多元函数积分学——线积分(简略)

合集下载

多元函数积分知识点总结

多元函数积分知识点总结

多元函数积分知识点总结1. 多元函数的概念多元函数是指至少含有两个自变量的函数,它是自变量的多项式和、积、商或者反函数的复合函数。

多元函数的自变量可以是实数,也可以是复数。

例如,z=f(x,y)表示一个含有两个自变量的函数,其中x和y称为自变量,z称为因变量。

多元函数的图形通常是在三维坐标系中表示的,它描述了自变量之间的关系和对因变量的影响。

2. 多元函数的积分多元函数的积分是对多元函数在给定区域上的积分运算,它可以表示为对函数在该区域上的所有微小部分进行求和。

多元函数的积分具有广泛的应用,例如在物理学、工程学、经济学等领域中都有重要应用。

多元函数的积分包括二重积分和三重积分两种重要形式。

3. 二重积分二重积分是对二元函数在给定区域上的积分运算,它可以表示为对函数在该区域上的面积进行求和。

二重积分的计算通常涉及到对区域进行分割、确定积分范围、选择合适的坐标系等步骤。

二重积分的求解可以利用极坐标、直角坐标等不同坐标系进行计算,根据具体问题的情况选择合适的坐标系可以简化计算过程。

4. 三重积分三重积分是对三元函数在给定区域上的积分运算,它可以表示为对函数在该区域上的体积进行求和。

三重积分的计算通常涉及到对区域进行分割、确定积分范围、选择合适的坐标系等步骤。

三重积分的求解可以利用柱面坐标、球面坐标等不同坐标系进行计算,根据具体问题的情况选择合适的坐标系可以简化计算过程。

5. 多元函数的积分性质多元函数的积分具有一些重要的性质,包括线性性质、可加性、区域可加性等。

其中线性性质指的是积分运算满足线性运算规律,可加性指的是积分在不同区域的和等于对整个区域的积分,区域可加性指的是积分在求和区域上的分割等价性。

这些性质在多元函数积分的计算中起着重要的作用,可以帮助简化计算过程和求得精确解。

6. 多元函数的变限积分多元函数的变限积分是对多元函数在变化区域上的积分运算,它可以表示为对函数在变限区域上的所有微小部分进行求和。

第八讲 多元函数积分学知识点

第八讲  多元函数积分学知识点

第八讲 多元函数积分学知识点一、二重积分的概念、性质1、 ∑⎰⎰=→∆=n i i i i d D f dxdy y x f 10),(lim ),(δηξ ,几何意义:代表由),(y x f ,D 围成的曲顶柱体体积。

2、性质:(1)=⎰⎰D dxdy y x kf ),(⎰⎰Ddxdy y x f k ),((2)[]⎰⎰+D dxdy y x g y x f ),(),(=⎰⎰D dxdy y x f ),(+⎰⎰D dxdy y x g ),( (3)、D dx d y D =⎰⎰(4)21D D D +=,⎰⎰D dxdy y x f ),(=⎰⎰1),(D dxdy y x f +⎰⎰2),(D dxdy y x f (5)若),(),(y x g y x f ≤,则≤⎰⎰D dxdy y x f ),(⎰⎰Ddxdy y x g ),((6)若,),(M y x f m ≤≤则MD dxdy y x f mD D ≤≤⎰⎰),( (7)设),(y x f 在区域D 上连续,则至少存在一点D ∈),(ηξ,使=⎰⎰D dxdy y x f ),(D f ),(ηξ二、计算 (1) D:)()(,21x y x b x a ϑϑ≤≤≤≤⎰⎰⎰⎰=)()(21),(),(x x ba D dy y x f dx dxdy y x f ϑϑ (2) D :)()(,21y x y d y c ϕϕ≤≤≤≤,⎰⎰⎰⎰=)()(21),(),(x x d c D dy y x f dy dxdy y x f ϑϕ 技巧:“谁”的范围最容易确定就先确定“谁”的范围,然后通过划水平线和垂直线的方法确定另一个变量的范围(3)极坐标下:θθθrdrd dxdy r y r x ===,sin ,cos⎰⎰⎰⎰=)(0)sin ,cos (),(θβαθθθr D rdr r r f d dxdy y x f 三、曲线积分1、第一型曲线积分的计算(1)若积分路径为L :b x a x y ≤≤=),(φ,则 ⎰L ds y x f ),(=dx x x x f ba ⎰'+2))((1))(,(φφ (2)若积分路径为L :d y c y x ≤≤=),(ϕ,则⎰L ds y x f ),(=dy y y y f dc ⎰'+2))((1)),((ϕϕ (3)若积分路为L :⎩⎨⎧==)()(t y t x ϕφ,βα≤≤t ,则⎰L ds y x f ),(=dt t t t t f ⎰'+'βαϕφϕφ22))(())(())(),(( 2、第二型曲线积分的计算(1) 若积分路径为L :)(x y φ=,起点a x =,终点b y =,则⎰=+L dy y x Q dx y x P ),(),([]dx x x x Q x x P ba ⎰'+)())(,())(,(φφφ (2) 若积分路径为L :)(y x ϕ=,起点c y=,终点d y =,则 ⎰=+L dy y x Q dx y x P ),(),([]dy y y Q y y y P d c⎰+')),(()())),((ϕϕϕ (3) 若积分路为L :⎩⎨⎧==)()(t y t x ϕφ,起点α=t ,终点β=t ,则⎰=+L dy y x Q dx y x P ),(),([]dt t t t Q t t t P ⎰'+'βαϕϕφφϕφ)())(),(()())(),((。

多元函数的积分

多元函数的积分

多元函数的积分在数学中,多元函数的积分是一项重要的概念和计算方法。

与一元函数的积分类似,多元函数的积分可以帮助我们求解曲线下的面积、体积等问题,以及解决一些与实际问题相关的计算。

一、二重积分二重积分是多元函数积分中最基础的一种形式。

它的计算方法依赖于重积分的定义以及二重积分的性质。

对于二重积分来说,我们需要将待求的函数转化为极坐标形式、直角坐标形式等,并确定积分区域的范围。

通过分割积分区域成为若干小块,再对每个小块进行积分求和,最后将所有小块的积分结果相加,可以得到二重积分的值。

在实际应用中,二重积分可以用来计算平面图形的面积、求解平面质心等问题。

二、三重积分与二重积分类似,三重积分是多元函数积分中的另一种形式。

三重积分的计算方法也依赖于重积分的定义以及三重积分的性质。

与二重积分不同的是,三重积分需要确定积分区域的范围,并将待求的函数转化为球坐标形式、柱坐标形式等。

同样地,通过分割积分区域成为若干小块,再对每个小块进行积分求和,最后将所有小块的积分结果相加,可以得到三重积分的值。

在实际应用中,三重积分可以用来计算空间图形的体积、质心等问题。

三、重积分的性质重积分具有一些重要的性质,这些性质对于计算积分结果以及简化计算过程都非常有帮助。

其中一些常见的性质包括积分线性性、积分对称性、积分的加法性和积分的估值性等。

积分线性性:对于常数a和b,函数f(x,y)和g(x,y),有∬[D](af(x,y)+bg(x,y))dA = a∬[D]f(x,y)dA + b∬[D]g(x,y)dA。

