基于WIFI模块和单片机的无线数据传输(附代码)
基于STM32的无线图像实时采集传输系统
![基于STM32的无线图像实时采集传输系统](https://img.taocdn.com/s3/m/641b4328cd1755270722192e453610661fd95a40.png)
• 116•利用STM32单片机为控制芯片驱动OV2640模块,实现图像采集,通过wifi 模块把采集的图像通过TCP 协议传输给移动端手持Android 设备。
Qt 开发软件通过socket 接口编程设计出了app 用于图像实时显示OV2640模块采集的图像。
实验结果表明图像传输稳定,可以实现实时的无线图像传输。
OV2640模块可以和其它设备组合,对未来图像类设备有很好的应用潜力。
图像传输应用广泛,在安防设备上可以通过摄像头监控家门、小区等,对犯罪侦查、丢失物品寻找等起到很大作用。
在人工智能领域,需要识别特定事物,比如人脸识别、物体识别等,需要采集很多的图像样本,离不开图像采集技术。
在没有线的束缚下,摄像头和显示终端分离,无线图像传输在日常生活中也有很大的实用性,例如可以在忙着洗衣做饭的时候监控小孩的实时举动,可以查看特定角落的实时画面。
本文探索了图像监控的关键技术图像采集和传输,并通过wifi 模块由TCP 协议实现无线图像传输。
在没有线的束缚下,摄像头和显示终端分离。
在wifi 信号覆盖范围内可以实时探索看不到的或者人类不方便探索的角落。
1 无线图像传输系统无线图像传输系统分为图像采集部分、数据传输部分和终端显示部分。
三者关系如图1所示。
的滤波器,逐行排列,形成方形采集阵列,BG/GR 形式构成的像素大约可以达到200w 个。
在采集光的时候也是逐行扫描采集,直到扫描完成。
其中内部集成了数字图像处理模块,可以直接输出JPEG, GRB422和YCbCr 等数据格式。
Ov2640模块使用的是正点原子的A TK-OV2640摄像头模块。
它共有18个引脚。
其中最重要的是SCCB 总线和HREF 行同步线,VSYNC 场同步线和8位并行数据线。
SCCB 总线和I2C 总线类似用于单片机向Ov2640模块发送控制命令。
在图像采集开始之后,模块会产生采集输出时序。
HREF 输出高电平时,根据时钟进行像素数据的读取,HREF 线变为低电平时读取的数据无效,循环采集直到采完一帧为止。
单片机与无线射频模块的通信方法
![单片机与无线射频模块的通信方法](https://img.taocdn.com/s3/m/08a3beea0129bd64783e0912a216147917117ee8.png)
单片机与无线射频模块的通信方法一、引言单片机与无线射频模块的通信方法在现代无线通信系统中扮演着重要的角色。
本文将讨论常见的单片机与无线射频模块的通信方法,包括串口通信、SPI通信和I2C通信等。
二、串口通信串口通信是单片机与无线射频模块最常见的通信方法之一。
单片机通过串口与无线射频模块进行数据传输。
通常,串口通信包括一个传输数据的引脚(TX)和一个接收数据的引脚(RX)。
单片机通过配置串口通信参数,如波特率、数据位数和校验位等,与无线射频模块进行通信。
三、SPI通信SPI通信是一种全双工的、同步的通信方式,常用于单片机与无线射频模块之间的高速数据传输。
SPI通信需要同时使用四根线进行传输,包括时钟线(SCK)、主设备输出从设备输入线(MOSI)、主设备输入从设备输出线(MISO)和片选线(SS)。
单片机作为主设备发送数据,无线射频模块作为从设备接收数据,并通过SPI总线进行交互。
四、I2C通信I2C通信是一种串行通信协议,适用于单片机与无线射频模块之间短距离的数据传输。
I2C通信只需要两根线,包括串行数据线(SDA)和串行时钟线(SCL)。
单片机通过发送I2C的起始信号来启动通信,然后通过发送地址和数据来与无线射频模块进行通信。
五、无线射频通信方式选择在选择单片机与无线射频模块的通信方法时,需要考虑以下几个因素:1. 通信速率:如果需要高速传输大量数据,SPI通信可能是更好的选择。
2. 距离:如果通信距离较短,I2C通信可以提供简单和成本效益的解决方案。
3. 异常处理:串口通信可以提供更可靠的错误检测和纠正机制。
六、通信参数配置无论选择哪种通信方法,正确配置通信参数非常重要。
通信参数包括波特率、数据位数、校验位和停止位等。
通过准确配置这些参数,可以确保单片机与无线射频模块之间的通信能够正常进行。
七、通信安全性与稳定性在单片机与无线射频模块的通信中,保证通信的安全性和稳定性至关重要。
常见的安全措施包括数据加密、认证机制和信号干扰抑制等。
基于单片机Wifi无线通信方案
![基于单片机Wifi无线通信方案](https://img.taocdn.com/s3/m/7ab5145d11a6f524ccbff121dd36a32d7375c7f5.png)
添加标题
节能环保:通过Wifi无线通信方案,用户可以实时监测家中的能耗情况,如电能、水能 等,并根据需要调整家电设备的使用情况,实现节能环保。
添加标题
智能语音控制:通过Wifi无线通信方案,用户可以实现智能语音控制,如语音控制家电 设备、语音查询天气等。
在物联网领域的应用
智能家居:通过Wifi无线通信,实现家居设备的远程控制和智能管理 智能医疗:通过Wifi无线通信,实现医疗设备的远程监控和远程诊断 智能交通:通过Wifi无线通信,实现交通设备的远程监控和智能调度 智能农业:通过Wifi无线通信,实现农业设备的远程监控和智能管理 智能物流:通过Wifi无线通信,实现物流设备的远程监控和智能调度 智能安防:通过Wifi无线通信,实现安防设备的远程监控和智能管理
单片机Wifi无线通信方案的设 计
单片机选择与配置
单片机型号:根据项目需求选择合 适的单片机型号,如STM32、 Arduino等
单片机编程:编写单片机的程序, 实现Wifi无线通信功能
添加标题
添加标题
添加标题
添加标题
单片机配置:根据项目需求配置单 片机的引脚、时钟、中断等参数
单片机调试:调试单片机的程序, 确保Wifi无线通信功能正常工作
Wifi模块的选择与配置
模块类型:选择合适的Wifi模块,如ESP8266、ESP32等 模块参数:根据实际需求选择模块的参数,如传输速率、传输距离等 模块配置:配置Wifi模块的SSID、密码、信道等参数 模块接口:选择合适的接口,如UART、SPI等,并配置相应的通信协议
通信协议的设计与实现
程序设计:根据需 求设计程序结构, 包括主程序、初始 化程序、无线通信 程序等
调试方法:使用串 口调试工具、逻辑 分析仪等工具进行 调试,确保程序运 行正常
基于STC89C52RC的ESP8266WIFI模块调试源码
![基于STC89C52RC的ESP8266WIFI模块调试源码](https://img.taocdn.com/s3/m/07afa162cdbff121dd36a32d7375a417866fc11e.png)
基于STC89C52RC的ESP8266WIFI模块调试源码#include <reg52.h>#include <stdio.h>#define DATALEN 1024unsigned char wifi_init_8266[] = "AT+RST"; // 重启8266模块的指令unsigned char wifi_sendcmd_8266[] = "AT"; // 向8266发送AT指令的指令unsigned char wifi_mode[] = "AT+CWMODE=1"; // 设置8266模块为STA模式unsigned char wifi_join[] = "AT+CWJAP=\"SSID\",\"PASSWORD\""; // 连接WiFi网络的指令unsigned char wifi_send[] = "AT+CIPSEND=4"; // 发送数据(4表示发送数据长度为4字节)unsigned char wifi_data[] = "1234"; // 待发送的数据unsigned char ESP8266_ReceiveData[DATALEN]; // 接收8266返回的数据void ESP8266_Initunsigned int DelayNum;for (DelayNum = 0; DelayNum < 0xffff; DelayNum++);//延时一段时间,等待8266模块启动//重启8266模块UART_SendRawString(wifi_init_8266);//等待8266模块返回响应,成功返回“ready”while (!UART_CheckReceiveString("ready")) ;//发送指令,向8266发送AT指令UART_SendRawString(wifi_sendcmd_8266);//等待8266模块返回响应,成功返回“OK”while (!UART_CheckReceiveString("OK"));//设置模式为STA模式UART_SendRawString(wifi_mode);//等待8266模块返回响应,成功返回“OK”while (!UART_CheckReceiveString("OK"));//连接WiFi网络UART_SendRawString(wifi_join);//等待8266模块返回响应,成功返回“OK”while (!UART_CheckReceiveString("OK"));void ESP8266_SendData//发送数据的格式为:“AT+CIPSEND=4\r\n1234”(\r\n为回车换行符)UART_SendRawString(wifi_send);UART_SendRawString(wifi_data);//等待8266模块返回响应,成功返回“SENDOK”while (!UART_CheckReceiveString("SEND OK"));void UART_SendRawString(unsigned char *str)unsigned int i;for (i = 0; str[i] != '\0'; i++)SBUF = str[i];while (!TI)TI=0;}int UART_CheckReceiveString(unsigned char *str)unsigned int i;for (i = 0; str[i] != '\0'; i++)if (SBUF != str[i])return 0;while (!RI)RI=0;}return 1;void UART_ReceiveInterrupt( interrupt 4if (RI == 1)RI=0;ESP8266_ReceiveData[ESP8266_ReceiveCount] = SBUF;ESP8266_ReceiveCount++;}void mainESP8266_Init(; // 初始化ESP8266模块ESP8266_SendData(; // 发送数据以上是基于STC89C52RC的ESP8266WIFI模块调试的源码。
基于51单片机驱动SI4432无线模块收发C语言程序
![基于51单片机驱动SI4432无线模块收发C语言程序](https://img.taocdn.com/s3/m/2d1f7fbf33d4b14e84246800.png)
