2014年湖北省武汉市中考数学 试卷解析版
2014年武汉市中考数学试题(完美答案解析版)
2014年武汉市初中毕业生学业考试数学试卷一、选择题(共10小题,每小题3分,满分30分)下列各题中均有四个备选答案中,其中有且只有一个是正确的 1.在实数-2、0、2、3中,最小的实数是(中,最小的实数是( )A .-2 B .0 C .2 D .3 2.若代数式3-x 在实数范围内有意义,则x 的取值范围是(的取值范围是( )A .x ≥-3 B .x >3 C .x ≥3 D .x ≤3 3.光速约为300 000千米/秒,将数字300 000用科学记数法表示为(用科学记数法表示为( ) A .3×104 B .3×105 C .3×106 D .30×104 4.在一次中学生田径运动会上,参加调高的15名运动员的成绩如下表所示:名运动员的成绩如下表所示:成绩(m ) 1.50 1.60 1.65 1.70 1.75 1.80 人数人数1 2 4 3 3 2 那么这些运动员跳高成绩的众数是(那么这些运动员跳高成绩的众数是( )A .4 B .1.75 C .1.70 D .1.65 5.下列代数运算正确的是(.下列代数运算正确的是( ) A .(x 3)2=x 5 B .(2x )2=2x2 C .x 3·x 2=x5 D .(x +1)2=x 2+1 6.如图,线段AB 两个端点的坐标分别为A(6,6)、B(8,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的后得到线段CD ,则端点C 的坐标为(的坐标为( ) A .(3,3) B .(4,3) C .(3,1) D .(4,1) 7.如图,由4个大小相同的正方体组合而成的几何体,其俯视图是( )8.为了解某一路口某一时刻的汽车流量,小明同学10天中在同一时段统计该路口的汽车数量(单位:辆),将统计结果绘制成如下折线统计图:由此估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为(辆的天数为( ) A .9 B .10 C .12 D .15 9.观察下列一组图形中的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,……,按此规律第5个图中共有点的个数是(个图中共有点的个数是( )A .31 B .46 C .51 D .66 A B C D 10.如图,P A 、PB 切⊙O 于A 、B 两点,CD 切⊙O 于点E 交P A 、PB 于C 、D ,若⊙O 的半径为r ,△PCD 的周长等于3r ,则tan ∠APB 的值是(的值是( ) A .13125B .512C .1353D .1332二、填空题(共6小题,每小题3分,满分18分) 11.计算:-2+(-3)=_______ 12.分解因式:a 3-a =_______________ 13.如图,一个转盘被分成7个相同的扇形,颜色分别为红黄绿三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线(指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为_______ 14.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y (米)与时间t (秒)之间的函数关系如图所示,则这次越野跑的全程为______米15.如图,若双曲线xky =与边长为5的等边△AOB 的边OA 、AB 分别相交于C 、D 两点,且两点,且OC =3BD ,则实数k 的值为______ 16.如图,在四边形ABCD 中,AD =4,CD =3,∠ABC =∠ACB =∠ADC =45°,则BD 的长为______ 三、解答题(共9小题,共72分) 17.解方程:xx 322=- 18.已知直线y =2x -b 经过点(1,-1),求关于x 的不等式2x -b ≥0的解集的解集 19.如图,AC 和BD 相交于点O ,OA =OC ,OB =OD ,求证:AB ∥CD 20.如图,在直角坐标系中,A(0,4)、C(3,0) (1) ① 画出线段AC 关于y 轴对称线段AB ② 将线段CA 绕点C 顺时针旋转一个角,得到对应线段CD ,使得AD ∥x 轴,请画出线段CD (2) 若直线y =kx 平分(1)中四边形ABCD 的面积,请直接写出实数k 的值的值21.袋中装有大小相同的2个红球和2个绿球个绿球(1) 先从袋中摸出1个球后放回,混合均匀后再摸出1个球个球①求第一次摸到绿球,第二次摸到红球的概率个红球的概率②求两次摸到的球中有1个绿球和1个红球的概率(2) 先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果球的概率是多少?请直接写出结果22.如图,AB是⊙O的直径,C、P是弧AB上两点,AB=13,AC=5 (1) 如图(1),若点P是弧AB的中点,求P A的长的长(2) 如图(2),若点P是弧BC的中点,求P A得长得长23.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:的相关信息如下表:(天) 1≤x<50 50≤x≤90 时间x(天)售价(元/件)件) x+40 90 每天销量(件) 200-2x每天销量(件)已知该商品的进价为每件30元,设销售该商品的每天利润为y元(1) 求出y与x的函数关系式的函数关系式(2) 问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3) 该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果元?请直接写出结果 24.如图,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,动点P从点B出发,在BA边上以每秒5 cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接P Q(1) 若△BP Q与△ABC相似,求t的值的值(2) 连接A Q、CP,若A Q⊥CP,求t的值的值(3) 试证明:P Q的中点在△ABC的一条中位线上的一条中位线上25.如图,已知直线AB :y =kx +2k +4与抛物线y =21x 2交于A 、B 两点两点(1) 直线AB 总经过一个定点C ,请直接写出点C 坐标坐标(2) 当k =-21时,在直线AB 下方的抛物线上求点P ,使△ABP 的面积等于5 (3) 若在抛物线上存在定点D 使∠ADB =90°,求点D 到直线AB 的最大距离的最大距离2014年武汉市中考数学试卷答案解析版1、考点:、考点:实数大小比较实数大小比较.分析:根据正数大于0,0大于负数,可得答案.大于负数,可得答案. 解答:解:解答:解:-2-2-2<<0<2<3,最小的实数是,最小的实数是-2-2-2,, 故选:A .点评:本题考查了实数比较大小,正数大于0,0大于负数是解题关键.大于负数是解题关键. 2、考点:、考点:二次根式有意义的条件二次根式有意义的条件.分析:先根据二次根式有意义的条件得出关于x 的不等式,求出x 的取值范围即可.的取值范围即可. 解答:解:∵使x-3 x-3 在实数范围内有意义,在实数范围内有意义,在实数范围内有意义,∴x-x-3≥0,3≥0,3≥0, 解得x≥3.x≥3.故选C . 点评:本题考查的是二次根式有意义的条件,即被开方数大于等于0. 3、考点:、考点:科学记数法—表示较大的数科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<1≤|a|<101010,,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,时,小数点移动了多少位,n n 的绝对值与小数点移动的位数相同.当原数绝对值>位数相同.当原数绝对值>11时,时,n n 是正数;当原数的绝对值<是正数;当原数的绝对值<11时,时,n n 是负数.是负数.解答:解:将300 000用科学记数法表示为:3×105. 故选B .点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<1≤|a|<101010,,n 为整数,表示时关键要正确确定a 的值以及n 的值.的值.4、考点:、考点:众数众数.分析:根据众数的定义找出出现次数最多的数即可.分析:根据众数的定义找出出现次数最多的数即可. 解答:解:∵解答:解:∵1.651.65出现了4次,出现的次数最多,次,出现的次数最多,∴这些运动员跳高成绩的众数是1.651.65;; 故选D .点评:此题考查了众数,用到的知识点是众数的定义,众数是一组数据中出现次数最多的数. 5、考点:、考点:幂的乘方与积的乘方幂的乘方与积的乘方;同底数幂的乘法;完全平方公式.分析:根据幂的乘方与积的乘方、同底数幂的乘法法则及完全平方公式,分别进行各选项的判断即可.项的判断即可.解答:解:解答:解:A A 、(、(x x 3)2=x 6,原式计算错误,故本选项错误;,原式计算错误,故本选项错误;B 、(、(2x 2x 2x))2=4x 2,原式计算错误,故本选项错误;,原式计算错误,故本选项错误;C 、x 3•x 2=x 5,原式计算正确,故本选项正确;,原式计算正确,故本选项正确;D 、(、(x+1x+1x+1))2=x 2+2x+1+2x+1,原式计算错误,故本选项错误;,原式计算错误,故本选项错误;,原式计算错误,故本选项错误;故选C . 点评:本题考查了幂的乘方与积的乘方、同底数幂的运算,掌握运算法则是关键.点评:本题考查了幂的乘方与积的乘方、同底数幂的运算,掌握运算法则是关键. 6、考点:、考点:位似变换位似变换;坐标与图形性质.分析:利用位似图形的性质结合两图形的位似比进而得出C 点坐标.点坐标. 解答:解:∵线段AB 的两个端点坐标分别为A (6,6),),B B (8,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD CD,,∴端点C 的坐标为:(的坐标为:(33,3).). 故选:A . 点评:此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.是解题关键.7、考点:、考点:简单组合体的三视图简单组合体的三视图.分析:找到从上面看所得到的图形即可.分析:找到从上面看所得到的图形即可.解答:解:从上面看可得到一行正方形的个数为3,故选D .点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图. 8、考点:、考点:折线统计图折线统计图;用样本估计总体.分析:先由折线统计图得出10天中在同一时段通过该路口的汽车数量超过200辆的天数,求出其频率,再利用样本估计总体的思想即可求解.求出其频率,再利用样本估计总体的思想即可求解. 解答:解:由图可知,解答:解:由图可知,1010天中在同一时段通过该路口的汽车数量超过200辆的有4天,频率为:410=0.4 =0.4,∴估计一个月(,∴估计一个月(,∴估计一个月(3030天)该时段通过该路口的汽车数量超过200辆的天数为:30×0.4=12(天).辆的天数为:30×0.4=12(天). 故选C .点评:本题考查了折线统计图及用样本估计总体的思想,读懂统计图,从统计图中得到必要的信息是解决问题的关键.必要的信息是解决问题的关键.9、考点:规律型:图形的变化类、考点:规律型:图形的变化类 分析:由图可知:其中第1个图中共有1+11+1××3=4个点,第2个图中共有1+11+1××3+23+2××3=10个点,第3个图中共有1+11+1××3+23+2××3+33+3××3=19个点,…由此规律得出第n 个图有1+11+1××3+23+2××3+33+3××3+3+……+3n 个点.个点. 解答:解:第1个图中共有1+11+1××3=4个点,第2个图中共有1+11+1××3+23+2××3=10个点,个点,第3个图中共有1+11+1××3+23+2××3+33+3××3=19个点,… 第n 个图有1+11+1××3+23+2××3+33+3××3+3+……+3n 个点.个点. 所以第5个图中共有点的个数是1+11+1××3+23+2××3+33+3××3+43+4××3+53+5××3=463=46.. 故选:B .点评:此题考查图形的变化规律,找出图形之间的数字运算规律,利用规律解决问题.点评:此题考查图形的变化规律,找出图形之间的数字运算规律,利用规律解决问题. 1010、考点:、考点:、考点:切线的性质切线的性质;相似三角形的判定与性质;锐角三角函数的定义.分析:(分析:(11)连接OA OA、、OB OB、、OP OP,延长,延长BO 交PA 的延长线于点F .利用切线求得CA=CE CA=CE,,DB=DE DB=DE,,PA=PB 再得出PA=PB=32 r r.利用.利用Rt Rt△△BFP BFP∽∽RT RT△△OAF 得出AF=23FB FB,在,在RT RT△△FBP 中,利用勾股定理求出BF BF,再求,再求tan tan∠∠APB 的值即可.的值即可.解答:解:连接OA OA、、OB OB、、OP OP,延长,延长BO 交PA 的延长线于点F .∵PA PA,,PB 切⊙切⊙O O 于A 、B 两点,两点,CD CD 切⊙切⊙O O 于点E ∴∠∴∠OAP=OAP=OAP=∠OBP=90°,∠OBP=90°,∠OBP=90°,CA=CE CA=CE CA=CE,,DB=DE DB=DE,,PA=PB PA=PB,, ∵△∵△PCD PCD 的周长的周长=PC+CE+DE+PD=PC+AC+PD+DB=PA+PB=3r =PC+CE+DE+PD=PC+AC+PD+DB=PA+PB=3r =PC+CE+DE+PD=PC+AC+PD+DB=PA+PB=3r,,∴PA=PB=.在Rt Rt△△BFP 和Rt Rt△△OAF 中,中,,∴Rt Rt△△BFP BFP∽∽RT RT△△OAF OAF.. ∴===,∴AF=FB FB,,在Rt Rt△△FBP 中,中, ∵PF 2﹣PB 2=FB 2∴(∴(PA+AF PA+AF PA+AF))2﹣PB 2=FB 2∴(r+BF BF))2﹣()2=BF 2,解得BF=r ,∴tan tan∠∠APB===,故选:B .点评:本题主要考查了切线的性质,相似三角形及三角函数的定义,解决本题的关键是切线与相似三角形相结合,找准线段及角的关系.切线与相似三角形相结合,找准线段及角的关系. 1111、考点:有理数的加法、考点:有理数的加法、考点:有理数的加法 分析:根据有理数的加法法则求出即可.分析:根据有理数的加法法则求出即可. 解答:解:(﹣解答:解:(﹣22)+(﹣(﹣33)=﹣5, 故答案为:﹣5.点评:本题考查了有理数加法的应用,注意:同号两数相加,取原来的符号,并把绝对值相加.值相加.1212、考点:提公因式法与公式法的综合运用、考点:提公因式法与公式法的综合运用、考点:提公因式法与公式法的综合运用分析:先提取公因式a ,再对余下的多项式利用平方差公式继续分解.,再对余下的多项式利用平方差公式继续分解.解答:解:解答:解:a a 3﹣a=a a=a((a 2﹣1)=a =a((a+1a+1)()()(a a ﹣1).). 故答案为:a (a+1)(a ﹣1).点评:本题考查了提公因式法,本题考查了提公因式法,公式法分解因式,公式法分解因式,公式法分解因式,提取公因式后利用平方差公式进行二提取公因式后利用平方差公式进行二次分解,注意要分解彻底.