这个性质使得我们在计算重积分时可以将积分区域分解成若干个子区域进行计算。

积分对称性:如果函数f(x,y)在区域D上关于x轴对称,则有∬[D]f(x,y)dA = 2∬[D1]f(x,y)dA,其中D1是区域D在x轴上方的部分。

类似地,还有关于y轴对称和原点对称的性质。

积分的加法性:对于两个不重叠的区域D1和D2,有∬[D1∪D2]f(x,y)dA = ∬[D1]f(x,y)dA + ∬[D2]f(x,y)dA。

多元函数积分的计算方法技巧

多元函数积分的计算方法技巧

第10章 多元函数积分的计算方法与技巧一、二重积分的计算法1、利用直角坐标计算二重积分假定积分区域可用不等式 表示,其中, 在上连续.这个先对, 后对的二次积分也常记作如果积分区域可以用下述不等式表示,且函数,在上连续,在上连续,则(2)D a x b x y x ≤≤≤≤ϕϕ12()()ϕ1()x ϕ2()x [,]ab y x f x y d dx f x y dy Dabx x (,)(,)()()σϕϕ⎰⎰⎰⎰=12D c y d y x y ≤≤≤≤,()()φφ12φ1()y φ2()y [,]c d f x y (,)D f x y d f x y dx dy dy f x y dx D y y c dc d y y (,)(,)(,)()()()()σφφφφ⎰⎰⎰⎰⎰⎰=⎡⎣⎢⎢⎤⎦⎥⎥=1212显然,(2)式是先对,后对的二次积分.积分限的确定几何法.画出积分区域的图形(假设的图形如下 )在上任取一点,过作平行于轴的直线,该直线穿过区域,与区域的边界有两个交点与,这里的、就是将,看作常数而对积分时的下限和上限;又因是在区间上任意取的,所以再将看作变量而对积分时,积分的下限为、上限为.例1计算, 其中是由抛物线及直线所围成的区域.x yD ],[b a x x y D D ))(,(1x x ϕ))(,(2x x ϕ)(1x ϕ)(2x ϕx y x [,]a b x x a b xyd D⎰⎰σD y x 2=y x =-22.利用极坐标计算二重积分 1、就是极坐标中的面积元素.2、极坐标系中的二重积分, 可以化归为二次积分来计算.其中函数, 在上连续.则注:本题不能利用直角坐标下二重积分计算法来求其精确值.D y y x y :,-≤≤≤≤+1222xyd dy xydx x y dy D y y y y σ⎰⎰⎰⎰⎰==⎡⎣⎢⎤⎦⎥-+-+12221222212[]=+-=-⎰1224582512y y y dy ()rdrd θr →cos θr →sin θrdrd →θf x y dxdyD(,)⎰⎰f r r rdrd D(cos ,sin )θθθ⎰⎰αθβϕθϕθ≤≤≤≤12()()r ϕθ1()ϕθ2()[,]αβf r r rdrd d f r r rdrD(cos ,sin )(cos ,sin )()()θθθθθθαβϕθϕθ⎰⎰⎰⎰=123、使用极坐标变换计算二重积分的原则(1)、积分区域的边界曲线易于用极坐标方程表示( 含圆弧,直线段 );(2)、被积函数表示式用极坐标变量表示较简单( 含, 为实数 ). 例6计算解此积分区域为该区域在极坐标下的表示形式为二、三重积分的计算 1、积分区域可表示成则这就是三重积分的计算公式, 它将三重积分化成先对积()x y 22+ααI dxdyx y a x y a axa a x =+⋅-+>⎰⎰--+-022*******()()D x a x y a a x :,022≤≤-≤≤-+-D r a :,sin -≤≤≤≤-πθθ4002I rdrd r a rd dra r r a d Da a =-=-=⎡⎣⎢⎤⎦⎥⎰⎰⎰⎰⎰----θθθπθθπ44222402202024sin sin arcsin =-=-=--⎰()θθθπππd 402421232Ωa x b y x y y x z x y z z x y ≤≤≤≤≤≤,()(),(,)(,)1212f x y z dv dx dyf x y z dz aby x y x z x y z x y (,,)(,,)()()(,)(,)Ω⎰⎰⎰⎰⎰⎰=1212分变量, 次对,最后对的三次积分.例1计算, 其中为球面及三坐标面所围成的位于第一卦限的立体. 解 在面上的投影区域为确定另一积分变量的变化范围选择一种次序,化三重积分为三次积分z y x xyzdxdydz Ω⎰⎰⎰Ωx y z 2221++=Ωxoy D x y x y xy :,,22100+≤≥≥0122≤≤--z x y ⎰⎰⎰⎰⎰⎰⎰⎰----Ω--==2222102210101010)1(21x y x x dyy x xy dx xyzdzdy dxxdydzxyzd dxx x x x x x dx xy y x xy dyxy y x xy dx x x⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡-----=⎥⎦⎤⎢⎣⎡--=--=--102223210104232103310)1(81)1(41)1(41814141)212121(224812462481246224124241cos sin 81cos sin 41cos sin 41cos cos sin 81cos sin 41cos sin 412052033320204232=⋅⋅⋅⋅-⋅⋅⋅⋅-⋅⋅=--=⎥⎦⎤⎢⎣⎡--=⎰⎰⎰⎰ππππtdtt tdt t dt t tdtt t t t t t2、利用柱面坐标计算三重积分 点的直角坐标与柱面坐标之间有关系式体积为这便是柱面坐标系下的体积元素, 并注意到(1)式有3、利用球坐标计算三重积分直角坐标与球面坐标间的关系为这就是球面坐标系下的体积元素。

多元函数积分学

多元函数积分学
(3)规定
( 4)

(5)如果 是分段光滑的:
,则

(6)如果 是封闭曲线,特记为 。
所围成的区域。
解二:画出积分区域的草图。 因为 D虽然是 X----型区域,但由于在定限时,第一次积分的上、下限发生了一次
改变,故不得已对 D进行分块。(作图:用直线
将 D分成
其中,

于是,有

注意;由例 2可见,对此题,虽然两种积分次序都可行,但第二种显然更麻烦。我们说有些 时候,就不仅仅是麻烦的问题了,如果积分次序选得不合适,可能做不出来。请看下面的
解:(1)这里
。画出草图如右。
(2)更换积分次序,即要将积分区域视为 X----型区域。为定限方便,需将积分区域分 为三块:
,则
其中,


于是,有:
例 9。对 (1)画出积分区域的草图;(2)更换积分次序。
解:(1)这里 记

。分别画
出草图如右。则
(2)更换积分次序,即要将积分区域视为 X----型区域。为定限方便,需将积分区域分 为四块:
,所以,
3.由积分中值定理,知:
注意:(6)关于重积分的对称性 (i)如果积分区域 D关于 X轴(或 Y)轴 对称,且被积函数
为奇,则
=0;
关于 y(或 X)
(ii)如果积分区域 D关于 X轴(或 Y)轴 对称,且被积函数
关于 y(或 X)
为偶,则
(其中, 为 D的上(右)一半区域)。
三.二重积分的计算 (一)利用直角坐标计算二重积分
的上、下限; (三)。计算累次积分。 注意:选择积分次序的原则 (一)。选择的积分次序使积分区域 D尽可能的少分块,以简化计算过程。 (二)。第一次积分的上、下限表达式要简单,并且容易根据第一次计算的结果作第二 次积分。 (三)。确定上、下限是重积分的关键。