基于51单片机驱动SI4432无线模块收发C语言程序#include <reg52.h>#include <ABSACC.h>#include <intrins.h>#include <stdio.h>//----------------------------------RF4432配置口定义--------------------------------------- //sbit RF4432_PAC=P2^4; //收发模式切换控制端sbit RF4432_SDO=P3^5; //SPI数据输出sbit RF4432_SDI=P3^4; //SPI数据输入sbit RF4432_SCLK=P3^7; //SPI时钟输入端口sbit RF4432_SEL=P3^3; //SPI片选sbit RF4432_IRQ=P3^2; //SI4432工作状态指示端口sbit KEY=P3^6; //BLT53A上电控制端sbit LED_GREEN=P2^1;sbit P15=P1^5;//-------------------------射频芯片相关定义--------------------------------------------#define RF4432_TxRxBuf_Len 32 //定义RF4432数据包长度char RF4432_TxRxBuf[RF4432_TxRxBuf_Len];unsigned char Packet[30]={9,20,30,21,15,58,56,69,25,23,12,25,56,22,23,24};//Transmit packet unsigned char Length=4;unsigned char Data_Buf[10];unsigned char Data_Len;typedef enum _RF_ENUM{RF_OK = 0x00, //function response parametersRF_ERROR_TIMING = 0x01,RF_ERROR_PARAMETER = 0x02,RF_PACKET_RECEIVED = 0x03,RF_NO_PACKET = 0x04,RF_CRC_ERROR = 0x05,} RF_ENUM;//----------------------------RF4432 配置寄存器地址-------------------------------- #define DEVICE_TYPE 0x00#define EVICE_VERSION 0x01 //版本号#define DEVICE_STATUS 0x02 //设备状态#define INTERRUPT_STATUS_1 0x03#define INTERRUPT_STATUS_2 0x04#define INTERRUPT_ENABLE_1 0x05#define INTERRUPT_ENABLE_2 0x06#define OPERATING_FUNCTION_CONTROL_1 0x07 //工作模式和功能控制1#define OPERATING_FUNCTION_CONTROL_2 0x08 //工作模式和功能控制2#define CRYSTAL_OSCILLATOR_LOAD_CAPACITANCE 0x09 //晶振负载电容设置#define MICROCONTROLLER_OUTPUT_CLOCK 0x0A#define GPIO0_CONFIGURATION 0x0B //GPIO0功能设置寄存器见英文文档第105页#define GPIO1_CONFIGURATION 0x0C#define GPIO2_CONFIGURATION 0x0D#define IO_PORT_CONFIGURATION 0x0E#define ADC_CONFIGURATION 0x0F#define ADC_SENSOR_AMPLIFIER_OFFSET 0x10#define ADC_VALUE 0x11#define TEMPERATURE_SENSOR_CONTROL 0x12 //温度传感器校准#define TEMPERATURE_VALUE_OFFSET 0x13#define WAKE_UP_TIMER_PERIOD_1 0x14#define WAKE_UP_TIMER_PERIOD_2 0x15#define WAKE_UP_TIMER_PERIOD_3 0x16#define WAKE_UP_TIMER_VALUE_1 0x17#define WAKE_UP_TIMER_VALUE_2 0x18#define LOW_DUTY_CYCLE_MODE_DURATION 0x19#define LOW_BATTERY_DETECTOR_THRESHOLD 0x1A //低压检测阈值寄存器#define BATTERY_VOLTAGE_LEVEL 0x1B#define IF_FILTER_BANDWIDTH 0x1C //中频滤波器带宽寄存器#define AFC_LOOP_GEARSHIFT_OVERRIDE 0x1D#define AFC_TIMING_CONTROL 0x1E#define CLOCK_RECOVERY_GEARSHIFT_OVERRIDE 0x1F#define CLOCK_RECOVERY_OVERSAMPLING_RATIO 0x20#define CLOCK_RECOVERY_OFFSET_2 0x21#define CLOCK_RECOVERY_OFFSET_1 0x22#define CLOCK_RECOVERY_OFFSET_0 0x23#define CLOCK_RECOVERY_TIMING_LOOP_GAIN_1 0x24#define CLOCK_RECOVERY_TIMING_LOOP_GAIN_0 0x25#define RECEIVED_SIGNAL_STRENGTH_INDICATOR 0x26#define RSSI_THRESHOLD_FOR_CLEAR_CHANNEL_INDICATOR 0x27#define ANTENNA_DIVERSITY_REGISTER_1 0x28#define ANTENNA_DIVERSITY_REGISTER_2 0x29#define DATA_ACCESS_CONTROL 0x30#define EZMAC_STATUS 0x31#define HEADER_CONTROL_1 0x32 //Header 起始码设置#define HEADER_CONTROL_2 0x33#define PREAMBLE_LENGTH 0x34 //前导码长度#define PREAMBLE_DETECTION_CONTROL 0x35 //前导码检测设置#define SYNC_WORD_3 0x36 //同步字节#define SYNC_WORD_2 0x37#define SYNC_WORD_1 0x38#define SYNC_WORD_0 0x39#define TRANSMIT_HEADER_3 0x3A#define TRANSMIT_HEADER_2 0x3B#define TRANSMIT_HEADER_1 0x3C#define TRANSMIT_HEADER_0 0x3D#define TRANSMIT_PACKET_LENGTH 0x3E //发送数据包长度,详细请看P125页#define CHECK_HEADER_3 0x3F#define CHECK_HEADER_2 0x40#define CHECK_HEADER_1 0x41#define CHECK_HEADER_0 0x42#define HEADER_ENABLE_3 0x43#define HEADER_ENABLE_2 0x44#define HEADER_ENABLE_1 0x45#define HEADER_ENABLE_0 0x46#define RECEIVED_HEADER_3 0x47#define RECEIVED_HEADER_2 0x48#define RECEIVED_HEADER_1 0x49#define RECEIVED_HEADER_0 0x4A#define RECEIVED_PACKET_LENGTH 0x4B //接收数据包长度,详细请看P134页#define ANALOG_TEST_BUS 0x50#define DIGITAL_TEST_BUS_ENSCTEST_ 0x51#define TX_RAMP_CONTROL 0x52#define PLL_TUNE_TIME 0x53 //锁相环切换时间#define CALIBRATION_CONTROL 0x55#define MODEM_TEST 0x56#define CHARGEPUMP_TEST 0x57#define CHARGEPUMP_CURRENT_TRIMMING_OVERRIDE 0x58#define DIVIDER_CURRENT_TRIMMING 0x59#define VCO_CURRENT_TRIMMING 0x5A#define VCO_CALIBRATION_OVERRIDE 0x5B#define SYNTHESIZER_TEST 0x5C#define BLOCK_ENABLE_OVERRIDE_1 0x5D#define BLOCK_ENABLE_OVERRIDE_2 0x5E#define BLOCK_ENABLE_OVERRIDE_3 0x5F#define CHANNEL_FILTER_COEFFICIENT_ADDRESS 0x60#define CHANNEL_FILTER_COEFFICIENT_VALUE 0x61#define CRYSTAL_OSCILLATOR_CONTROL_TEST 0x62#define RC_OSCILLATOR_COARSE_CALIBRATION_OVERRIDE 0x63#define RC_OSCILLATOR_FINE_CALIBRATION_OVERRIDE 0x64#define LDO_CONTROL_OVERRIDE_ENSPOR 0x65#define LDO_LEVEL_SETTING 0x66 #define DELTASIGMA_ADC_TUNING_1 0x67#define DELTASIGMA_ADC_TUNING_2 0x68#define AGC_OVERRIDE_1 0x69 #define AGC_OVERRIDE_2 0x6A#define GFSK_FIR_FILTER_COEFFICIENT_ADDRESS 0x6B#define GFSK_FIR_FILTER_COEFFICIENT_VALUE 0x6C#define TX_POWER 0x6D //发射功率设置,详细请见P153#define TX_DATA_RATE_1 0x6E //数据发送波特率设置寄存器1#define TX_DATA_RATE_0 0x6F //数据发送波特率设置寄存器0#define MODULATION_MODE_CONTROL_1 0x70 //调制方式控制,详细请见P155#define MODULATION_MODE_CONTROL_2 0x71#define FREQUENCY_DEVIATION 0x72#define FREQUENCY_OFFSET_1 0x73#define FREQUENCY_OFFSET_2 0x74#define FREQUENCY_BAND_SELECT 0x75 //频段选择,详细请见P157#define NOMINAL_CARRIER_FREQUENCY_1 0x76 //基准载波频率#define NOMINAL_CARRIER_FREQUENCY_0 0x77#define FREQUENCY_HOPPING_CHANNEL_SELECT 0x79 //跳频频道选择,详细请见P158#define FREQUENCY_HOPPING_STEP_SIZE 0x7A //跳频频道间隔#define TX_FIFO_CONTROL_1 0x7C#define TX_FIFO_CONTROL_2 0x7D#define RX_FIFO_CONTROL 0x7E#define FIFO_ACCESS 0x7F //FIFO读写方式设置,//-------------------------------RF4432控制指令--------------------------------------------- #define RR 0x00#define WR 0x80//------------------------------------------------延时------------------------------void delay_10us(char n){int i;while(n--)for(i=0;i<5;i++);}void delay_ms(int num){int x,y;for(y=0;y<num;y++){for(x = 0;x < 500;x)x++;}}//------------------------------------SPI单字节读取函数------------------------------------- unsigned char SPI_Read(void){unsigned char i,rxdata;rxdata = 0x00;for (i = 0;i < 8;i++){rxdata = rxdata<<1;RF4432_SCLK=1;RF4432_SDO=1;if (RF4432_SDO==1) //读取最高位,保存至最末尾,通过左移位完成整个字节 {rxdata |= 0x01;}else{rxdata &= ~0x01;}delay_10us(2);RF4432_SCLK=0;delay_10us(2);}return rxdata;}//--------------------------SPI单字节写入函数----------------------------------------------void SPI_Write(unsigned