次分解,注意要分解彻底.1313、考点:概率公式、考点:概率公式、考点:概率公式分析:由一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,红色的有3个扇形,直接利用概率公式求解即可求得答案.形,直接利用概率公式求解即可求得答案.解答:解:∵一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,红色的有3个扇形,∴指针指向红色的概率为:. 故答案为:.点评:此题考查了概率公式的应用.注意用到的知识点为:概率点评:此题考查了概率公式的应用.注意用到的知识点为:概率==所求情况数与总情况数之比.数之比.1414、考点:一次函数的应用、考点:一次函数的应用、考点:一次函数的应用分析:设小明的速度为a 米/秒,小刚的速度为b 米/秒,由行程问题的数量关系建立方程组求出其解即可.程组求出其解即可.解答:解:设小明的速度为a 米/秒,小刚的速度为b 米/秒,由题意,得秒,由题意,得,解得:,∴这次越野跑的全程为:∴这次越野跑的全程为:1600+3001600+3001600+300××2=2200米.米. 故答案为:2200.点评:本题考查了行程问题的数量关系的运用,本题考查了行程问题的数量关系的运用,二元一次方程组的解法的运用,二元一次方程组的解法的运用,二元一次方程组的解法的运用,解答时解答时由函数图象的数量关系建立方程组是关键.由函数图象的数量关系建立方程组是关键.1515、考点:反比例函数图象上点的坐标特征;等边三角形的性质、考点:反比例函数图象上点的坐标特征;等边三角形的性质、考点:反比例函数图象上点的坐标特征;等边三角形的性质分析:过点C 作CE CE⊥⊥x 轴于点E ,过点D 作DF DF⊥⊥x 轴于点F ,设OC=3x OC=3x,则,则BD=x BD=x,分别,分别表示出点C 、点D 的坐标,代入函数解析式求出k ,继而可建立方程,解出x 的值后即可得出k 的值.的值.解答:解:过点C 作CE ⊥x 轴于点E ,过点D 作DF ⊥x 轴于点F ,设OC=3x ,则BD=x ,在Rt △OCE 中,∠COE=60°,则OE=x ,CE=x ,则点C 坐标为(x ,x ),),在Rt △BDF 中,BD=x ,∠DBF=60°,则BF=x ,DF=x ,则点D 的坐标为(5﹣x ,x ),),将点C 的坐标代入反比例函数解析式可得:k=x 2, 将点D 的坐标代入反比例函数解析式可得:k=x ﹣x 2,则x 2=x ﹣x 22, 解得:x 1=1,x 2=0(舍去),(舍去), 故k=×12=.故答案为:.点评:本题考查了反比例函数图象上点的坐标特征,解答本题关键是利用k 的值相同建立方程,有一定难度.立方程,有一定难度.1616、考点:全等三角形的判定与性质;勾股定理;等腰直角三角形、考点:全等三角形的判定与性质;勾股定理;等腰直角三角形、考点:全等三角形的判定与性质;勾股定理;等腰直角三角形分析:根据等式的性质,可得∠可得∠BAD BAD 与∠与∠CAD CAD CAD′的关系,′的关系,根据SAS SAS,,可得△可得△BAD BAD 与△与△CAD CAD CAD′′的关系,根据全等三角形的性质,可得BD 与CD CD′的关系,根据勾股定理,可得′的关系,根据勾股定理,可得答案.答案.解答:解:作AD ′⊥AD ,AD ′=AD ,连接CD ′,DD ′,如图:,′,如图:,∵∠BAC+∠CAD=∠DAD ′+∠CAD ,即∠BAD=∠CAD ′,′,在△BAD 与△CAD ′中,′中,,∴△BAD ≌△CAD ′(SAS ),), ∴BD=CD ′.∠DAD ′=90° 由勾股定理得DD ′=,∠D ′DA+∠ADC=90° 由勾股定理得CD ′=, ∴BD=CD ′=, 故答案为:.点评:本题考查了全等三角形的判定与性质,本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,利用了全等三角形的判定与性质,利用了全等三角形的判定与性质,勾股定勾股定理,作出全等图形是解题关键.理,作出全等图形是解题关键.1717、考点:解分式方程、考点:解分式方程、考点:解分式方程分析:分式方程去分母转化为整式方程,分式方程去分母转化为整式方程,求出整式方程的解得到求出整式方程的解得到x 的值,经检验即可得到分式方程的解.到分式方程的解. 解答:解:去分母得:解答:解:去分母得:2x=3x 2x=3x 2x=3x﹣﹣6,解得:解得:x=6x=6x=6,,经检验x=6是分式方程的解.是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.化为整式方程求解.解分式方程一定注意要验根.1818、考点:一次函数与一元一次不等式、考点:一次函数与一元一次不等式、考点:一次函数与一元一次不等式分析:把点(分析:把点(11,﹣,﹣11)代入直线y=2x y=2x﹣﹣b 得到b 的值,再解不等式.的值,再解不等式. 解答:解:把点(解答:解:把点(11,﹣,﹣11)代入直线y=2x y=2x﹣﹣b 得,﹣得,﹣1=21=21=2﹣﹣b ,解得,解得,b=3b=3b=3..函数解析式为y=2x y=2x﹣﹣3.解2x 2x﹣﹣3≥0得,得,x x ≥.点评:本题考查了一次函数与一元一次不等式,要知道,点的坐标符合函数解析式.点评:本题考查了一次函数与一元一次不等式,要知道,点的坐标符合函数解析式.1919、考点:全等三角形的判定与性质;平行线的判定、考点:全等三角形的判定与性质;平行线的判定、考点:全等三角形的判定与性质;平行线的判定分析:根据边角边定理求证△分析:根据边角边定理求证△ODC ODC ODC≌△≌△≌△OBA OBA OBA,可得∠,可得∠,可得∠C=C=C=∠∠A (或者∠(或者∠D=D=D=∠∠B ),即可证明DC DC∥∥AB AB..解答:证明:∵在△ODC 和△OBA 中,中,∵,∴△ODC ≌△OBA (SAS ),),∴∠C=∠A (或者∠D=∠B )(全等三角形对应角相等),)(全等三角形对应角相等), ∴DC ∥AB (内错角相等,两直线平行).(内错角相等,两直线平行).点评:此题主要考查学生对全等三角形的判定与性质和平行线的判定的理解和掌握,此题主要考查学生对全等三角形的判定与性质和平行线的判定的理解和掌握,解解答此题的关键是利用边角边定理求证△ODC ≌△OBA .2020、考点:作图、考点:作图-旋转变换;作图-轴对称变换轴对称变换分析:(1)①根据关于y 轴对称的点的横坐标互为相反数确定出点B 的位置,然后连接AB 即可;②根据轴对称的性质找出点A 关于直线x=3的对称点,即为所求的点D ;(2)根据平行四边形的性质,平分四边形面积的直线经过中心,然后求出AC的中点,代入直线计算即可求出k 值.值.解答:解:(1)①如图所示;)①如图所示;②直线CD 如图所示;如图所示;(2)∵A (0,4),C (3,0),),∴平行四边形ABCD 的中心坐标为(,2),), 代入直线得,k=2,解得k=.点评:本题考查了利用旋转变换作图,本题考查了利用旋转变换作图,利用轴对称变换作图,利用轴对称变换作图,利用轴对称变换作图,还考查了平行四边形的判还考查了平行四边形的判定与性质,是基础题,要注意平分四边形面积的直线经过中心的应用.定与性质,是基础题,要注意平分四边形面积的直线经过中心的应用.2121、考点:列表法与树状图法、考点:列表法与树状图法、考点:列表法与树状图法分析:(1)①首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第一次摸到绿球,第二次摸到红球的情况,再利用概率公式即可求得答案;次摸到绿球,第二次摸到红球的情况,再利用概率公式即可求得答案; ②首先由①求得两次摸到的球中有1个绿球和1个红球的情况,再利用概率公式即可求得答案;率公式即可求得答案;(2)由先从袋中摸出1个球后不放回,再摸出1个球,共有等可能的结果为:4×3=12(种),且两次摸到的球中有1个绿球和1个红球的有8种情况,直接利用概率公式求解即可求得答案.直接利用概率公式求解即可求得答案.解答:解:(1)①画树状图得:)①画树状图得:∵共有16种等可能的结果,第一次摸到绿球,第二次摸到红球的有4种情况,种情况,∴第一次摸到绿球,第二次摸到红球的概率为:=;②∵两次摸到的球中有1个绿球和1个红球的有8种情况,种情况, ∴两次摸到的球中有1个绿球和1个红球的为:=;(2)∵先从袋中摸出1个球后不放回,再摸出1个球,共有等可能的结果为:4×3=12(种),且两次摸到的球中有1个绿球和1个红球的有8种情况,种情况, ∴两次摸到的球中有1个绿球和1个红球的概率是:=. 点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.所求情况数与总情况数之比.2222、、考点:相似三角形的判定与性质;相似三角形的判定与性质;勾股定理;勾股定理;勾股定理;等腰直角三角形;等腰直角三角形;等腰直角三角形;圆心角、圆心角、圆心角、弧、弧、弧、弦的关系;弦的关系;圆周角定理圆周角定理分析:(1)根据圆周角的定理,∠APB=90°,p 是弧AB 的中点,所以三角形APB 是等腰三角形,利用勾股定理即可求得.腰三角形,利用勾股定理即可求得. (2)根据垂径定理得出OP 垂直平分BC ,得出OP ∥AC ,从而得出△ACB ∽△0NP ,根据对应边成比例求得ON 、AN 的长,利用勾股定理求得NP 的长,进而求得PA .解答:解:(1)如图(1)所示,连接PB ,∵AB 是⊙O 的直径且P 是的中点,的中点,∴∠PAB=∠PBA=45°,∠APB=90°,又∵在等腰三角形△ABC 中有AB=13, ∴PA===.(2)如图(2)所示:连接BC .OP 相交于M 点,作PN ⊥AB 于点N ,∵P 点为弧BC 的中点,的中点, ∴OP ⊥BC ,∠OMB=90°,又因为AB 为直径为直径 ∴∠ACB=90°, ∴∠ACB=∠OMB , ∴OP ∥AC ,∴∠CAB=∠POB ,又因为∠ACB=∠ONP=90°, ∴△ACB ∽△0NP ∴=,又∵AB=13 AC=5 OP=,代入得代入得 ON=,∴AN=OA+ON=9 ∴在RT △OPN 中,有NP 2=0P 2﹣ON 2=36 在RT △ANP 中 有PA===3∴PA=3.点评:本题考查了圆周角的定理,垂径定理,勾股定理,等腰三角形判定和性质,相似三角形的判定和性质,作出辅助线是本题的关键.三角形的判定和性质,作出辅助线是本题的关键.2323、考点:二次函数的应用、考点:二次函数的应用、考点:二次函数的应用分析:(1)根据单价乘以数量,可得利润,可得答案;)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,分别得出最大值,根据有理数的比较,可得答案;)根据分段函数的性质,分别得出最大值,根据有理数的比较,可得答案; (3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.等式,根据解不等式组,可得答案.解答:解:(1)当1≤x <50时,y=(200﹣2x )(x+40﹣30)=﹣2x 2+180x+200,当50≤x≤90时,y=(200﹣2x )(90﹣30)=﹣120x+12000,综上所述:y=;(2)当1≤x <50时,二次函数开口下,二次函数对称轴为x=45,当x=45时,y 最大=﹣2×452+180×45+2000=6050, 当50≤x≤90时,y 随x 的增大而减小,的增大而减小,当x=50时,y 最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;元;(3)当20≤x≤60时,每天销售利润不低于4800元.元.点评:本题考查了二次函数的应用,本题考查了二次函数的应用,利用单价乘以数量求函数解析式,利用单价乘以数量求函数解析式,利用单价乘以数量求函数解析式,利用了函数的性利用了函数的性质求最值.质求最值.2424、考点:相似形综合题、考点:相似形综合题、考点:相似形综合题分析:(1)分两种情况讨论:①当△BPQ ∽△BAC 时,=,当△BPQ ∽△BCA 时,=,再根据BP=5t ,QC=4t ,AB=10cm ,BC=8cm ,代入计算即可;,代入计算即可;(2)过P 作PM ⊥BC 于点M ,AQ ,CP 交于点N ,则有PB=5t ,PM=3t ,MC=8﹣4t ,根据△ACQ ∽△CMP ,得出=,代入计算即可;,代入计算即可;(3)作PE ⊥AC 于点E ,DF ⊥AC 于点F ,先得出DF=,再把QC=4t , PE=8﹣BM=8﹣4t 代入求出DF ,过BC 的中点R 作直线平行于AC ,得,得RC=DF ,D 在过R 的中位线上,从而证PQ 的中点在△ABC 一条中位线上.一条中位线上.解答:解:(1)①当△BPQ ∽△BAC 时,时,∵=,BP=5t ,QC=4t ,AB=10cm ,BC=8cm , ∴=,∴t=1;②当△BPQ ∽△BCA 时,时,∵=, ∴=, ∴t=,∴t=1或时,△BPQ 与△ABC 相似;相似; (2)如图所示,如图所示,过过P 作PM ⊥BC 于点M ,AQ ,CP 交于点N ,则有PB=5t ,PM=3t ,MC=8﹣4t ,∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM 且∠ACQ=∠PMC=90°,∴△ACQ ∽△CMP ,∴=,∴=,解得:t=;(3)如图,仍有PM ⊥BC 于点M ,PQ 的中点设为D 点,再作PE ⊥AC 于点E ,DF ⊥AC 于点F ,∵∠ACB=90°,∴DF 为梯形PECQ 的中位线,的中位线,∴DF=,∵QC=4t ,PE=8﹣BM=8﹣4t ,∴DF==4,∵BC=8,过BC 的中点R 作直线平行于AC ,∴RC=DF=4成立,成立,∴D 在过R 的中位线上,的中位线上,∴PQ 的中点在△ABC 的一条中位线上.的一条中位线上.点评:此题考查了相似形综合,此题考查了相似形综合,用到的知识点是相似三角形的判定与性质、用到的知识点是相似三角形的判定与性质、用到的知识点是相似三角形的判定与性质、中位线的性中位线的性质等,关键是画出图形作出辅助线构造相似三角形,注意分两种情况讨论.质等,关键是画出图形作出辅助线构造相似三角形,注意分两种情况讨论.2525、考点:二次函数综合题;解一元二次方程、考点:二次函数综合题;解一元二次方程-因式分解法;根与系数的关系;勾股定理;相似三角形的判定与性质相似三角形的判定与性质分析:(1)要求定点的坐标,只需寻找一个合适x ,使得y 的值与k 无关即可.无关即可.。
2014年湖北省武汉市中考数学试卷(教师版) 电子版
1+1×3+2×3+3×3+…+3n 个点.
【解答】方法一:
解:第 1 个图中共有 1+1×3=4 个点,
第 2 个图中共有 1+1×3+2×3=10 个点,
第 3 个图中共有 1+1×3+2×3+3×3=19 个点,
…
第 n 个图有 1+1×3+2×3+3×3+…+3n 个点.
所以第 5 个图中共有点的个数是 1+1×3+2×3+3×3+4×3+5×3=46.
中 1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.
第 1 页(共 30 页)
4.(3 分)在一次中学生田径运动会上,参加跳高的 15 名运动员的成绩如表:
成绩(m) 1.50
1.60
1.65
1.70
1.75
1.80
人数
1
2
4
3
3
2
那么这些运动员跳高成绩的众数是( )
故选:A.
【点评】本题考查了实数比较大小,正数大于 0,0 大于负数是解题关键.