第十讲:线积分

第十讲:线积分

第十讲:线积分
线积分是物理学中最基本的积分之一。

它是将一条线的曲率量化的方法。

一条抛物线可以拆分成多个小段,每个小段都是一个夹角,这些夹角之和就是抛物线的曲率。

线积分可以应用在几何学中,例如测量一个曲线的正确夹角大小等。

线积分可以定义为两点间距离的函数。

线积分可以通过三角函数来衡量一条线段上每米路程所需要的转角大小。

这样就可以将这条线段划分为很多比较小的线段,来计算每一条线段的夹角大小。

线积分被广泛应用在机器人的控制中,通过观测路径上的点,可以根据积分方程计算转角障碍物的大小和位置。

此外,线积分在机器视觉中也被应用,例如用来重构空间形状的识别。

线积分不仅可以用于几何学,还可以用于力学和电学方面。

在力学中,它可以用于计算曲线上不同点之间的力之和。

在电学中,它可以用来计算不同点之间的电位变化。

线积分是一种很强大的积分形式,它可以有效地将抛物线或复杂函数拆分成多段小线段,从而定量地研究该函数的曲率变化。

它在几何学,力学,机器人控制和机器视觉领域得到了广泛的应用,发挥了重要的作用。

多元函数的积分

多元函数的积分

多元函数的积分在数学中,多元函数的积分是一个重要的概念和计算方法。

与一元函数的积分不同,多元函数的积分需要考虑多个自变量和相应的积分变量。

一、多元函数的积分定义对于二元函数f(x, y),其在有界闭区域D上的积分可以定义为:∬f(x, y)dA = limΔx,Δy→0 Σf(xi, yj)ΔA其中,Δx和Δy分别表示x和y方向的分割长度,Σ表示对所有的(i, j)求和,xi和yj表示分割后的小区域的任意点,ΔA表示小区域的面积。

对于n元函数f(x1, x2, ..., xn),其在有界闭区域D上的积分可以定义为:∭f(x1, x2, ..., xn)dV = limΔx1,Δx2,...,Δxn→0 Σf(x1i, x2j, ..., xnk)ΔV其中,Δx1, Δx2, ..., Δxn分别表示各个方向的分割长度,Σ表示对所有的(i1, i2, ..., in)求和,x1i, x2j, ..., xnk表示分割后小区域的任意点,ΔV表示小区域的体积。

二、多元函数的积分计算与一元函数的积分类似,对于多元函数的积分计算也需要借助于定积分的性质、微积分的基本定理和换元积分法等方法。

1. 球坐标和柱坐标对于具有某种对称性的多元函数,可以选择适当的坐标系来简化积分计算。

常用的坐标系有球坐标和柱坐标。

球坐标系适用于具有球对称性的问题,对于三元函数可以表示为:x = rsinθcosφ, y = rsinθsinφ, z = rcosθ其中,r代表点到坐标原点的距离,θ表示点与正z轴的夹角,φ表示点在xy平面上与正x轴的夹角。

柱坐标系适用于具有柱对称性的问题,对于三元函数可以表示为:x = rcosθ, y = rsinθ, z = z其中,r代表点到z轴的距离,θ表示点在xy平面上与正x轴的夹角,z表示点在z轴上的坐标。

2. 积分的性质多元函数的积分具有类似于一元函数积分的一些性质,如线性性质、可加性质、保号性质等。

多元函数积分学课件

多元函数积分学课件

解析
首先将二重积分拆分为两个定积 分,然后分别进行计算。
答案
$frac{4}{9}$
答案
$-frac{1}{6}$
解析
同样拆分二重积分,然后进行计 算。
例题2
计算$int_{0}^{1}int_{0}^{y}(x y)dxdy$
三重积分习题与解析
例题1
计算 $int_{0}^{1}int_{0}^{1}int_{0}^{x}xydzdxdy $
传导问题。
在几何中的应用
曲面面积和体积计算
积分可以用来计算曲面的面积和三维物体的体积,这在几何学中 非常重要。
曲线积分
在几何学中,曲线积分被用来计算曲线长度、面积和线段上的变化 量。
参数曲线和曲面
参数曲线和曲面可以用积分表示,这有助于研究几何对象的形状和 性质。
在工程中的应用
流体动力学
在航空航天、船舶和车辆设计中 ,积分被用来计算流体动力学效 应,如压力分布、速度场和流线 。
多元函数积分学课件
目 录
• 多元函数积分学概述 • 多元函数积分的计算方法 • 多元函数积分的几何意义 • 多元函数积分的性质与定理 • 多元函数积分的应用 • 多元函数积分习题与解析
01
多元函数积分学概述
定义与性质
定义
多元函数积分学是研究多元函数的积 分及其性质的一门学科,其基础概念 包括二重积分、三重积分、曲线积分 和曲面积分等。
计算步骤
首先确定积分区域,然后选择合适的 积分次序,最后根据定积分的计算公 式进行计算。
曲线上的第一类曲线积分计算
定义
第一类曲线积分是计算曲线上的函数值 与其对应的参数的乘积的积分,即求曲 线上的一个物理量(如质量、热量等) 的分布情况。

线积分计算公式

线积分计算公式

线积分计算公式
1 线性积分的概念
线性积分是指将曲线的结果带入一定的积分方程得到曲线的积分结果的过程,通常使用积分计算公式来完成。

它是数学中的重要和复杂的概念,可以应用于多领域,如热力学、力学和数值分析。

2 线性积分的背景
线性积分技术可以用来解决一组微分方程,在这些微分方程中,变量通常是空间中的一个或多个点,它们可以用来预测多个离散或连续变量的运动。

它也能够解决许多物理系统的运动方程,更多的的应用在量子力学、重力场和比较数值仿真。

3 线性积分的计算公式
线性积分的一般计算公式为:先求函数在区间(a,b)上的一阶导数,然后使用此一阶导数求函数在区间(a,b)上的积分公式,即函数f(x)的积分结果为F(b)-F(a),其中F(x)表示积分函数。

4 线性积分的应用
线性积分能够计算曲线与物理系统的运动特性及作用力之间的关系,在涉及坐标转换的研究中也有重要的作用。

在很多领域,例如气体动力学、轨道动力学等,线性积分技术能够有效地求解难以解决的问题,为研究带来新的突破。

此外,线性积分的计算结果也可以被应用于再生能源利用和行星环境研究中。

10多元函数积分中的三个公式计算及运用

10多元函数积分中的三个公式计算及运用

10多元函数积分中的三个公式计算及运用在高等数学中,多元函数积分是一个重要的概念,它在应用数学、物理学等领域中都有着广泛的应用。

为了更好地理解和应用多元函数积分,李正元考研高数基础讲义中介绍了十个多元函数积分的基本公式,其中有三个是重要且常用的公式,它们分别是重积分的线性性、变量代换公式和极坐标系下的积分公式。