char txdata){unsigned char i;for (i = 0;i < 8;i++){if (txdata&0x80) //总是发送最高位{RF4432_SDI=1;}else{RF4432_SDI=0;}RF4432_SCLK=1;txdata = txdata<<1;RF4432_SCLK=0;}}//---------------------RF4432寄存器读取函数--------------------------------------------------- void RF4432_ReadReg(unsigned char addr, unsigned char *RegisterData){RF4432_SEL=0;SPI_Write(addr|RR);*RegisterData = SPI_Read();RF4432_SEL=1;}//----------------RF4432寄存器写入函数---------------------------------------------------------- void RF4432_WriteReg(unsigned char addr, unsigned char value){RF4432_SEL=0;SPI_Write(addr|WR);SPI_Write(value);RF4432_SEL=1;}//-----------------------RF4432寄存器读取函数---------------------------------------------void RF4432_ReadBurestReg(unsigned char addr,unsigned char *p,unsigned char count){unsigned char i;RF4432_SEL=0;SPI_Write(addr|RR);for(i=0;i<count;i++){p[i] = SPI_Read();}RF4432_SEL=1;}//---------------------------------RF4432射频芯片初始化函数------------------------------------ void RF4432_Init(void){unsigned char RegisterData;//unsigned int i,j;delay_ms(20);delay_ms(20);delay_ms(20);delay_ms(20);delay_ms(20);delay_ms(20);RF4432_ReadReg(0x03,&RegisterData);//read the Interrupt Status1 registerRF4432_ReadReg(0x04,&RegisterData);//read the Interrupt Status2 register//SW resetRF4432_WriteReg(0x07, 0x80);//write 0x80 to the Operating & Function Control1 register//wait for chip ready interrupt from the radio (while the nIRQ pin is high)while(RF4432_IRQ);//read interrupt status registers to clear the interrupt flags and release NIRQ pinRF4432_ReadReg(0x03, &RegisterData);RF4432_ReadReg(0x04, &RegisterData);/*set the physical parameters*///set the center frequency to 434 MHzRF4432_WriteReg(0x75, 0x57); //write 0x75 to the Frequency Band Select registerRF4432_WriteReg(0x76, 0x19); //write 0xBB to the Nominal Carrier Frequency1 registerRF4432_WriteReg(0x77, 0x00); //write 0x80 to the Nominal Carrier Frequency0 register//set the desired TX data rate (9.6kbps)RF4432_WriteReg(0x6E, 0x13); //write 0x4E to the TXDataRate 1 registerRF4432_WriteReg(0x6F, 0xA9); //write 0xA5 to the TXDataRate 0 registerRF4432_WriteReg(0x70, 0x2C); //write 0x2C to the Modulation Mode Control 1 registerRF4432_WriteReg(0x58, 0x80); //VCO//set the TX power to MAXRF4432_WriteReg(0x6D, 0x1F); //write 0x1F to the TX Power register/*set the modem parameters according to the exel calculator(parameters: 4.8 kbps, deviation: 50 kHz, channel filter BW: 102.2 kHz*/RF4432_WriteReg(0x1C, 0xAD);//write 0x1E to the IF Filter Bandwidth registerRF4432_WriteReg(0x20, 0xE2);//write 0xD0 to the Clock Recovery Oversampling Ratio registerRF4432_WriteReg(0x21, 0x80);//write 0x00 to the Clock Recovery Offset 2 registerRF4432_WriteReg(0x22, 0x1A);//write 0x9D to the Clock Recovery Offset 1 registerRF4432_WriteReg(0x23, 0x37);//write 0x49 to the Clock Recovery Offset 0 registerRF4432_WriteReg(0x24, 0x00);//write 0x00 to the Clock Recovery Timing Loop Gain 1 registerRF4432_WriteReg(0x25, 0x04);//write 0x24 to the Clock Recovery Timing Loop Gain 0 registerRF4432_WriteReg(0x1D, 0x44);//enable afcRF4432_WriteReg(0x1E, 0x0A);RF4432_WriteReg(0x2A, 0x2C);RF4432_WriteReg(0x1F, 0x03);RF4432_WriteReg(0x69, 0x60);//write 0x40 to the AFC Loop Gearshift Override registerRF4432_WriteReg(0x72, 0x70);//write 0x48 to the Frequency Deviation register//set the preamble length to 10bytes if the antenna diversity is used and set to 5bytes if notRF4432_WriteReg(0x34, 0xCF); //write 0x0C to the Preamble Length register//set preamble detection threshold to 20bitsRF4432_WriteReg(0x35, 0x20); //write 0x2A to the Preamble Detection Control register//Disable header bytes; set variable packet length (the length of the payload is defined by the //received packet length field of the packet); set the synch word to two bytes longRF4432_WriteReg(0x33, 0x02); //write 0x02 to the Header Control2 register//Set the sync word pattern to 0x2DD4RF4432_WriteReg(0x36, 0x2D); //write 0x2D to the Sync Word 3 registerRF4432_WriteReg(0x37, 0xD4); //write 0xD4 to the Sync Word 2 register//enable the TX & RX packet handler and CRC-16 (IBM) checkRF4432_WriteReg(0x30, 0x8D); //write 0x8D to the Data Access Control register//Disable the receive header filtersRF4432_WriteReg(0x32, 0x00 ); //write 0x00 to the Header Control1 register//enable FIFO mode and GFSK modulationRF4432_WriteReg(0x71, 0x2B); //write 0x63 to the Modulation Mode Control 2 register/*set the GPIO's according the testcard type*/RF4432_WriteReg(0x0B, 0x0A); //write 0x12 to the GPIO0 Configuration(set the TX state)RF4432_WriteReg(0x0C, 0x0A); //write 0x15 to the GPIO1 Configuration(set the RX state)//set the AGCRF4432_WriteReg(0x69, 0x35); //write 0x0B to the AGC Override 2 register//set ADC reference voltage to 0.9VRF4432_WriteReg(0x68, 0x07); //write 0x04 to the Deltasigma ADC Tuning 2 register//set Crystal Oscillator Load Capacitance registerRF4432_WriteReg(0x09, 0x7F); //write 0xD7 to the Crystal Oscillator Load Capacitance registerRF4432_WriteReg(0x73,0x00);RF4432_WriteReg(0x74,0x00);//TxFIFOReset();RF4432_WriteReg(0x08, 0x01);RF4432_WriteReg(0x08, 0x00);//RxFIFOReset();RF4432_WriteReg(0x08, 0x02);RF4432_WriteReg(0x08, 0x00);}//-------------------------RF4432设置接收模式函数------------------------------------------ void RF4432_SetRxMode(void){unsigned char RegisterData;RF4432_WriteReg(0x0E, 0x02);//Rx_EN;//enable the packet valid interruptRF4432_WriteReg(0x05, 0xFF);RF4432_WriteReg(0x06, 0x00);RF4432_ReadReg(0x03, &RegisterData);RF4432_ReadReg(0x04, &RegisterData);//enable