。
行
举
份
2.(3 分)若
在实数范围内有意义,则
x
的取值范围是( ) 3-5月 在 般 一 试
考
平
水
育
体
业
学
中
初
。
算
计
间
时
地
当
A.x>0
B.x>3
C.x≥3
按 , 一 统 不 市
D.x≤3
省
国
2013、2014武汉中考数学试卷分析
2013武汉中考数学试卷分析熊明军一、试卷考点分析项目题类试卷2013年武汉中考试卷考点难度★识记理解★★基础运用★★★综合运用题号考查内容涉及考点选择题1 有理数比较大小★2 二次根式有意义条件★3 不等式组解不等式组★4 概率概念★5 一元二次方程根与系数关系★6 角度计算等腰三角形★7 三视图三视图★8 找规律图形规律★9 统计条形统计图、扇形统计图★★10 圆圆的内容★★填空题11 三角函数值特殊值记忆★12 统计众数★13 有理数科学记数法★14 一次函数应用一次函数与行程问题★15 函数与几何综合反比例函数与平行四边形★★16 四边形三角形全等、最值★★★解答题17 分式解分式方程★18 一次函数及其不等式解析式与解不等式★19 全等全等证明★20 概率求概率的方法★+★21 作图操作变换、最短路径★+★★22 圆证明与计算★+★★★23 二次函数应用★+★★+★★24 几何证明相似★+★★+★★25 二次函数综合运用★+★★★+★★★二、试卷分析:2013年武汉中考数学试题考点完全按照考纲要求,没有出现超出考试范围的题目。
本套试卷整体难度偏大,计算要求偏高,体现在16题,22题第二问和25题第二问,对学生知识的综合运用能力要求很高。
1-9题和四调、五调考点和顺序完全一致,难度也没有任何变化,主要考察学生相应知识点的识记与简单应用。
第10题和四调、五调考察的几何最值问题有所不同,改为用字母表示弧长的题目。
而将最值问题移到填空题第16题,取代了之前调考中的多解几何题。
对于字母运算与表示结果与高中要求接轨,是今后数学学习的一个方向。
填空题11-15题也和调考中的考察顺序一致,11-13考察学生对特殊三角函数值的识记,12题考察数据的收集与整理中众数的概念,13题考察比较基础的科学记数法。
14题考察学生对于一次函数的理解与应用,看懂题目加以分析,对大部分学生来讲都不是难题。
15题依旧考察反比例函数与四边形的综合题目,利用设未知点坐标来求解是这道题目的关键。
2014年武汉市数学考试题型分析
2014年中考数学题型分析今年是数学实验课标和实验教材实施评价的最后一年,明年就是新课标及新教材的评价了。
因此,今年不作大的变化和调整。
本着保持稳定,局部微调,适度创新的原则,2014年的中考数学考试结构、分值、难度系数不变,(试题按其难易程度分为容易题、中等题和难题,全卷容易题∶中等题∶难题约为7∶2∶1,试卷难度系数约为0.65左右)局部作了些调整。
一、有如下几个方面的变化:1、选择题第3题由原来的解不等式变为考查位似。
2、选择题第4题与填空题第13题对调,由原来的考查概率变为考查统计。
3、选择题第5、6题变为有关代数的计算。
4、原来的第6题移到第7题。
5、选择题第8题与第9题对调。
6、填空题第11题由原来的求三角函数的值变为因式分解。
7、填空题第13题由原来的考查统计变为考查概率。
8、解答题原21题变为第20题,原来的20题单纯考查概率,现变为概率统计综合。
二、2014年武汉市中考数学学科达成共识如下:●第1-8题,第11、12、13题,第17、18、19题,第20题(1)问共约53分左右的基础题,与中考说明样题保持稳定与一致;●位似要考查,第3题只考查简单的位似,不超过样题的难度;●第4题侧重考统计量,第8题侧重考统计图表;●第5题考查整式运算,第6题考查实数运算;●第9题找规律试题尽量给出图形;●第10题考查圆与三角函数的综合问题,有实际背景;●不设置多结论的选择题;●第11、12题就样题这个样子,不超过样题的难度,不涉及负指数和有效数字;●第13题只考查一步概率;●第21题是统计与概率的综合问题,其中只考查两步概率;●第22题整题难度大,第一问适当降低难度,力争将难度控制在0.5左右,因为近三年中考中此题略难;●尽量控制试题背景的文字阅读量;●二次函数的解析式最后答案可以是一般式,也可以是顶点式,不能是交点式;也不要用交点式解题;●第24、25题考查知识点分别是几何综合、几何与代数的综合,具备选拔功能。
2014年中考数学试卷分析-1
2014武汉中考数学试卷分析2014武汉中考数学科目的考试已结束,武汉中高考数学研究中心对武汉市中考数学试卷进行分析,希望能对考生、家长有所帮助,也希望对2015中考考生提供借鉴。
一、试卷整体分析2014年中考是数学实验课标和实验教材实施评价的最后一年,明年就是新课标及新教材的评价了。
因此,今年的中考题中规中矩,难度平缓,没有很大的变化和调整。
试卷的命制遵循着基础性原则、现实性原则、有效性原则,保持着源于课本,而有高于课本的特点,公正、客观、全面、准确地评价学生通过初中教育阶段的数学学习所获得的发展状况。
试题包括选择题、填空题和解答题三种题型。
从数与代数、空间与图形、统计与概率、实践与综合应用四个领域进行了考察。
在试卷中所占的比重与它们在数学中所占课时的百分比大致相同。
数与代数约占45%、空间与图形约占40%、统计与概率约占15%,实践与综合应用渗透在其它三个领域之中。
(数与代数:(12章,约占43.2%)空间与图形:(13章,约占42.8%)统计与概率:(4章,约占14%))试题按其难易程度分为容易题、中等题和难题,全卷容易题∶中等题∶难题约为7∶2∶1,试卷难度系数约为0.65左右。
二、试卷考点分析整张试卷的考点分布保持稳定,变化不大,具体分析如下:三、典型试题分析:选择题1-9题,填空题11-13题,解答题17-21题这17道题目考点、顺序与之前调考基本保持一致(选择题第三题和填空题第二题所考知识点对调),难度也没有任何变化,主要考察学生相应知识点的识记与简单应用。
第10题和四调、五调考察的几何最值问题有所不同,考察的是圆与三角函数综合的一道计算题,这和考试说明中的样题基本一致只是缺乏实际背景。
该题是图形是常见的基本图形,题目的命制结合了2014四月调考的22题(2),如果考生在考前好好地研究了四月考试那么这题可以轻松拿下。
15题考察了反比例和几何的小综合,难度不大,只要学生用好等边三角形的性质和反比例K值得意义,建立方程可以轻松解答16题实际考察的是勾股定理和旋转的综合,八下的常见题型,由于是个陈题,笔者不做评价(P.S.2011年北京市海淀区中考数学二模)解答题22题,笔者认为是到质量不错的题目,难度不大,入口多,坡度缓,综合的考察学生对条件的处理能力,学生需要具备从条件出发,看可知,推向未的能力,第一问的原型为九上课本P81的例题,运用勾股和垂径定理建立方程轻松解决。
武汉2014中考数学试题及答案
武汉2014中考数学试题及答案
中考频道第一时间为大家发布2014武汉数学中考真题及中考答案。
中考网温馨提示,各位考生在经过了初始的洗礼后,可以进行适当的放松。
2014年武汉中考数学试题及答案发布入口
中考网提醒:考试用品要带齐
中考期间,考生要带齐以下物品:准考证、蓝(黑)色墨水钢笔、圆珠笔、水笔、铅笔(作图用)、圆规、直尺、三角尺、橡皮等。
思想政治考试开卷,可携带教材及相关资料。
另外,书包、书籍、簿本、纸张、可擦拭的水笔和计算器等不准带入考场。
严禁携带寻呼机、手机等各种无线通讯工具、电子存储记忆录放设备以及涂改液、修正带等物品进入考场。
英语听力收听设备由考点准备,考生不得携带、使用收音设备。
2014年武汉市中考数学试题(样卷)(word版含答案).
2014年武汉市初中毕业生学业考试数学试卷(样卷第Ⅰ卷(选择题,共30分一、选择题(共10小题,每小题3分,共30分下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑. 1.在0,1,-1,-2这四个数中,最小的一个数是( A .2.5 B .-2.5 C .0 D .3 2.函数12+=x y 中自变量x 的取值范围是(A .x ≥21 B .x ≥21- C .x <21 D .x <21- 3.如图,正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,相似比为1∶2,点A 的坐标为(1,0,则E 点的坐标为( A .(2,0 B .(23,23C .(2,2D .(2,2 4则这20户家庭该月用电量的众数和中位数分别是(A .180,160B .160,180C .160,160D .180,180 5.下列计算正确的是( A .(((5322a a a -=-+- B .(((632a a a -=-⋅-C .(623a a-=- D .(((336a a a -=-÷-6.下列计算错误的是(A .102515=+-B .228=C .13334=-D .1165-=--7.如图,由四个棱长为1的立方块组成的几何体的左视图是(A .B .C .D .8.对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分共4个等级.将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是(A .2.25B .2.5C .2.95D .342.5%3分2分1分30%4分成绩频数扇形统计图成绩频数条形统计图分数9.如下左图,矩形ABCD 的面积为20cm 2,对角线交于点O ,以AB 、AO 为邻边作平行四边形AOC 1B ,对角线交于O 1;以AB 、AO 1为邻边作平行四边形AO 1C 2B ;…依此类推,则平行四边形AO 4C 5B 的面积为( A .2645cm B .285cm C .2165cm D .2325cm10.如图,铁路MN 和公路PQ 在点O 处交汇,∠QON=30°.公路PQ 上A 处距离O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以72千米/时的速度行驶时,A 处受噪音影响的时间为(A .12秒.B .16秒.C .20秒.D .24秒.第Ⅱ卷(非选择题,共90分二、填空题(共6小题,每小题3分,共18分11.分解因式:m mn mn 962++= .12.过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨.把数3120000用科学记数法表示为 .13.如图,一个正六边形转盘被分成6个全等的正三角形,任意旋转这个转盘1次,当旋转停止时,指针指向阴影区域的概率是 .14.如图,一个装有进水管和出水管的容器,从某时刻起只打开进水管进水,经过一段时间,再打开出水管放水.至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y (单位:升与时间x (单位:分钟之间的函数关系如图所示.关停进水管后,经过分钟, 容器中的水恰好放完.15.如图,半径为5的⊙P 与轴交于点M (0,-4,N (0,-10,函数(0ky x x=<的图像过点P , 则k = . 16.如图在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,D 为斜边AB 上一点,以CD 、CB 为边作□CDEB ,当AD = 时,□CDEB 为菱形.三、解答题(共9小题,共72分下列各题需要在答题卷指定位置写出文字说明、证明过程、演算步骤或画出图形. 17.解方程:xx 332=-.18.直线b x y +=2经过点(3,5,求关于x 的不等式b x +2≥0的解集.第16题图 BA 第13题图/分19.如图,AC 和BD 相交于点E ,AB ∥CD ,BE =DE .求证:AB =CD .20.在平面直角坐标系中,△ABC 的顶点坐标是A (-7,1,B (1,1,C (1,7.线段DE 的端点坐标是D (7,-1,E (-1,-7.(1试说明如何平移线段AC ,使其与线段ED 重合; (2将△ABC 绕坐标原点O 逆时针旋转,使AC 的对应边为DE ,请直接写出点B 的对应点F 的坐标; (3画出(2中的△DEF ,并和△ABC 同时绕坐标原点O 逆时针旋转90°,画出旋转后的图形.21.高中招生指标到校是我市中考招生制度改革的一项重要措施.某初级中学对该校近四年指标到校保送生人数进行了统计,制成了如下两幅不完整的统计图.(1该校近四年保送生人数的极差是 . 请将拆线统计图补充完整.(2该校2009年指标到校保送生中只有1位女同学,学校打算从中随机选出2位同学了解他们进入高中阶段的学习情况.请用列表法或画树形图的方法,求出所选两位同学恰好是1位男同学和1位女同学的概率.22.(本题满分8分如图,在平面直角坐标系中,△ABC 是⊙O 的内接三角形,AB =AC ,点P 是⋂AB 的中点,连接P A ,PB ,PC . (1如图①,若∠BPC =60°,求证:AP AC 3=;(2如图②,若2524sin =∠BPC ,求PAB ∠tanA B CDE 第22题图①第22题图②23.某市政府大力扶持大学生创业。
2014年全国各地中考数学真题分类解析汇编:03 整式与因式分解
整式与因式分解一、选择题1. (2014•安徽省,第2题4分)x2•x3=()A.x5B.x6C.x8D.x9考点:同底数幂的乘法.分析:根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n计算即可.解答:x2•x3=x2+3=x5.故选A.点评:主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.2. (2014•安徽省,第4题4分)下列四个多项式中,能因式分解的是()A.a2+1 B.a2﹣6a+9 C.x2+5y D.x2﹣5y考点:因式分解的意义分析:根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.解答:A、C、D都不能把一个多项式转化成几个整式积的形式,故A、C、D不能因式分解;B、是完全平方公式的形式,故B能分解因式;故选:B.点评:本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是解题关键.3. (2014•安徽省,第7题4分)已知x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6 B.6C.﹣2或6 D.﹣2或30考点:代数式求值.分析:方程两边同时乘以2,再化出2x2﹣4x求值.解答:x2﹣2x﹣3=02×(x2﹣2x﹣3)=02×(x2﹣2x)﹣6=02x2﹣4x=6故选:B.点评:本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.4. (2014•福建泉州,第2题3分)下列运算正确的是()A.a3+a3=a6B.2(a+1)=2a+1 C.(ab)2=a2b2D.a6÷a3=a2考点:同底数幂的除法;合并同类项;去括号与添括号;幂的乘方与积的乘方.分析:根据二次根式的运算法则,乘法分配律,幂的乘方及同底数幂的除法法则判断.解答:A、a3+a3=2a3,故选项错误;B、2(a+1)=2a+2≠2a+1,故选项错误;C、(ab)2=a2b2,故选项正确;D、a6÷a3=a3≠a2,故选项错误.故选:C.点评:本题主要考查了二次根式的运算法则,乘法分配律,幂的乘方及同底数幂的除法法则,解题的关键是熟记法则运算5. (2014•福建泉州,第6题3分)分解因式x2y﹣y3结果正确的是()A.y(x+y)2B.y(x﹣y)2C.y(x2﹣y2)D.y(x+y)(x﹣y)考点:提公因式法与公式法的综合运用分析:首先提取公因式y,进而利用平方差公式进行分解即可.解答:x2y﹣y3=y(x2﹣y2)=y(x+y)(x﹣y).故选:D.点评:此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.6. (2014•广东,第3题3分)计算3a﹣2a的结果正确的是()A.1B.a C.﹣a D.﹣5a考点:合并同类项.分析:根据合并同类项的法则,可得答案.解答:原式=(3﹣2)a=a,故选:B.点评:本题考查了合并同类项,系数相加字母部分不变是解题关键.7. (2014•广东,第4题3分)把x3﹣9x分解因式,结果正确的是()A.x(x2﹣9)B.x(x﹣3)2C.x(x+3)2D.x(x+3)(x﹣3)考点:提公因式法与公式法的综合运用.分析:先提取公因式x,再对余下的多项式利用平方差公式继续分解.解答:x3﹣9x=x(x2﹣9)=x(x+3)(x﹣3).故选D.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.8. (2014•珠海,第3题3分)下列计算中,正确的是()A.2a+3b=5ab B.(3a3)2=6a6C.a6+a2=a3D.﹣3a+2a=﹣a考点:合并同类项;幂的乘方与积的乘方.分析:根据合并同类项,积的乘方,等于先把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.解答:A、不是同类项,不能加减,故本选项错误;B、(3a3)2=9a6≠6a6,故本选项错误;C、不是同类项,不能加减,故本选项错误;D、﹣3a+2a=﹣a正确故选:D.点评:本题主要考查了合并同类项,积的乘方,等于先把每一个因式分别乘方,再把所得的幂相乘;熟记计算法则是关键.9.(2014四川资阳,第3题3分)下列运算正确的是()A.a3+a4=a7B.2a3•a4=2a7C.(2a4)3=8a7D.a8÷a2=a4考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.分析:根据合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法分别求出每个式子的值,再判断即可.解答:A、a3和a4不能合并,故本选项错误;B、2a3•a4=2a7,故本选项正确;C、(2a4)3=8a12,故本选项错误;D、a8÷a2=a6,故本选项错误;故选B.点评:本题考查了合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法的应用,主要考查学生的计算能力和判断能力.10.(2014•新疆,第3题5分)下列各式计算正确的是()B、(a2)3=a2×3=a6,故本选项错误;C、a6÷a2=a6﹣2=a4,故本选项错误;D、a•a2=a1+2=a3,故本选项正确.故选D.点评:本题考查了同底数幂的除法,同底数幂的乘法,幂的乘方的性质,熟记性质并理清指数的变化是解题的关键.11.(2014年云南省,第2题3分)下列运算正确的是()A.3x2+2x3=5x6B.50=0 C.2﹣3=D.(x3)2=x6考点:幂的乘方与积的乘方;合并同类项;零指数幂;负整数指数幂.分析:根据合并同类项,可判断A,根据非0的0次幂,可判断B,根据负整指数幂,可判断C,根据幂的乘方,可判断D.