首先是重积分的线性性。

重积分的线性性是指如果f(x,y)和g(x,y)是定义在闭区域D上的可积函数,c1和c2是常数,那么c1f(x,y)+c2g(x,y)也是定义在D上的可积函数,并且有以下成立的公式:∫∫D [c1f(x, y) + c2g(x, y)]dxdy = c1∫∫D f(x, y)dxdy +c2∫∫D g(x, y)dxdy这个公式的运用非常广泛,在对多元函数进行积分时经常会用到。

其次是变量代换公式。

在计算多元函数积分时,有时可以通过进行变量代换来简化计算。

设有从平面区域D到平面区域D'的可导函数变换x=x(u,v),y=y(u,v),且这个变换是一一对应,那么就有以下变量代换公式:∫∫D' f(x(u, v), y(u, v)),J(u, v),dudv = ∫∫D f(x,y)dxdy其中J(u,v)是变换的雅可比行列式,即J(u,v)=∂(x,y)/∂(u,v)=∂x/∂u*∂y/∂v-∂x/∂v*∂y/∂u。

这个公式在计算复杂的多元函数积分时非常有用,通过适当的变量代换可以将积分区域转化成更简单的形式,从而简化计算过程。

最后是极坐标系下的积分公式。

当积分区域是一个闭圆盘或圆环时,可以使用极坐标系来进行积分计算。

假设f(r,θ)是定义在圆盘或圆环内的连续函数,那么有以下公式成立:∫∫D f(r, θ)rdrdθ = ∫(θ=a to b) ∫(r=0 to R) f(r,θ)rdrdθ其中D表示积分区域,a和b是角度的取值范围,R是极坐标下的积分区域的半径。

多元函数的积分

多元函数的积分

这是我到学高数二的同学那里去弄的有关函数积分的内容,希望对同学们有帮助。

参考书目:高等教育出版社《高等数学下》、天津大学出版社《高等数学复习指导》)多元函数的积分一、各类函数的计算方法1. 二重积分⎰⎰Dd y x f σ),( 或 dxdy y x f D⎰⎰),((1) 若D :b x a x y x ≤≤≤≤),()(21ϕϕ(X-型区域),则dy y x f dx d y x f Db ax x ⎰⎰⎰⎰=)(2)(1),(),(ϕϕσ (先对y ,后对x 的二次积分)(2) 若D :d y c y x y ≤≤≤≤),()(21ψψ (Y-型区域),则dx y x f dx d y x f Ddcy y ⎰⎰⎰⎰=)(2)(1),(),(ψψσ (先对x ,后对y 的二次积分)(3) 若D :βθαθϕρθϕ≤≤≤≤),()(21 (极坐标)则ρρθρθρθσβαθϕθϕd f d d y x f D⎰⎰⎰⎰=)(2)(1)sin ,cos (),( (先对ρ,后对θ的二次积分),其中θρρd d 为极坐标下的面积元素。

2.三重积分dV z y x f ⎰⎰⎰Ω),,( 或 dxdydz z y x f ⎰⎰⎰Ω),,((1) 在直角坐标系下:若Ω:),(),(),()(,2121y x z y x x y x b x a ψψϕϕ≤≤≤≤≤≤,则dV z y x f ⎰⎰⎰Ω),,(=⎰⎰⎰b ax x y x y x dz z y x f dy dx )(2)(1),(2),(1),,(ϕϕψψ (先对z ,再对y ,最后对x 的三次积分)若Ω:Dz y x q z p ∈≤≤),(, ,则dV z y x f ⎰⎰⎰Ω),,(=dxdy z y x f dz qpDz⎰⎰⎰),,((2) 在柱面坐标系下:若Ω:βθαθϕρθϕ≤≤≤≤),()(21,),(),(21θρθρz z z ≤≤且⎪⎩⎪⎨⎧===z z y x θρθρsin cos ,则dV z y x f ⎰⎰⎰Ω),,(=⎰⎰⎰βαθϕθϕθρθρθρθρρρθ)(2)(1),(2),(1),sin ,cos (z z dz z f d d(3) 在球面坐标系下:若Ω:),(),(,,21ϕθϕθγϕηβθαr r r ≤≤≤≤≤≤,且⎪⎩⎪⎨⎧===ϕθϕθϕcos cos sin cos sin r z r y r x ,则 dV z y x f ⎰⎰⎰Ω),,(=⎰⎰⎰βαγηϕθϕθϕθϕθϕϕϕθ),(2),(12)cos ,sin sin ,cos sin (sin r r dr r r r f d d r3.第一型曲线积分ds y x f L⎰),( ,ds 为弧微分元素物理意义:线密度为f(x,y),占有平面曲线L 的曲线型构件的质量。

大学数学微积分第九、十章 多元函数积分学曲线积分知识点总结

大学数学微积分第九、十章  多元函数积分学曲线积分知识点总结

第九、十章 多元函数积分学§9.3 曲线积分第一类 曲线积分(对弧长的曲线积分)参数计算公式:只讨论空间情形(平面情形类似)设空间曲线L 的参数方程 (),(),(),()x x t y y t z z t t αβ===≤≤则 [(,,)f x(t),y(t),z(t)L f x y z ds βα=⎰⎰ (假设()(,,)(),,()f x y z x t y t z t '''和皆连续)这样把曲线积分化为定积分来进行计算第二类 曲线积分(对坐标的曲线积分)参数计算公式:只讨论空间情形(平面情形类似)设空间有向曲线L 的参数方程(),(),(),x x t y y t z z t A ===起点对应参数为[]{[][]},(:)(,,),(,,),(,,),(),(),(),(,,)(,,)(,,)(),(),()()(),(),()()(),(),()()L AB B P x y z Q x y z R x y z x t y t z t P x y z dx Q x y z dy R x y z dz P x t y t z t x t Q x t y t z t y t R x t y t z t z t dtβααβαβαβ=<'''++'''=++⎰⎰始点对应参数为注意现在和的大小不一定如果皆连续又也都连续则这样把曲线积分化为定积分来计算。

值得注意:如果曲线积分的定向相反,则第二类曲线积分的值差一个负号,而第一类曲线积分的值与定向无关,故曲线不考虑定向。

三、两类曲线积分之间的关系空间情形:设L=AB 为空间一条逐段光滑有定向的曲线,(,,),(,,),(,,)P x y z Q x y z R x y z在L 上连续,则[](,,)(,,)(,,)(,,)cos (,,)cos (,,)cos cos ,cos ,cos (,,).AB AB P x y z dx Q x y z dy R x y z dzP x y z Q x y z R x y z dsAB x y z A B αβγαβγ++=++⎰⎰其中为曲线弧上上点处沿定向到方向的切线的方向余弦四、格林公式关于平面区域上的二重积分和它的边界曲线上的曲线之间的关系有一个十分重要的定理,它的结论就是格林公式。