receiver chainRF4432_WriteReg(0x07, 0x05);}//---------------------------RF4432数据包接收函数------------------------------------------- unsigned char RF4432_RxPacket(void){unsigned char temp;RF4432_IRQ=1;if(!RF4432_IRQ){RF4432_ReadReg(INTERRUPT_STATUS_1,&temp);if(temp&0x02){return 1;}}return 0;}void RFIdle(void){unsigned char RegisterData;RF4432_WriteReg(0x07, 0x01);//diasble all ITsRF4432_WriteReg(0x05, 0x00);RF4432_WriteReg(0x06, 0x00);RF4432_ReadReg(0x03, &RegisterData);RF4432_ReadReg(0x04, &RegisterData);}void RFTransmit(unsigned char * packet, unsigned char length){unsigned char temp;unsigned char RegisterData;RF4432_WriteReg(0x0E, 0x01);//Tx_EN;RF4432_WriteReg(0x3e, length);for(temp=0;temp<length;temp++){RF4432_WriteReg(0x7f,packet[temp]);} //enable the wanted ITsRF4432_WriteReg(0x05, 0x04);RF4432_WriteReg(0x06, 0x00);RF4432_ReadReg(0x03, &RegisterData);RF4432_ReadReg(0x04, &RegisterData);//enable transmitterRF4432_WriteReg(0x07, 0x09);while(RF4432_IRQ);//while(GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_12)); RF4432_ReadReg(0x03, &RegisterData);RF4432_ReadReg(0x04, &RegisterData);}RF_ENUM RFPacketReceived(unsigned char * packet, unsigned char * length) {unsigned char i;unsigned char RegisterData;if( RF4432_IRQ == 0 ){RF4432_ReadReg(0x03,&RegisterData);if( (RegisterData & 0x01) == 0x01 )//CRC error{RF4432_SetRxMode();return RF_CRC_ERROR;}if( (RegisterData & 0x02) == 0x02 )//packet received{//read bufferRF4432_ReadReg(0x4b,length);for(i=0;i<*length;i++){RF4432_ReadReg(0x7f,packet++);}RF4432_SetRxMode();return RF_PACKET_RECEIVED;}}return RF_NO_PACKET;}void StartUART( void ){SCON = 0x50;TMOD = 0x20;TH1 = 0XF4;TL1 = 0XF4;TR1 = 1; //允许定时器1工作}//串口发送数void R_S_Byte(unsigned char R_Byte){SBUF = R_Byte;while( TI == 0 ); //查询法 TI = 0;}main(){//unsigned char i;KEY=1;LED_GREEN=0;StartUART();RF4432_Init();delay_ms(10);RF4432_SetRxMode();//RF4432设置接收模式函数P15=1;while(1){RF4432_WriteReg(0x0E, 0x02);//Rx_EN;LED_GREEN=1;//灯亮RFTransmit(Packet,Length);//发送数据RFIdle();//进入空闲模式delay_ms(10);RF4432_SetRxMode();//RF4432设置接收模式函数while(RFPacketReceived(Data_Buf,&Data_Len) != RF_PACKET_RECEIVED);//waiting for receivingRFIdle();RF4432_ReadReg(0x26,&Data_Buf[1]);LED_GREEN=0;delay_ms(200);delay_ms(200);/*RF4432_SetRxMode();LED_GREEN=0;//=========================================================================================================== =if(RF4432_RxPacket()) //判断是否接收到数据{LED_GREEN=1;RF4432_ReadBurestReg(FIFO_ACCESS,RF4432_TxRxBuf,RF4432_TxRxBuf_Len);for(i=0;i<32;i++){R_S_Byte(RF4432_TxRxBuf[i]);}RF4432_SetRxMode();}*/ }}。
nrf24l01无线通信模块与51单片机工作原理
![nrf24l01无线通信模块与51单片机工作原理](https://img.taocdn.com/s3/m/5ff51f2b0a1c59eef8c75fbfc77da26924c59670.png)
nrf24l01无线通信模块与51单片机工作原理无线通信技术在现代社会中扮演着重要的角色,其中nrf24l01无线通信模块与51单片机也成为了无线通信的重要组成部分。
本文将探讨nrf24l01无线通信模块与51单片机的工作原理,以及它们之间的配合关系。
一、nrf24l01无线通信模块nrf24l01无线通信模块是一种低功耗的2.4GHz无线收发模块,广泛应用于物联网、无线传感器网络等领域。
其工作原理基于射频通信技术,通过无线信道进行数据的传输。
nrf24l01模块由无线收发器和嵌入式射频微控制器组成,具备高速率、长距离传输和多通道选择等特性。
1. 发射端工作原理nrf24l01发射端主要由收发器、天线和控制电路组成。
当51单片机通过SPI总线与nrf24l01通信时,可将要发送的数据通过控制电路和收发器转换成射频信号,并通过天线发送出去。
发送端的工作原理可简述为以下几个步骤:a. 初始化设置:通过配置寄存器进行初始化设置,包括工作频率、数据传输速率、天线增益等参数。
b. 数据准备与发送:将待发送的数据加载到发送缓冲区中,并通过发送指令启动数据的发送。
c. 发送前导码:在发送数据之前,发射端会先发送一段前导码作为同步信号,以确保接收端正确接收数据。
d. 数据传输与重发机制:发送端将数据以数据包的形式传输,接收端在接收到数据后会进行确认应答,发送端根据应答情况决定是否进行重发。
2. 接收端工作原理nrf24l01接收端与发送端相似,主要由收发器、天线和控制电路组成。
当发送端通过射频信号将数据发送过来时,接收端的工作原理如下:a. 初始化设置:与发送端类似,接收端也需要通过配置寄存器进行初始化设置,以匹配发送端的参数。
b. 接收与解码:接收端在接收到射频信号后,对信号进行解码,并将解码后的数据加载到接收缓冲区。
c. 数据处理与应答:通过与51单片机的交互,将接收到的数据进行处理,并向发送端发送确认应答,确保数据的可靠性。
基于单片机控制的WIFI无线传输模块设计
![基于单片机控制的WIFI无线传输模块设计](https://img.taocdn.com/s3/m/5dda789548649b6648d7c1c708a1284ac85005f4.png)
基于单片机控制的WIFI无线传输模块设计随着物联网和智能家居的发展,无线传输模块的需求越来越大,尤其是具备WIFI功能的无线传输模块。
本文将介绍一种基于单片机控制的WIFI无线传输模块的设计。
首先,我们需要选择一个适合的单片机作为控制核心。
常见的选择有Arduino、Raspberry Pi等。
这里我们选择Arduino作为控制核心,因为它具备易上手、低功耗等特点。
接下来,我们需要选择一个适合的WIFI模块。
常见的选择有ESP8266、ESP32等。
这里我们选择ESP8266作为WIFI模块,因为它具备低功耗、价格便宜等特点。
在硬件设计方面,我们需要将单片机与WIFI模块进行连接。
首先,将单片机的RX引脚连接到WIFI模块的TX引脚,将单片机的TX引脚连接到WIFI模块的RX引脚。
接下来,将单片机的VCC引脚连接到WIFI模块的VCC引脚,将单片机的GND引脚连接到WIFI模块的GND引脚。
在软件设计方面,我们需要编写程序将单片机与WIFI模块进行通信。
首先,我们需要初始化单片机和WIFI模块的串口通信参数,如波特率、数据位、停止位等。
然后,我们可以使用单片机的串口发送AT指令给WIFI模块,实现无线传输功能。
常用的AT指令有连接WIFI网络、断开WIFI网络、发送数据等。
由于字数限制的原因,无法详细展开所有的设计细节。
但是希望通过以上的描述,能够给读者提供一个初步的了解和思路,方便进一步深入学习和实践。
总之,基于单片机控制的WIFI无线传输模块的设计是一个相对较复杂的工程,需要综合考虑硬件设计和软件编程等多方面因素。
然而,一旦成功设计和实现,它将具备广泛的应用前景,可以用于物联网、智能家居、智能农业等领域,为人们的生活带来更多的便利和舒适。
基于单片机Wifi无线通信方案 (3)
![基于单片机Wifi无线通信方案 (3)](https://img.taocdn.com/s3/m/0ee0d24f53ea551810a6f524ccbff121dc36c511.png)
基于单片机Wifi无线通信方案
基于单片机的Wifi无线通信方案可以使用以下组件和步骤:
组件:
1. 单片机:可选择常见的Arduino、ESP8266或ESP32等。
2. Wifi模块:与单片机兼容的Wifi模块,比如ESP8266
或ESP32自带的Wifi功能。
3. 电源模块:为单片机和Wifi模块提供电源,例如使用电池或接口稳压模块。
4. 存储模块(可选):如需要保存或传输大量数据,可以
使用MicroSD卡或其他储存器。
步骤:
1. 准备开发环境:安装Arduino IDE或其他适用于你选择的单片机的开发环境。
2. 硬件连接:将单片机和Wifi模块连接在一起,根据硬件规格连好电源线和串口线。
3. 编写代码:使用单片机的开发工具编写代码,使其能够通过Wifi模块与其他设备进行通信。
4. 配置Wifi:设置Wifi模块与你的无线网络进行连接,指定IP地址、网络名称、密码等。
5. 实现通信协议:定义数据传输的格式和通信协议,例如使用TCP或UDP传输数据包。
6. 完成通信功能:编写程序使单片机能够通过Wifi模块与其他设备进行数据传输或接收。
需要注意的是,具体的实现步骤和代码会根据你选择的单片机和Wifi模块有所不同,请参考相关的开发文档和资源进行具体操作。
基于单片机的数据采集和无线数据传输系统设计
![基于单片机的数据采集和无线数据传输系统设计](https://img.taocdn.com/s3/m/1d48e5c5690203d8ce2f0066f5335a8102d266aa.png)
基于单片机的数据采集和无线数据传输系统设计一、本文概述随着信息技术的快速发展和物联网的广泛应用,数据采集和无线数据传输在各个领域都发挥着越来越重要的作用。
基于单片机的数据采集和无线数据传输系统设计,以其低成本、高效率、易扩展等特点,受到了广泛关注和应用。
本文旨在探讨基于单片机的数据采集和无线数据传输系统的设计原理、实现方法以及在实际应用中的优势与挑战。
本文将首先介绍系统的整体架构,包括数据采集模块、单片机处理模块和无线数据传输模块的设计。
然后,详细阐述各个模块的工作原理和实现技术,包括传感器选型、数据采集电路设计、单片机选型与编程、无线传输协议选择以及数据传输的稳定性与可靠性保障等。