解答:A、系数相加字母部分不变,故A错误;B、非0的0次幂等于1,故B错误;C、2,故C错误;D、底数不变指数相乘,故D正确;故选:D.点评:本题考查了幂的乘方,幂的乘方底数不变指数相乘是解题关键.12.(2014•温州,第5题4分)计算:m6•m3的结果()A.m18B.m9C.m3D.m2考点:同底数幂的乘法.分析:根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,进行计算即可.解答:m6•m3=m9.故选B.点评:本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则.13.(2014•舟山,第6题3分)下列运算正确的是()A.2a2+a=3a3B.(﹣a)2÷a=a C.(﹣a)3•a2=﹣a6D.(2a2)3=6a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方专题:计算题.分析:A、原式不能合并,错误;B、原式先计算乘方运算,再计算除法运算即可得到结果;C、原式利用幂的乘方及积的乘方运算法则计算得到结果,即可做出判断;D、原式利用幂的乘方及积的乘方运算法则计算得到结果,即可做出判断.解答:A、原式不能合并,故选项错误;B、原式=a2÷a=a,故选项正确;C、原式=﹣a3•a2=﹣a5,故选项错误;D、原式=8a6,故选项错误.故选B.点评:此题考查了同底数幂的乘除法,合并同类项,以及完全平方公式,熟练掌握公式及法则是解本题的关键.14.(2014•毕节地区,第3题3分)下列运算正确的是()A.π﹣3.14=0 B.+=C.a•a=2a D.a3÷a=a2考点:同底数幂的除法;实数的运算;同底数幂的乘法.分析:根据是数的运算,可判断A,根据二次根式的加减,可判断B,根据同底数幂的乘法,可判断C,根据同底数幂的除法,可判断D.解答:A、π≠3.14,故A错误;B、被开方数不能相加,故B错误;C、底数不变指数相加,故C错误;D、底数不变指数相减,故D正确;故选:D.点评:本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减.15.(2014•毕节地区,第4题3分)下列因式分解正确的是()A.2x2﹣2=2(x+1)(x﹣1)B.x2+2x﹣1=(x﹣1)2C.x2+1=(x+1)2D.x2﹣x+2=x(x﹣1)+2考点:提公因式法与公式法的综合运用分析:A直接提出公因式a,再利用平方差公式进行分解即可;B和C不能运用完全平方公式进行分解;D是和的形式,不属于因式分解.解答:A、2x2﹣2=2(x2﹣1)=2(x+1)(x﹣1),故此选项正确;B、x2﹣2x+1=(x﹣1)2,故此选项错误;C、x2+1,不能运用完全平方公式进行分解,故此选项错误;D、x2﹣x+2=x(x﹣1)+2,还是和的形式,不属于因式分解,故此选项错误.故选:A.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.16.(2014•毕节地区,第13题3分)若﹣2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是()A.2B.0C.﹣1 D.1考点:合并同类项分析:根据同类项是字母相同且相同字母的指数也相同,可得m、n的值,根据乘方,可得答案.解答:解:若﹣2a m b4与5a n+2b2m+n可以合并成一项,,解得,m n=20=1,故选:D.点评:本题考查了合并同类项,同类项是字母相同且相同字母的指数也相同是解题关键.17.(2014•武汉,第5题3分)下列代数运算正确的是()A.(x3)2=x5B.(2x)2=2x2C.x3•x2=x5D.(x+1)2=x2+1考点:幂的乘方与积的乘方;同底数幂的乘法;完全平方公式.分析:根据幂的乘方与积的乘方、同底数幂的乘法法则及完全平方公式,分别进行各选项的判断即可.解答:A、(x3)2=x6,原式计算错误,故本选项错误;B、(2x)2=4x2,原式计算错误,故本选项错误;C、x3•x2=x5,原式计算正确,故本选项正确;D、(x+1)2=x2+2x+1,原式计算错误,故本选项错误.故选C.点评:本题考查了幂的乘方与积的乘方、同底数幂的运算,掌握各部分的运算法则是关键.18.(2014•襄阳,第2题3分)下列计算正确的是()A.a2+a2=2a4B.4x﹣9x+6x=1 C.(﹣2x2y)3=8x6y3D.a6÷a3=a2考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方.分析:运用同底数幂的加法法则,合并同类项的方法,积的乘法方的求法及同底数幂的除法法则计算.解答:A、a2+a2=2a2≠2a4,故A选项错误;B、4x﹣9x+6x=x≠1,故B选项错误;C、(﹣2x2y)3=﹣8x6y3,故C选项正确;D、a6÷a3=a3≠a2故D选项错误.故选:C.点评:本题主要考查了同底数幂的加法法则,合并同类项的方法,积的乘方的求法及同底数幂的除法法则,解题的关键是熟记法则进行运算.19.(2014•襄阳,第18题5分)已知:x=1﹣,y=1+,求x2+y2﹣xy﹣2x+2y的值.考点:二次根式的化简求值;因式分解的应用分析:根据x、y的值,先求出x﹣y和xy,再化简原式,代入求值即可.解答:∵x=1﹣,y=1+,∴x﹣y=(1﹣)(1+)=﹣2,xy=(1﹣)(1+)=﹣1,∴x2+y2﹣xy﹣2x+2y=(x﹣y)2﹣2(x﹣y)+xy=(﹣2)2﹣2×(﹣2)+(﹣1)=7+4.点评:本题考查了二次根式的化简以及因式分解的应用,要熟练掌握平方差公式和完全平方公式.20.(2014•邵阳,第2题3分)下列计算正确的是()A.2x﹣x=x B.a3•a2=a6C.(a﹣b)2=a2﹣b2D.(a+b)(a﹣b)=a2+b2考点:完全平方公式;合并同类项;同底数幂的乘法;平方差公式专题:计算题.分析:A、原式合并同类项得到结果,即可作出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可作出判断;21.(2014•四川自贡,第2题4分)(x4)2等于()A.x6B.x8C.x16D.2x4考点:幂的乘方与积的乘方分析:根据幂的乘方等于底数不变指数相乘,可得答案.解答:原式=x4×2=x8,故选:B.点评:本题考查了幂的乘方,底数不变指数相乘是解题关键.22.(2014•四川自贡,第11题4分)分解因式:x2y﹣y=.考点:提公因式法与公式法的综合运用分析:观察原式x2y﹣y,找到公因式y后,提出公因式后发现x2﹣1符合平方差公式,利用平方差公式继续分解可得.解答:x2y﹣y,=y(x2﹣1),=y(x+1)(x﹣1).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.23.(2014·台湾,第2题3分)若A为一数,且A=25×76×114,则下列选项中所表示的数,何者是A的因子?()A.24×5 B.77×113C.24×74×114D.26×76×116分析:直接将原式提取因式进而得出A的因子.解答:∵A=25×76×114=24×74×114(2×72),∴24×74×114,是原式的因子.故选:C.点评:此题主要考查了幂的乘方运算法则以及同底数幂的乘方,正确分解原式是解题关键.24.(2014·台湾,第15题3分)计算多项式10x 3+7x 2+15x ﹣5除以5x 2后,得余式为何?( )A .15x -55x 2B .2x 2+15x ﹣5C .3x ﹣1D .15x ﹣5分析:利用多项式除以单项式法则计算,即可确定出余式.解答:(10x 3+7x 2+15x ﹣5)÷(5x 2)=(2x +75)…(15x ﹣5).故选D . 点评:此题考查了整式的除法,熟练掌握运算法则是解本题的关键.25.(2014·台湾,第17题3分)(3x +2)(﹣x 6+3x 5)+(3x +2)(﹣2x 6+x 5)+(x +1)(3x 6﹣4x 5)与下列哪一个式子相同?( )A .(3x 6﹣4x 5)(2x +1)B .(3x 6﹣4x 5)(2x +3)C .﹣(3x 6﹣4x 5)(2x +1)D .﹣(3x 6﹣4x 5)(2x +3)分析:首先把前两项提取公因式(3x +2),再进一步提取公因式﹣(3x 6﹣4x 5)即可. 解答:原式=(3x +2)(﹣x 6+3x 5﹣2x 6+x 5)+(x +1)(3x 6﹣4x 5)=(3x +2)(﹣3x 6+4x 5)+(x +1)(3x 6﹣4x 5)=﹣(3x 6﹣4x 5)(3x +2﹣x ﹣1)=﹣(3x 6﹣4x 5)(2x +1).故选:C .点评:此题主要考查了因式分解,关键是正确找出公因式,进行分解.26.(2014·云南昆明,第4题3分)下列运算正确的是( )A. 532)(a a =B. 222)(b a b a -=-C. 3553=-D. 3273-=-考点: 幂的乘方;完全平方公式;合并同类项;二次根式的加减法;立方根.分析: A、幂的乘方:mn n m a a =)(; B 、利用完全平方公式展开得到结果,即可做出判断;C 、利用二次根式的化简公式化简,合并得到结果,即可做出判断.D 、利用立方根的定义化简得到结果,即可做出判断.解答: A、632)(a a =,错误; B 、 2222)(b ab a b a +-=- ,错误;C 、52553=-,错误;D 、3273-=-,正确.故选D.点评: 此题考查了幂的乘方,完全平方公式,合并同类项,二次根式的化简,立方根,熟练掌握公式及法则是解本题的关键.27.(2014•浙江湖州,第2题3分)计算2x (3x 2+1),正确的结果是( )A .5x 3+2xB . 6x 3+1C . 6x 3+2xD . 6x 2+2x分析:原式利用单项式乘以多项式法则计算即可得到结果.解答:原式=6x 3+2x ,故选C.点评:此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.28.(2014·浙江金华,第7题4分)把代数式22x 18-分解因式,结果正确的是( )A .()22x 9-B .()22x 3- C .()()2x 3x 3+- D .()()2x 9x 9+- 【答案】C .【解析】29. (2014•湘潭,第2题,3分)下列计算正确的是( )A . a +a 2=a 3B . 2﹣1=C . 2a •3a =6aD . 2+=2 考点: 单项式乘单项式;实数的运算;合并同类项;负整数指数幂.分析: A 、原式不能合并,错误;B 、原式利用负指数幂法则计算得到结果,即可做出判断;C 、原式利用单项式乘以单项式法则计算得到结果,即可做出判断;D 、原式不能合并,错误.解答: A 、原式不能合并,故选项错误;B 、原式=,故选项正确;C 、原式=6a 2,故选项错误;30. (2014•益阳,第2题,4分)下列式子化简后的结果为x6的是()A.x3+x3B.x3•x3C.(x3)3D.x12÷x2考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的运算法则进行计算即可.解答:A、原式=2x3,故本选项错误;B、原式=x6,故本选项错误;C、原式=x9,故本选项错误;D、原式=x12﹣2=x10,故本选项错误.故选B.点评:本题考查的是同底数幂的除法,熟知同底数幂的除法及乘方法则、合并同类项的法则、幂的乘方与积的乘方法则是解答此题的关键.31. (2014年江苏南京,第2题,2分)计算(﹣a2)3的结果是()A.a5B.﹣a5C.a6D.﹣a6考点:幂的乘方分析:根据积的乘方等于每个因式分别乘方,再把所得的幂相乘,可得答案.解答:原式=﹣a2×3=﹣a6.故选:D.点评:本题考查了幂的乘方与积的乘方,积的乘方等于每个因式分别乘方,再把所得的幂相乘.32. (2014•泰州,第2题,3分)下列运算正确的是()A.x3•x3=2x6B.(﹣2x2)2=﹣4x4C.(x3)2=x6D.x5÷x=x5考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:分别根据同底数幂的除法,熟知同底数幂的除法及乘方法则、合并同类项的法则、幂的乘方与积的乘方法则对各选项进行计算即可.解答:A、原式=x6,故本选项错误;B、原式=4x4,故本选项错误;C、原式=x6,故本选项正确;D、原式=x4,故本选项错误.故选C.点评:本题考查的是同底数幂的除法,熟知同底数幂的除法及乘方法则、合并同类项的法则、幂的乘方与积的乘方法则是解答此题的关键.33.(2014•扬州,第2题,3分)若□×3xy=3x2y,则□内应填的单项式是()A.x y B.3xy C.x D.3x考点:单项式乘单项式专题:计算题.分析:根据题意列出算式,计算即可得到结果.解答:根据题意得:3x2y÷3xy=x,故选C.点评:此题考查了单项式乘单项式,熟练掌握运算法则是解本题的关键.34.(2014•呼和浩特,第5题3分)某商品先按批发价a元提高10%零售,后又按零售价降低10%出售,则它最后的单价是()元.A.a B.0.99a C.1.21a D.0.81a考点:列代数式.分析:原价提高10%后商品新单价为a(1+10%)元,再按新价降低10%后单价为a(1+10%)(1﹣10%),由此解决问题即可.解答:由题意得a(1+10%)(1﹣10%)=0.99a(元).故选:B.点评:本题主要考查列代数式的应用,属于应用题型,找到相应等量关系是解答此题的关键.35.(2014•滨州,第2题3分)一个代数式的值不能等于零,那么它是()A.a2B.a0C.D.|a|考点:零指数幂;绝对值;有理数的乘方;算术平方根.分析:根据非0的0次幂等于1,可得答案.解答:A、C、D、a=0时,a2=0,故A、C、D错误;B、非0的0次幂等于1,故B正确;故选:B.点评:本题考查了零指数幂,非0的0次幂等于1是解题关键.36.(2014•济宁,第2题3分)化简﹣5ab+4ab的结果是()A.﹣1 B.a C.b D.﹣ab考点:合并同类项.分析:根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变作答.解答:﹣5ab+4ab=(﹣5+4)ab=﹣ab故选:D.点评:本题考查了合并同类项的法则.注意掌握合并同类项时把系数相加减,字母与字母的指数不变,属于基础题.37.(2014年山东泰安,第2题3分)下列运算,正确的是()A.4a﹣2a=2 B.a6÷a3=a2C.(﹣a3b)2=a6b2D.(a﹣b)2=a2﹣b2分析:合并同类项时不要丢掉字母a,应是2a,B指数应该是3,D左右两边不相等.解答:A、是合并同类项结果是2a,不正确;B、是同底数幂的除法,底数不变指数相减,结果是a3;C、是考查积的乘方正确;D、等号左边是完全平方式右边是平方差,所以不相等.故选C.点评:这道题主要考查同底数幂相除底数不变指数相减以及完全平方式和平方差的形式,熟记定义是解题的关键.二.填空题1. (2014•广东,第11题4分)计算2x3÷x=.考点:整式的除法.分析:直接利用整式的除法运算法则求出即可.解答:2x3÷x=2x2.故答案为:2x2.点评:此题主要考查了整式的除法运算法则,正确掌握运算法则是解题关键.2. (2014•珠海,第7题4分)填空:x2﹣4x+3=(x﹣)2﹣1.考点:配方法的应用.专题:计算题.分析:原式利用完全平方公式化简即可得到结果.解答:x2﹣4x+3=(x﹣2)2﹣1.故答案为:2点评:此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.3. (2014•广西贺州,第13题3分)分解因式:a3﹣4a=.考点:提公因式法与公式法的综合运用.分析:首先提取公因式a,进而利用平方差公式分解因式得出即可.解答:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).点评:此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.4. (2014•广西玉林市、防城港市,第3题3分)计算(2a2)3的结果是()A.2a6B.6a6C.8a6D.8a5考点:幂的乘方与积的乘方.分析:利用幂的乘方与积的乘方的性质求解即可求得答案.解答:(2a2)3=8a6.故选C.点评:此题考查了幂的乘方与积的乘方的性质.此题比较简单,注意掌握指数的变化是解此题的关键.5.(2014•广西玉林市、防城港市,第4题3分)下面的多项式在实数范围内能因式分解的是()A.x2+y2B.x2﹣y C.x2+x+1 D.x2﹣2x+1考点:实数范围内分解因式.分析:利用因式分解的方法,分别判断得出即可.解答:A、x2+y2,无法因式分解,故此选项错误;B、x2﹣y,无法因式分解,故此选项错误;C、x2+x+1,无法因式分解,故此选项错误;D、x2﹣2x+1=(x﹣1)2,故此选项正确.故选:D.点评:此题主要考查了公式法分解因式,熟练应用公式是解题关键.6.(2014年天津市,第13题3分)计算x5÷x2的结果等于.考点:同底数幂的除法.分析:同底数幂相除底数不变,指数相减,解答:x5÷x2=x3,故答案为:x3.点评:此题考查了同底数幂的除法,解题要注意细心明确指数相减.7.(2014•温州,第11题5分)分解因式:a2+3a=.考点:因式分解-提公因式法.分析:直接提取公因式a,进而得出答案.解答:a2+3a=a(a+3).故答案为:a(a+3).点评:此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.8.(2014年广东汕尾,第12题5分)已知a+b=4,a﹣b=3,则a2﹣b2=.分析:根据a2﹣b2=(a+b)(a﹣b),然后代入求解.解答:2﹣b2=(a+b)(a﹣b)=4×3=12.故答案是:12.点评:本题重点考查了用平方差公式.平方差公式为(a+b)(a﹣b)=a2﹣b2.本题是一道较简单的题目.9.(2014•武汉,第12题3分)分解因式:a3﹣a= .10.(2014•邵阳,第12题3分)将多项式m2n﹣2mn+n因式分解的结果是.11.(2014•孝感,第15题3分)若a﹣b=1,则代数式a2﹣b2﹣2b的值为.考点:完全平方公式分析:运用平方差公式,化简代入求值,解答:因为a﹣b=1,所以﹣b2﹣2b=(a+b)(a﹣b)﹣2b=a+b﹣2b=a﹣b=1,故答案为:1.点评:本题主要考查了平方差公式,关键要注意运用公式来求值.12.(2014•浙江湖州,第17题分)计算:(3+a)(3﹣a)+a2.分析:原式第一项利用平方差公式计算,合并即可得到结果.解答:原式=9﹣a2+a2=9.点评:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.13.(2014•浙江宁波,第16题4分)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是(用a、b的代数式表示).