多元函数积分学总结

多元函数积分学总结

多元函数积分学总结引言多元函数积分学是微积分的重要分支,研究具有多个变量的函数的积分。

它在物理、工程、经济学等领域都有广泛的应用。

本文旨在总结多元函数积分学的基本概念、技巧和应用。

一、多重积分1.二重积分二重积分即对二元函数在一个有界区域上的积分。

它可以通过将区域分割成小的矩形,并在每个矩形中求函数值乘以该矩形的面积,再将所有矩形的面积相加而得到。

二重积分的计算可以使用极坐标、换元法等方法来简化计算过程。

2.三重积分三重积分即对三元函数在一个有界区域上的积分。

类似于二重积分,三重积分可以通过对区域进行分割,并在每个小的立体元中求函数值乘以立体元的体积,再将所有立体元的体积相加而得到。

三重积分的计算可以使用柱坐标、球坐标等方法来简化计算过程。

3.多重积分的性质–可加性:多重积分具有可加性,即对于函数的积分,可以将区域分割成多个子区域,分别在每个子区域上计算积分,再将这些积分相加。

–定积分的值与路径无关:对于连续函数,在一个闭合曲线上的积分与路径无关,只与路径所围成的区域有关。

二、重要定理1.Fubini定理Fubini定理是二重积分和三重积分的重要定理,它可以将多重积分转换为一重积分的形式,简化积分计算的过程。

2.Green公式和Stokes定理Green公式和Stokes定理是两个重要的向量积分定理。

它们描述了曲线积分和曲面积分与散度、旋度之间的关系。

3.Gauss公式Gauss公式是一个重要的体积积分定理,它表明了三维空间中的散度与体积分之间的关系。

这个定理在电磁学和流体力学中有广泛的应用。

三、应用实例1.质量和质心多重积分在质量和质心的计算中有广泛的应用。

通过将物体划分为无穷小的微元,可以通过多重积分计算物体的总质量和质心的位置。

2.引力和电场的计算在物理学中,多重积分可以用于计算引力和电场的作用。

通过计算物体上的质量或电荷在空间中的分布,可以使用多重积分来求解引力或电场的强度。

3.概率密度函数和统计分析在概率论和统计学中,概率密度函数描述了随机变量的概率分布。

多元积分的概

多元积分的概

(也表示面积) x Pi
【近似】 Pi i ,
i
mi f ( Pi ) i
D
【求和】
n
n
o
y
m mi f (Pi ) i
i 1
i 1
n
【取极限】
m lim 0 i1
f (Pi ) i
maxi的直径
细棒的质量
n
b
m= lim f 0 i1
i xi
f ( x)dx
G
定积分 b dx b a(积分区间的长度) a
对于二重积分来说 若在D上f ( x, y) 1,则有
d=D的面积
D
➢性质4(比较性)
如果在G上f (P) h(P),则有
G f (P) dg G h(P)dg
特别地,由于 f (P) f (P) f (P),
故有 G f (P) dg G f (P)dg
则 f (P) dg f (P) dg h(P)dg
G
G1
G2
定积分
b
c
b
a f ( x)dx a f ( x)dx c f (x)dx
二重积分
D1 D2
f ( x, y)d f ( x, y)d f ( x, y)d
D
D1
D2
➢性质3
dg G 的度量 (比如面积,体积,弧长等)
f
i xi
(2)当G为平面有界闭区域(常记为D)时,
f (P) f (x, y),(x, y) D,称为二重积分
n
ff((Px,)yd)gd G D
lim 0 i1
f (i ,i ) i
D就是积分域,d 称为面积元素.
(3)当G为空间有界闭区域(常记为 )时,

高等数学中的多元函数的积分

高等数学中的多元函数的积分

高等数学中的多元函数的积分高等数学中的多元函数积分高等数学是一门抽象的学科,它以符号理论和逻辑推理为基础,利用数学结构和算法解决复杂的问题。

在高等数学中,多元函数积分是一个非常重要的概念。

多元函数积分是现代数学的基石之一,它与实际问题密切相关,具有广泛的应用范围。

1. 多元函数积分的概念多元函数积分是一种数学工具,它用于计算多元函数在闭合区域上的积分值。

多元函数是指有多个自变量的函数,积分是对多元函数在一个闭合区域上的求和操作。

多元函数积分的概念最早是由黎曼在19世纪中期提出的,现在已经成为现代数学的一部分。

2. 多元函数积分的性质多元函数积分具有以下性质:(1)线性性:若f和g是定义在闭合区域U上的两个多元函数,a和b是常数,则有∫[af(x,y)+bg(x,y)]dxdy=a∫f(x,y)dxdy+b∫g(x,y)dxdy。

(2)可加性:若f是定义在闭合区域U上的多元函数,在它的范围内用一个曲面D把闭合区域分成两个部分U1和U2,则有∫f(x,y)dxdy=∫f(x,y)dxdy+∫f(x,y)dxdy。