本文还将分析该系统设计在实际应用中的性能表现,如数据传输速度、传输距离、功耗等,并通过具体案例展示其在环境监测、智能家居、工业自动化等领域的应用效果。
文章将总结该系统设计的优点与不足,并对未来发展方向进行展望,以期为相关领域的研究和实践提供有益的参考和启示。
二、单片机基础知识单片机(Microcontroller Unit,MCU)是一种集成电路芯片,它采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU、随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计数器等功能集成到一块硅片上,构成一个小而完善的微型计算机系统。
单片机具有体积小、功耗低、控制功能强、扩展灵活、抗干扰能力强、性价比高等一系列优点,因此在工业控制、智能仪表、汽车电子、通信设备、家用电器、航空航天等许多领域得到了广泛应用。
单片机按照其内部结构可以分为多种类型,例如8051系列、AVR 系列、PIC系列、ARM系列等。
每种类型的单片机都有其独特的指令集、架构和外设接口,因此在使用时需要了解其具体的特性和编程方法。
在数据采集和无线数据传输系统设计中,单片机通常作为核心控制器,负责数据的采集、处理、存储和传输。
通过编程,单片机可以控制外设进行数据采集,如使用ADC(模数转换器)将模拟信号转换为数字信号,或者使用传感器接口读取传感器的输出值。
hc12无线模块与stm32代码
![hc12无线模块与stm32代码](https://img.taocdn.com/s3/m/7f69f47086c24028915f804d2b160b4e777f8167.png)
hc12无线模块与stm32代码
一、HC12无线模块简介
HC12无线模块是一种基于433MHz频段的无线串口通信模块,具有低功耗、长距离、抗干扰性强等优点。
它广泛应用于各种无线通信场景,如智能家居、工业控制、遥控玩具等。
二、STM32与HC12无线模块的连接
STM32是一款高性能、低成本的微控制器,可通过SPI或UART接口与HC12无线模块相连。
连接完成后,可实现数据的无线传输和接收。
三、HC12无线模块的常用代码及功能实现
1.初始化代码:配置STM32的SPI或UART接口,并设置相应的通信参数,如波特率、数据位等。
2.无线发送代码:将数据发送至HC12无线模块,并通过无线信号传输至接收端。
3.无线接收代码:接收来自HC12无线模块的信号,并对数据进行解析和处理。
4.错误检测与处理:实时监测无线通信状态,判断是否存在错误,如接收超时、数据错误等,并进行相应处理。
四、实战应用:基于HC12无线模块的遥控小车
1.硬件设计:使用STM32作为控制核心,搭配HC12无线模块、电机驱动模块、传感器等元器件,设计一款遥控小车。
2.软件设计:编写控制程序,实现遥控小车的前进、后退、转向、速度调
节等功能,并通过HC12无线模块进行数据传输。
3.测试与调试:对遥控小车进行测试,确保各项功能正常运行,并根据实际情况进行调试和改进。
五、总结与展望
HC12无线模块与STM32的结合在众多项目中取得了良好的应用效果,二者在无线通信领域具有广泛的应用前景。
单片机与WiFi模块的接口设计与应用案例
![单片机与WiFi模块的接口设计与应用案例](https://img.taocdn.com/s3/m/fe0f7e50fbd6195f312b3169a45177232e60e414.png)
单片机与WiFi模块的接口设计与应用案例在物联网时代,无线通信技术得到了广泛应用,而WiFi作为其中一种重要的无线通信方式,具有覆盖范围广、速度快等优势,被广泛应用于各类智能设备中。
而单片机作为嵌入式系统中的核心控制器,与WiFi模块的接口设计和应用也显得尤为重要。
本文将从接口设计和应用实例两个方面介绍单片机与WiFi模块的结合。
一、接口设计1. 串口通信接口:单片机与WiFi模块之间通常通过串口进行数据交互。
在接口设计中,需要确定单片机的串口通讯引脚,并通过引脚连接线连接至WiFi模块的对应引脚(如TXD、RXD)。
在软件层面,需要编写串口通信的初始化程序和数据发送接收程序,实现单片机与WiFi模块的数据传输。
2. GPIO引脚:除了串口通信接口,单片机还可以通过GPIO引脚与WiFi模块进行控制。
通过设置单片机的GPIO引脚状态,可以实现对WiFi模块的开关、复位、工作模式等操作。
在接口设计中,需要确定单片机的GPIO引脚和功能,编写相应的控制程序,实现单片机与WiFi模块之间的控制。
二、应用案例以智能家居中的智能插座为例,介绍单片机与WiFi模块的接口设计和应用。
智能插座通过WiFi模块连接网络,用户可以通过手机App或者语音助手对插座进行控制。
在接口设计中,单片机通过串口与WiFi模块进行数据通信,实现插座状态的查询和控制。
通过GPIO引脚,单片机可以实现对插座电源的控制,包括开关、定时开关等功能。
在软件设计中,需要编写单片机的通信程序、控制程序和网络连接程序,实现单片机与WiFi模块的协同工作。
在应用中,用户通过手机App连接到智能插座,可以实时查询插座的状态,远程控制插座的开关,并设置定时开关功能。
通过WiFi模块提供的接口,单片机实现了与用户交互和远程控制的功能,为智能家居提供了更加便捷的控制方式。
总结:单片机与WiFi模块的接口设计和应用案例涉及到硬件接口设计和软件开发两个方面,需要针对具体的应用场景进行设计和开发。
基于WIFI模块和单片机的无线数据传输(附代码)
![基于WIFI模块和单片机的无线数据传输(附代码)](https://img.taocdn.com/s3/m/e62ef53aaf45b307e8719767.png)
目录第一章阶段任务第二章基于WIFI模块的无线数据传输的原理1.1 时钟模块1.2 最小单片机系统的原理1.3 温度传感器DS18B201.4 串口1.5 WIFI模块第三章基于WIFI模块的无线数据传输的实现2.1 WIFI模块设置2.2 串口部分设置2.3 调试与运行过程第四章程序与框图第五章小结第二章基于WIFI模块的无线数据传输的原理1.1时钟DS1302模块:电路原理图:DS1302与单片机的连接也仅需要3条线:CE引脚、SCLK串行时钟引脚、I/O 串行数据引脚,Vcc2为备用电源,外接32.768kHz晶振,为芯片提供计时脉冲。
读写时序说明:DS1302是SPI总线驱动方式。
它不仅要向寄存器写入控制字,还需要读取相应寄存器的数据。
控制字总是从最低位开始输出。
在控制字指令输入后的下一个SCLK时钟的上升沿时,数据被写入DS1302,数据输入从最低位(0位)开始。
同样,在紧跟8位的控制字指令后的下一个SCLK脉冲的下降沿,读出DS1302的数据,读出的数据也是从最低位到最高位。
数据读写时序如图1.2单片机最小系统的原理:说明复位电路:由电容串联电阻构成,由图并结合"电容电压不能突变"的性质,可以知道,当系统一上电,RST脚将会出现高电平,并且,这个高电平持续的时间由电路的RC值来决定.典型的51单片机当RST脚的高电平持续两个机器周期以上就将复位,所以,适当组合RC的取值就可以保证可靠的复位.晶振电路:典型的晶振取11.0592MHz(因为可以准确地得到9600波特率和19200波特率,用于有串口通讯的场合)/12MHz(产生精确的uS级时歇,方便定时操作)单片机:一片AT89S51/52或其他51系列兼容单片机特别注意:对于31脚(EA/Vpp),当接高电平时,单片机在复位后从内部ROM的0000H开始执行;当接低电平时,复位后直接从外部ROM的0000H开始执行.1.3温度传感器DS18B20的原理(连接到单片机最小系统,并将温度发送给WIFI模块):3.1.1 DS18B20性能特点(1) 独特的单线接口方式,只需一个接口引脚即可通信;(2) 每一个DS18B20都有一个唯一的64位ROM 序列码; (3) 在使用中不需要任何外围元件;(4) 可用数据线供电,电压范围:+3.0V-+5.5 V ;(5) 测温范围:-55℃ -+125℃,在-10℃-+85℃范围内精度为+0.5℃,分辨率为0.0625℃; (6) 通过编程可实现9-12位的数字读数方式。
基于单片机控制的WIFI无线传输模块设计
![基于单片机控制的WIFI无线传输模块设计](https://img.taocdn.com/s3/m/8ec1969277eeaeaad1f34693daef5ef7ba0d122c.png)
基于单片机控制的WIFI无线传输模块设计WIFI无线传输模块是一种可以实现无线通信的装置,通过无线网络与其他设备进行数据传输。
在基于单片机控制的设计方案中,我们可以利用单片机来实现对WIFI模块的控制和数据处理。
首先,我们需要选择合适的WIFI模块。
常见的WIFI模块有ESP8266、ESP32等,这些模块都具备较强的无线通信能力和低功耗特性。
我们可以根据项目需求选择合适的模块。
接下来,我们需要将WIFI模块与单片机进行连接。
一般情况下,WIFI模块通过串口与单片机进行通信。
我们可以通过将单片机的TX引脚连接到WIFI模块的RX引脚,并将单片机的RX引脚连接到WIFI模块的TX引脚,实现双向通信。
在单片机程序的设计中,我们需要编写相应的驱动程序来控制WIFI模块。
首先,我们需要初始化WIFI模块的串口通信设置,如波特率、数据位、停止位等。
然后,我们可以通过向WIFI模块发送特定的AT指令来进行控制和配置。
例如,可以通过AT指令连接到WIFI网络、获取本地IP地址、发送数据等。
在驱动程序中,我们还可以定义一些函数来简化AT指令的发送和接收,使控制更加方便。
另外,在设计中我们需要注意WIFI模块的电源供应。
一般情况下,WIFI模块需要3.3V的电压供应,而单片机输出的IO信号一般为5V。
因此,我们需要使用逻辑电平转换器将单片机的IO信号转换为3.3V,以兼容WIFI模块的工作电压。
在实际应用中,我们可以根据项目需求设计不同的功能。
例如,我们可以设计一个远程控制系统,通过WIFI无线传输模块将用户的控制指令发送到被控制的设备上。
我们可以通过配置WIFI模块为TCP服务器,在单片机程序中监听特定的端口,接收来自用户的控制指令,并执行相应的操作。
总结起来,基于单片机控制的WIFI无线传输模块设计涉及到WIFI模块的选择、与单片机的连接、驱动程序编写、逻辑电平转换等方面。
通过合理的设计和编程,可以实现WIFI模块与单片机的无线通信和数据传输。
基于单片机Wifi无线通信方案 (5)
![基于单片机Wifi无线通信方案 (5)](https://img.taocdn.com/s3/m/181a2a770a4c2e3f5727a5e9856a561252d32116.png)
基于单片机Wifi无线通信方案1. 引言随着物联网技术的快速发展,无线通信在各个领域得到广泛应用。
而在嵌入式系统中,单片机作为核心控制器,通过无线通信模块实现与外部设备的数据传输。
本文将探讨基于单片机的Wifi无线通信方案,并介绍其原理、实现步骤和应用场景。
2. 方案原理2.1 Wifi技术简介Wifi是一种无线局域网技术,基于IEEE 802.11系列协议。
通过Wifi技术,可以实现设备之间的无线数据传输,具有速度快、覆盖范围广、安全性高等优点,因此广泛应用于无线通信领域。
2.2 单片机与Wifi模块的连接为了实现基于单片机的Wifi无线通信,需要将单片机与Wifi模块进行连接。
一般情况下,可以通过串口或SPI接口与Wifi模块通信。
在连接时,需要根据Wifi模块的规格和引脚定义,正确连接相应的引脚。
2.3 通信协议Wifi无线通信需要使用一定的通信协议来实现数据的传输。
常见的通信协议有TCP/IP和UDP。
TCP/IP协议可确保数据传输的可靠性,而UDP协议则更适合传输效率较高的数据。
3. 实现步骤3.1 硬件连接首先,根据Wifi模块的规格和引脚定义,连接单片机和Wifi模块的相应引脚。
一般情况下,需要连接供电引脚、地线、串口或SPI接口等。
3.2 编写驱动程序根据使用的单片机型号和Wifi模块型号,编写相应的驱动程序。
驱动程序包括初始化Wifi模块、配置网络参数、发送和接收数据等功能。
3.3 客户端程序开发在单片机端,开发相应的客户端程序,用于发送和接收数据。
根据通信协议的要求,将待发送的数据进行封包,发送到目标设备。
同时,接收来自目标设备的数据,并进行解包处理。
3.4 服务器程序开发在目标设备的服务端,开发相应的服务器程序,用于接收来自单片机的数据,并处理响应。
根据通信协议的要求,解析接收到的数据,并进行相应的操作。
4. 应用场景基于单片机的Wifi无线通信方案在各个领域都有广泛应用,特别是物联网领域。
