05月

铸铁镶铜闸门 一.概述及用途: 铸铁镶铜闸门是我厂吸收国内外先进结构和工艺,而进行设计改进的一种给排水和污水处理的理想设备。广泛应用于市政、石油、化工、电站、冶金、煤碳、轻工、食品、制药、水利、污水处理等给排水工程中。对公称压力为0.1Mpa以下的用在管道口和交汇窖井、泥沙地、污水渠道、原站井水口、清水池等,用以截止、疏通水流或调节水位。并可与手动、电动、液动启闭机组合配套使用,实现现场操作或远距离集中控制,还可与微机联动控制。 二.结构特点: 本闸门是由门框、闸板、导轨、密封条、可调整密封机构等部件组成。本闸门具有结构简单,密封性好、耐磨性强、操作简单、安装方便,使用寿命长、规格齐全、适应性广等特点。 三.闸门主要技术参数: 五.安装形式:

六.墙式预埋螺栓处理方法:

七.启闭机与闸门布置:

注:1、水头(H)指最高水位至闸门底部高度; 2、以上表中启闭力为承受正压力状态下; 3、表中吨位已含闸板自重,不含予启力; 4、预气力大小与闸门的块数量,斜度及加工精度有关,一般为开启力的60%~100%; 5、选用启闭机的力一般取1.6~2倍的开启力; 6、其它规格闸门的启闭力根据承压力面积参考本表取近似值。 八.安装事宜: 1、安装前,要首先检查竖框与横框之间、闸板与闸板之间(指多块闸板组合的闸门)的连接螺丝,是否在运输装卸中引起松动,它们的接茬是否错牙,要调整成一个平面,检查闸板与闸槽的间隙,保证闸槽与闸板的间隙不大于0.08mm,如有间隙可以调节闭紧装置。上紧各连接螺栓。 2、安装时闸门整体竖入预留槽,在两边立框的下面垫上调整垫(严禁垫下横梁),两立框用手动葫芦和斜拉立稳,将闸门找直找平,各地脚孔内串上地脚螺栓,调节好闸门的位置,支好模板进行二期浇注。 3、浇注混凝土时,流进闸板、闸框、斜铁、挡板间的灰浆应彻底清除,以防止灰浆凝固后影响闸门启闭。 4、清除加固物。闸门出厂前,为使闸板、闸框贴合紧凑,安装后减少间隙,2m以上的闸门在上下框上安装了4-6个紧闭装置压铁,注意在间隙调整后,闭紧压铁拆除,以便闸门启闭。 5、按预埋图中的要求预留闸门及启闭机安装位置; 6、用吊铅锤直线方法预埋预埋件,保证其表面和垂直度为1.5~3‰范围内; 7、用螺栓将门框、导轨固定在预埋件上; 8、当螺杆细长比(提升杆长度/螺杆外径)4H/d>200时应设置轴导架,轴导架距闸门吊耳距离 应大于闸门最大开启度。 九.选用须知: 1、选用闸门时应注明H值(闸门中心至启闭机底部平台高度); 2、启闭机应根据表中启闭力及自动化程度确定,具体可参考启闭机样本。 3、平台设计负荷应考虑正反双向承受(关闭力参考开启力)。 4、轴导架是根据井深不同而设定的,设计时应与联轴器不干涉; 5、工作时整条螺杆,联轴器、闸板都做上下移动为明杆闸门,工作是螺杆不移动,闸板上下 移动称为暗杆闸门。 6、方向承压闸门应选用时应注明,正向承压闸门当用于随受么向水压时,水头应<2.5m; 7、暗杆闸门宜装于风景区或道路中间的窖井内,此种闸门自带开启装置,不需专用启闭机; 8、订货时应注明H,并注明单独闸门(与配套启闭机)的具体名称、型号、规格; 9、本厂可承制其它材料(不锈钢、碳钢、铝合金、塑料)或特殊形工闸门; 10、本厂供货不含任何预埋件,所以闸门布置参照上页; 11、本厂所提供样本如有修订不另行通知。

鸿业水管水力计算使用说明

水管水力计算 一、加载 1.将KtCnPub.dll拷入系统软件目录下。 2.加载ACSSgSlJs.arx之前请先加载KtCnCad.arx:。 二、运行 1.在命令行键入SgJs,回车,将出现程序的主界面。 2.界面说明 搜索分支:当用户需要从图面上提取数据时,点取搜索分支按钮,根据程序提示选取计算水管。当成功搜索出图面管道系统后,最长环路按钮可用,单击可以得到最长的管段组。 冷凝水量:当计算水管系统是冷凝水管系统时,该项可用,冷凝水管的水量是根据水管承担的负荷和用户设定的冷凝水量两者数据计算出来。 设备缺省水阻:风机盘管或者空调器的设备水阻,程序计算时会将此阻力计入到小计中去。 末端局阻系数:风机盘管或者空调器接管出一般还有阀门、过滤网等局阻系数,在此输入此局阻系数。相对于设备的水阻,此数值较小。 流量单位:根据用户选择不同的流量单位,显示的流量进行单位换算。

计算控制:程序在计算中根据用户选择的控制类型选取合适的管径。 控制数据设定:可以新建控制数据方案,可以更改已有的控制方案。 计算结果:显示包含搜索分支里面选取的管段的一条回路的各个管段数据。 3.使用说明 a.从图面上提取数据 单击搜索分支按钮 命令行提示: 命令: sgjs ESC返回 / 请选择要计算水管的远端: 选取要计算的水管的远端以后,程序返回到主界面。主界面如下: b.从文件中提取数据(如果是从图面上提取数据则这步可以跳过) 单击打开按钮 从打开文件对话框从选取要计算的文件,确定即可。

c.对于控制数据设定按钮:单击此按钮,将会出现如下对话框: 在此对话框中,可以修改已有的方案,可以添加新的控制数据方案。 注意:默认方案是不可以修改和删除的。 单击新建方案按钮,会出现新建方案对话框: 提示用户数据新的方案名称。 注意:新方案名称不能和已有的方案名称同名。

相关文档
最新文档