3. 多元函数积分的计算方法多元函数积分的计算方法有以下几种:(1)直接计算:即按照定义式进行积分。

这种方法适合于计算简单的多元函数积分。

(2)使用改变变量法:改变变量法是通过变量代换的方式,将多元函数转化为标准形式,并重新计算积分。

这种方法适合于计算复杂的多元函数积分。

(3)使用重积分法:重积分法是把多元函数积分表示为两个一元函数积分的积分形式,再进行计算。

这种方法适合于计算连续多元函数积分。

4. 多元函数积分的应用多元函数积分是解决实际问题的有力工具,它在物理、工程、金融等领域都有广泛的应用。

(1)物理领域:例如,通过多元函数积分可以计算物体的体积、质心、转动惯量等参数。

(2)工程领域:例如,通过多元函数积分可以计算电场、磁场、热量传递等参数。

(3)金融领域:例如,通过多元函数积分可以计算期权和利率等金融指标。

第十一章多元函数积分学

第十一章多元函数积分学

第十一章 多元函数积分学一、本章学习要求与内容提要(一)学习要求1.了解二重积分的概念, 知道二重积分的性质.2.掌握二重积分在直角坐标系下和极坐标系下的计算方法. 3.会用二重积分解决简单的实际应用题(体积、质量). 4.了解曲线积分的概念和性质. 5.会计算简单的曲线积分.重点 二重积分的概念,直角坐标系与极坐标系下二重积分的计算,曲线积分的概念,格林公式,曲线积分的计算,用二重积分解决简单的实际应用题.难点 直角坐标系与极坐标系下二重积分的计算,格林公式,曲线积分的计算,用二重积分解决简单的实际应用题.(二)内容提要 1.二重积分设二元函数),(y x f z =是定义在有界闭区域D 上的连续函数,用微元法先找出体积微元,再累加求出总体,由这两步所得的表达式,即⎰⎰Dy x f σd ),(称为函数),(y x f z =在闭区域D 上的二重积分,其中),(y x f 称为被积函数,σd ),(y x f 称为被积表达式,D 称为积分区域,σd 称为面积元素,y x 与称为积分变量.2.二重积分的几何意义 在区域D 上当0),(≥y x f 时,⎰⎰Dy x f σd ),(表示曲面),(y x f z =在区域D 上所对应的曲顶柱体的体积.当),(y x f 在区域D 上有正有负时,⎰⎰Dy x f σd ),(表示曲面),(y x f z =在区域D 上所对应的曲顶柱体的体积的代数和.3. 二重积分的性质 (1)可加性[]⎰⎰⎰⎰⎰⎰±=±DDDy x g y x f y x g y x f σσσd ),(d ),(d ),(),(.(2)齐次性⎰⎰⎰⎰=DDk y x f k y x kf )( d ),(d ),(为常数σσ.(3)对积分区域的可加性 设积分区域D 可分割成为1D 、2D 两部分,则有⎰⎰⎰⎰⎰⎰+=12d ),(d ),(d ),(D D Dy x f y x f y x f σσσ.(4)(积分的比较性质) 若),(),(y x g y x f ≥,其中D y x ∈),(,则σσd ),(d ),(⎰⎰⎰⎰≥DDy x g y x f .(5)(积分的估值性质) 设M y x f m ≤≤),(,其中D y x ∈),(,而M m ,为常数,则⎰⎰≤≤DM y x f m σσσd ),( ,其中σ表示区域D 的面积.(6)(积分中值定理)若),(y x f 在有界闭区域D 上连续,则在D 上至少存在一点D ∈),(ηξ,使得σηξσ),(d ),(f y x f D=⎰⎰.4. 二重积分的计算⑴ 二重积分在直角坐标系下的计算 直角坐标系下的面积元素y x •d d d =σ , ①若D :)()(21x y x ϕϕ≤≤,b x a ≤≤,则⎰⎰Dy x y x f d d ),(=x y y x f x x b a d d ),()()(21⎥⎦⎤⎢⎣⎡⎰⎰ϕϕ, ②若D : )()(21y x y ψψ≤≤,d y c ≤≤,则⎰⎰Dy x y x f d d ),(=y x y x f y x d cd d ),()()(21⎥⎦⎤⎢⎣⎡⎰⎰ψψ. ⑵二重积分在极坐标系下的计算极坐标系下的面积元素θσd d d r r =,极坐标与直角坐标的关系⎩⎨⎧θ=θ=.sin ,cos r y r x若D : )()(21θθr r r ≤≤,βθα≤≤,则⎰⎰Dy x y x f d d ),(=⎰⎰Dr r r r f θθθd d )sin ,cos (=θθθθθβαd d )sin ,cos ()()(21⎥⎦⎤⎢⎣⎡⎰⎰r r r r r r f . 5. 对坐标的曲线积分设L 是有向光滑曲线,j ),(i ),(),F(y x Q y x P y x +=是定义在L 上的向量函数,且),( , ),(y x Q y x P 在L 上连续,利用微元法,先写出弧微元j i l y x d d d +=,作乘积=w d L F d ⋅=y )y ,x (Q x )x ,x (P d d +,再无限累加,由这两步所得的表达式,即⎰+y )y ,x (Q x )y ,x (P Ld d 称为函数)y ,x (F 在有向曲线L 上对坐标的曲线积分,其中有向曲线L 称为积分路径.如果),( , ),(y x Q y x P 中有一个为零,则这时曲线积分的形式为⎰⎰y )y ,x (Q x )y ,x (P L Ld d 或,如果曲线L 是封闭曲线,L 上积分记为⎰+y )y ,x (Q x )y ,x (P Ld d .6.对坐标的曲线积分的性质① 设L 为有向曲线弧,-L 是与L 方向相反的有向曲线弧,则y )y ,x (Q x )y ,x (P y )y ,x (Q x )y ,x (P L L d d d d +-=+⎰⎰-.② 如果21L L L +=,则有.y )y ,x (Q x )y ,x (P y )y ,x (Q x )y ,x (P y )y ,x (Q x )y ,x (P L L Ld d d d d d 21+++=+⎰⎰⎰7.格林公式 设D 是平面上以分段光滑曲线L 为边界的有界闭区域,函数),(y x P 及),(y x Q 在D 上有一阶连续偏导数,则有格林公式⎰⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=+σd d d D L y P x Q y Q x P ,其中L 是区域D 的正向边界.8.曲线积分与路径无关(1)定义 设D 是一个单连通区域,将),(y x P 简称为),(,y x Q P 简称为Q ,如果对D 内任意指定的两点A ,B 以及D 内从A 点到B 点的任意两条不相同的曲线21 , L L ,若有y Q x P y Q x P L L d d d d 21+=+⎰⎰,则称曲线积分⎰+y Q x P L d d 在D 内与路径无关.这时,可将曲线积分记为⎰+B Ay Q x P d d .(2)曲线积分与路径无关的定理 ①在单连通区域D 内,曲线积分⎰+y Q x P Ld d 与路径无关的充分必要条件是:对D 内任意一条闭曲线L ,均有⎰=+0d d y Q x P L.②设函数),(y x P 和),(y x Q 在单连通区域D 内有一阶连续偏导数,则曲线积分⎰+Lx Q x P d d 与路径无关的充分必要条件是:yPx Q ∂∂=∂∂在区域D 内恒成立. 9. 曲线积分的计算方法 ⑴积分路径由参数方程给出设xOy 面上的有向曲线L 的参数方程为⎩⎨⎧==,)t (y ,)t (x ψϕ且满足:① 当参数t 单调地由α变到β时,曲线上的点由起点A 运动到终点B ; ② )(t ϕ,)(t ψ在以α和β为端点的闭区间I 上具有一阶连续导数,且()()0)()(22≠'+'t t ψϕ;③),(y x P ,),(y x Q 在有向曲线弧L 上连续.则曲线积分⎰+y )y ,x (Q x )y ,x (P Ld d 存在,且y )y ,x (Q x )y ,x (P Ld d +⎰={}t )t ()]t (),t ([Q )t ()]t (),t ([P d ψψϕϕψϕβα'+'⎰.⑵ 积分路径由)(x f y =给出设xOy 面上的有向曲线弧L 的方程为 )(x f y =,这时可先将有向曲线弧L 的方程看作是以x 为参数的参数方程⎩⎨⎧==,)x (f y ,xx 然后再按(1)中的方法计算.要特别注意:在将对坐标的曲线积分转换为定积分时,积分下限一定要对应积分路径的 起点, 积分上限一定要对应积分路径的终点.二 、主要解题方法1.在直角坐标系下二重积分的计算例1 计算 ⎰⎰Dy x y x d d 2其中D 由直线2=y ,x y =和曲线1=xy 所围成.解 画出区域D 的图形如图所示,求出边界曲线的交点坐标A (21,2), B (1,1), C (2,2),选择先对x 积分,这时D 的表达式为 ⎪⎩⎪⎨⎧≤≤≤≤,y x y,y 121 于是⎰⎰Dy x y xd d 2=x y x y y y d d 1221⎰⎰=y x y yy d ]3[11321⎰ =⎰-2142d )1(31y yy =3312111()333y y -+=7249 .分析 本题也可先对y 积分后对x 积分,但是这时就必须用直线1=x 将D 分1D 和2D 两部分.其中1D ⎪⎩⎪⎨⎧≤≤≤≤,21,121y xx 2D ⎩⎨⎧≤≤≤≤,2,21y x x由此得⎰⎰Dy x y x d d 2=⎰⎰1dd 2D y x y x +⎰⎰2d d 2D y x y x =y yx x xd d 212121⎰⎰+y y x x x d d 2221⎰⎰=⎰121212d ][ln x y x x+⎰2122d ][ln x y x x=⎰+1212d ]ln 2[ln x x x +⎰-212d ]ln 2[ln x x x =7249. 显然,先对y 积分后对x 积分要麻烦得多,所以恰当地选择积分次序是化二重积分为二次积分的关键步骤.例2 计算σ++⎰⎰d )1(Dy x ,其中D :1≤+y x .解 画出积分区域D 的图形, 观察被积函数,无论先对x 积分后对y 积分还是先对y 积分后对x 积分都需要将积分区域分成两部分,计算都较繁,这里选择先对y 积分后对x 积分,其中110,11,x D x y x -≤≤⎧⎨--≤≤+⎩201,11,x D x y x ≤≤⎧⎨-≤≤-⎩ 因此σ++⎰⎰d )1(Dy x =σ++⎰⎰d )1(1D y x +σ++⎰⎰d )1(2D y x =σ++⎰⎰+---d )1(d 1101x xy x x +σ++⎰⎰--d )1(d 1110xx y x x=4σ+⎰d )1(21-x +4x x d )1(10⎰-=423+103=. 例3 已知 I =x y x f y yd ),(d 010⎰⎰+x y x f y y d ),(d 2021⎰⎰- 改变积分次序.解 积分区域21D D D +=,其中1D ⎩⎨⎧≤≤≤≤,0,10y x y 2D ⎩⎨⎧-≤≤≤≤,20,21y x y画出积分区域D 的图形, 改变为先对y 积分后对x 积分, 此时 D ⎩⎨⎧-≤≤≤≤,2,102x y x x 因此I =x y x f y yd ),(d 01⎰⎰+x y x f y y d ),(d 2021⎰⎰-=y y x f x x xd ),(d 221⎰⎰- .小结 把二重积分化为累次定积分的关键在于正确选择积分次序及积分的上、下限,这里要求上限大于下限.在具体计算重积分时,正确地利用对称性可以使计算简化,但是要注意:只有当积分区域和被积函数均关于所给坐标轴对称时,对称性才能应用,切不可只顾积分域而忘了被积函数.2. 在极坐标系下二重积分的计算例4 计算⎰⎰σDxyd arctan,其中D 由422=+y x , 122=+y x ,0=y ,x y = 所围成的第一象限内的区域.解 画出积分区域D 的图形, 由于积分区域的边界曲线有圆周, 所以选极坐标系积分. 此时 θ=xyarctan,于是 ⎰⎰σDx yd arctan=⎰θ4π0d ⎰θ21d r r =⎰πθθ40d 212]2[r=234π22θ=6432π. 例 5 求半球体2220y x a z --≤≤在圆柱ax y x =+22(0>a )D 内那部分的体积.解 把所求立体投影到y x o 面,即圆柱ax y x =+22(0>a )内部,容易看出所求立体的体积以D 为底,以上半球面222y x a z --=为顶的曲顶柱体的体积.由于积分区域的边界曲线为圆周,所以采用极坐标系较好.此时D ⎪⎩⎪⎨⎧θ≤≤≤θ≤-,cos 0,2π2πa r 2x故 V =y x y x a Dd d 222⎰⎰--=⎰-θ2π2πd ⎰θ-cos 022d a r r r a=32⎰θθ-2π033d )cos 1(a =(3π94-)3a . 小结 在计算二重积分时,当积分区域为圆形区域、圆环区域或扇形区域时,选择用极坐标为好,其他情况用直角坐标为宜.3.对坐标的曲线积分的计算方法例 6 设 I =⎰--Ly y x x xy x d d )3(222 ,其中L 是沿上半圆周22y x +=1上的点A (1,0)到)0,1(-B 一段弧,如图.解一 首先验证曲线积分是否与路径无关.223xy x P -=,y x Q 2-=,因为y P ∂∂=xy 2-=xQ∂∂ , 所以曲线积分与路径无关,可选一条简单路径,即选择线段AB 路径. 得I =⎰--ABy y x x xy x d d )3(222 ,在线段AB 上0=y ,0d =y ,x 从1到1-,所以I =⎰-112d 3x x =113-x =2-.解二 用参数方程代入法,设t 为参数t x cos = ,t y sin =,t 从0到π 得I =⎰---π222d ]cos sin cos )sin )(sin cos cos 3[(t t t t t t t t=⎰--π2d ]4sin 41sin cos 3[t t t t =(t 3cos +161cos4t )π=2-.显然,法一比法二简单.例7 计算⎰-+-Lx x y y x y y d )1cos e (d )sin e ( ,其中L 为),0(a A ,)0,(a B 联成直线段. 解 显然积分路径不是封闭曲线,不能直接用格林公式,加直线段BO ,OA 构成封闭曲线,所以⎰-+-Lx x y y x y y d )1cos e (d )sin e ( =⎰++---OABO L x xy y x y y d )1cos e (d )sin (e⎰-+--BOx x y y x y y d )1cos e (d )sin e (⎰-+--Ax x y y x y y 0d )1cos e (d )sin e (,其中 y y P x -=sin e ,1cos e -=y Q x,y p ∂∂= 1cos e -y x ,xQ ∂∂= y x cos e . 因为封闭曲线是反方向,所以由格林公式,得⎰++-+-OABO L xx y y x y y d )1cos e (d )sin e ( =y x y Px Q D d d )(⎰⎰∂∂-∂∂-=y x Dd d ⎰⎰-=22a -. 又因为在BO 上0=y ,0=dy ,故⎰---BOxx y y x y y d )1cos e (d )sin e (=0. 在OA 上 0=x ,0d =x ,y 从0变到a ,于是⎰---Ax xy y x y y 0d )1cos e (d )sin e(=⎰-a y y 0d ]1[cos =a a -sin ,因此 ⎰---Lxxy y x y y d )1cos e (d )sin e (=--22a (a a -sin ). 小结 计算对坐标的曲线积分⎰+Ly y x Q x y x P d ),(d ),(,(1) 若在单连通域内x Q ∂∂=yP∂∂时,曲线积分与路径无关。