单片机与WiFi模块的接口技术及通信原理
![单片机与WiFi模块的接口技术及通信原理](https://img.taocdn.com/s3/m/12847ca59a89680203d8ce2f0066f5335a81670e.png)
单片机与WiFi模块的接口技术及通信原理单片机与WiFi模块的接口技术和通信原理是现代无线通信领域的重要内容之一。
随着物联网技术的发展和智能设备的普及,WiFi模块的应用越来越广泛。
本文将介绍单片机与WiFi模块的接口技术和通信原理,包括硬件连接方式、通信协议以及数据传输过程。
1. 硬件连接方式单片机与WiFi模块的连接通常通过串口(UART)或SPI接口实现。
串口是一种通用的串行输入输出接口,适用于数据传输速度较慢的场景。
而SPI(Serial Peripheral Interface)是一种高速串行数据传输接口,适用于数据传输速度要求较高的场景。
串口连接方式:单片机的UART引脚与WiFi模块的UART引脚相连接。
其中,单片机的TX(发送)引脚连接到WiFi模块的RX(接收)引脚,单片机的RX引脚连接到WiFi模块的TX引脚。
此外,还需将单片机和WiFi模块的地线(GND)相连,以确保电信号的传输可靠。
SPI连接方式:单片机的SPI引脚与WiFi模块的SPI引脚相连接。
SPI接口包括四个信号线:SCLK(时钟线)、MISO(主设备接收从设备数据线)、MOSI(主设备发送数据线)和SS(片选线)。
单片机通过时钟线控制数据的传输,主设备通过MOSI发送数据,WiFi模块通过MISO接收数据。
SS信号线用于选择需要进行通信的从设备。
2. 通信协议通信协议是单片机与WiFi模块数据传输的规则。
常用的通信协议有UART协议和SPI协议。
UART通信协议:UART通信协议是一种简单的、异步的串行通信协议。
数据通过一个引脚(发送引脚TX和接收引脚RX)进行传输。
在UART通信中,数据被分成帧传输,每一帧的起始位是逻辑低电平,结束位是逻辑高电平。
单片机和WiFi模块通过约定好的波特率进行通信,在发送端和接收端分别使用相同的波特率。
SPI通信协议:SPI通信协议是一种同步的、高速的串行通信协议。
数据通过多个引脚(SCLK、MISO、MOSI和SS)进行传输。
基于单片机Wifi无线通信方案
![基于单片机Wifi无线通信方案](https://img.taocdn.com/s3/m/3804b665cdbff121dd36a32d7375a417866fc1b2.png)
基于单片机Wifi无线通信方案
基于单片机的WiFi无线通信方案可以使用ESP8266或ESP32模块来实现。
ESP8266模块是一款低成本的WiFi芯片,具有高度集成的特点,支持STA(Station)、AP(Access Point)和STA+AP模式,并且可作为TCP/IP协议栈的从站与其他设备进行通信。
该模块的工作电压为3.3V,可以通过串口与单片机进行通信。
ESP32模块是ESP8266的升级版,具有更高的性能和更多的功能。
它集成了WiFi和蓝牙模块,支持蓝牙低功耗(BLE)功能。
ESP32模块也可以通过串口与单片机进行通信。
使用ESP8266或ESP32模块实现WiFi无线通信的步骤如下:
1. 连接硬件:将ESP8266或ESP32模块连接到单片机上,通常是通过串口连接。
2. 配置WiFi连接:通过代码配置WiFi连接参数,包括WiFi的SSID和密码等。
3. 建立和管理网络连接:使用模块的API函数来建立与WiFi路由器的连接,并且可以通过TCP或UDP协议与其
他设备进行数据传输。
4. 发送和接收数据:使用模块的API函数,可以向其他设
备发送数据包,并接收其他设备发送的数据包。
5. 处理数据:在单片机上对接收到的数据进行解析和处理,根据需要进行相应的处理操作。
通过上述步骤,可以实现基于单片机的WiFi无线通信方案。
具体的实现细节和代码可以根据具体的单片机和WiFi模块型号进行调整和修改。
stm32关于wifi模块的例程源码,基于tcp协议
![stm32关于wifi模块的例程源码,基于tcp协议](https://img.taocdn.com/s3/m/a787158fdb38376baf1ffc4ffe4733687f21fc7a.png)
stm32关于wifi模块的例程源码,基于tcp协议1.引言随着物联网的快速发展,无线通信技术成为连接设备的重要手段之一。
而在无线通信中,Wi-F i模块作为一种常用的无线设备,被广泛应用于各种领域。
本文将介绍使用s tm32单片机编写的基于TC P协议的W i-F i模块例程源码,以帮助读者理解和应用Wi-Fi模块的相关知识。
2.例程概述本例程通过TC P协议实现了s tm32与W i-Fi模块的通信。
在例程中,s t m32作为客户端发送指令给W i-F i模块,Wi-F i模块作为服务器接收指令并反馈响应。
通过阅读本例程源码,读者可以了解如何使用s tm32与W i-Fi模块进行基于TC P协议的通信。
3.硬件准备在使用本例程前,需要准备以下硬件设备:-s tm32单片机开发板-W i-Fi模块-串口转US B模块-杜邦线4.环境配置4.1安装开发工具首先,需要安装s tm32开发工具,如Kei l MD K。
具体安装步骤可参考官方文档。
4.2配置串口将W i-Fi模块的串口输出与st m32开发板的串口进行连接,并通过串口转US B模块连接到计算机。
确保串口设置正确,并能够成功与Wi-F i 模块进行通信。
5.源码解读以下是本例程的主要源码:#i nc lu de"s tm32f10x.h"#i nc lu de"s td io.h"#d ef in eW IF I_UA RTU S AR T1v o id WI FI_I ni t(voi d){//初始化W i-Fi模块}v o id WI FI_S en dD ata(co ns tc ha r*da ta){//发送数据给W i-Fi模块}v o id WI FI_R ec ei veD a ta(c ha r*da ta){//接收Wi-F i模块的数据}i n tm ai n(vo id){c h ar re ce iv eB uf fer[256];W I FI_I ni t();w h il e(1){W I FI_S en dD at a("He l lo,W i-Fi!");W I FI_R ec ei ve Da ta(r ec ei ve Bu ff er);p r in tf("Re ce iv edd a ta:%s\n",r ec eiv e Bu ff er);//停顿一段时间f o r(in ti=0;i<10000000;i++){//等待}}}本例程主要包含了以下几部分内容:5.1硬件初始化在`WI FI_I ni t`函数中,对W i-F i模块进行初始化设置,包括波特率、数据位、停止位等参数的配置。
无线模块NRF24L01基于C51单片机-双向通讯C语言程序(中文详解)
![无线模块NRF24L01基于C51单片机-双向通讯C语言程序(中文详解)](https://img.taocdn.com/s3/m/7a762af579563c1ec4da71c8.png)
#include <reg52.h>#include <intrins.h>/******************************************************************************** *******//* NRF24L01 的管脚定义,以及在本程序中的应用,VCC接3.3V电源,可以通过5V用电压转换芯片/*得到,NC 管脚可以接可以不接,暂时没用途。
本程序应用于51或者52单片机,是两个模块进行通讯/*成功的简单指示,现象是:模块1的 KEY1 对应模块1的LED1 和模块2的LED3 ,模块1的 KEY2 对应模/*块1的LED2 和模块2的LED4,发过来也对应。
/******************************************************************************** *******/typedef unsigned char uchar;typedef unsigned char uint;/************************************NRF24L01端口定义***********************************/sbit NC =P2^0; //没用,不接也可sbit MISO =P2^5; //数字输出(从 SPI 数据输出脚)sbit MOSI =P2^4; //数字输入(从 SPI 数据输入脚)sbit SCK =P1^7; //数字输入(SPI 时钟)sbit CE =P2^1; //数字输入(RX 或 TX 模式选择)sbit CSN =P2^2; //数字输入(SPI片选信号)sbit IRQ =P2^6; //数字输入(可屏蔽中断)/************************************按键***********************************************/sbit KEY1=P3^3;//按键S1sbit KEY2=P3^2;//按键S2/************************************数码管位选******************************************/sbit led1=P1^0; //LED0sbit led2=P1^1; //LED1sbit led3 =P1^2; //LED2sbit led4 =P1^3; //LED3sbit led5 =P1^4; //LED4/*********************************************NRF24L01*************************** ********/#define TX_ADR_WIDTH 5 // 5 uints TX address width 发送地址宽度#define RX_ADR_WIDTH 5 // 5 uints RX address width 接收地址宽度#define TX_PLOAD_WIDTH 20 // 20 uints TX payload 有效载荷装载货物#define RX_PLOAD_WIDTH 20 // 20 uints TX payloaduint const TX_ADDRESS[TX_ADR_WIDTH]= {0x34,0x43,0x10,0x10,0x01}; //本地地址uint const RX_ADDRESS[RX_ADR_WIDTH]= {0x34,0x43,0x10,0x10,0x01}; //接收地址/***************************************NRF24L01寄存器指令*******************************/#define READ_REG 0x00 // 读寄存器指令#define WRITE_REG 0x20 // 写寄存器指令#define RD_RX_PLOAD 0x61 // 读取接收数据指令#define WR_TX_PLOAD 0xA0 // 写待发数据指令#define FLUSH_TX 0xE1 // 冲洗发送 FIFO指令#define FLUSH_RX 0xE2 // 冲洗接收 FIFO指令#define REUSE_TX_PL 0xE3 // 定义重复装载数据指令#define NOP 0xFF // 保留/*************************************SPI(nRF24L01)寄存器地址***********************/#define CONFIG 0x00 // 配置收发状态,CRC校验模式以及收发状态响应方式#define EN_AA 0x01 // 自动应答功能设置#define EN_RXADDR 0x02 // 可用信道设置#define SETUP_AW 0x03 // 收发地址宽度设置#define SETUP_RETR 0x04 // 自动重发功能设置#define RF_CH 0x05 // 工作频率设置#define RF_SETUP 0x06 // 发射速率、功耗功能设置#define STATUS 0x07 // 状态寄存器#define OBSERVE_TX 0x08 // 发送监测功能#define CD 0x09 // 地址检测#define RX_ADDR_P0 0x0A // 频道0接收数据地址#define RX_ADDR_P1 0x0B // 频道1接收数据地址#define