考点:平方差公式的几何背景分析:利用大正方形的面积减去4个小正方形的面积即可求解.解答:设大正方形的边长为x1,小正方形的边长为x2,由图①和②列出方程组得,解得,大正方形中未被小正方形覆盖部分的面积=()2﹣()2=ab.故答案为:ab.点评:本题考查了平方差公式的几何背景,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.14.(2014•浙江宁波,第19题6分)(1)化简:(a+b)2+(a﹣b)(a+b)﹣2ab;(2)解不等式:5(x﹣2)﹣2(x+1)>3.考点:整式的混合运算;解一元一次不等式分析:(1)先运用完全平方公式和平方差公式展开,再合并同类项即可;(2)先去括号,再移项、合并同类项.解答:(1)原式=a2+2ab+b2+a2﹣b2﹣2ab=2a2;(2)去括号,得5x﹣10﹣2x﹣2>3,15. (2014•湘潭,第10题,3分)分解因式:ax﹣a=.16. (2014•益阳,第9题,4分)若x2﹣9=(x﹣3)(x+a),则a=.考点:因式分解-运用公式法.分析:直接利用平方差公式进行分解得出即可.解答:∵x2﹣9=(x+3)(x﹣3)=(x﹣3)(x+a),∴a=3.故答案为:3.点评:此题主要考查了公式法分解因式,熟练掌握平方差公式是解题关键.17. (2014•株洲,第9题,3分)计算:2m2•m8=.考点:单项式乘单项式.分析:先求出结果的系数,再根据同底数幂的乘法进行计算即可.解答:2m2•m8=2m10,故答案为:2m10.点评:本题考查了单项式乘以单项式,同底数幂的乘法的应用,主要考查学生的计算能力.18. (2014•株洲,第14题,3分)分解因式:x2+3x(x﹣3)﹣9=.考点:因式分解-十字相乘法等.分析:首先将首尾两项分解因式,进而提取公因式合并同类项得出即可.解答:x2+3x(x﹣3)﹣9=x2﹣9+3x(x﹣3)=(x﹣3)(x+3)+3x(x﹣3)=(x﹣3)(x+3+3x)=(x﹣3)(4x+3).故答案为:(x﹣3)(4x+3).点评:此题主要考查了分组分解法分解因式,正确分组得出是解题关键.19.(2014•株洲,第14题,3分)分解因式:x2+3x(x﹣3)﹣9=.考点:因式分解-十字相乘法等.分析:首先将首尾两项分解因式,进而提取公因式合并同类项得出即可.解答:x2+3x(x﹣3)﹣9=x2﹣9+3x(x﹣3)=(x﹣3)(x+3)+3x(x﹣3)=(x﹣3)(x+3+3x)=(x﹣3)(4x+3).故答案为:(x﹣3)(4x+3).点评:此题主要考查了分组分解法分解因式,正确分组得出是解题关键.20.(2014•呼和浩特,第14题3分)把多项式6xy2﹣9x2y﹣y3因式分解,最后结果为.考点:提公因式法与公式法的综合运用.分析:首先提取公因式﹣y,进而利用完全平方公式分解因式得出即可.解答:6xy2﹣9x2y﹣y3=﹣y(y2﹣6xy+9x2)=﹣y(3x﹣y)2.故答案为:﹣y(3x﹣y)2.点评:此题主要考查了提取公因式法和公式法分解因式,熟练掌握完全平方公式是解题关键.21.(2014•滨州,第14题4分)写出一个运算结果是a6的算式.22.(2014•菏泽,第11题3分)分解因式:2x3﹣4x2+2x= 2x(x﹣1)2=__________ .=2x(x﹣1)2.故答案为:2x(x﹣1)2.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.23.(2014•济宁,第11题3分)如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是米.考点:列代数式(分式).分析:这卷电线的总长度=截取的1米+剩余电线的长度.解答:根据1米长的电线,称得它的质量为a克,只需根据剩余电线的质量除以a,即可知道剩余电线的长度.故总长度是(+1)米.点评:注意代数式的正确书写,还要注意后边有单位,故该代数式要带上括号.解决问题的关键是读懂题意,找到所求的量的等量关系.三.解答题1. (2014•安徽省,第16题8分)观察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③……根据上述规律解决下列问题:(1)完成第四个等式:92﹣4×2=;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.考点:规律型:数字的变化类;完全平方公式.分析:由①②③三个等式可得,被减数是从3开始连续奇数的平方,减数是从1开始连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.解答:(1)32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③……所以第四个等式:92﹣4×42=17;(2)第n个等式为:(2n+1)2﹣4n2=2(2n+1)﹣1,左边=(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1,右边=2(2n+1)﹣1=4n+2﹣1=4n+1.左边=右边∴(2n+1)2﹣4n2=2(2n+1)﹣1.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.2. (2014•福建泉州,第19题9分)先化简,再求值:(a+2)2+a(a﹣4),其中a=.考点:整式的混合运算—化简求值分析:首先利用完全平方公式和整式的乘法计算,再进一步合并得出结果,最后代入求得数值即可.解答:(a+2)2+a(a﹣4)=a2+4a+4+a2﹣4a=2a2+4,当a=时,原式=2×()2+4=10.点评:此题考查整式的化简求值,注意先化简,再代入求值.3.(2014•温州,第17题10分)(1)计算:+2×(﹣5)+(﹣3)2+20140;(2)化简:(a+1)2+2(1﹣a)考点:实数的运算;整式的混合运算;零指数幂.分析:(1)分别根据有理数乘方的法则、数的开放法则及0指数幂的运算法则计算出各数,再根据实数混合运算的法则进行计算即可;(2)根据整式混合运算的法则进行计算即可.解答:(1)原式=2﹣10+9+1=2;(2)原式=a2+2a+1+2﹣2a=a2+3.点评:本题考查的是实数的运算,熟知有理数乘方的法则、数的开放法则及0指数幂的运算法则是解答此题的关键.4.(2014•舟山,第17题6分)(1)计算:+()﹣2﹣4cos45°;(2)化简:(x+2)2﹣x(x﹣3)考点:实数的运算;整式的混合运算;负整数指数幂;特殊角的三角函数值专题:计算题. 分析:(1)原式第一项化为最简二次根式,第二项利用负指数幂法则计算,第三项利用特殊角的三角函数值计算即可得到结果;(2)原式第一项利用完全平方公式展开,第二项利用单项式乘以多项式法则计算即可得到结果.解答: (1)原式=2+4﹣4×=2+4﹣2=4;(2)原式=x 2+4x +4﹣x 2+3x =7x +4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 5. (2014·浙江金华,第18题6分)先化简,再求值:()()()2x 5x 1x 2+-+-,其中x 2=-. 分析:。
湖北省武汉市中考数学试卷(解析)
湖北省武汉市中考数学试卷一.选择题(共12小题)1.(武汉)在2.5,﹣2.5,0,3这四个数种,最小的数是()A. 2.5 B.﹣2.5 C. 0 D. 3考点:有理数大小比较。
解答:解:∵﹣2.5<0<2.5<3,∴最小的数是﹣2.5,故选B.2.(武汉)若在实数范围内有意义,则x的取值范围是()A. x<3 B. x≤3 C. x>3 D. x≥3考点:二次根式有意义的条件。
解答:解:根据题意得,x﹣3≥0,解得x≥3.故选D.3.(武汉)在数轴上表示不等式x﹣1<0的解集,正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式。
解答:解:x﹣1<0,∴x<1,在数轴上表示不等式的解集为:,故选B.4.(武汉)从标号分别为1,2,3,4,5的5张卡片中,随机抽取1张.下列事件中,必然事件是()A.标号小于6 B.标号大于6 C.标号是奇数D.标号是3 考点:随机事件。
解答:解:A.是一定发生的事件,是必然事件,故选项正确;B.是不可能发生的事件,故选项错误;C.是随机事件,故选项错误;D.是随机事件,故选项错误.故选A.5.(武汉)若x1,x2是一元二次方程x2﹣3x+2=0的两根,则x1+x2的值是()A.﹣2 B. 2 C. 3 D. 1考点:根与系数的关系。
解答:解:由一元二次方程x2﹣3x+2=0,∴x1+x2=3,故选C.6.(武汉)某市在校初中生的人数约为23万.数230000用科学记数法表示为()A. 23×104B. 2.3×105C. 0.23×103D. 0.023×106考点:科学记数法—表示较大的数。
解答:解:23万=230 000=2.3×105.故选B.7.(武汉)如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是()A. 7 B. 8 C. 9 D. 10考点:翻折变换(折叠问题)。
武汉市2014元调数学试的题目(附问题详解;word版)
2013~2014学年度武汉市部分学校九年级调研测试数 学 试 卷2014.1.14说明:本试卷分第I 卷和第II 卷.第I 卷为选择题,第II 卷为非选择题,全卷满分120分,考试时间为120分钟.第I 卷(选择题 共30分)一、选择题(共10小题,每小题3分,共30分)1.式子x -1在实数范围内有意义,则x 的取值范围是( )A .x <1B .x ≥1C .x ≤1D .x <-12.如图所示,点A ,B 和C 在⊙O 上,已知∠AOB =40°,则∠ACB 的度数是( ) A .10° B .20° C .30° D .40° 3.下列图形中,为中心对称图形的是( )4.签筒中有5根纸签,上面分别标有数字1,2,3,4,5. 从中随机抽取一根,下列事件属 于随机事件的是( )A .抽到的纸签上标有数字0.B .抽到的纸签上标有数字小于6.C .抽到的纸签上标有数字是1.D .抽到的纸签上标有数字大于6.5.袋子中装有5个红球3个绿球,从袋子中随机摸出一个球,是绿球的概率为( ) A .53 B .83 C .85 D .52 6.下列一元二次方程没有实数根的是( ) A .032=+x . B .02=+x x .C .122-=+x x . D .132=+x x .7.有一人患了流感,经过两轮传染后共有49人患了流感,设每轮传染中平均一个人传染了x 人,则x 的值为( )A .5B .6C .7D .88.若关于x 的一元二次方程()002≠=++a c bx ax 的两根为1x 、2x ,则ab x x -=+21,acx x =⋅21. 当1=a ,6=b ,5=c 时,2121x x x x ++的值是( ) A .5 B .-5 C .1 D .-1C9.若023=-+-b a ,则下列各数中,与3的积为有理数的是( ) A .a B .b C .b a + D .ab10.如图,扇形AOD 中,∠AOD =90°,OA =6,点P 为弧AD 上任意一点(不与点A 和D 重合),PQ ⊥OD 于Q ,点I 为△OPQ 的内心,过O ,I 和D 三点的圆的半径为r . 则当点P 在弧AD 上运动时,r 的值满足( )A .30<<rB .3=rC .233<<rD .23=r第II 卷(非选择题 共90分)二、填空题(共6小题,每小题3分,共18分)11.计算:4580-= .12.平面直角坐标系中,点P (3,a -1)与点Q (2+b ,3)关于原点对称,则b a += .13.2013年12月,有关报告显示近几年江城写字楼价格的增幅远远高于住宅价格增幅,与住宅的价差越来越大.如2011年某写字楼与住宅均价价差为614元/平方米,2013年上 升至2401元/平方米.设这两年该写字楼与住宅均价价差的年平均增长率为x ,根据题 意,所列方程为 .14.甲口袋中装有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3,4和5. 从2个口袋中各随机取出1个小球. 取出的两个球上 的数字之和为5的概率是 .15.如图,P 为直径AB 上一点,点M 和N 在⊙O 上, 且∠APM =∠NPB =30°,若 OP =2cm ,AB =16 cm ,则PN +PM = cm . 16.已知圆锥的底面半径为1,全面积为4π,则圆锥的母线长为 .三、解答题(共8小题,共72分)17.(本题6分)解方程:()1262+-=-x x .18.(本题6分).如图,点A ,C 和B 都在⊙O 上,且四边形ACBO 为菱形.求证:点C 是弧AB 的中点.19.(本题6分)如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A 的坐标为(2,4).请解答下列各题: (1)画出△ABC 关于x 轴对称的△111C B A ,并写出点1A 的坐标;(2)画出△ABC 绕原点O 逆时针旋转90°后得到的△222C B A ,并写出2A 的坐标. 20.(本题7分)小红参加一次竞技活动,活动包括笔试和面试两个环节,都是以抽签答题的方式进行,笔试从A ,B ,C 和D 等四种类型的题目随机抽答一题,面试从E ,F 和G 三种类型的题目随机抽答一题.(1)用列表法或画树形图法求出参加一次活动可能抽答的所有结果;;(2)小红对A 和F 两种类型题目很熟练,求“小红刚好抽答A 和F 两种类型的题目”的概率. 21.(本题7分) 已知关于x 的一元二次方程012=++bx ax 中,1++-+-=m a m m a b .(1)若4=a ,求b 的值;(2)若方程012=++bx ax 有两个相等的实数根,求方程的根.22.(本题8分)如图,△ABC 中,AB =AC ,以AB 为直径的⊙O 分别与边BC 和AC 相交于点E 和F ,过E 作⊙O 的切线交边AC 于H . (1)求证:CH =FH ;(2)如图2,连接OH ,若OH =7,HC =1,求⊙O 的半径.图1图223.(本题10分)如图1,某小区的平面图是一个占地400300平方米的矩形,正中央的建筑区是与整个小区长宽比例相同的矩形.如果要使四周的空地所占面积是小区面积的36%,南北空地等宽,东西空地等宽. (1)求该小区四周的空地的宽度;(2)如图2,该小区在东、西、南三块空地上做如图所示的矩形绿化带,绿化带与建筑区之间为小区道路,小区道路宽度一致.已知东、西两侧绿化带完全相同,其长均为200米,南侧绿化带的长为300米,绿化面积为18000平方米,请直接写出小区道路的宽度.24.(本题10分)如图,在Rt △ABC 中,∠C =90°,∠A =30°,BC =3.P 为AC 边上一动点,PC =t ,以点P为中心,将△ABC 逆时针旋转90°,得到△DEF ,DE 交边AC 于G .(1)用含有t 的式子填空:DP = ,AG =; (2)如图2,当F 在AB 上时,求证:PG =PC ;(3)如图3,当P 为DF 的中点时,求AG ∶PG 的值.图1图2图1GP F E D C B A 图2A C EF PG D 图3AG D P C B F E25.(本题12分)如图1,⊙P 的直径的长为16,E 为半圆的中点,F 为劣弧EB 上的一动点,EF 和AB 的延长线交于C ,过C 作AB 的垂线交AF 的延长线于点D . (1)求证:BC =DC ; (2)以直线AB 为x 轴,线段PB 的中垂线为y 轴,建立如图2所示的平面直角坐标系xOy ,则点B 的坐标为(4,0). 设点D 的坐标为(m ,n ),若m ,n 是方程082=+++p px x 的两根,求p 的值;(3)在(2)中的坐标系中,直线8+=kx y 上存在点H ,使△ABH 为直角三角形,若这样的H 点有且只有两个,请直接写出符合条件的k图1。
武汉市历年中考数学真题精选汇编压轴题(含答案解析)
武汉市历年中考数学真题精选汇编:压轴题(含答案解析)一.选择题(共8小题)1.(2019•武汉)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a,用含a的式子表示这组数的和是()A.2a2﹣2a B.2a2﹣2a﹣2C.2a2﹣a D.2a2+a 2.(2018•武汉)如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB的中点D.若⊙O的半径为,AB=4,则BC的长是()A.B.C.D.3.(2017•武汉)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4B.5C.6D.7 4.(2016•武汉)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5B.6C.7D.8 5.(2015•武汉)如图,△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M.当△EFG绕点D旋转时,线段BM长的最小值是()A.2﹣B.+1C.D.﹣1 6.(2014•武汉)如图,P A,PB切⊙O于A、B两点,CD切⊙O于点E,交P A,PB于C,D.若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是()A.B.C.D.7.(2013•武汉)如图,⊙A与⊙B外切于点D,PC,PD,PE分别是圆的切线,C,D,E 是切点.若∠CDE=x°,∠ECD=y°,⊙B的半径为R,则的长度是()A.B.C.D.8.(2012•武汉)在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为()A.11+B.11﹣C.11+或11﹣D.11+或1+二.填空题(共8小题)9.(2019•武汉)问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:P A+PC=PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是.10.(2018•武汉)如图,在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长是.11.(2017•武汉)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是.12.(2016•武汉)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5,则BD的长为.13.(2015•武汉)如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是.14.(2014•武汉)如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为.15.