《多元函数积分学》课件

《多元函数积分学》课件

物理应用
重积分在物理中有广泛的应用,如计 算物体的质量、质心、转动惯量等物 理量,还可以用来解决流体动力学、 弹性力学等领域的问题。
数值分析应用
重积分在数值分析中有重要的应用, 如数值积分、数值微分等计算方法的 实现都需要用到重积分的知识。
04 曲线积分与曲面积分
曲线积分的概念与性质
总结词
理解曲线积分的定义和计算方法,掌握其在几何和物理问题中的应用。
总结词
掌握多元函数的可积性和积分的基本性 质是理解多元函数积分学的重要环节。
VS
详细描述
可积性的判定条件和积分的基本性质(如 线性性质、可加性、不等式性质等)是多 元函数积分学中的核心知识点,对于理解 和应用积分具有重要意义。
多元函数积分的计算方法
总结词
掌握多元函数积分的计算方法是学习多元函数积分学的关键。
《多元函数积分学》ppt课件
• 多元函数积分学概述 • 多元函数积分的基本概念 • 重积分 • 曲线积分与曲面积分 • 多元函数积分学的应用
01 多元函数积分学概述
多元函数积分学的定义
定义
多元函数积分学是研究多元函数 的积分、微分和微积分基本定理 的一门学科。
多元函数
一个数学函数,其中自变量不止 一个,即函数的输入和输出都是 向量或更高维度的几何对象。
计算多维工程结构的热传导和流 体流动
在工程中,很多问题需要考虑多维工程结构的热传导和 流体流动,如热力管道、流体机械等。多元函数积分学 可以用来计算这些结构的热传导和流体流动。
THANKS 感谢观看
积分
对一个函数在某个区域上的所有 点的值进行加权求和,权值由该 点的坐标决定。
多元函数积分学的重要性
解决实际问题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。