RX_ADDR_P2 0x0C // 频道2接收数据地址#define RX_ADDR_P3 0x0D // 频道3接收数据地址#define RX_ADDR_P4 0x0E // 频道4接收数据地址#define RX_ADDR_P5 0x0F // 频道5接收数据地址#define TX_ADDR 0x10 // 发送地址寄存器#define RX_PW_P0 0x11 // 接收频道0接收数据长度#define RX_PW_P1 0x12 // 接收频道0接收数据长度#define RX_PW_P2 0x13 // 接收频道0接收数据长度#define RX_PW_P3 0x14 // 接收频道0接收数据长度#define RX_PW_P4 0x15 // 接收频道0接收数据长度#define RX_PW_P5 0x16 // 接收频道0接收数据长度#define FIFO_STATUS 0x17 // FIFO栈入栈出状态寄存器设置/*************************************函数声明****************************************/void Delay(unsigned int s); //大延时void inerDelay_us(unsigned char n); //小延时void init_NRF24L01(void); //NRF24L01 初始化uint SPI_RW(uint dat); //根据SPI协议,写一字节数据到nRF24L01,同时从nRF24L01读出一字节uchar SPI_Read(uchar reg); //从reg寄存器读一字节void SetRX_Mode(void); //数据接收配置uint SPI_RW_Reg(uchar reg, uchar value); //写数据value到reg寄存器uint SPI_Read_Buf(uchar reg, uchar *pBuf, uchar uchars); //从reg寄存器读出bytes 个字节,通常用来读取接收通道数据或接收/发送地址uint SPI_Write_Buf(uchar reg, uchar *pBuf, uchar uchars); //把pBuf缓存中的数据写入到nRF24L01,通常用来写入发射通道数据或接收/发送地址unsigned char nRF24L01_RxPacket(unsigned char* rx_buf); //数据读取后放入rx_buf接收缓冲区中void nRF24L01_TxPacket(unsigned char * tx_buf); //发送 tx_buf中数据/*****************************************长延时*****************************************/void Delay(unsigned int s){unsigned int i;for(i=0; i<s; i++);for(i=0; i<s; i++);}/******************************************************************************** **********/uint bdata sta; //状态标志sbit RX_DR =sta^6; //RX_DR 为 sta 的第六位sbit TX_DS =sta^5; //TX_DS 为 sta 的第五位sbit MAX_RT =sta^4; //MAX_RT 为 sta 的第四位/******************************************************************************** **********//*延时函数/******************************************************************************** **********/void inerDelay_us(unsigned char n) //延时,us 级{for(;n>0;n--)_nop_();}/******************************************************************************** ********//*NRF24L01初始化/******************************************************************************** *******/void init_NRF24L01(void){inerDelay_us(100);CE=0; // 芯片使能CSN=1; // 禁止 SPISCK=0; // SPI时钟置低SPI_Write_Buf(WRITE_REG + TX_ADDR, TX_ADDRESS, TX_ADR_WIDTH); // 写本地地址SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, RX_ADDRESS, RX_ADR_WIDTH); // 写接收端地址SPI_RW_Reg(WRITE_REG + EN_AA, 0x01); // 频道0自动ACK应答允许SPI_RW_Reg(WRITE_REG + EN_RXADDR, 0x01); // 允许接收地址只有频道0,如果需要多频道可以参考Page21SPI_RW_Reg(WRITE_REG + RF_CH, 0); // 设置信道工作为2.4GHZ,收发必须一致SPI_RW_Reg(WRITE_REG + RX_PW_P0, RX_PLOAD_WIDTH); //设置接收数据长度,本次设置为32字节SPI_RW_Reg(WRITE_REG + RF_SETUP, 0x07); //设置发射速率为1MHZ,发射功率为最大值0dB}/******************************************************************************** ********************//*函数:uint SPI_RW(uint uchar)/*功能:NRF24L01的SPI写时序-----根据SPI协议,写一字节数据到nRF24L01,同时从nRF24L01 读出一字节/******************************************************************************** ********************/uint SPI_RW(uint dat){uint i;for(i=0;i<8;i++) // 循环8次{MOSI = (dat & 0x80); // dat的最高位输出到MOSI MSB to MOSIdat = (dat << 1); // 从右向左进一位shift next bit into MSB..SCK = 1; // 拉高SCK,nRF24L01从MOSI读入1位数据,同时从MISO输出1位数据Set SCK high..dat |= MISO; //读MISO到 dat 最低位 capture current MISO bitSCK = 0; // SCK置低..then set SCK low again}return(dat); //返回读出的一字节 return read dat}/******************************************************************************** ********************/*函数:uchar SPI_Read(uchar reg)/*功能:NRF24L01的SPI时序-----------从reg寄存器读一字节/******************************************************************************** ********************/uchar SPI_Read(uchar reg){uchar reg_val;CSN = 0; //CSN置低,开始传输数据CSN low, initialize SPI communication...SPI_RW(reg); //选择寄存器 Select register to read from..reg_val = SPI_RW(0); //然后从该寄存器读数据 ..then read registervalueCSN = 1; //CSN拉高,结束数据传输CSN high, terminate SPI communicationreturn(reg_val); //返回寄存器数据 return register value}/******************************************************************************** ********************//*功能:NRF24L01读写寄存器函数/*描述:写数据value到reg寄存器/******************************************************************************** ********************/uint SPI_RW_Reg(uchar reg, uchar value){uchar status;CSN = 0; // CSN置低,开始传输数据CSN low, init SPI transactionstatus = SPI_RW(reg); // 选择寄存器,同时返回状态字 select registerSPI_RW(value); // 然后写数据到该寄存器 ..and write value to it..CSN = 1; // CSN拉高,结束数据传输CSN high againreturn(status); // 返回状态寄存器 returnnRF24L01 status uchar}/******************************************************************************** ********************//*函数:uint SPI_Read_Buf(uchar reg, uchar *pBuf, uchar uchars)/*功能: 用于读数据,reg:为寄存器地址,pBuf:为待读出数据地址,uchars:读出数据的个数/*描述: 从reg寄存器读出bytes个字节,通常用来读取接收通道数据或接收/发送地址/******************************************************************************** ********************/uint SPI_Read_Buf(uchar reg, uchar *pBuf, uchar uchars){uint status,i;CSN = 0; //CSN置低,开始传输数据 Set CSN low, init SPI tranactionstatus = SPI_RW(reg); //选择寄存器,同时返回状态字 Select register to write to and read status ucharfor(i=0;i<uchars;i++)pBuf[i] = SPI_RW(0); //逐个字节从nRF24L01读出CSN = 1; //CSN拉高,结束数据传输return(status); //返回状态寄存器return nRF24L01 status uchar}/******************************************************************************** *************************/*函数:uint SPI_Write_Buf(uchar reg, uchar *pBuf, uchar uchars)/*功能: 用于写数据:为寄存器地址,pBuf:为待写入数据地址,uchars:写入数据的个数/*描述:把pBuf缓存中的数据写入到nRF24L01,通常用来写入发射通道数据或接收/发送地址/******************************************************************************** *************************/uint