(2013•武汉)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是.16.(2012•武汉)在平面直角坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是.三.解答题(共16小题)17.(2019•武汉)在△ABC中,∠ABC=90°,=n,M是BC上一点,连接AM.(1)如图1,若n=1,N是AB延长线上一点,CN与AM垂直,求证:BM=BN.(2)过点B作BP⊥AM,P为垂足,连接CP并延长交AB于点Q.①如图2,若n=1,求证:=.②如图3,若M是BC的中点,直接写出tan∠BPQ的值.(用含n的式子表示)18.(2019•武汉)已知抛物线C1:y=(x﹣1)2﹣4和C2:y=x2(1)如何将抛物线C1平移得到抛物线C2?(2)如图1,抛物线C1与x轴正半轴交于点A,直线y=﹣x+b经过点A,交抛物线C1于另一点B.请你在线段AB上取点P,过点P作直线PQ∥y轴交抛物线C1于点Q,连接AQ.①若AP=AQ,求点P的横坐标;②若P A=PQ,直接写出点P的横坐标.(3)如图2,△MNE的顶点M、N在抛物线C2上,点M在点N右边,两条直线ME、NE与抛物线C2均有唯一公共点,ME、NE均与y轴不平行.若△MNE的面积为2,设M、N两点的横坐标分别为m、n,求m与n的数量关系.19.(2018•武汉)在△ABC中,∠ABC=90°.(1)如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:△ABM∽△BCN;(2)如图2,P是边BC上一点,∠BAP=∠C,tan∠P AC=,求tan C的值;(3)如图3,D是边CA延长线上一点,AE=AB,∠DEB=90°,sin∠BAC=,,直接写出tan∠CEB的值.20.(2018•武汉)抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.21.(2017•武汉)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)22.(2017•武汉)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.23.(2016•武汉)在△ABC中,P为边AB上一点.(1)如图1,若∠ACP=∠B,求证:AC2=AP•AB;(2)若M为CP的中点,AC=2.①如图2,若∠PBM=∠ACP,AB=3,求BP的长;②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.24.(2016•武汉)抛物线y=ax2+c与x轴交于A,B两点,顶点为C,点P为抛物线上,且位于x轴下方.(1)如图1,若P(1,﹣3),B(4,0).①求该抛物线的解析式;②若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;(2)如图2,已知直线P A,PB与y轴分别交于E、F两点.当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.25.(2015•武汉)如图,△ABC中,点E、P在边AB上,且AE=BP,过点E、P作BC的平行线,分别交AC于点F、Q,记△AEF的面积为S1,四边形EFQP的面积为S2,四边形PQCB的面积为S3.(1)求证:EF+PQ=BC;(2)若S1+S3=S2,求的值;(3)若S3﹣S1=S2,直接写出的值.26.(2015•武汉)已知抛物线y=x2+c与x轴交于A(﹣1,0),B两点,交y轴于点C.(1)求抛物线的解析式;(2)点E(m,n)是第二象限内一点,过点E作EF⊥x轴交抛物线于点F,过点F作FG⊥y轴于点G,连接CE、CF,若∠CEF=∠CFG.求n的值并直接写出m的取值范围(利用图1完成你的探究).(3)如图2,点P是线段OB上一动点(不包括点O、B),PM⊥x轴交抛物线于点M,∠OBQ=∠OMP,BQ交直线PM于点Q,设点P的横坐标为t,求△PBQ的周长.27.(2014•武汉)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B 出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB 边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ,CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.28.(2014•武汉)如图,已知直线AB:y=kx+2k+4与抛物线y=x2交于A,B两点.(1)直线AB总经过一个定点C,请直接出点C坐标;(2)当k=﹣时,在直线AB下方的抛物线上求点P,使△ABP的面积等于5;(3)若在抛物线上存在定点D使∠ADB=90°,求点D到直线AB的最大距离.29.(2013•武汉)已知四边形ABCD中,E,F分别是AB,AD边上的点,DE与CF交于点G.(1)如图1,若四边形ABCD是矩形,且DE⊥CF.求证:;(2)如图2,若四边形ABCD是平行四边形.试探究:当∠B与∠EGC满足什么关系时,使得成立?并证明你的结论;(3)如图3,若BA=BC=6,DA=DC=8,∠BAD=90°,DE⊥CF.请直接写出的值.30.(2013•武汉)如图,点P是直线l:y=﹣2x﹣2上的点,过点P的另一条直线m交抛物线y=x2于A、B两点.(1)若直线m的解析式为y=﹣x+,求A,B两点的坐标;(2)①若点P的坐标为(﹣2,t).当P A=AB时,请直接写出点A的坐标;②试证明:对于直线l上任意给定的一点P,在抛物线上能找到点A,使得P A=AB成立.(3)设直线l交y轴于点C,若△AOB的外心在边AB上,且∠BPC=∠OCP,求点P 的坐标.31.(2012•武汉)已知△ABC中,AB=,AC=,BC=6(1)如图1,点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求线段MN的长;(2)如图2,是由100个边长为1的小正方形组成的10×10的正方形网格,设顶点在这些小正方形顶点的三角形为格点三角形.①请你在所给的网格中画出格点△A1B1C1与△ABC全等(画出一个即可,不需证明)②试直接写出所给的网格中与△ABC相似且面积最大的格点三角形的个数,并画出其中一个(不需证明).32.(2012•武汉)如图1,点A为抛物线C1:y=x2﹣2的顶点,点B的坐标为(1,0)直线AB交抛物线C1于另一点C(1)求点C的坐标;(2)如图1,平行于y轴的直线x=3交直线AB于点D,交抛物线C1于点E,平行于y 轴的直线x=a交直线AB于F,交抛物线C1于G,若FG:DE=4:3,求a的值;(3)如图2,将抛物线C1向下平移m(m>0)个单位得到抛物线C2,且抛物线C2的顶点为点P,交x轴负半轴于点M,交射线BC于点N.NQ⊥x轴于点Q,当NP平分∠MNQ 时,求m的值.武汉市历年中考数学真题精选汇编:压轴题(含答案解析)参考答案与试题解析一.选择题(共8小题)1.(2019•武汉)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a,用含a的式子表示这组数的和是()A.2a2﹣2a B.2a2﹣2a﹣2C.2a2﹣a D.2a2+a【分析】由等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2,得出规律:2+22+23+…+2n=2n+1﹣2,那么250+251+252+…+299+2100=(2+22+23+…+2100)﹣(2+22+23+…+249),将规律代入计算即可.【解答】解:∵2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…∴2+22+23+…+2n=2n+1﹣2,∴250+251+252+…+299+2100=(2+22+23+...+2100)﹣(2+22+23+ (249)=(2101﹣2)﹣(250﹣2)=2101﹣250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2﹣a.故选:C.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n=2n+1﹣2.2.(2018•武汉)如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB的中点D.若⊙O的半径为,AB=4,则BC的长是()A.B.C.D.【分析】连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,利用垂径定理得到OD⊥AB,则AD=BD=AB=2,于是根据勾股定理可计算出OD=1,再利用折叠的性质可判断弧AC和弧CD所在的圆为等圆,则根据圆周角定理得到=,所以AC=DC,利用等腰三角形的性质得AE=DE=1,接着证明四边形ODEF为正方形得到OF=EF=1,然后计算出CF后得到CE=BE=3,于是得到BC=3.【解答】解:连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,∵D为AB的中点,∴OD⊥AB,∴AD=BD=AB=2,在Rt△OBD中,OD==1,∵将弧沿BC折叠后刚好经过AB的中点D.∴弧AC和弧CD所在的圆为等圆,∴=,∴AC=DC,∴AE=DE=1,易得四边形ODEF为正方形,∴OF=EF=1,在Rt△OCF中,CF==2,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3,∴BC=3.故选:B.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了圆周角定理和垂径定理.3.(2017•武汉)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4B.5C.6D.7【分析】①以B为圆心,BC长为半径画弧,交AB于点D,△BCD就是等腰三角形;②以A为圆心,AC长为半径画弧,交AB于点E,△ACE就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,△BCF就是等腰三角形;④以C为圆心,BC长为半径画弧,交AB于点K,△BCK就是等腰三角形;⑤作AB的垂直平分线交AC于G,则△AGB是等腰三角形;⑥作BC的垂直平分线交AB于I,则△BCI和△ACI是等腰三角形.【解答】解:如图:故选:D.【点评】本题考查了等腰三角形的判定的应用,主要考查学生的理解能力和动手操作能力.4.(2016•武汉)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5B.6C.7D.8【分析】由点A、B的坐标可得到AB=2,然后分类讨论:若AC=AB;若BC=AB;若CA=CB,确定C点的个数.【解答】解:∵点A、B的坐标分别为(2,2)、B(4,0).∴AB=2,①若AC=AB,以A为圆心,AB为半径画弧与坐标轴有3个交点(含B点),即(0,0)、(4,0)、(0,4),∵点(0,4)与直线AB共线,∴满足△ABC是等腰三角形的C点有1个;②若BC=AB,以B为圆心,BA为半径画弧与坐标轴有2个交点(A点除外),即满足△ABC是等腰三角形的C点有2个;③若CA=CB,作AB的垂直平分线与坐标轴有两个交点,即满足△ABC是等腰三角形的C点有2个;综上所述:点C在坐标轴上,△ABC是等腰三角形,符合条件的点C共有5个.故选:A.【点评】本题考查了等腰三角形的判定,也考查了通过坐标确定图形的性质以及分类讨论思想的运用.5.(2015•武汉)如图,△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M.当△EFG绕点D旋转时,线段BM长的最小值是()A.2﹣B.+1C.D.﹣1【分析】取AC的中点O,连接AD、DG、BO、OM,如图,易证△DAG∽△DCF,则有∠DAG=∠DCF,从而可得A、D、C、M四点共圆,根据两点之间线段最短可得BO≤BM+OM,即BM≥BO﹣OM,当M在线段BO与该圆的交点处时,线段BM最小,只需求出BO、OM的值,就可解决问题.【解答】解:AC的中点O,连接AD、DG、BO、OM,如图.∵△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,∴AD⊥BC,GD⊥EF,DA=DG,DC=DF,∴∠ADG=90°﹣∠CDG=∠FDC,=,∴△DAG∽△DCF,∴∠DAG=∠DCF.∴A、D、C、M四点共圆.根据两点之间线段最短可得:BO≤BM+OM,即BM≥BO﹣OM,当M在线段BO与该圆的交点处时,线段BM最小,此时,BO===,OM=AC=1,则BM=BO﹣OM=﹣1.故选:D.【点评】本题主要考查了等边三角形的性质、等腰三角形的性质、相似三角形的判定与性质、四点共圆的判定、勾股定理、两点之间线段最短等知识,求出动点M的运动轨迹是解决本题的关键.6.(2014•武汉)如图,P A,PB切⊙O于A、B两点,CD切⊙O于点E,交P A,PB于C,D.若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是()A.B.C.D.【分析】(1)连接OA、OB、OP,延长BO交P A的延长线于点F.利用切线求得CA=CE,DB=DE,P A=PB再得出P A=PB=.利用Rt△BFP∽RT△OAF得出AF=FB,在RT△FBP中,利用勾股定理求出BF,再求tan∠APB的值即可.【解答】解:连接OA、OB、OP,延长BO交P A的延长线于点F.∵P A,PB切⊙O于A、B两点,CD切⊙O于点E∴∠OAF=∠PBF=90°,CA=CE,DB=DE,P A=PB,∵△PCD的周长=PC+CE+DE+PD=PC+AC+PD+DB=P A+PB=3r,∴P A=PB=.在Rt△PBF和Rt△OAF中,,∴Rt△PBF∽Rt△OAF.∴===,∴AF=FB,在Rt△FBP中,∵PF2﹣PB2=FB2∴(P A+AF)2﹣PB2=FB2∴(r+BF)2﹣()2=BF2,解得BF=r,∴tan∠APB===,故选:B.【点评】本题主要考查了切线的性质,相似三角形及三角函数的定义,解决本题的关键是切线与相似三角形相结合,找准线段及角的关系.7.(2013•武汉)如图,⊙A与⊙B外切于点D,PC,PD,PE分别是圆的切线,C,D,E 是切点.若∠CDE=x°,∠ECD=y°,⊙B的半径为R,则的长度是()A.B.C.D.【分析】点C、D、E都在⊙P上,由圆周角定理可得:∠DPE=2y°;然后在四边形BDPE 中,求出∠B;最后利用弧长公式计算出结果.【解答】解:根据题意,由切线长定理可知:PC=PD=PE,即点C、D、E在以P为圆心,PC长为半径的⊙P上,由圆周角定理得:∠DPE=2∠ECD=2y°.如图,连接BD、BE,则∠BDP=∠BEP=90°,在四边形BDPE中,∠B+∠BDP+∠DPE+∠BEP=360°,即:∠B+90°+2y°+90°=360°,解得:∠B=180°﹣2y°.∴的长度是:=.故选:B.【点评】本题考查圆的相关性质.解题关键是确定点C、D、E在⊙P上,从而由圆周角定理得到∠DPE=2∠ECD=2y°.8.(2012•武汉)在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为()A.11+B.11﹣C.11+或11﹣D.11+或1+【分析】根据平行四边形面积求出AE和AF,有两种情况,求出BE、DF的值,求出CE 和CF的值,相加即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD=5,BC=AD=6,①如图:过点A作AE⊥BC垂足为E,过点A作AF⊥DC垂足为F,由平行四边形面积公式得:BC×AE=CD×AF=15,求出AE=,AF=3,在Rt△ABE和Rt△ADF中,由勾股定理得:AB2=AE2+BE2,把AB=5,AE=代入求出BE=,同理DF=3>5,即F在DC的延长线上(如上图),∴CE=6﹣,CF=3﹣5,即CE+CF=1+,②如图:过点A作AF⊥DC垂足为F,过点A作AE⊥BC垂足为E,∵AB=5,AE=,在△ABE中,由勾股定理得:BE=,同理DF=3,由①知:CE=6+,CF=5+3,∴CE+CF=11+.故选:D.【点评】本题考查了平行四边形性质,勾股定理的应用,主要培养学生的理解能力和计算能力,注意:要分类讨论啊.二.填空题(共8小题)9.(2019•武汉)问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:P A+PC=PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是2.【分析】(1)在BC上截取BG=PD,通过三角形全等证得AG=AP,BG=DP,得出△AGP是等边三角形,得出AP=GP,则P A+PC=GP+PC=GC=PE,即可证得结论;(2)以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,可证△GMO≌△DME,可得GO=DE,则MO+NO+GO=NO+OE+DE,即当D、E、O、N四点共线时,MO+NO+GO值最小,最小值为ND的长度,根据勾股定理先求得MF、DF,然后求ND的长度,即可求MO+NO+GO的最小值.【解答】(1)证明:如图1,在BC上截取BG=PD,在△ABG和△ADP中,∴△ABG≌△ADP(SAS),∴AG=AP,BG=DP,∴GC=PE,∵∠GAP=∠BAD=60°,∴△AGP是等边三角形,∴AP=GP,∴P A+PC=GP+PC=GC=PE∴P A+PC=PE;(2)解:如图2:以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,作DF⊥NM,交NM的延长线于F.∵△MGD和△OME是等边三角形∴OE=OM=ME,∠DMG=∠OME=60°,MG=MD,∴∠GMO=∠DME在△GMO和△DME中∴△GMO≌△DME(SAS),∴OG=DE∴NO+GO+MO=DE+OE+NO∴当D、E、O、M四点共线时,NO+GO+MO值最小,∵∠NMG=75°,∠GMD=60°,∴∠NMD=135°,∴∠DMF=45°,∵MG=.∴MF=DF=4,∴NF=MN+MF=6+4=10,∴ND===2,∴MO+NO+GO最小值为2,故答案为2,【点评】本题考查了旋转的性质,等边三角形的性质,勾股定理,最短路径问题,构造等边三角形是解答本题的关键.10.(2018•武汉)如图,在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长是.