∫ (2) P d x + Q d y 的计算,L为平面有向曲线
L
方法: 1°性质 2°直接法(化为定积分)
下限 ↔ L的起点 (下限 不一定小于上限!)
(上)
(终)
无奇点
① L 封闭
恒等变形
有奇点
3°格林公式
挖洞
② L 不封闭:补线法(所围闭区域
不含奇点)





4°积分与路径无关 要求:熟悉四个等价命题. ① 特殊路径法 ② 原函数法

Pdx
+
Qd
y
=
+–
∫∫
(∂Q ∂x

∂P )dxd ∂y
y
L
D
“+” : L 取正向; “–” : L 取负向.
(2) 若P, Q在L所围区域 D上有奇点,则恒等变形 消奇点或“挖洞”.





2. 当L不封闭时, 可添加辅助线:L1, L2, ··· , Ln ,使
L+L1+ L2+ ··· + Ln 封闭,且构成所围区域的正向或负向边界.
z2 )ds
∫ = 1 a2ds

∫ =
a2 3
ds
Γ
=
2πa3
3
.
∫ (2πa = ds,球面大圆周长 )
Γ





∫ (3) 计算 y ds ,其中L为双纽线:
L
( x2 + y2 )2 = a2( x2 − y2 ) (常数a > 0).
y
解 L的极坐标方程为:
ρ 2 = a 2 cos 2θ


例4 设 L : x + y = 1,逆时针方向,求
∫ (1)
xdy − ydx x+ y
L
L所围域内 含有奇点
解 L所围区域为D, 则D的边长为 2, 面积为2.

xdy x
− +
ydx y
=

xdy
− 1
ydx
y
L
L
格林公式
-1
O
1 x
= 2∫∫ dxdy = 4.
D





∫ (2)
L





∫ (2) P d x + Q d y : 变力Fr = (P, Q)沿L所作的功.
L
2. 计算法
∫ (1) f ( x, y, z )d s的计算
L
方法: 1°性质 2°对称性的利用
① 轴(或面)对称性
(被积函数有相应 的奇偶性)
② 轮换对称性
3°直接法(化为定积分) 下限 < 上限!





分析 被积函数含有抽象函数 ϕ(x),及奇点: (0,0)
在x > 0内,不能断定: Py = Qx ,故不能利用四个
等价命题,直接证明 (1). 证(1) 设C 是 x > 0 内的任意 一条分段光滑简单闭曲线,
y M
BC
A
O
N x
不妨设为正向.
∀ 点M , N ∈ C,
L1
作围绕原点的两条闭曲线:L1+NAM, L1+NBM, 依题设,有
3
∫ ∫ =
1 2 f (2 x)dx + 33 3
2
2 f ( y)d y − 4
3
令2x=t 2
3
∫3 2
f
(t )dt
+
∫2 2
f
(
y)dy

4
3
= −4





y
(方法2) 选路径 AmB:
2
• B (1,2)
xy = k (k = 2) x: 3a1
2m
3
L
2 • A(3, 3)
o1 3 x
L1+ NBM
2x2 + y4
L1+ NAM
2x2 + y4
= A− A=0





(2)
P
=
2
ϕ( y)
x2 + y4
,Q
=
2
2 xy x2 +
y4
在单连通域
x > 0 内具有一阶连续偏导数,由 (1)知
∫ ϕ( y)d x + 2xy d y 2x2 + y4
L
在x > 0 内与路径无关,故
f
(ξi
,ηi
)Δsi
P(x, y)dx+Q(x, y)dy
Ln
=
lim
λ→0 i=1
[P(ξi
,
ηi
)Δxi
+Q(ξi ,ηi
)Δyi ]


∫ ∫ Pdx+Qdy = (Pcos α+Qcos β)ds
L
L
∫ 计 f (x, y)ds L
∫ Pdx + Qdy L
∫ 算
=
β
f (φ,ψ)
φ′2 +ψ′2 dt
θ =π 4
1o 求 ds
o
x
2ρ(θ
)ρ′(θ
)
=
−2a2
sin 2θ
,
ρ ′(θ
)
=

a2 sin
ρ (θ

)
ds = ρ 2 (θ ) + ρ ′2 (θ ) dθ
=
ρ 4 (θ ) + (− a 2 sin ρ (θ )
2θ )2

=
a2
ρ (θ )






2o 由轴对称性,
Q L关于x轴对称,f ( x,− y) = − y = f ( x, y) L关于y轴对称,f (− x, y) = y = f ( x, y)

l
xd y− ydx x2 + 4y2
∫∫ ∫ =
(Qx − Py )d x d y −
xd y− ydx
ε2
D
l
=
∫∫
0d
x
d
y

1
ε2
{−
∫∫
[1

(−1)]d
x
d
y}
=
π
D






小结:利用格林公式计算第二类曲线积分时,要
注意定理使用的两个前提条件.
1. 当L是闭曲线时,
(1) 若P,Q在L所围区域D上有一阶连续偏导数, 则





例6 已知曲线积分
∫ϕ(
y)d x 2x2
+ +
2xy d y4
y
=
A
(常数),
L
其中ϕ ( y)具有连续导数, L是围绕原点的分段
光滑简单闭曲线.
(1) 证明:对右半平面 x > 0内的任意分段光滑
简单闭曲线 C,有
∫C
ϕ
(
y)d x 2x2
+ +
2 xy y4
d
y
=
0
(2) 求 ϕ( y).
价 命
(2)
∫C Pdx + Qdy = 0,闭曲线C ⊂ D
题 (3) 在D内存在U ( x, y)使du = Pdx + Qdy
(4) 在D内, ∂P = ∂Q ∂y ∂x





对对弧弧长长的的
曲曲
曲曲线线积积分分
线线 积积 分分
定定 联 计计 义义 系 算算
对对坐坐标标的的 曲曲线线积积分分
I=
xd y− ydx x2 + 4y2
y
L

P
=
− x2 +
y 4 y2
,
Q
=
x2
x + 4y2
-1
O
1x
Py
=
−1⋅
(
x2 + 4y2) − y ( x2 + 4 y2 )2

8
y
=
4 y2 (x2 +
− x2 4 y2 )2

Qx
=
1⋅(x2 + 4y2) − x ⋅ ( x2 + 4 y2 )2
[ ] ∫ I =
1+
L
y2 f y
( xy)dx
+
x y2
y2 f (xy) − 1 dy
P
Q
其中 L是从点 A(3, 2)到点 B(1,2)的直线段 .
3

∂P ∂y
=

1 y2
+
f
(xy) +
xy
f
′( xy)
2
y
• B (1,2)
= ∂Q , ( y ≠ 0) ∂x
积分与路径无关,
L
2 3
2 • A(3, 3)
−3ຫໍສະໝຸດ 1 y2 ]dy2
• B (1,2)
x=1 L
2 3
o
C
y
相关文档
最新文档