SPI_Write_Buf(uchar reg, uchar *pBuf, uchar uchars){uint status,i;CSN = 0; //CSN置低,开始传输数据status = SPI_RW(reg); //选择寄存器,同时返回状态字inerDelay_us(10);for(i=0; i<uchars; i++)SPI_RW(*pBuf++); //逐个字节写入nRF24L01CSN = 1; //CSN拉高,结束数据传输return(status); //返回状态寄存器}/******************************************************************************** ********************//*函数:void SetRX_Mode(void)/*功能:数据接收配置/******************************************************************************** ********************/void SetRX_Mode(void){CE=0;SPI_RW_Reg(WRITE_REG + CONFIG, 0x0f);//CRC使能,16位CRC校验,上电,接收模式CE = 1; // 拉高CE启动接收设备inerDelay_us(130);}/******************************************************************************** **********************//*函数:unsigned char nRF24L01_RxPacket(unsigned char* rx_buf)/*功能:数据读取后放入rx_buf接收缓冲区中/******************************************************************************** **********************/unsigned char nRF24L01_RxPacket(unsigned char* rx_buf){unsigned char revale=0;sta=SPI_Read(STATUS); // 读取状态寄存其来判断数据接收状况if(RX_DR) // 判断是否接收到数据{CE = 0; //SPI使能SPI_Read_Buf(RD_RX_PLOAD,rx_buf,TX_PLOAD_WIDTH);// read receive payload from RX_FIFO bufferrevale =1; //读取数据完成标志}SPI_RW_Reg(WRITE_REG+STATUS,sta); //接收到数据后RX_DR,TX_DS,MAX_PT都置高为1,通过写1来清楚中断标志return revale;}/******************************************************************************** ***************************/*函数:void nRF24L01_TxPacket(unsigned char * tx_buf)/*功能:发送 tx_buf中数据/******************************************************************************** **************************/void nRF24L01_TxPacket(unsigned char * tx_buf){CE=0; //StandBy I模式SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, TX_ADDRESS, TX_ADR_WIDTH); // 装载接收端地址SPI_Write_Buf(WR_TX_PLOAD, tx_buf, TX_PLOAD_WIDTH); // 装载数据SPI_RW_Reg(WRITE_REG + CONFIG, 0x0e); // IRQ收发完成中断响应,16位CRC,主发送CE=1; //置高CE,激发数据发送inerDelay_us(10);}/************************************主函数************************************************************/void main(void){unsigned char tf =0;unsigned char TxBuf[20]={0}; // 要发送的数组unsigned char RxBuf[20]={0}; // 接收的数据数组init_NRF24L01() ; //模块初始化led1=1;led2=1;led3 =1;led4 =1; //led 灯关闭Delay(1000);while(1){if(KEY1 ==0 ) //按键 1 按下{TxBuf[1] = 1 ; //赋值tf = 1 ;led1=0; //本地led 灯闪烁Delay(200);led1=1;Delay(200);}if(KEY2 ==0 ) //按键 2 按下{TxBuf[2] =1 ; //赋值tf = 1 ;led2=0; //本地led 灯闪烁Delay(200);led2=1;Delay(200);}if (tf==1) //有键按下{nRF24L01_TxPacket(TxBuf); //发送数据 Transmit Tx buffer dataTxBuf[1] = 0x00; //清零TxBuf[2] = 0x00;tf=0;Delay(1000);}SetRX_Mode(); //设置成接受模式RxBuf[1] = 0x00; //接收的数组相应位清零RxBuf[2] = 0x00;Delay(1000);nRF24L01_RxPacket(RxBuf); //接收数据if(RxBuf[1]|RxBuf[2]){if( RxBuf[1]==1){led3=RxBuf[0];}if( RxBuf[2]==1){led4=RxBuf[4];}Delay(3000); //old is '1000'}RxBuf[1] = 0x00; //清零RxBuf[2] = 0x00;led3=1; //关灯led4=1;}}本程序存在的问题:反应不够灵敏,当在按键1和按键2之间切换的时候,对方的灯闪烁会有一定的延时,另外本程序没有消除按键的抖动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(10)电源极性接反时,DS18B20不会因发热而烧毁,但不能正常工作;
3.1.2DS18B20内部存储器及温度数据格式
对于DS18B20内部存储器结构(如图3.1),它包括一个暂存RAM和一个非易失性电可擦除EERAM,后者存放报警上下限TH、TL。当改变TH、T L中的值时,数据首先被写进暂存器的第二、三字节中,主机可再读出其中内容进行验证。如果正确,当主机发送复制暂存器命令,暂存器的第二、三字节将被复制到TH、TL中,这样处理有利于确保该数据在单总线上传输的完整性[7]。
第三阶段
(3天)1、根据设计的硬件模块设计程序
(1):温湿度传感器模块
(2):串口通讯模块
(3):WIFI传输与接收模块
(4):显示电路模块
(3天)2、将设计好的模块程序烧录到单片机内,调试
第四阶段:2天
(2天)写报告
1.1时钟DS1302模块:
电路原理图:DS1302与单片机的连接也仅需要3条线:CE引脚、SCLK串行时钟引脚、I/O串行数据引脚,Vcc2为备用电源,外接32.768kHz晶振,为芯片提供计时脉冲。
(1天)1、了解课程所给的WIFI模块,并详细研读其说明书
2、复习单片机知识
(2天)1、了解温湿度传感器模块,并设计其硬件模块
2、了解lcd1602显示模块,并设计其硬件模块
(2天)1、设计整合电路:5v转3.3v电路
2、串口通讯电路
第二阶段
(4天)1、链接并完成整体电路图的设计,并检查
2、焊接电路并调试。
暂存器结构 EERAM结构
温度低字节 (BYTE0)
温度高字节 (BYTE1)
上限报警温度TH(BYTE2)
下限报警温度TL(BYTE3)
结构寄存器 (BYTE4)
保留 (BYTE5)
保留 (BYTE6)
保留 (BYTE7)
CRC ( BYTE8)
图3.1DS18B20结构框图
暂存存储器作用是在单线通信时确保数据的完整性,它由8字节组成,头两个字节表示测得的温度读数。以12位转化为例说明温度高低字节存放形式(温度的存储形式如表3.1)及计算:12位转化后得到的12位数据,存储在18B20的两个高低8位的RAM中,二进制中的前面5位是符号位。如果测得的温度大于0,这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1,再乘于0.0625才能得到实际温度[8]。
晶振电路:典型的晶振取11.0592MHz(因为可以准确地得到9600波特率和19200波特率,用于有串口通讯的场合)/12MHz(产生精确的uS级时歇,方便定时操作)
单片机:一片AT89S51/52或其他51系列兼容单片机
特别注意:对于31脚(EA/Vpp),当接高电平时,单片机在复位后从内部ROM的0000H开始执行;当接低电平时,复位后直接从外部ROM的0000H开始执行.
表3.1 温度的存储形式
高8位
S
S
S
S
S
26
25
24
低8位
23
22
21
20
2-1
2-2
2-3
2-4
S=1时表示温度为负,S=0时表示温度为正,其余低位以二进制补码形式表示,最低位为1时表示0.0625℃。温度/数字对应关系如表3.2所示。
表3.2 DS18B20温度/数字对应关系表
温度(℃)
输出的二进制码
读写时序说明:DS1302是SPI总线驱动方式。它不仅要向寄存器写入控制字,还需要读取相应寄存器的数据。控制字总是从最低位开始输出。在控制字指令输入后的下一个SCLK时钟的上升沿时,数据被写入DS1302,数据输入从最低位(
0位)开始。同样,在紧跟8位的控制字指令后的下一个SCLK脉冲的下降沿,读出DS1302的数据,读出的数据也是从最低位到最高位。数据读写时序如图
(5)测温范围:-55℃-+125℃,在-10℃-+85℃范围内精度为+0.5℃,分辨率为0.0625℃;
(6)通过编程可实现9-12位的数字读数方式。温度转换成12位数字信号所需时间最长为750ms,而在9位分辩模式工作时仅需93.75ms;
(7)用户可自设定非易失性的报警上下限值;
(8)告警搜索命令可识别和定位那些超过报警限值的DS18B20;
表3.3 控制命令
指 令
约定代码
0
0000 0000 0000 0000
0000H
-0.5
1111 1111 1111 1000
FFF8H
-10.125
1111 1111 0110 1110
FF5EH
-25.0625
1111 1110 0110 1111
FF6FH
-55
1111 1100 1001 0000
FC90H
DS18B20有六条控制命令,如表3.3所示:
南京工业大学
计算机科学与技术学院
Project3课程设计
2014-2015学年第二学期
班级:胡方强,包亚萍
袁建华,毛钱萍
2015年7月8日
1.5 WIFI模块
2.1 WIFI模块设置
2.2 串口部分设置
2.3 调试与运行过程
第一章阶段任务:
第一阶段
对应的十六进制码
+125
0000 0111 1101 0000
07D0H
+85
0000 0101 0101 0000
0550H
+25.0625
0000 0001 1001 0001
0191H
+10.125
0000 0000 1010 0010
00A2H
+0.5
0000 0000 0000 1000
0008H
1.2单片机最小系统的原理:
说明
复位电路:由电容串联电阻构成,由图并结合"电容电压不能突变"的性质,可以知道,当系统一上电,RST脚将会出现高电平,并且,这个高电平持续的时间由电路的RC值来决定.典型的51单片机当RST脚的高电平持续两个机器周期以上就将复位,所以,适当组合RC的取值就可以保证可靠的复位.
1.3温度传感器DS18B20的原理(连接到单片机最小系统,并将温度发送给WIFI模块):
3.1.1DS18B20性能特点
(1)独特的单线接口方式,只需一个接口引脚即可通信;
(2)每一个DS18B20都有一个唯一的64位ROM序列码;
(3)在使用中不需要任何外围元件;
(4)可用数据线供电,电压范围:+3.0V-+5.5 V;