【分析】延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,根据题意得到ME=EB,根据三角形中位线定理得到DE=AM,根据等腰三角形的性质求出∠ACN,根据正弦的概念求出AN,计算即可.【解答】解:延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE=AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=AC•sin∠ACN=,∴AM=,∴DE=,故答案为:.【点评】本题考查的是三角形中位线定理、等腰三角形的性质、解直角三角形,掌握三角形中位线定理、正确作出辅助线是解题的关键.11.(2017•武汉)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是<a<或﹣3<a<﹣2.【分析】先用a表示出抛物线与x轴的交点,再分a>0与a<0两种情况进行讨论即可.【解答】解:∵y=ax2+(a2﹣1)x﹣a=(ax﹣1)(x+a),∴当y=0时,x1=,x2=﹣a,∴抛物线与x轴的交点为(,0)和(﹣a,0).∵抛物线与x轴的一个交点的坐标为(m,0)且2<m<3,∴当a>0时,2<<3,解得<a<;当a<0时,2<﹣a<3,解得﹣3<a<﹣2.故答案为:<a<或﹣3<a<﹣2.【点评】本题考查的是抛物线与x轴的交点,在解答此题时要注意进行分类讨论,不要漏解.12.(2016•武汉)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5,则BD的长为2.【分析】作DM⊥BC,交BC延长线于M,连接AC,由勾股定理得出AC2=AB2+BC2=25,求出AC2+CD2=AD2,由勾股定理的逆定理得出△ACD是直角三角形,∠ACD=90°,证出∠ACB=∠CDM,得出△ABC∽△CMD,由相似三角形的对应边成比例求出CM=2AB=6,DM=2BC=8,得出BM=BC+CM=10,再由勾股定理求出BD即可.【解答】解:作DM⊥BC,交BC延长线于M,连接AC,如图所示:则∠M=90°,∴∠DCM+∠CDM=90°,∵∠ABC=90°,AB=3,BC=4,∴AC2=AB2+BC2=25,∵CD=10,AD=5,∴AC2+CD2=AD2,∴△ACD是直角三角形,∠ACD=90°,∴∠ACB+∠DCM=90°,∴∠ACB=∠CDM,∵∠ABC=∠M=90°,∴△ABC∽△CMD,∴=,∴CM=2AB=6,DM=2BC=8,∴BM=BC+CM=10,∴BD===2,故答案为:2.【点评】本题考查了相似三角形的判定与性质、勾股定理、勾股定理的逆定理;熟练掌握相似三角形的判定与性质,证明由勾股定理的逆定理证出△ACD是直角三角形是解决问题的关键.13.(2015•武汉)如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是.【分析】作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值.【解答】解:作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值.根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°,∴在Rt△M′ON′中,M′N′==.故答案为.【点评】本题考查了轴对称﹣﹣最短路径问题,根据轴对称的定义,找到相等的线段,得到等边三角形是解题的关键.14.(2014•武汉)如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为.【分析】根据等式的性质,可得∠BAD与∠CAD′的关系,根据SAS,可得△BAD与△CAD′的关系,根据全等三角形的性质,可得BD与CD′的关系,根据勾股定理,可得答案.【解答】解:作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAD′中,,∴△BAD≌△CAD′(SAS),∴BD=CD′.∠DAD′=90°由勾股定理得DD′=,∠D′DA+∠ADC=90°由勾股定理得CD′=,∴BD=CD′=,故答案为:.【点评】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,勾股定理,作出全等图形是解题关键.15.(2013•武汉)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是﹣1.【分析】根据正方形的性质可得AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,然后利用“边角边”证明△ABE和△DCF全等,根据全等三角形对应角相等可得∠1=∠2,利用“SAS”证明△ADG和△CDG全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AHB=90°,取AB的中点O,连接OH、OD,根据直角三角形斜边上的中线等于斜边的一半可得OH=AB=1,利用勾股定理列式求出OD,然后根据三角形的三边关系可知当O、D、H三点共线时,DH的长度最小.【解答】解:在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠1=∠2,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠2=∠3,∴∠1=∠3,∵∠BAH+∠3=∠BAD=90°,∴∠1+∠BAH=90°,∴∠AHB=180°﹣90°=90°,取AB的中点O,连接OH、OD,则OH=AO=AB=1,在Rt△AOD中,OD===,根据三角形的三边关系,OH+DH>OD,∴当O、D、H三点共线时,DH的长度最小,最小值=OD﹣OH=﹣1.(解法二:可以理解为点H是在Rt△AHB,AB直径的半圆上运动当O、H、D三点共线时,DH长度最小)故答案为:﹣1.【点评】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系,确定出DH最小时点H的位置是解题关键,也是本题的难点.16.(2012•武汉)在平面直角坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是m≥.【分析】C在以A为圆心,以2为半径的圆周上,只有当OC与圆A相切(即到C点)时,∠BOC最小,根据勾股定理求出此时的OC,求出∠BOC=∠CAO,根据解直角三角形求出此时的值,根据tan∠BOC的增减性,即可求出答案.【解答】解:C在以A为圆心,以2为半径作圆周上,只有当OC与圆A相切(即到C点)时,∠BOC最小,AC=2,OA=3,由勾股定理得:OC=,∵∠BOA=∠ACO=90°,∴∠BOC+∠AOC=90°,∠CAO+∠AOC=90°,∴∠BOC=∠OAC,tan∠BOC=tan∠OAC==,随着C的移动,∠BOC越来越大,∵C在第一象限,∴C不到x轴点,即∠BOC<90°,∴tan∠BOC≥,故答案为:m≥.【点评】本题考查了解直角三角形,勾股定理,切线的性质等知识点的应用,能确定∠BOC的变化范围是解此题的关键,题型比较好,但是有一定的难度.三.解答题(共16小题)17.(2019•武汉)在△ABC中,∠ABC=90°,=n,M是BC上一点,连接AM.(1)如图1,若n=1,N是AB延长线上一点,CN与AM垂直,求证:BM=BN.(2)过点B作BP⊥AM,P为垂足,连接CP并延长交AB于点Q.①如图2,若n=1,求证:=.②如图3,若M是BC的中点,直接写出tan∠BPQ的值.(用含n的式子表示)【分析】(1)如图1中,延长AM交CN于点H.想办法证明△ABM≌△CBN(ASA)即可.(2)①如图2中,作CH∥AB交BP的延长线于H.利用全等三角形的性质证明CH=BM,再利用平行线分线段成比例定理解决问题即可.②如图3中,作CH∥AB交BP的延长线于H,作CN⊥BH于N.不妨设BC=2m,则AB=2mn.想办法求出CN,PN(用m,n表示),即可解决问题.【解答】(1)证明:如图1中,延长AM交CN于点H.∵AM⊥CN,∴∠AHC=90°,∵∠ABC=90°,∴∠BAM+∠AMB=90°,∠BCN+∠CMH=90°,∵∠AMB=∠CMH,∴∠BAM=∠BCN,∵BA=BC,∠ABM=∠CBN=90°,∴△ABM≌△CBN(ASA),∴BM=BN.(2)①证明:如图2中,作CH∥AB交BP的延长线于H.∵BP⊥AM,∴∠BPM=∠ABM=90°,∵∠BAM+∠AMB=90°,∠CBH+∠BMP=90°,∴∠BAM=∠CBH,∵CH∥AB,∴∠HCB+∠ABC=180°,∵∠ABC=90°,∴∠ABM=∠BCH=90°,∵AB=BC,∴△ABM≌△BCH(ASA),∴BM=CH,∵CH∥BQ,∴==.②解:如图3中,作CH∥AB交BP的延长线于H,作CN⊥BH于N.不妨设BC=2m,则AB=2mn.则BM=CM=m,CH=,BH=,AM=m,∵•AM•BP=•AB•BM,∴PB=,∵•BH•CN=•CH•BC,∴CN=,∵CN⊥BH,PM⊥BH,∴MP∥CN,∵CM=BM,∴PN=BP=,∵∠BPQ=∠CPN,∴tan∠BPQ=tan∠CPN===.方法二:易证:===,∵PN=PB,tan∠BPQ====.【点评】本题属于相似形综合题,考查了相似三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数解决问题,属于中考压轴题.18.(2019•武汉)已知抛物线C1:y=(x﹣1)2﹣4和C2:y=x2(1)如何将抛物线C1平移得到抛物线C2?(2)如图1,抛物线C1与x轴正半轴交于点A,直线y=﹣x+b经过点A,交抛物线C1于另一点B.请你在线段AB上取点P,过点P作直线PQ∥y轴交抛物线C1于点Q,连接AQ.①若AP=AQ,求点P的横坐标;②若P A=PQ,直接写出点P的横坐标.(3)如图2,△MNE的顶点M、N在抛物线C2上,点M在点N右边,两条直线ME、NE与抛物线C2均有唯一公共点,ME、NE均与y轴不平行.若△MNE的面积为2,设M、N两点的横坐标分别为m、n,求m与n的数量关系.【分析】(1)y=(x﹣1)2﹣4向左平移1个单位长度,再向上平移4个单位长度即可得到y=x2;(2)①易求点A(3,0),b=4,设D(0,4)关于x轴的对称点为D',则D'(0,﹣4),则可求直线AD'的解析式为y=x﹣4,联立方程,可得P点横坐标为;②同理可得P点横坐标为﹣;(3)设经过M与E的直线解析式为y=k(x﹣m)+m2,∴,则可知△=k2﹣4km+4m2=(k﹣2m)2=0,求得k=2m,得出直线ME的解析式为y=2mx﹣m2,同理:直线NE的解析式为y=2nx﹣n2,则可求E(,mn),再由面积[(n2﹣mn)+(m2﹣mn)]×(m﹣n)﹣(n2﹣mn)×(﹣n)﹣(m2﹣mn)×(m﹣)=2,可得(m﹣n)3=8,即可求解;【解答】解:(1)y=(x﹣1)2﹣4向左平移1个单位长度,再向上平移4个单位长度即可得到y=x2;(2)如图1,①设抛物线C1与y轴交于C点,直线AB与y轴交于D点,∵C1:y=(x﹣1)2﹣4,∴A(3,0),C(0,﹣3),∵直线y=﹣x+b经过点A,∴b=4,∴D(0,4),∵AP=AQ,PQ∥y轴,∴P、Q两点关于x轴对称,设D(0,4)关于x轴的对称点为D',则D'(0,﹣4),∴直线AD'的解析式为y=x﹣4,由,得x1=3,x2=,∴x Q=,∴x P=x Q=,∴P点横坐标为;②P点横坐标为﹣;(3)设经过M与E的直线解析式为y=k(x﹣m)+m2,∴,则有x2﹣kx+km﹣m2=0,△=k2﹣4km+4m2=(k﹣2m)2=0,∴k=2m,∴直线ME的解析式为y=2mx﹣m2,同理:直线NE的解析式为y=2nx﹣n2,∴E(,mn),∴[(n2﹣mn)+(m2﹣mn)]×(m﹣n)﹣(n2﹣mn)×(﹣n)﹣(m2﹣mn)×(m﹣)=2,∴(m﹣n)3﹣=4,∴(m﹣n)3=8,∴m﹣n=2;【点评】本题考查二次函数的图象及性质;是二次函数的综合题,熟练掌握直线与二次函数的交点求法,借助三角形面积列出等量关系是解决m与n的关系的关键.19.(2018•武汉)在△ABC中,∠ABC=90°.(1)如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:△ABM∽△BCN;(2)如图2,P是边BC上一点,∠BAP=∠C,tan∠P AC=,求tan C的值;(3)如图3,D是边CA延长线上一点,AE=AB,∠DEB=90°,sin∠BAC=,,直接写出tan∠CEB的值.【分析】(1)利用同角的余角相等判断出∠BAM=∠CBN,即可得出结论;(2)先判断出MP=MC,进而得出=,设MN=2m,PN=m,根据勾股定理得,PM==3m=CM,即可得出结论;(3)先判断出=,再同(2)的方法,即可得出结论.【解答】解:(1)∵AM⊥MN,CN⊥MN,∴∠AMB=∠BNC=90°,∴∠BAM+∠ABM=90°,∵∠ABC=90°,∴∠ABM+∠CBN=90°,∴∠BAM=∠CBN,∵∠AMB=∠NBC,∴△ABM∽△BCN;(2)如图2,过点P作PM⊥AP交AC于M,PN⊥AM于N.∴∠BAP+∠1=∠CPM+∠1=90°,∴∠BAP=∠CPM=∠C,∴MP=MC∵tan∠P AC====设MN=2m,PN=m,根据勾股定理得,PM==3m=CM,∴tan C==;(3)在Rt△ABC中,sin∠BAC==,过点A作AG⊥BE于G,过点C作CH⊥BE交EB的延长线于H,∵∠DEB=90°,∴CH∥AG∥DE,∴=同(1)的方法得,△ABG∽△BCH∴,设BG=4m,CH=3m,AG=4n,BH=3n,∵AB=AE,AG⊥BE,∴EG=BG=4m,∴GH=BG+BH=4m+3n,∴,∴n=2m,∴EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,在Rt△CEH中,tan∠BEC==.【点评】此题是相似形综合题,主要考查了同角的余角相等,相似三角形的判定和性质,锐角三角函数,平行线分线段成比例定理,构造图1是解本题的关键.20.(2018•武汉)抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.【分析】(1)根据对称轴为直线x=1且抛物线过点A(0,1)求解可得;(2)根据直线y=kx﹣k+4=k(x﹣1)+4知直线所过定点G坐标为(1,4),从而得出。
湖北省武汉市新洲区2014届中考数学训练题及答案
新洲2014届九年级数学训练题武汉开发区第四中学 王为成供一、选择题(共10题,每小题3分,共30分) 1.在-2,0,-1,2这四个数中,最小的数是 A .-2 B .0 C .-1 D .2 2.式子x -2在实数范围内有意义,则x 的取值范围是 A.x <2 B.x ≤2 C.x <-2 D.x ≤-2 3.下列计算正确的是A.(-6)+(+4)=-10B. 0-3=3C.523=+ D.12=324.某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:则这11双鞋的尺码组成的一组数据中,众数和中位数分别是( ) A .25,25 B .24.5,25 C .25,24.5 D .24.5,24.5 5.下列运算正确的是A .3332a a a =⋅B .6332a a a =+C .()63282a a -=- D . 236a a a =÷6.如图是由大小相同的正方体摆成的立体图形,它的左视图...是A B C D 7.如图,正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,S 正方形ODEF =2S 正方形OABC ,点A 的坐标为(1,0),则E 点的坐标为A.(2,0)B.(2,2)C.(23,23) D.(2,2)8.某校八年级所有学生参加2014年生物结业考试,现从中随机抽取了部分学生的考试 成绩进行统计后分为A 、B 、C 、D 四个等级,并将统计结果绘制成如下的统计图.说明:A 级:100分~90分;B 级:89分~80分;C 级:79分~60分;D 级:60分以下 若该校八年级共有850名学生,则估计该年级及格(≥60分)的学生人数大约有A.500人B.561人C. 765人D.800人9.如图,已知121=A A , 9021=∠A OA ,3021=∠OA A ,以斜边2OA 为直角边作直角三角形,使得 3032=∠OA A ,依次以前一个直角三角形的斜边为直角边一直作含o30角的直角三角形,则20112010OA A Rt ∆的最小边长为 A .20092 B.20102C.2009)32(D.2010)32(10.如图,AB 是⊙O 的直径,点C 在⊙O 上,且tan ∠ABC =21,D 是⊙O 上的一个动点(C ,D 两点位于直径AB 的两侧),连接CD ,过点C 作CE ⊥CD 交DB 的延长线于点E .若⊙O 的半径是5,则线段CE 长度的最大值是 A.25 B.55 C.5516 D.45二、填空题(共6小题,每小题3分,共18分)11. 分解因式:=+-n mn n m 22.12.2014年2月14日从北京航天飞行控制中心获悉,嫦娥二号卫星再次刷新我国深空探测最远距离记录,达到7 000万公里,这是我国航天器迄今为止飞行距离最远的一次“太空长征” .将7 000万公里用科学记数法表示应为 公里.13.小明的试卷夹里放了大小相同的12张试卷,其中语文5张、数学4张、英语3张,他随机地从试卷夹中抽出1张,抽出的试卷恰好是数学试卷的概率是.46%20%DC BA14.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车 到达乙地后缷完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y (千米)与货车行驶时间x (小时)之间的函数图象如图所示,则快递车从乙地返回时的速度为 千米/时.14题图 15题图 16题图 15.如图,双曲线y = kx经过Rt △OMN 斜边上的点A ,与直角边MN 相交于点B ,已知OA=2AN ,△OAB 的面积为5,则k= .16.如图,在Rt △ABC 中,∠ACB =90°,AC=BC=6cm ,动点P 从点A 出发,沿AB 方向以每cm 的速度向终点B 运动;同时,动点Q 从点B 出发沿BC 方向以每秒1cm 的速度向终点C 运动,将△PQC 沿BC 翻折,点P 的对应点为点P '.设Q 点运动的时间为t 秒,若四边形QP CP '为菱形,则t 的值为 .三、解答题(共9小题,共72分) 17.(本题满分6分)解方程:13932=-+-x xx18.(本题满分6分)直线2+=kx y 经过点A(1,6),求关于x 的不等式02≤+kx 的解集.19.(本题满分6分)如图,点B 、F 、C 、E 在一条直线上, FB=CE ,AB ∥ED ,AC ∥FD. 求证:AC=DF .B P21.(本题满分7分)我区某中学为备战市运会,在校运动队的学生中进行了全能选手的选拔,并将参加选拔学生的综合成绩(得分为整数,满分为100分)分成四组,绘成了如下尚不完整的统计图表.根据图表信息,回答下列问题:(1)参加活动选拔的学生共有 人;表中m = ,n = ;(2)若将各组的组中值视为该组的平均值,请你估算参加选拔学生的平均成绩;(3)将第一组中的4名学生记为A 、B 、C 、D ,由于这4名学生的体育综合水平相差不大,现决定随机挑选其中两名学生代表学校参赛,试通过画树形图或列表的方法求恰好选中A 和B 的概率. 22.(本题满分8分)如图,以△ABC 的一边AB 为直径作⊙O ,⊙O 与BC 边的交点D 恰好为BC 的中点,过点D 作⊙O 的切线交AC 边于点E . (1) 求证:DE⊥AC;(2) 连结OC 交DE 于点F ,若3sin 4∠=ABC ,求OF FC20.(本题满分7分)如图,在边长为1的正方形组成的网格中,△ABC 的顶点均在格点上,点A 、B 、C 的坐标分别是A (-2,3)、B (-1,2)、C (-3,1),△ABC 绕点O 顺时针旋转90°后得到△A 1B 1C 1. (1)在正方形网格中作出△A 1B 1C 1;(2)求点A 经过的路径弧AA 1的长度;(结果保留π)(3)在y 轴上找一点D ,使DB+DB 1的值最小,并求出D 点坐标.21 第一组8%第四组42%第二组 ?第三组30%23.(本题满分10分)某校学生参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y (个)与销售单价x (元/个)之间的对应关系如表所示: (1)试判断y 与x 之间的函数关系,并求出函数关系式;(2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润w (元)与销售单价x (元/个)之间的函数关系式;(3)在(2)的条件下,若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.24.(本题满分10分)如图,在△ABC 中,AB =AC =10cm ,BC =16cm ,DE =4cm .动线段DE(端点D 从点B 开始)沿BC 边以1cm/s 的速度向点C 运动,当端点E 到达点C 时运动停止.过点E 作EF ∥AC 交AB 于点F(当点E 与点C 重合时,EF 与CA 重合),连接DF ,设运动的时间为t 秒(t ≥0).(1) 求出线段EF 的长(用含t 的代数式表示);(2) 在这个运动过程中,△DEF 能否为等腰三角形?若能,请求出t 的值;若不能,请说明理由;(3) 设M 、N 分别是DF 、EF 的中点,求整个运动过程中,MN 所扫过的面积.BCDEAB (D )CEF25.(本题满分12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+4经过A(-3,0)、B(4,0)两点,且与y轴交于点C,点D在x轴的负半轴上,且BD=BC.动点P 从点A出发,沿线段AB以每秒1个单位长度的速度向点B移动,同时动点Q从点C出发,沿线段CA以某一速度向点A移动.(1)求该抛物线的解析式;(2)若经过t秒的移动,线段PQ被CD垂直平分,求此时t的值;(3)该抛物线的对称轴上是否存在一点M,使MQ+MA的值最小?若存在,求出点M的坐标;若不存在,请说明理由.数学参考答案二、11.2)1(-m n 12.7107⨯ 13.3114.90 15.12 16.2 三、17. 4-=x 18. x ≤﹣2119.证明略 20.解:(1)如图所示: (2)在旋转过程中,点A 经过的路径弧AA 1的长度为:;(3)∵B 、B 1在y 轴两旁,连接BB 1交y轴于点D ,设D′为y 轴上异于D 的点,显然D′B+D′B 1>DB+DB 1, ∴此时DB+DB 1最小,设直线BB 1解析式为出:y=kx+b ,依据题意得解得:k= -31,b =35 ∴y =3531+-x ∴D(0,35)21.解:(1)∵第一组有4人,所占百分比为8%, ∴学生总数为:4÷8%=50; ∴n=50×30%=15,⎩⎨⎧=+=+-122b k b km=50﹣4﹣15﹣21=10. 故答案为50,10,15; (2)==74.4;(3)将第一组中的4名学生记为A 、B 、C 、D ,现随机挑选其中两名学生代表学校参赛,由上表可知,总共有12种结果,且每种结果出现的可能性相等.恰好选中A 和B 的结果有2种,其概率为==.22.(1)证明:连接OD .∵DE 是⊙O 的切线∴DE ⊥OD ,即∠ODE=90° ∵AB 是⊙O 的直径 ∴O 是AB 的中点 又∵D 是BC 的中点 ∴OD ∥AC∴∠DEC=∠ODE= 90° ∴DE ⊥AC .(2)连接AD . ∵OD ∥AC∴ECOD FC OF ∵AB 为⊙O 的直径 ∴∠ADB= ∠ADC =90° 又∵D 为BC 的中点, ∴AB=AC∵sin ∠ABC= AD AB =34故设AD=3x , 则AB=AC=4x , OD=2x . ∵DE ⊥AC∴∠ADC= ∠AED= 90° ∵∠DAC= ∠EAD ∴△ADC ∽△AED∴=AD ACAE AD∴AC AE AD ⋅=2∴94=AE x∴74=EC x∴87==OF OD FC EC .23.24.解:(1) 易求BE =(t +4)cm , EF =58(t +4)cm .(2) 分三种情况讨论: ① 当DF =EF 时,有∠ED F =∠DEF =∠B, ∴ 点B 与点D 重合, ∴ t =0. ② 当DE =EF 时, ∴4=58(t +4),解得:t =125.③ 当DE =DF 时,有∠D FE =∠DEF =∠B=∠C , ∴△DEF∽△AB C . ∴DE AB =EF BC ,即410=58(t +4)16, 解得:t =15625.综上所述,当t =0、125或15625秒时,△DEF 为等腰三角形.(3) 设P 是AC 的中点,连接BP , ∵ EF ∥AC ,∴ △FBE ∽△ABC . ∴ EF AC =BE BC , ∴ EN CP =BE BC.又∠BEN =∠C , ∴ △NBE ∽△PBC , ∴ ∠NBE =∠PB C .∴ 点N 沿直线BP 运动,MN 也随之平移.如图,设MN 从ST 位置运动到PQ 位置,则四边形PQST 是平行四边形.∵ M 、N 分别是DF 、EF 的中点,∴ MN ∥DE,且ST =MN =12DE =2.分别过点T 、P 作TK⊥BC ,垂足为K ,PL⊥BC,垂足为L ,延长ST 交PL 于点R ,则四边形TKLR 是矩形,ABCDE FABCD EFAB CD E MPF N当t =0时,EF =58(0+4)=52,TK =12EF·sin∠DE F =12×52×3=3;当t =12时,EF =AC =10,PL =12AC·sinC =12×10×35=3∴P R =PL -RL =PL -TK =3-34=94.∴S □PQST =ST ·PR=2×94=92.∴整个运动过程中,MN 所扫过的面积为92cm 2.25.解:(1)∵抛物线y =ax2+bx +4经过A (-3,0)、B (4,0)两点∴⎩⎪⎨⎪⎧9a -3b +4=016a +4b +4=0 解得a =-1 3 ,b =1 3∴所求抛物线的解析式为y =-13x2+13x +4 (2)连接DQ ,依题意知AP =t ∵抛物线y =-13x2+13x +4与y 轴交于点C ∴C (0,4)又A (-3,0),B (4,0)可得AC =5,BC =42,AB =7∵BD =BC ,∴AD =AB -BD =7-42∵CD 垂直平分PQ ,∴QD =DP ,∠CDQ =∠CDP ∵BD =BC ,∴∠DCB =∠CDB ∴∠CDQ =∠DCB ,∴DQ ∥BC ∴△ADQ ∽△ABC ,∴ADAB=DQBC∴ADAB=DPBC,∴7-427=DP42解得DP =42-32 7 ,∴AP =AD +DP =177∴线段PQ 被CD 垂直平分时,t 的值为177(3)设抛物线y =-13x2+13x +4的对称轴x =12与x 由于点A 、B 关于对称轴x =12对称,连接BQ 交对称轴于点M 则MQ +MA =MQ +MB ,即MQ +MA =BQBLK当BQ⊥AC时,BQ最小,此时∠EBM=∠ACO∴tan∠EBM=tan∠ACO=3 4∴MEBE=34,即ME4-12=34,解得ME=218∴M(12,218)∴在抛物线的对称轴上存在一点M(12,218),使得MQ+MA的值最小.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.(3分)(2014•武汉)如图,线段AB两个端点的坐标分别为A(6, 6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小 为原来的
后得到线段CD,则端点C的坐标为( )
A.(3,3) B.(4,3) C.(3,1) D.(4,1) 7.(3分)(2014•武汉)如图是由4个大小相同的正方体搭成的几何 体,其俯视图是( )
20.(7分)(2014•武汉)如图,在直角坐标系中,A(0,4), C(3,0). (1)①画出线段AC关于y轴对称线段AB; ②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x 轴,请画出线段CD; (2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k 的值.
,
,
,
,
∴a5=19+12+15=46.
【点评】此题考查图形的变化规律,找出图形之间的数字运算规律,利 用规律解决问题. 10.(3分) 【考点】切线的性质;相似三角形的判定与性质;锐角三角函数的定 义.菁优网版权所有 【专题】几何图形问题;压轴题. 【分析】(1)连接OA、OB、OP,延长BO交PA的延长线于点F.利用 切线求得CA=CE,DB=DE,PA=PB再得出PA=PB=
14.(3分)(2014•武汉)一次越野跑中,当小明跑了1600米时,小刚 跑了1400米,小明、小刚所跑的路程y(米)与时间t(秒)之间的函数 关系如图,则这次越野跑的全程为 米.
15.(3分)(2014•武汉)如图,若双曲线y=
与边长为5的等边△AOB的边OA、AB分别相交于C、D两点,且 OC=2BD.则实数k的值为 .
售价(元/件)
x+40
90
每天销量(件)
200﹣2x
已知该商品的进价为每件30元,设销售该商品的每天利润为y元. (1)求出y与x的函数关系式; (2)问销售该商品第几天时,当天销售利润最大,最大利润是多少? (3)该商品在销售过程中,共有多少天每天销售利润不低于4800元? 请直接写出结果.
24.(10分)(2014•武汉)如图,Rt△ABC中,∠ACB=90°, AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向 点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点 B匀速运动,运动时间为t秒(0<t<2),连接PQ. (1)若△BPQ与△ABC相似,求t的值; (2)连接AQ,CP,若AQ⊥CP,求t的值; (3)试证明:PQ的中点在△ABC的一条中位线上.
21.(7分)(2014•武汉)袋中装有大小相同的2个红球和2个绿球. (1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球. ①求第一次摸到绿球,第二次摸到红球的概率; ②求两次摸到的球中有1个绿球和1个红球的概率; (2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中 有1个绿球和1个红球的概率是多少?请直接写出结果. 22.(8分)(2014•武汉)如图,AB是⊙O的直径,C,P是
上两点,AB=13,AC=5. (1)如图(1),若点P是
的中点,求PA的长; (2)如图(2),若点P是
的中点,求PA的长.
23.(10分)(2014•武汉)九(1)班数学兴趣小组经过市场调查,整 理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:
时间x(天)
1≤x<50
50≤x≤90
A.
B.
C. D.
8.(3分)(2014•武汉)为了解某一路口某一时段的汽车流量,小明 同学10天中在同一时段统计通过该路口的汽车数量(单位:辆),将统 计结果绘制成如下折线统计图:
由此估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天 数为( ) A.9 B.10 C.12 D.15 9.(3分)(2014•武汉)观察下列一组图形中点的个数,其中第1个图 中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此 规律第5个图中共有点的个数是( )
2014年湖北省武汉市中考数学试卷
一、单项选择题(共10小题,每小题3分,共30分) 1.(3分)(2014•武汉)在实数﹣2,0,2,3中,最小的实数是 ( ) A.﹣2 B.0 C.2 D.3 2.(3分)(2014•武汉)若
在实数范围内有意义,则x的取值范围是( ) A.x>0 B.x>3 C.x≥3 D.x≤3 3.(3分)(2014•武汉)光速约为300 000千米/秒,将数字300000用科 学记数法表示为( )
12.(3分)分解因式:a3﹣a= .
13.(3分)(2014•武汉)如图,一个转盘被分成7个相同的扇形,颜 色分为红、黄、绿三种,指针的位置固定,转动转盘后任其自由停止, 其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线 时,当作指向右边的扇形),则指针指向红色的概率为 .
16.(3分)(2014•武汉)如图,在四边形ABCD中,AD=4,CD=3, ∠ABC=∠ACB=∠ADC=45°,则BD的长为 .
三、解答题(共9小题,满分72分,应写出文字说明、证明过程或演算 步骤) 17.(6分)(2014•武汉)解方程:
=
. 18.(6分)(2014•武汉)已知直线y=2x﹣b经过点(1,﹣1),求关 于x的不等式2x﹣b≥0的解集. 19.(6分)(2014•武汉)如图,AC和BD相交于点O,OA=OC, OB=OD.求证:DC∥AB.
A.3×104 B.3×105 C.3×106 D.30×104
4.(3分)(2014•武汉)在一次中学生田径运动会上,参加跳高的15 名运动员的成绩如表:
成绩
1.50 1.60 1.65 1.70 1.75 1.80
(m)
人数
1
2
4332来自那么这些运动员跳高成绩的众数是( ) A.4 B.1.75 C.1.70 D.1.65 5.(3分)(2014•武汉)下列代数运算正确的是( )
2014年湖北省武汉市中考数学试卷
参考答案与试题解析
一、单项选择题(共10小题,每小题3分,共30分) 1.(3分) 【考点】实数大小比较.菁优网版权所有 【专题】常规题型. 【分析】根据正数大于0,0大于负数,可得答案. 【解答】解:﹣2<0<2<3,最小的实数是﹣2, 故选:A. 【点评】本题考查了实数比较大小,正数大于0,0大于负数是解题关 键. 2.(3分) 【考点】二次根式有意义的条件.菁优网版权所有 【专题】常规题型. 【分析】先根据二次根式有意义的条件得出关于x的不等式,求出x的取 值范围即可. 【解答】解:∵使
故选:C. 【点评】本题考查了幂的乘方与积的乘方、同底数幂的运算,掌握各部 分的运算法则是关键. 6.(3分) 【考点】位似变换;坐标与图形性质.菁优网版权所有 【专题】几何图形问题. 【分析】利用位似图形的性质结合两图形的位似比进而得出C点坐标. 【解答】解:∵线段AB的两个端点坐标分别为A(6,6),B(8, 2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的
【解答】解:将300 000用科学记数法表示为:3×105.
故选:B. 【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为
a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值
以及n的值.
4.(3分) 【考点】众数.菁优网版权所有 【专题】常规题型. 【分析】根据众数的定义找出出现次数最多的数即可. 【解答】解:∵1.65出现了4次,出现的次数最多, ∴这些运动员跳高成绩的众数是1.65; 故选:D. 【点评】此题考查了众数,用到的知识点是众数的定义,众数是一组数 据中出现次数最多的数. 5.(3分) 【考点】幂的乘方与积的乘方;同底数幂的乘法;完全平方公式.菁优网版权
第n个图有1+1×3+2×3+3×3+…+3n个点. 所以第5个图中共有点的个数是1+1×3+2×3+3×3+4×3+5×3=46. 故选:B. 方法二: n=1,s=4;n=2,s=10;n=3,s=19,
设s=an2+bn+c,
∴
, ∴a=
,b=
,c=1, ∴s=
n2+
n+1,把n=5代入,s=46. 方法三:
在实数范围内有意义, ∴x﹣3≥0, 解得x≥3. 故选:C. 【点评】本题考查的是二次根式有意义的条件,即被开方数大于等于 0. 3.(3分) 【考点】科学记数法—表示较大的数.菁优网版权所有 【专题】常规题型.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整
数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝 对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数 的绝对值<1时,n是负数.
=0.4, 所以估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天 数为:30×0.4=12(天). 故选:C. 【点评】本题考查了折线统计图及用样本估计总体的思想,读懂统计 图,从统计图中得到必要的信息是解决问题的关键. 9.(3分) 【考点】规律型:图形的变化类.菁优网版权所有 【专题】规律型. 【分析】由图可知:其中第1个图中共有1+1×3=4个点,第2个图中共有 1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…由此 规律得出第n个图有1+1×3+2×3+3×3+…+3n个点. 【解答】方法一: 解:第1个图中共有1+1×3=4个点, 第2个图中共有1+1×3+2×3=10个点, 第3个图中共有1+1×3+2×3+3×3=19个点, …